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Homework Sheet 4

Model Solutions

Basic Questions

1. A distribution has survival function

S(x) = e− log(x)1.2

for x > 0. How does the tail weight of this distribution compare to that
of a log-normal distribution with µ = 0 and σ2 = 1, when tail-weight is
assessed by

(a) Asymptotic behaviour of hazard rate.

We differentiate S(x) to get

f(x) = 1.2
log(x)0.2

x
e− log(x)1.2

so

λ(x) =
f(x)

S(x)
= 1.2

log(x)0.2

x

We see that λ(x)→ 0 as x→∞.

For the log-normal distribution, we have S(x) = Φ(log(x)) and f(x) =

1√
2πx

e−
log(x)2

2 , so λ(x) = e−
log(x)2

2√
2πxΦ(log(x))

. Asymptotically, this can be ap-

proximated by

λ(x) ≈ −f
′(x)

f(x)
= − d

dx
log(f(x)) =

d

dx

(
log(x)2

2
+

log(2π)

2
+ log(x)

)
=

log(x)

x
+

1

x

We see that this is asymptotically larger, so the distribution has a heavier
tail than the log-normal distribution in terms of the hazard rate function.

(b) Existence of moments.

The kth raw moment of the log-normal distribution is µk = MZ(k) =

ekµ+σk2

2 . In particular, all moments exist. However, the moment generat-
ing function is undefined for any t > 0.
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For the given distribution, the kth moment is∫ ∞
0

kxk−1S(x) dx =

∫ ∞
0

kxk−1e− log(x)1.2 dx

We see that e− log(x)1.2 = x− log(x)0.2 < em
6

x−m for any m and x, since
if x < em

5

, em
6

x−m > 1, while if x > m5, we have log(x)0.2 > m, so

x− log(x)0.2 < em
6

x−m. This means that∫ ∞
0

kxk−1e− log(x)1.2 dx <

∫ ∞
0

kxk−1e(k+2)6x−(k+2) dx

which clearly converges, so all finite moments exist.

On the other hand,

MX(t) = E(etX) =

∫ ∞
0

etx

t
SX(x) dx =

∫ ∞
0

etx−log(x)1.2

t
dx

and since tx− log(x)1.2 > 0 for sufficiently large x, this does not converge
for any t > 0, so the moment generating function is undefined for all t > 0.
Thus we cannot compare the tails in terms of existence of moments.

2. Which coherence properties are satisfied by the following measure of risk?

ρ(X) =
E(X) + 3

√
E(X3)

2

Give a proof or a counterexample for each property.

Sub-additivity For random variables X and Y , we have E(X + Y ) =
E(X) + E(Y ) and

E((X + Y )3) = E(X3 + Y 3 + 3X2Y + 3XY 2)

= E(X3) + E(Y 3) + 3E(X2Y ) + 3E(XY 2)

6 E(X3) + E(Y 3) + 3
(
E(X3)

) 2
3
(
E(Y 3)

) 1
3 + 3

(
E(X3)

) 1
3
(
E(Y 3)

) 2
3

=
(

3
√
E(X3) +

√
E(Y 3)

)3

Monotonicity X3 is a monotone function, so if P (X > Y ) = 1 then
P (X3 > Y 3) = 1, so E(X) > E(Y ) and E(X3) > E(Y 3), from which
monotonicity follows easily.

Positive homogeneity For any c > 0, we have E(cX) = cE(X) and
E((cX)3) = c3E(X3), so 3

√
E((cX)3) = c 3

√
E(X3). Adding these

together gives positive homogeneity.
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Translation invariance Let X = 1 with probability 1
8 , and X = 0 with

probability 7
8 . We now have E(X) = 1

8 = E(X3), so

ρ(X) =
1

2

(
1

8
+

1

2

)
=

5

16

On the other hand, E(X + 1) = 9
8 and E((X + 1)3) = 15

8 , so

ρ(X + 1) =
1

2

(
9

8
+

3
√

15

2

)
6= 21

16

3. Calculate the TVaR at the 95% level of a distribution with survival function

SX(x) = e
√

3−
√
x+3 for x > 0.

The VaR at the 95% level is the solution to SX(x) = 0.05, which is

e
√

3−
√
x+3 = 0.05

√
x+ 3 = log(20) +

√
3

x =
(

log(20) +
√

3
)2

− 3

= 19.3519328621

The TVaR is therefore

19.3519328621 +
1

0.05

∫ ∞
19.3519328621

S(x) dx = 19.3519328621 + 20

∫ ∞
19.3519328621

e
√

3−
√
x+3 dx

= 19.3519328621 + 20e
√

3

∫ ∞
√

22.3519328621

2ue−u du

= 19.3519328621 + 40e
√

3

([
−ue−u

]∞√
22.3519328621

+

∫ ∞
√

22.3519328621

e−u du

)
= 19.3519328621 + 40e

√
3
(√

22.3519328621e−
√

22.3519328621 + e−
√

22.3519328621
)

= 19.3519328621 + 40e
√

3
(√

22.3519328621 + 1
)
e−
√

22.3519328621

= 30.8074990244

4. Which of the following density functions with parameters α, β and γ are
scale distributions? Which have scale parameters?

