
1 If the individual does not buy insurance, then they will have wealth $4,000 with probability .95, and
$2,000 with probability 0.05. The expected utility is therefore

0.95u(4000) + 0.05u(2000) = 0.95×
(
7000× 4000− 40002

)
+ 0.05× (7000× 2000− 20002) = $11, 900, 000

If the individual buys insurance, their wealth is guaranteed to be $3,880, so their utility is 7000×3880−38802 =
$12, 105, 600. Therefore, the individual is better off buying the insurance.
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2
Advantages of tort system Advantages of no-fault system

Increases coverage costs for at-fault drivers,
thus increasing the incentive to drive carefully.

Reduces litigation costs

More flexibility to taylor payments to injured
parties needs. Under no-fault system, benefits
usually defined by a formula.

Evidence shows that under tort system, small
claims are overcompensated, whereas larger
claims are undercompensated.
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3 80% of the house price is 0.8 × 350000 = $280, 000, so the coinsurance pays 260000
280000 of the loss, which is

260000×70000
280000 = $65, 000.
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a) This is less than the deductible, so no payment is made.

b) 2500− 1000 = $1, 500. The insurer therefore pays 0.8× 1500 = $1, 200.

c) 101600− 1000 = $100, 600. The insurer therefore pays 0.8× 100600 = $80, 480.

d) 146900− 1000 = $145, 900. 0.8× 145900 = $116, 720. This is more than the policy limit, so the insurer
pays the policy limit $100,000.
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5 (a) For a Pareto distribution, the probability that a loss exceeds x is
(
1 + x

θ

)−α
, so in this case, for

any particular loss, it is 101−2. Each policy has a 0.5 probability of producing a loss, and therefore a 1
2×1012

probability of producing a loss exceeding $1,000,000. This means that the probability of a single loss exceeding

$1,000,000 is 1−
(
1− 1

2×1012

)100
= 0.004889607.

(b) Calculating the exact probability is difficult.
For the Pareto distribution, the expectation of the limited loss random variable is

E(X ∧ 100000) =

∫ 100000

0

1(
1 + x

10000

)2 dx

= 10000

∫ 10

0

1

(1 + u)
2 du

= 10000

∫ 11

1

a−2 da

= 10000
[
−a−1

]11
1

= 10000

(
1− 1

11

)
=

100000

11

We also calculate

E((X ∧ 100000)2) =

∫ 100000

0

2x(
1 + x

10000

)2 dx

= 100002
∫ 10

0

2u

(1 + u)
2 du

= 100002
∫ 11

1

2(a− 1)a−2 da

= 100002
∫ 11

1

2a−1 − 2a−2 da

= 2× 108
[
log(a) + a−1

]11
1

= 2× 108
(
log(11)− 10

11

)

This gives us

Var(X ∧ 100000) = 108
(
2 log(11)− 20

11
− 100

121

)
= 21, 5116, 245
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Now the losses per policy are either X or 0 with probability 0.5. The expected loss per policy is therefore 50000
11 ,

while the variance of loss per policy is
(
50000
11

)2× 1
2 ×

1
2 +

1
2 ×215116245 = 112, 723, 412 The expected aggregate

loss is therefore 5000000
11 = $454, 545 and the variance of aggregate loss is 11,272,341,200. The standard deviation

is therefore $106,171. The loss of $1,000,000 is therefore 5.137496 standard deviations above the mean. If we
use a normal approximation, the probability of aggregate losses exceeding $1,000,000 is 1.392117× 10−7.

It is unclear how good the normal approximation is, so I also simulated 1,000,000 random aggregate losses,
and found that in 82 of them, the aggregate loss exceeded $1,000,000. Clearly, the normal approximation
underestimates this probability, but it is still far less than the probability in (a).
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6
If the attachment point is a, then the expected aggregate loss is θ(1− e−

a
θ ), and the expected claim on the

stop-loss insurance is θe−
a
θ . The variance of the aggregate loss payment is

θ2

(∫ a
θ

0

x2e−x dx+
a2

θ2
e−

a
θ − (1− e−

a
θ )2

)
= θ2

([
−x2e−x

] a
θ

0
+ 2

∫ a
θ

0

xe−x dx+
a2

θ2
e−

a
θ − 1 + 2e−

a
θ − e−2 a

θ

)

= θ2

(
−a2

θ2
e−

a
θ + 2

[
−xe−x

] a
θ

0
+ 2

∫ a
θ

0

e−x dx+
a2

θ2
e−

a
θ − 1 + 2e−

a
θ − e−2 a

θ

)

