ACSC/STAT 3703, Actuarial Models I

WINTER 2024 Toby Kenney Homework Sheet 2 Model Solutions

Basic Questions

1. An insurer collects \$19,060,000 in earned premiums for accident year 2023. The total loss payments are \$15,329,000. Payments are subject to inflation of 4%, and policies are sold uniformly throughout the year. If the insurer's permissible loss ratio is 80%, by how much should the premium be changed for policy year 2026?

The loss ratio in 2023 is $\frac{15329000}{19060000} = 0.804249737671$. Without inflation, the premium should be adjusted by a factor of $\frac{0.804249737671}{0.8} = 1.00531217209$. Inflation from the start of 2023 to a random claim in accident year 2023 is

$$\int_0^1 (1.04)^t \, dt = \left[\frac{(1.04)^t}{\log(1.04)}\right]_0^1 = \frac{0.04}{\log(1.04)} = 1.01986926764$$

Inflation from the start of 2026 to a random claim time for policy year 2026 is

$$\begin{split} \int_0^1 t(1.04)^t \, dt &+ \int_1^2 (2-t)(1.04)^t \, dt = \left(\frac{1.04}{\log(1.04)} - \frac{0.04}{\log(1.04)^2}\right) + 1.04 \int_0^1 (1-t)(1.04)^t \, dt \\ &= \left(\frac{1.04}{\log(1.04)} - \frac{0.04}{\log(1.04)^2}\right) + 1.04 \left(\int_0^1 1(1.04)^t \, dt - \int_0^1 t(1.04)^t \, dt\right) \\ &= 1.04 \left(\frac{0.04}{\log(1.04)}\right) - 0.04 \left(\frac{1.04}{\log(1.04)} - \frac{0.04}{\log(1.04)^2}\right) \\ &= \frac{0.04^2}{\log(1.04)^2} \\ &= 1.04013332308 \end{split}$$

Therefore, the premium should be adjusted by a factor

$$\frac{1.00531217209 \times 1.04^3 \times 1.04013332308}{1.01986926764} = 1.15330842326$$

This is an increase of 15.33%.

2. An insurer is reviewing claims for a certain line of insurance from Accident year 2023. The earned premiums in 2023 were \$7.7 million. The base premium in 2023 was \$1,120. However there was a rate change from the old premium of \$1,070 on 1st May 2023. The total losses in Accident Year 2023 were \$6.43 million. What should the new premium for Policy Year 2025 be if the permissible loss ratio is 0.75 and annual inflation is 7%?

[Assume policies are sold and losses occur uniformly through the year.]

We first adjust the earned premiums to the current premium. The rate change happened 4 months into 2023, so the new premium applied to $\frac{1}{2} \times \left(\frac{8}{12}\right)^2 = \frac{2}{9}$ of policy-years in accident year 2023. Therefore, the adjusted earned premiums are $7.7 \times \frac{1120}{\frac{2}{9} \times 1120 + \frac{2}{9} \times 1070} = 7.97697841725$ million. The loss ratio is therefore $\frac{6.43}{7.97697841725} = 0.806069624821$, so without inflation, the premiums should be adjusted by a factor $\frac{0.806069624821}{0.75} = 1.07475949976$.

Inflation from the start of 2023 to a random loss time in accident year 2023 is

$$\int_0^1 (1.07)^t dt = \left[\frac{1.07^t}{\log(1.07)}\right]_0^1 = \frac{0.07}{\log(1.07)} = 1.03460535466$$

Inflation from the start of 2025 to a random loss time in Policy year 2025 is

$$\begin{split} \int_{0}^{1} t(1.07)^{t} dt &+ \int_{1}^{2} (2-t)(1.07)^{t} dt = \int_{0}^{1} t(1.07)^{t} dt + 1.07 \int_{0}^{1} (1-t)(1.07)^{t} dt \\ &= 1.07 \frac{0.07}{\log(1.07)} - 0.07 \left(\left[\frac{t1.07^{t}}{\log(1.07)} \right]_{0}^{1} - \int_{0}^{1} \frac{(1.07)^{t}}{\log(1.07)} \right) \\ &= \frac{0.07^{2}}{\log(1.07)^{2}} \\ &= 1.07040823989 \end{split}$$