(i) f(x) = Ce−
x
β−

xα

γ

(
xα+2

γβ2

)
(ii) f(x) = C

(
βα

(β+x)α + βγ

βγ+xγ

)
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(iii) f(x) = C(x+ α)−3(x+ β)−5
(
x2 + α

)−2

[In each case C is a normalising constant that may depend on α, β and
γ, but not on x.]

(i) is a scale distribution since

fcX(x) = c−1fX

(x
c

)
= c−1Ce−

x
cβ−

xα

cαγ

(
xα+2

cα+2γβ2

)
Which is the density of fX(x) with β replaced by cβ and γ replaced by
cαγ.

(ii) We can rewrite

f(x) = C

 1(
1 + x

β

)α +
1

1 +
(
x
β

)γ


from which it is clear that this is a scale distribution and β is a scale
parameter.

(iii) is not a scale distribution, since for example

f2X(x) =
1

2
fX

(x
c

)
= 512C (x+ 2α)

−3
(x+ 2β)

−5 (
x2 + 4α

)−2

which is not the same distribution form.

5. An insurance company observes the following sample of claims (in thou-
sands):

0.8 1.7 2.6 3.6 5.5 7.1 11.4 20.6

They use a kernel density model with uniform kernel with bandwidth 2.

What is the TVaR at the 95% level of the fitted distribution?

There are 8 sample points, and the kernels about the smallest 7 all have
support contained in (−∞, 13.4], so S(18.6) = 1

8 , and for 18.6 < x < 22.6,
we have

S(x) =
1

32
(22.6− x)

Therefore, the VaR at the 95% level is the solution to

1

32
(22.6− x) = 0.05

22.6− x = 1.6

x = 21
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The TVaR is therefore

21 +
1

0.05

∫ 22.6

21

22.6− x
32

dx

=21 + 20

∫ 1.6

0

x

32
dx

=21 + 20

[
x2

64

]1.6

0

=21 + 20
1.62

64
=21.8

Standard Questions

6. An inverse gamma distribution with α and θ = 1 has mean 1
α−1 and

variance 1
(α−1)2(α−2) . You can simulate n random variables following this

inverse gamma distribution with the command

sim=1/gamma(n,shape=alpha)

[This is simulating a gamma distribution then taking the inverse.]

Based on the central limit theorem, if we take the average of a sample
of n inverse gamma random variables, this should approximately follow a
normal distribution with mean 1

α−1 and variance 1
n(α−1)2(α−2) . Plot the

distribution of this sample average for α = 12, α = 2.6 and α = 2.1,
for sample sizes 500, 1000, and 5000, and compare it with the normal
distribution.

We run the simulations using the following code
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library(ggplot2)

InvGammaCLTplot <-function(alpha ,n,nsamp){

### alpha is the inverse gamma shape parameter

### n is the sample size

### m is the number of samples

samp <-1/ rgamma(n*nsamp ,shape=alpha)

## simulate Inverse Gamma Random Varibles

samples <-matrix(samp ,n,nsamp)

means <-colMeans(samples)

## arranging into a matrix and using the column means function is

## an efficient way to calculate the sample means. You could also

## use a loop.

dm <-1/(alpha -1)

dv <-1/(alpha -1)^2/( alpha -2)

x<-seq_len (100000)*0.0001* sqrt(dv/n)+dm -5* sqrt(dv/n)

## x covers 5 standard deviations either side of the mean

return(

ggplot(data=data.frame(x=means),mapping=aes(x=x))+

geom_density ()+

geom_line(data=data.frame(x=x,y=dnorm(x-dm,sd=sqrt(dv/n))),

mapping=aes(x=x,y=y),

colour ="red ")+

scale_y_continuous(name="f(x)")+

theme(axis.title=element_text(size =18),

axis.text=element_text(size =16),

plot.title=element_text(size=18, hjust =0.5))

)

}

for(alpha in c(12 ,2.6 ,2.1)){

for(ss in c(500 ,1000 ,5000)){

pdf(paste(" alpha",alpha ," ssize",ss ,".pdf",sep =""))

print(InvGammaCLTplot(alpha ,ss ,10000))

dev.off()

}

}
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.

Sample size α = 12 α = 2.6 α = 2.1
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