= θ2
(
−a2

θ2
e−

a
θ − 2

a

θ
e−

a
θ + 2

(
1− e−

a
θ

)
+

a2

θ2
e−

a
θ − 1 + 2e−

a
θ − e−2 a

θ

)
= θ2

(
1− 2

a

θ
e−

a
θ − e−2 a

θ

)

The insurer’s premium is therefore set at

P = θ

(
2e−

a
θ + 1− e−

a
θ +

√
1− 2

a

θ
e−

a
θ − e−2 a

θ

)
We want to minimise this P . We substitute u = a

θ and calculate

dP

du
= θ

(
−e−u +

ue−u − e−u + e−2u

√
1− 2ue−u − e−2u

)
We find the minimum by setting this equal to zero:

−e−u +
ue−u − e−u + e−2u

√
1− 2ue−u − e−2u

= 0

ue−u − e−u + e−2u

√
1− 2ue−u − e−2u

= e−u

(ue−u − e−u + e−2u)2

1− 2ue−u − e−2u
= e−2u

(u− 1 + e−u)2 = 1− 2ue−u − e−2u

u2 − 2u+ 4ue−u − 2e−u + 2e−2u = 0

Numerically, we solve this to get u = 0.9640863, so the attachment point that minimises the premium is
0.9640863 times the mean aggregate claims.
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7
(a) The premium period is from the 1st of October 2015 to the 30th of September 2016, so there are three

months out of 12 in 2015. The earned premium is therefore 640× 3
12 = $160.

[If we divide by number of days, the earned premium is 640× 91
365 = $159.56.]

(b) There are nine months out of 12 in 2016, so the earned premium is 640× 9
12 = $480.

[If we divide by number of days, the earned premium is 640× 274
365 = $480.44.]
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The new rate will cover annual policies written in 2018. These will be effective for 1 year. Assuming the

time that policies are written is uniformly distributed over the year, the number of policies in force at the new
rate t years from the start of 2018 is given by Nt if t < 1

N(2− t) if 1 ⩽ t < 2
0 otherwise

Assume that the rate of claims is proportional to the number of policies in force (so claims per policy does not
depend on time of year). Assume also that claims in accident year 2016 were uniformly distributed over the
year. We integrate over the inflation factor for all claim times. That is, if expected claim amount at the start

of 2016 is C, then we have C
∫ 1

0
(1.03)t dt = 26000, and we want to calculate

C(1.03)2
(∫ 1

0

t(1.03)t dt+

∫ 2

1

(2− t)(1.03)t dt

)
We have that∫ 1

0

(1.03)t dt =

[
1.03t

log(1.03)

]1
0

=
0.03

log(1.03)
= 1.014926∫ 1

0

t(1.03)t dt =

[
t

1.03t

log(1.03)

]1
0

−
∫ 1

0

1.03t

log(1.03)
dt =

1.03

log(1.03)
− 0.03

log(1.03)2
= 0.509963∫ 2

1

(2− t)(1.03)t dt = 1.03

∫ 1

0

(1− s)(1.03)s dt = 1.03

(
0.03

log(1.03)
− 1.03

log(1.03)
+

0.03

log(1.03)2

)
= 0.520112

∫ 1

0

t(1.03)t dt+

∫ 2

1

(2− t)(1.03)t dt =
0.032

log(1.03)2

We therefore get 1.014926C = 26000 and the expected claim amount per claim for policy year 2018 is

(1.03)2(0.509963 + 0.520112)C =
(1.03)2(0.509963 + 0.520112)

1.014926
× 26000 = 1.076735× 26000 = $27, 995.11

so the pure premium is 27995.11× 0.003 = $83.99.
[Algebraically, we can write the expected claim amount as 1.032 × 0.03

log(1.03) × 26000.]

[As a sanity check for the calculated inflation factor, we have that the average claim time in accident year

2016 is the middle of the year. Inflation is therefore approximately (1.03)
1
2 = 1.01488915651. The average

claim time in policy year 2018, is the end of 2018, so inflation is approximately 1.03.]