The premium for policy year 2025 is therefore

$$1120 \times 1.07475949976 \times 1.07^2 \times \frac{1.07040823989}{1.03460535466} = \$1,425.84$$

3. An insurance company has two lines of coverage in its auto insurance packages, with different expected loss ratios, and has the following data on recent claims:

Policy Type	Policy	Earned	Expected	Losses paid
	Y ear	Premiums	Loss Ratio	to date
	2021	\$16,000,000	0.78	\$10,600,000
Medical	2022	\$18,700,000	0.80	\$6,300,000
	2023	\$19,200,000	0.81	\$3,900,000
	2021	\$4,600,000	0.85	\$3,500,000
Property	2022	\$5,100,000	0.84	\$3,400,000
	2023	\$6,200,000	0.83	\$2,800,000

Calculate the loss reserves at the end of 2023.

We calculate the expected losses and the expected unpaid losses.

Policy Type	Policy	Expected total	Losses paid	Reserves
	Year	Losses	to date	Needed
	2021	\$12,480,000	\$10,600,000	\$1,880,000
Medical	2022	\$14,960,000	\$6,300,000	\$8,660,000
	2023	$$15,\!552,\!000$	3,900,000	\$11,652,000
	2021	\$3,910,000	\$3,500,000	\$410,000
Property	2022	\$4,284,000	3,400,000	\$884,000
	2023	\$5,146,000	\$2,800,000	\$2,346,000
Total				\$25,832,000

So the total loss reserves needed at the end of 2023 are \$25,832,000.

4. The following table shows the cumulative paid losses (in thousands) on claims from one line of business of an insurance company over the past 5 years.

Accident	Earned		Deve	elopment	year	
y ear	premiums	0	1	2	3	4
2019	37832	10873	16313	20489	23867	24452
2020	39619	8790	16279	23080	25669	
2021	44936	12498	20945	27821		
2022	47014	13098	21971			
2023	49669	11459				

Assume that all payments on claims arising from accidents in 2019 have now been settled. Estimate the future payments arising each year from open claims arising from accidents in each calendar year using

(a) The loss development triangle method

First we compute the loss development factors:

0/1	$\frac{75508}{45259} = 1.66835325571$
1/2	$\frac{45259}{71390} = 1.33347031025$
2/3	$\frac{53537}{49536} = 1.13695517455$
- 1 -	

 $3/4 \quad \frac{24452}{23867} = 1.02451083085$

Using these values to complete the table gives the following cumulative losses:

Accident	Development year					
year	0	1	2	3	4	
LDF		1.66835325571	1.33347031025	1.13695517455	1.02451083085	
2020				25669.00	26298.17	
2021			27821.00	31631.23	32406.54	
2022		21971.00	29297.68	33310.14	34126.60	
2023	11459	19117.66	25492.83	28984.21	29694.63	

The future payments are the differences between consecutive years:

Accident	Development year						
year	0	1	2	3	4		
2019					629		
2020				3810	775		
2021			7327	4012	816		
2022		7659	6375	3491	710		

The total reserves needed are the sum of these, or 35606.

(b) The Bornhuetter-Ferguson method with expected loss ratio 0.81.

From the LDFs calculated in (a), we get the following proportions of losses paid.

