DANIEL TEIXEIRA

DAL HONOURS SEMINAR FALL 24'

CATASTROPHE!

SOME MOTIVATION: BIFURCATION THEORY

https://youtu.be/D7m0pHEUfbw?list=PL8erL0pXF3JZqdlYlfTTyib0qSqwzRdVV&t=170

SOME MOTIVATION: BIFURCATION THEORY

https://youtu.be/D7m0pHEUfbw?list=PL8erL0pXF3JZqdlYlfTTyib0qSqwzRdVV&t=170

Goal: classify functions

f: Rⁿ -> R

up to small perturbations.

This turns out to be extremely hands on in low dimensions. Surprising connection to higher category theory (very algebraic field!).

- A function f:R -> R has a critical point if f' = 0.
- A critical point is degenerate if f''(x) = 0.
- Otherwise, it is *non-degenerate*.

 x^2 and cos(x) are non-degenerate at 0

 x^3 and x^4 are degenerate at 0

- A function f:R -> R has a critical point if f' = 0.
- A critical point is degenerate if f''(x) = 0.
- Otherwise, it is *non-degenerate*.

Theorem: up to a coordinate transformation, $\pm x^2$ are the only possible non-degenerate singularities.

- A function f:Rⁿ -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate*.

- A function f:Rⁿ -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate*.

Morse lemma: up to a coordinate transformation, $\pm x_1^2 \pm x_2^2 \pm ... \pm x_n^2$ are the only possible non-degenerate singularities.

- A function f:Rⁿ -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate*.

Morse lemma: up to a coordinate transformation, $\pm x_1^2 \pm x_2^2 \pm \dots \pm x_n^2$ are the only possible non-degenerate singularities.

What about degenerate critical points?

Splitting lemma: up to a coordinate transformation, any function f:Rⁿ -> R can be written as

$$f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_m^2 + g(x_{m+1}, \dots, x_n)$$

where H(g) = 0.

Splitting lemma: up to a coordinate transformation, any function f:Rⁿ -> R can be written as

CLASSIFICATION IN LOW DIMENSIONS

germ	codimension	corank	name
x ³	1	1	fold
$\pm x^4$	2	1	cusp
x ⁵	3	1	swallowtail
± x ⁶	4	1	butterfly
x ³ +y ³	3	2	hyperbolic umbilic
x ³ -xy ²	3	2	elliptic umbilic
X ² y+y ⁴	4	2	parabolic umbilic

MEANING OF THE CLASSIFICATION

- Classification up to coordinate transformation. i.e. classifying germs of smooth functions
- Determinacy: germs are classified by their Taylor expansions
- This is guaranteed my looking at germs with finite codimension.

MEANING OF THE CLASSIFICATION

What happens to a germ g under perturbation?

Theorem: if G has codimension k, then for any perturbation G(x,t) there exist functions $f_1, ..., f_k$ such that $G = g + u_1 f_1 + ... + u_k f_k$.

MEANING OF THE CLASSIFICATION

• What happens to a germ g under perturbation?

Theorem: if G has codimension k, then for any perturbation G(x,t) there exist functions $f_1, ..., f_k$ such that G = $g + u_1 f_1 + ... + u_k f_k$.

germ	codimension	corank	name	unfolding
х ³	1	1	fold	x ³ +ux
$\pm x^4$	2	1	cusp	$x^4 + ux^2 + vx$
x ⁵	3	1	swallowtail	$x^5 + ux^3 + vx^2 + wx$
± x ⁶	4	1	butterfly	$x^6 + ux^4 + vx^3 + wx^2 + tx$
х ³ +у ³	3	2	hyperbolic umbilic	x ³ +y ³ +uxy+vx+wy
x ³ -xy ²	3	2	elliptic umbilic	$x^{3}-xy^{2}+u(x^{2}+y^{2})+vx+wy$
x²y+y ⁴	4	2	parabolic umbilic	x ² y+y ⁴ +ux ² +vy ² +wx+ty

APPLICATIONS??

germ	codimension	corank	name	categorical dimension
x ³	1	1	fold	2
$\pm x^4$	2	1	cusp	3
x ⁵	3	1	swallowtail	4
± x ⁶	4	1	butterfly	5
x ³ +y ³	3	2	hyperbolic umbilic	???
x ³ -xy ²	3	2	elliptic umbilic	???
X ² y+y ⁴	4	2	parabolic umbilic	???

- **Conjecture:** for each germ of degenerate singularities in codimension n, corresponds a coherence diagram in (n+1)-categories with duals.
- **Hope:** the catastrophes give insights to the meaning of those coherence diagrams.

- **Conjecture:** for each germ of degenerate singularities in codimension n, corresponds a coherence diagram in (n+1)-categories with duals.
- **Hope:** the catastrophes give insights to the meaning of those coherence diagrams.

m

A1 =3 A2

• A₁ ≿₄ D₂ ● D₃