9



9 The insurance line started 2
12 = 1

6 of the way through the year. Assuming policies are sold throughout
the year, the number of policies in force at time t is proportional to t − 1

6 . If the losses at time t are
proportional to the number of policies in force, then the density function of the time of a random loss is
f(t) = 72

25

(
t− 1

6

)
= 2.88

(
t− 1

6

)
. The expected inflation from 1st March 2022 to the time of a random claim

in Accident Year 2022 is therefore

∫ 5
6

0

2.88t(1.08)t dt =

[
2.88

log(1.08)
t(1.08)t

] 5
6

0

−
∫ 5

6

0

2.88

log(1.08)
t(1.08)t dt

=
2.88

log(1.08)

5

6
(1.08)

5
6 − 2.88

log(1.08)2

(
(1.08)

5
6 − 1

)
= 1.0438022666

Expected inflation from the start of 2025 to a random claim in Policy Year 2025 is

∫ 1

0

t(1.08)t dt+

∫ 2

1

(2− t)(1.08)t dt =

∫ 1

0

t(1.08)t dt+ (1.08)

∫ 1

0

(1− t)(1.08)t dt

= 1.08

∫ 1

0

(1.08)t dt− (0.08)

∫ 1

0

t(1.08)t dt

= 1.08
0.08

log(1.08)
− 0.08

([
t(1.08)t

log(1.08)

]1
0

−
∫ 1

0

(1.08)t

log(1.08)
dt

)

= 1.08
0.08

log(1.08)
− 0.08

(
1.08

log(1.08)
− 0.08

log(1.08)2

)
=

0.082

log(1.08)2

= 1.08053317542

Therefore, the premium for policy year 2025 is 644(1.08)2+
5
6
1.08053317542
1.0438022666 = $829.10.
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10 The loss ratio is 76594400
85346200 = 0.897455305567. Therefore, to achieve a loss ratio of 0.8, the premium needs

to be increased by a factor 0.897455305567
0.8 = 1.12181913196. The new premium is therefore 974×1.12181913196 =

$1, 092.65.
Using the loss-cost method, the total exposure is 85346200

974 = 87624.4353183 units of exposure, so the expected
loss per unit of exposure is 76594400

87624.4353183 = $874.121467622. The premium is therefore 874.121467622
0.8 = $1, 092.65.
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11
We first need to adjust the earned premiums to the new rate. Under uniform distribution, we have that

1
2 × 3

4 × 3
4 = 9

32 of the policies are at rate $432; 1
2 × 5

12 × 5
12 = 25

288 of the policies are at rate $491; and the
remaining 182

288 are at rate $464. The average premium per policy is therefore 9
32 ×432+ 182

288 ×464+ 25
288 ×491 =

457.34375. The adjusted earned premiums are therefore 1700000 × 491
457.34375 = 1825104.20226. The loss ratio

at this premium is therefore 1520000
1825104.20226 = 0.832829160175. The new premium before inflation is therefore

491× 0.832829160175
0.8 = 511.148897058.

To calculate inflation from accident year 2018 to policy year 2020, we calculate
∫ 1

0
(1.04)tdt =

[
(1.04)t

log(1.04)

]1
0
=

0.04
log(1.04) = 1.01986926764 and∫ 1

0

t(1.04)t dt+

∫ 2

1

(2− t)(1.04)t dt =

∫ 1

0

t(1.04)t dt+ 1.04

∫ 1

0

(1− t)(1.04)t dt

= 1.04

∫ 1

0

(1.04)t dt− 0.04

∫ 1

0

t(1.04)t dt

= 1.04× 1.01986926764− 0.04

([
t(1.04)t

log(1.04)

]1
0

−
∫ 1

0

(1.04)t

log(1.04)
dt

)

= 1.06066403835− 0.04× 1.04

log(1.04)
+

0.04× 1.01986926764

log(1.04)

= 1.04013332308

The inflation is therefore 1.042×1.04013332308
1.01986926764 = 1.10309059988, so the new premium is 1.10309059988 ×

511.148897058 = $563.84
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12 The proportion of earned premiums under the new premium is 1
2

(
1− 190

365

)2
= 0.114937136423. There-

fore, the earned premiums adjusted to the new premium are

3679710× 660

0.885062863577× 629 + 0.114937136423× 660
= $3839314.6664

The loss ratio is therefore 3244610
3839314.6664 = 0.845101348008. Thus to achieve a loss ratio of 0.75, the base

premium should be multiplied by 0.845101348008
0.75 = 1.12680179734.

