DANIEL TEIXEIRA

DAL HONOURS SEMINAR FALL 24'

CATASTROPHE!

SOME MOTIVATION: BIFURCATION THEORY

https://youtu.be/D7m0pHEUfbw?list=PL8erL0pXF3JZqdlYIfTTyibOqSqwzRdVV&t=170

SOME MOTIVATION: BIFURCATION THEORY

■ https://youtu.be/D7m0pHEUfbw?list=PL8erL0pXF3JZqdlYIfTTyibOqSqwzRdVV&t=170

Goal: classify functions

f: $R^n \rightarrow R$

up to small perturbations.

This turns out to be extremely hands on in low dimensions. Surprising connection to higher category theory (very algebraic field!).

- A function f: $R \rightarrow R$ has a critical point if $f' = 0$.
- A critical point is *degenerate* if f''(x) = 0.
- Otherwise, it is *non-degenerate.*

 x^2 and $cos(x)$ are non-degenerate at 0

 x^3 and x^4 are degenerate at O

- A function f: $R \rightarrow R$ has a critical point if $f' = 0$.
- A critical point is *degenerate* if $f''(x) = 0$.
- Otherwise, it is *non-degenerate*.

Theorem: up to a coordinate transformation, $\pm x^2$ are the only possible non-degenerate singularities.

- A function f: R^n -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate.*

 $\frac{\partial^2 f}{\partial x_1^2}$ $\frac{\partial^2 f}{\partial x_1 \partial x_2}$... $\frac{\partial^2 f}{\partial x_1 \partial x_n}$ $\frac{\partial^2 f}{\partial x_2^2}$. $\frac{\partial^2 f}{\partial x \partial x}$ $\partial^2 f$ $\frac{1}{\partial x_2 \partial x_1}$ $\overline{\partial x_2 \partial x_n}$ $\rightarrow H(f) =$ $\partial^2 f$ $\partial^2 f$ $\partial^2 f$ $\overline{\partial x_n^2}$ $\sqrt{\partial x_n \partial x_1}$ $\overline{\partial x_n \partial x_2}$

- A function f: R^n -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate.*

Morse lemma: up to a coordinate transformation, $\pm x_1^2 \pm x_2^2 \pm ... \pm x_n^2$ are the only possible non-degenerate singularities.

- A function f: R^n -> R has a critical point if df= 0.
- A critical point is *degenerate* if H(f) is non-invertible.
- Otherwise, it is *non-degenerate.*

Morse lemma: up to a coordinate transformation, $\pm x_1^2 \pm x_2^2 \pm ... \pm x_n^2$ are the only possible non-degenerate singularities.

What about degenerate critical points?

Splitting lemma: up to a coordinate transformation, any function f:Rⁿ -> R can be written as

$$
f = \pm x_1^2 \pm x_2^2 \pm \dots \pm x_m^2 + g(x_{m+1}, ..., x_n)
$$

where $H(g) = 0$.

Splitting lemma: up to a coordinate transformation, any function f:Rⁿ -> R can be written as

CLASSIFICATION IN LOW DIMENSIONS

MEANING OF THE CLASSIFICATION

- Classification *up to coordinate transformation*. i.e. classifying *germs* of smooth functions
- *Determinacy*: germs are classified by their Taylor expansions
- This is guaranteed my looking at germs with finite *codimension*.

MEANING OF THE CLASSIFICATION

What happens to a germ g under perturbation?

Theorem: if G has codimension k, then for any perturbation G(x,t) there exist functions $f_1, ..., f_k$ such that G $= g + u_1 f_1 + ... + u_k f_k.$

MEANING OF THE CLASSIFICATION

What happens to a germ g under perturbation?

Theorem: if G has codimension k, then for any perturbation G(x,t) there exist functions $f_1, ..., f_k$ such that G $= g + u_1 f_1 + ... + u_k f_k.$

APPLICATIONS??

- Conjecture: for each germ of degenerate singularities in codimension n, corresponds a coherence diagram in (n+1)-categories with duals.
- Hope: the catastrophes give insights to the meaning of those coherence diagrams.

- Conjecture: for each germ of degenerate singularities in codimension n, corresponds a coherence diagram in (n+1)-categories with duals.
- Hope: the catastrophes give insights to the meaning of those coherence diagrams.

M

 $A_1 \nleq_3 A_2$ A_2^{2d} A_1^{3d}

 $A_1 \sqsubset_A D_2$ D_3

