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Goal: classify functions
f:R"->R

up to small perturbations.

This turns out to be extremely hands on

in low dimensions.
Surprising connection to higher category
theory (very algebraic field!).



CRITICAL POINTS

= A function f:R -> R has a critical point if f = 0.

. o _ x3 and x* are degenerate at O
= A critical point is degenerate if f'’(x) = O.

= Otherwise, it is non-degenerate.

x2 and cos(x) are non-degenerate at O

N~



CRITICAL POINTS

A function f:R -> R has a critical point if f = 0.
A critical point is degenerate if f'’(x) = O.

Otherwise, it is non-degenerate.

Theorem: up to a coordinate transformation, +x2 are
the only possible non-degenerate singularities.



CRITICAL POINTS

A function f:R" -> R has a critical point if df= 0.
A critical point is degenerate if H(f) is non-invertible. —

Otherwise, it is non-degenerate.

— H(Jf)
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CRITICAL POINTS
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A function f:R" -> R has a critical point if df= 0. D2 f 02 f O f
- —=
A critical point is degenerate if H(f) is non-invertible. H(f) = | 9z20m  0z3 x0Ty
Otherwise, it is non-degenerate.
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Morse lemma: up to a coordinate transformation,

X412 £ X2 £ .. £ X2
are the only possible non-degenerate singularities.




CRITICAL POINTS

A function f:R" -> R has a critical point if df= 0.
A critical point is degenerate if H(f) is non-invertible. —

Otherwise, it is non-degenerate.

— H(Jf)

Morse lemma: up to a coordinate transformation,
X412 + X, £ .. £ X2
are the only possible non-degenerate singularities.

What about degenerate critical points?
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CRITICAL POINTS

= Splitting lemma: up to a coordinate transformation, any function f:R" -> R can be written as
f=2X2E X2 & o X2+ 8(Xias woer Xpy)

where H(g) = 0.



CRITICAL POINTS

= Splitting lemma: up to a coordinate transformation, any function f:R" -> R can be written as

CEX 2 F B(Xaq e

f=12x2£X,° %
where H(g) = O. / \

non-degenerate part

degenerate part



CLASSIFICATION IN LOW DIMENSIONS

germ codimension [corank | name
X3 1 1

+ x4
x5

+ x°
x3+y3
x3-xy?

X2y+y4

A W W Pk~ WD

fold
cusp
swallowtail
butterfly
hyperbolic umbilic

elliptic umbilic

N M N P PP

parabolic umbilic



MEANING OF THE CLASSIFICATION

= Classification up to coordinate transformation. i.e. classifying germs of smooth functions
= Determinacy: germs are classified by their Taylor expansions

= This is guaranteed my looking at germs with finite codimension.



MEANING OF THE CLASSIFICATION

= What happens to a germ g under perturbation?

Theorem: if G has codimension k, then for any perturbation G(x,t) there exist functions fy, ..., f, such that G
=g+ ufy +...+uf,.



MEANING OF THE CLASSIFICATION

What happens to a germ g under perturbation?

Theorem: if G has codimension Kk, then for any perturbation G(x,t) there exist functions f, ..., f, such that G

=g+ u,fy + ...+ uf,.

1 1 fold x3 +ux
+ x4 2 1 cusp X* +Ux2+vx
x® 3 1 swallowtail X2 +ux3+vx2+wx
+ x6 4 1 butterfly X8 +ux*+vx3+wx2+tx
x3+y3 3 2 hyperbolic umbilic X3+y3+Uuxy+vx+wy
X3-xy2 3 2 elliptic umbilic X3-Xy2+U(Xx2+y2)+vx+wy
X2y+y4 4 2 parabolic umbilic X2y+y4+ux2+vy2+wx+ty



APPLICATIONS??
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DUALITY IN HIGHER CATEGORIES




DUALITY IN HIGHER CATEGORIES

m codimension | corank “ categorical dimension
X3 1 1 2

fold
+ x4 2 1 cusp 3
x5 3 1 swallowtail 4
+ x° 4 1 butterfly 5
x3+y3 3 2 hyperbolic umbilic 2?7
X3-xy2 3 2 elliptic umbilic ?°?7?
X2y+y4 4 2 parabolic umbilic ?°?7?



DUALITY IN HIGHER CATEGORIES

« Conjecture: for each germ of degenerate
singularities in codimension n, corresponds a
coherence diagram in (n+1)-categories with duals.

 Hope: the catastrophes give insights to the meaning
of those coherence diagrams.
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* Hope: the catastrophes give insights to the meaning
of those coherence diagrams.
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Manifold diagrams and tame tangles, C. Dorn & C. Douglas (2023).
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THANK YOU!!
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