Using 6% annual inflation, the expected inflation from the start of 2021 to a random loss in accident year

2021 is
∫ 1

0
(1.06)t dt = 0.06

log(1.06) = 1.02970867194. The expected inflation from the start of 2023 to a random

loss in policy year 2023 is∫ 1

0

t(1.06)t dt+

∫ 2

1

(2− t)(1.06)t dt =
0.062

log(1.06)2
= 1.06029994908

The new base premium is therefore 660× 1.12680179734× 1.062×1.06029994908
1.02970867194 = $860.43.
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IRLRPCI 3 Loss Reserving

3.6 Loss Reserving Methods

13
Claim Type Policy Earned Expected Expected Losses paid Reserves

Year Premiums Loss Ratio Claims to date needed

Collision
2014 $200,000 0.79 $158,000 $130,000 $28,000
2015 $250,000 0.79 $197,500 $110,000 $87,500
2016 $270,000 0.77 $207,900 $60,000 $147,900

Comprehensive
2014 $50,000 0.74 $37,000 $36,600 $400
2015 $60,000 0.72 $43,200 $44,300 $0
2016 $65,000 0.75 $48,750 $41,400 $7,350

Bodily Injury
2014 $300,000 0.73 $219,000 $86,000 $133,000
2015 $500,000 0.73 $365,000 $85,000 $280,000
2016 $600,000 0.72 $432,000 $12,000 $420,000

The loss reserves needed are therefore 28000+87500+147900+400+0+7350+133000+280000+420000 =
$1, 104, 150.
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14
The average, 3-year average and mean loss development factors are:

Accident Development year
year 1/0 2/1 3/2 4/3 5/4

Average 1.187962 1.200218 1.11665 1.052196 1.010355
3-year average 1.143815 1.117381 1.11665 1.052196 1.010355

Mean 47549
40254 = 1.181224 43782

37279 = 1.174441 36398
32559 = 1.117909 23967

22966 = 1.043586 11709
11589 = 1.010355

The estimated future cumulative payments are then calculated by multiplying the most recent cumulative
payment by the corresponding loss development factors. The three methods result in the following estimated
cumulative payments:

Average:
Accident Development year

year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14133 14279
2014 11223 12532 13186 13323
2015 10270 12326 13764 14483 14632
2016 11290 13412 16097 17975 18913 19109

3-year average:
Accident Development year

year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14133 14279
2014 11223 12532 13186 13323
2015 10270 11476 12814 13483 13623
2016 11290 12914 14429 16113 16954 17129

mean:
Accident Development year

year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14017 14163
2014 11223 12546 13093 13229
2015 10270 12062 13484 14071 14217
2016 11290 13336 15662 17509 18272 18461
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15
First we calculate the expected Loss payments. Using the loss development factors, the proportion of

payments made in each year is:
Cumulative 0.5889500 0.6996502 0.8397328 0.9376876 0.9866311 1
Proportion 0.5889500 0.1107002 0.1400826 0.0979548 0.0489435 0.0133689

This leads to expected payments:
Policy Expected Development Year
Year loss 0 1 2 3 4 5
2012 129,600 76,327.92 14,346.75 18,154.70 12,694.95 6,343.08 1,732.60
2013 147,600 86,929.02 16,339.35 20,676.19 14,458.13 7,224.07 1,973.24
2014 151,200 89,049.24 16,737.87 21,180.48 14,810.77 7,400.26 2,021.37
2015 158,400 93,289.68 17,534.91 22,189.08 15,516.04 7,752.66 2,117.63
2016 194,400 114,491.88 21,520.12 27,232.05 19,042.42 9,514.62 2,598.90
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2 Random Variables

Key Functions

16

S1(x) = 1− F1(x) = 1−

 0 x < 0
0.01x 0 ⩽ x < 100
1 x ⩾ 100

=

 1 x < 0
1− 0.01x 0 ⩽ x < 100
0 x ⩾ 100

f1(x) =
d

dx
F1(x) =

{
0.01 0 ⩽ x < 100
0 otherwise

λ1(x) =
f1(x)

S1(x)
=

0.01

1− 0.01x
=

1

100− x

for 0 < x < 100.
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S2(x) = 1− F2(x) = 1−

{
0 x < 0

1−
(

2000
x+2000

)3
x ⩾ 0

= 1−

{
1 x < 0(

2000
x+2000

)3
x ⩾ 0

f2(x) =
d

dx
F2(x) =

{
0 x < 0

20003

2(x+2000)2 x ⩾ 0

λ2(x) =
f2(x)