Development Year	Cumulative proportion of losses paid	Proportion of losses paid
0	$\frac{1}{1.66835325571 \times 1.33347031025 \times 1.13695517455 \times 1.02451083085} = 0.385894634062$	0.385894634062
1	$\frac{1}{1.33347031025 \times 1.13695517455 \times 1.02451083085} = 0.643808569098$	0.257913935036
2	$\frac{1}{1.13695517455 \times 1.02451083085} = 0.858499612378$	0.21469104328
3	$\frac{1}{1.02451083085} = 0.976075576644$	0.117575964266
4	1	0.023924423356

This gives the following reserves:

-	Accident	Earned	Expected Total		Deve	lopmen	t year	
	year	premiums	claims	0	1	2	3	4
	2019	39619	32091.39					768
	2020	44936	36398.16				4280	871
	2021	47014	38081.34			8176	4477	911
	2021	49669	40231.89		10376	8637	4730	963

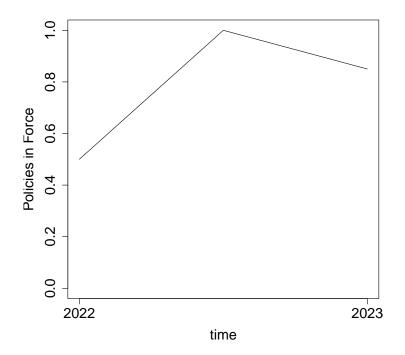
The total outstanding reserves are the sum of these payments, or 44189.

Standard Questions

5. An insurance company starts a new line of insurance at the start of July 2021. It sells policies at a uniform rate throughout 2021, and for the first half of 2022. It then sells policies at a new rate that is 30% lower during the second half of 2022. It finds that by increasing its premium by 10%, it would have achieved the desired loss ratio for accident year 2022. The

actuary estimates inflation is 5%. By how much should the premiums increase for policy year 2025, assuming policies are sold uniformly during 2024?

Let the rate of selling policies in the second half of 2021 and the first half of 2022 be r policies per year. The rate of selling policies in the second half of 2022 is 0.7r, so the number of policies sold in 2022 is $\frac{1}{2}(r+0.7r) = 0.85r$. The number of policies in force in the middle of 2022 is r, and the number of policies in force at the start of 2022 is 0.5r. Between these times, the number of policies in force changes linearly.



Thus the average inflation in accident year 2022 is

$$\begin{aligned} \frac{1}{0.8375} \left(\int_0^{0.5} (0.5+t)(1.05)^t \, dt + \int_{0.5}^1 (1.15-0.3t)(1.05)^t \, dt \right) \\ &= \frac{80}{67} \left(0.5 \left[\frac{1.05^t}{\log(1.05)} \right]_0^{0.5} + \left[t \frac{1.05^t}{\log(1.05)} \right]_0^{0.5} - \int_0^{0.5} \frac{1.05^t}{\log(1.05)} \, dt \right. \\ &\quad + 1.15 \left[\frac{1.05^t}{\log(1.05)} \right]_{0.5}^1 - 0.3 \left[t \frac{1.05^t}{\log(1.05)} \right]_{0.5}^1 + 0.3 \int_{0.5}^1 \frac{1.05^t}{\log(1.05)} \, dt \right) \\ &= \frac{80}{67} \left(\frac{0.5 \left(1.05^{0.5} - 1 \right)}{\log(1.05)} + \frac{0.5(1.05)^{0.5}}{\log(1.05)} - \frac{1.05^{0.5} - 1}{\log(1.05)^2} \right. \\ &\quad + \frac{1.15 \left(1.05 - 1.05^{0.5} \right)}{\log(1.05)} - \frac{0.3 \left(1.05 - 0.5(1.05^{0.5}) \right)}{\log(1.05)} + \frac{0.3 \left(1.05 - 1.05^{0.5} \right)}{\log(1.05)^2} \right) \\ &= 1.02652807692 \end{aligned}$$

The inflation from the start of 2025 to a random claim in policy year 2025 is $\frac{0.05^2}{\log(1.05)^2} = 1.05020830854.$

Thus the premium needs to be increased by a factor $1.1 \times 1.05^2 \times \frac{1.05020830854}{1.02652807692} = 1.24072605009$ or 24.07%.