S2(x)
=


0 x < 0(

20003

2(x+2000)2

)
(

20003

(x+2000)3

) x ⩾ 0
=

{
0 x < 0
x+2000

2 x ⩾ 0
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18

S3(x) = 1− F3(x) = 1−



0 x < 0
0.5 0 ⩽ x < 1
0.75 1 ⩽ x < 2
0.87 2 ⩽ x < 3
0.95 3 ⩽ x < 4
1 x ⩾ 4

=



1 x < 0
0.5 0 ⩽ x < 1
0.25 1 ⩽ x < 2
0.13 2 ⩽ x < 3
0.05 3 ⩽ x < 4
0 x ⩾ 4

f3(x) =


0.5 x = 0
0.25 x = 1
0.12 x = 2
0.08 x = 3
0.05 x = 4
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S4(x) = 1− F4(x) = 1−
{

0 x < 0
1− 0.3e−0.00001x x ⩾ 0

=

{
1 x < 0
0.3e−0.00001x x ⩾ 0

f4(x) =
d

dx
F4(x) =

{
1 x < 0
0.000003e−0.00001x x ⩾ 0

λ4(x) =
f4(x)

S4(x)
=

{
1 x < 0
0.000003e−0.00001x

0.3e−0.00001x x ⩾ 0
=

{
1 x < 0
0.00001 x ⩾ 0

20



3.1 Moments

20

f1(x) = 0.01 for 0 < x < 100

∫ 100

0

0.01x dx = 0.01
1002

2
= 50∫ 100

0

0.01(x− 50)2 dx = 0.01

∫ 50

−50

u2 du = 0.01× 2
503

3
=

2500

3∫ 100

0

0.01(x− 50)3 dx = 0.01

∫ 50

−50

u3 du = 0.01
504 − (−50)4

4
= 0∫ 100

0

0.01(x− 50)4 dx = 0.01

∫ 50

−50

u4 du = 0.02
505

5
= 1250000

Coefficient of variation

(
50√
3

)
50 = 1√

3

Skewness 0

( 2500
3 )

3
2
= 0

Kurtosis 1250000

( 2500
3 )

2 = 1.8

F2(x) = 1−
(

2000

2000 + x

)3

for 0 < x
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∫ ∞

0

(
2000

2000 + x

)3

dx = 2000

∫ ∞

1

u−3 du

= 2000

[
−u−2

2

]∞
1

= 1000∫ ∞

0

2x

(
2000

2000 + x

)3

dx =

∫ ∞

0

2(2000 + x)

(
2000

2000 + x

)3

dx− 4000

∫ ∞

0

(
2000

2000 + x

)3

dx

= 2000

(
4000

∫ ∞

1

u−2 du− 4000

∫ ∞

1

u−2 du

)
= 2000

(
4000

[
− 1

u

]∞
1

− 4000

[
u−2

2

]∞
1

u−2 du

)
= 2000(4000− 2000) = 4000000∫ ∞

0

3x2

(
2000

2000 + x

)3

dx =

∫ ∞

0

3(2000 + x)2
(

2000

2000 + x

)3

dx− 12000

∫ ∞

0

(2000 + x)

(
2000

2000 + x

)3

dx

+ 12000000

∫ ∞

0

(
2000

2000 + x

)3

dx

= 2000

(
12000000

∫ ∞

1

u−1 du− 24000000

∫ ∞

1

u−2 du+ 12000000

∫ ∞

1

u−3 du

)
= ∞

µ2 = µ′
2 − (µ1)

2 = 4000000− 10002 = 3000000

Coefficient of variation
√
3000000
1000 =

√
3

Skewness undefined
Kurtosis undefined

f3(x) =


0.5 x = 0
0.25 x = 1
0.12 x = 2
0.08 x = 3
0.05 x = 4

x x2 x3 x4 P (X = x) xp x2p x3p x4p
0 0 0 0 0.5 0 0 0 0
1 1 1 1 0.25 0.25 0.25 0.25 0.25
2 4 8 16 0.12 0.24 0.48 0.96 1.92
3 9 27 81 0.08 0.24 0.72 2.16 6.48
4 16 64 256 0.05 0.2 0.8 3.2 12.8

E(X) = 0.93 E(X2) = 2.25 E(X3) = 6.57 E(X4) = 21.45
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µ2 2.25− 0.932 = 1.3851
µ3 6.57− 3× 0.93× 2.25 + 2× 0.933 = 1.901214
µ4 21.45− 4× 0.93× 6.57 + 6× 0.932 × 2.25− 3× 0.934 = 6.44159397

Coefficient of variation
√
1.3851
0.93 = 1.26548679006

Skewness 1.901214

1.3851
3
2
= 1.16629740612

Kurtosis 6.44159397
1.38512 = 3.35761648225

F4(x) =

{
0 x < 0
1− 0.3e−0.00001x x ⩾ 0

E(X) =

∫ ∞

0

0.3e−0.00001x dx = 30000

E(X2) =

∫ ∞

0

0.6xe−0.00001x dx = [−60000xe−0.00001x]∞0 + 60000

∫ ∞

0

e−0.00001x dx = 6× 109

E(X3) =

∫ ∞

0

0.9x2e−0.00001x dx =

∫ ∞

0

90000xe−0.00001x dx = 1.8× 1015

E(X4) =

∫ ∞

0

1.2x3e−0.00001x dx =

∫ ∞

0

360000x2e−0.00001x dx = 7.2× 1020

µ2 6× 109 − 300002 = 5.1× 109

µ3 1.8× 1015 − 3× 30000× 6× 109 + 2× 300003 = 1.314× 1015

µ4 7.2× 1020 − 4× 30000× 1.8× 1015 + 6× 300002 × 6× 109 − 3× 300004 = 5.3397× 1020

Coefficient of variation
√
5.1×109

30000 = 2.38047614285

Skewness 1.314×1015

(5.1×109)
3
2
= 3.6077804518

Kurtosis 5.3397×1020

(5.1×109)2 = 20.5294117647
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21

E(X) =

∫ ∞

0

xαe−
x
θ

θαΓ(α)
dx = θ

∫ ∞

0

uαe−u

Γ(α)
du

= θ
Γ(α+ 1)

Γ(α)
= αθ

E(X2) = θ2
∫ ∞

0

uα+2e−u

Γ(α)
du

= θ2
Γ(α+ 2)

Γ(α)
= α(α+ 1)θ2

E(Xn) = θn
∫ ∞

0

uα+ne−u

Γ(α)
du

= θn
Γ(α+ n)

Γ(α)
= α(α+ 1) · · · (α+ n− 1)θn

Calculating the centralised moments,

µ2 = µ′
2 − (µ1)

2 = α(α+ 1)θ2 − (αθ)2 = αθ2

µ3 = µ′
3 − 3µ1µ

′
2 + 2(µ1)

3 =
(
α(α+ 1)(α+ 2)− 3α2(α+ 1) + 2α3

)
θ3 = 2αθ3

µ4 =
(
α(α+ 1)(α+ 2)(α+ 3)− 4α2(α+ 1)(α+ 2) + 6α3(α+ 1)− 3α4

)
θ4 = (3α2 − 2α)θ4

Coefficient of variation
√
αθ2

θ =
√
α

Skewness 2αθ3

(αθ2)
3
2
= 2√

α

Kurtosis (3α2−2α)θ4

(αθ2)2 = 3− 2
α2
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22 The mean excess loss function is the integral of the survival function.

l(x) = E((X − x)+) =

∫ ∞

x

S(t) dt

For

F2(x) =

{
0 x < 0

1−
(

2000
x+2000

)3
x ⩾ 0

This becomes

l(x) =

∫ ∞

x

(
2000

t+ 2000

)3

dt

= 2000

∫ ∞

x+2000
2000

u−3 du

= 2000

[
− 1

2u2

]∞
x+2000
2000

=
2000

2
(
x+2000
2000

)2
=

20003

2(x+ 2000)2

25



23 The density function is xe−
x
θ

θ2 , so the median is the solution to∫ ∞

m

xe−
x
θ

θ2
dx =

1

2

or ∫ ∞

m

xe−
x
θ dx =

θ2

2

Integrating by parts gives

∫ ∞

m

xe−
x
θ dx =

[
−θxe−

x
θ

]∞
m

+

∫ ∞

m

θxe−
x
θ dx

= θme−
m
θ + θ2e−

m
θ

So the median is the solution to

θme−
m
θ + θ2e−

m
θ =

θ2

2(
1 +

m

θ

)
e−

m
θ =

1

2

Numerically we obtain m = 1.6783470θ. For θ = e2

6 , this gives m = 2.0669.
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24 The 100pth percentile of the excess loss random variable (X − d)+ is (πp − d)+. The 100pth percentile