6. An insurance company has the following cumulative aggregate loss development data:

	Develo	opment	year		
Accident year	0	1	2	3	4
2019	2690	4084	8015	11636	15137
2020	3229	4359	8491	15104	
2021	3232	5514	8394		
2022	4026	6307			
2023	4095				

From this table, it calculates the following mean loss development factors:

Development year	LDF'
0/1	1.537831
1/2	1.784051
2/3	1.620017
3/4	1.300877

and the following cumulative reserves:

Accident		Development year					
y ear	0	1	2	3	4		
2020						19648.44	
2021					13598.42	17689.87	
2022				11252.010	18228.45	23712.96	
2023			6297.418	11234.915	18200.75	23676.93	

It is discovered that one claim payment was recorded in the wrong year, and the cumulative losses for 2020 development year 1 should have been 5621. All other values remain the same.

(a) By how much do the necessary reserves at the end of 2023 decrease? [These are the total reserves for all expected payments after 2023 from all accident years.]

Changing the losses for 2020, development year 1 to 5621 changes the 0/1 LDF to $\frac{21527}{13177} = 1.63367989679$ and the 1/2 LDF to $\frac{24900}{15220} = 1.63600525624$. With these new LDFs, the total reserves needed for accident year 2023 are

 $4095 \times 1.63367989679 \times 1.63600525624 \times 1.620017 \times 1.300877 = 23065.4203035$

the total reserves needed for accident year 2022 are

 $6307 \times 1.63600525624 \times 1.620017 \times 1.300877 = 21745.1963166$

the total reserves needed for accident year 2021 are

 $8394 \times 1.620017 \times 1.300877 = 17689.8753241$

and the total reserves needed for accident year 2020 are

 $15104 \times 1.300877 = 19648.446208$

The total cumulative reserves plus payments already made for these years are therefore

23065.4203035 + 21745.1963166 + 17689.8753241 + 19648.446208 = 82148.9381522

The original cumulative reserves plus payments already made calculated for these years were

19648.44 + 17689.87 + 23712.96 + 23676.93 = 84728.2

Thus the reserves were decreased by 2579.3.

(b)

The earned premiums in each year are given in the following table:

Year	Earned Premiums (000's)
2018	21,903
2019	22,743
2020	24,215
2021	24,886
2022	26,704

Using the Bornhuetter-Fergusson method with expected loss ratio 0.81, the reserves for each year are:

Accident	Expected	Development year					
y ear	Claims	0	1	2	3	4	
2020	18421.83					4260.740	
2021	19614.15				5770.553	4536.509	
2022	20157.66			4203.601	5930.455	4662.216	
2023	21630.24		2012.036	4510.687	6363.693	5002.806	

meaning that the total reserves are 47253.30. How much will the total reserves be changed if the cumulative losses for 2020, development year 1 are changed to 5621?

Replacing the LDFs for 0/1 and 1/2 by the corrected LDFs, 1.63367989679 and 1.63600525624, the proportion of total losses in each year is given by

Development Year	Cumulative proportion of losses paid	Proportion of losses paid
0	$\frac{1}{1.63367989679 \times 1.63600525624 \times 1.620017 \times 1.300877} = 0.177538494687$	0.177538494687
1	$\frac{1}{1.63600525624 \times 1.620017 \times 1.300877} = 0.290041069676$	0.112502574989
2	$\frac{1}{1.620017 \times 1.300877} = 0.474508714516$	0.18446764484
3	$\frac{1}{1.300877} = 0.768712184165$	0.294203469649
4	1	0.231287815835

Accident	Expected	Development year				
year	Claims	0	1	2	3	4
2020	18421.83		0.000	0.000	0.000	4260.745
2021	19614.15		0.000	0.000	5770.551	4536.514
2022	20157.66		0.000	3718.436	5930.454	4662.221
2023	21630.24		2433.458	3990.079	6363.692	5002.811

Thus, the total reserves needed are 46668.96. This is a reduction by 584.34.