of the limited loss random variable X ∧ u is

{
πp if πp < u
u if πp > u

27



25 We have that f(x) ∝ x(1− x)β−1. To have the 95th percentile equal to 0.8, we need

P (X ⩽ 0.8) = 0.95∫ 0.8

0
x(1− x)β−1 dx∫ 1

0
x(1− x)β−1 dx

= 0.95∫ 0.8

0

x(1− x)β−1 dx = 0.95

∫ 1

0

x(1− x)β−1 dx∫ 1

0.2

(1− u)uβ−1 du = 0.95

∫ 1

0

(1− u)uβ−1 du∫ 0.2

0

uβ−1 − uβ du = 0.05

∫ 1

0

uβ−1 − uβ du[
uβ

β
− uβ+1

β + 1

]0.2
0

= 0.05

[
uβ

β
− uβ+1

β + 1

]1
0

0.2β

β
− 0.2β+1

β + 1
= 0.05

(
1

β
− 1

β + 1

)
0.2β(β + 1− 0.2β) = 0.05

Numerically, the solution to this is β = 2.5526167478.
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3.3 Generating Functions and Sums of Random Variables

26 The moment generating function of a gamma distribution is

E(eXt) =

∫ ∞

0

xα−xe−
x
θ

θαΓ(α)
ext dx

=

∫ ∞

0

xα−xex(t−
1
θ )

θαΓ(α)
dx

=

(
θ

tθ−1

)α
θα

∫ ∞

0

xα−xe

x

( θ
tθ−1 )

(
θ

tθ−1

)α
Γ(α)

dx

=
1

(1− tθ)α

Therefore a sum of two independent gamma distributions with parameters α and θ and α′ and θ (same
value of θ) has moment generating function

MX1+X2(t) = MX1(t)MX2(t) = (1− tθ)−α(1− tθ)−α′
= (1− tθ)−(α+α′)

which is the moment generating function of a gamma distribution with the same θ and the sum of the α values.
In particular, the sum of 16 i.i.d. gamma random variables with α = 1, θ = 250 is a gamma random variable
with θ = 250 and α = 16.

The probability that this aggregate exceeds 6000 is therefore the probability that a gamma distribution
with α = 16 and θ = 250 exceeds 6000, which is 0.03440009.
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27
(a) The probability generating function of a negative binomial distribution is

PN (z) = E(zN )

=

∞∑
n=0

(
r + n− 1

n

)
βn(1 + β)−(r+n)zn

=

∞∑
n=0

(
r + n− 1

n

)
(zβ)n(1 + β)−(r+n)

= (1 + β)−r
∞∑

n=0

(
r + n− 1

n

)(
zβ

1 + β

)n

= (1 + β)−r

(
1− zβ

1 + β

)−r

= (1 + β − zβ)−r

(b) The sum of negative binomial distributions with the same β and r1 and r2 has probability generating
function

PN (z) = (1 + β − zβ)−r1(1 + β − zβ)−r2 = (1 + β − zβ)−(r1+r2)

is a negative binomial distribution with parameters β and r1 + r2.
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28 The survival function is
(

θ
θ+x

)α
. The kth moment is therefore∫ ∞

0

kxk−1

(
θ

θ + x

)α

dx

Substituting u = θ+x
θ this becomes

θ

∫ ∞

0

k(θ(u− 1))k−1u−α du = kθk
k−1∑
i=0

(−1)i
(
k − 1

i

)∫ ∞

1

ui−α du

The integrals
∫∞
1

ui−α du clearly exist whenever i− α < −1, which happens for all i ⩽ k − 1 if and only if
k < i.
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29 The mean of the Pareto distribution is θ
α−1 , so we have θ

α−1 = θ′

α′−1 , or θ
′ = θα′−1

α−1 .
From 28, we have that the kth moment of a Pareto distribution with parameters α and θ is

kθk
k−1∑
i=0

(
k − 1

i

)∫ ∞

1

ui−α du = kθk
k−1∑
i=0

(−1)i
(
k − 1

i

)
1

α− i− 1

= kθk

(
1

α− 1
+

(−1)k−1

α− k
+

k−2∑
i=1

(−1)i
((

k − 2

i

)
+

(
k − 2

i− 1

))
1

α− i− 1

)

= kθk

(
k−2∑
i=1

(−1)i
(
k − 2

i

)
1

α− i− 1
+

k−1∑
i=1

(−1)i
(
k − 2

i− 1

)
1

α− i− 1

)

=
kθ

k − 1
E(Xk−1)− kθ

k − 1
E(X̃k−1)

where X̃ follows a Pareto distribution with parameters α− 1 and θ. By induction, we can therefore show that

E(Xk) =
k!θk

(α− 1) · · · (α− k)

We therefore need to show that

k!θk

(α− 1) · · · (α− k)
>

k!(θ′)k

(α′ − 1) · · · (α′ − k)

Since θ
θ′ =

α−1
α′−1 , it is equivalent to show that

(α− 1)k

(α− 1) · · · (α− k)
>

(α′ − 1)k

(α′ − 1) · · · (α′ − k)

(α− 1) · · · (α− k)

(α− 1)k
<

(α′ − 1) · · · (α′ − k)

(α′ − 1)k(
1− 1

α− 1

)
· · ·
(
1− k − 1

α− 1

)
<

(
1− 1

α′ − 1

)
· · ·
(
1− k − 1

α′ − 1

)
This holds because all terms are positive, and each term on the left is smaller than the corresponding term on
the right.
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30 fY (x) =
xα−1e−

x
θ

θαΓ(α) and fx(x) =
e
− (x−µ)2

2σ2
√
2πσ

, so

fY (x)

fx(x)
=

√
2πσxα−1e−

x
θ

θαΓ(α)e−
(x−µ)2

2σ2

=

√
2πσxα−1

θαΓ(α)
e

(x−µ)2

2σ2 − x
θ

Since (x−µ)2

2σ2 − x
θ → ∞ as x → ∞, we have that fY (x)

fx(x)
→ ∞, so the Gamma distribution has the heavier

tail.
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31 fY (x) =
αθ′α

(x+θ′)α+1 and fx(x) =
αθα

(x+θ)α+1 , so

fY (x)

fx(x)
=

θ′α(x+ θ)α+1

θα(x+ θ′)α+1
=

x+ θ

x+ θ′

(
xθ′ + θθ′

xθ + θθ′

)α

As x → ∞, we have that x+θ
x+θ′ → 1 and xθ′+θθ′

xθ+θθ′ → 1, so fY (x)
fx(x)

→ 1, so neither distribution has the heavier

tail.

34



32 For the Pareto distribution, f(x) = αθα

(x+θ)α+1 and S(x) = θα

(x+θ)α , so the hazard rate is

λ(x) =
f(x)

S(x)
=

α

(x+ θ)
→ 0

For the Gamma distribution, let h(v) = S
(
1
v

)
and g(v) = f

(
1
v

)
. We want to find

lim
x→∞

f(x)

S(x)
= lim

v→0

g(v)

h(v)
= lim

v→0

g′(v)

h′(v)
= lim

v→0

f ′(x)dxdv
S′(x)dxdv

= lim
x→∞

f ′(x)

S′(x)
= lim

x→∞

−f ′(x)

f(x)
= − lim

x→∞

d log(f(x))

dx

For the Gamma distribution, f(x) = xα−1e−
x
θ

θαΓ(α) , so log(f(x)) = (α− 1) log(x)− x
θ −α log(θ)− log(Γ(α)), and

−d log(f(x))
dx = 1

θ −
α−1
x → 1

θ as x → ∞. Thus the hazard rate of a Gamma distribution converges to a non-zero
constant.

35



33 The mean excess loss function is the integral of the survival function.

l(x) = E((X − x)+) =

∫ ∞

x

S(t) dt

For a Pareto distribution

S(x) =

(
θ

x+ θ

)α

so

l(x) =

∫ ∞

x

(
θ

t+ θ

)α

dt

= θ

∫ ∞

x+θ
θ

u−α du

= θ

[
− 1

(α− 1)uα−1

]∞
x+θ
θ

=
θ

(α− 1)
(
x+θ
θ

)α−1

=
θα

(α− 1)(x+ θ)α−1
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34

Subadditivity Let X and Y be random variables. We have E(X + Y ) = E(X) + E(Y ) and

Var(X+Y ) = Var(X)+Var(Y )+2Cov(X,Y ) ⩽ Var(X)+Var(Y )+2
√

Var(X)Var(Y ) =
(√

Var(X) +
√
Var(Y )

)2
Therefore, we have

√
Var(X + Y ) ⩽

√
Var(X) +

√
Var(Y ), so

E(X + Y ) + k
√

Var(X + Y ) ⩽ E(X) + E(Y ) + k
√
Var(X) + Var(Y )

Monotonicity This is not necessarily true. For example, if Y is a Bernoulli random variable with probability
p, and X = Y + ϵ(1 − Y ), for some ϵ > 0, then clearly X ⩾ Y with probability 1, and E(Y ) = p,
E(X) = p + ϵ(1 − p), Var(Y ) = p(1 − p) and Var(X) = (1 − ϵ)2p(1 − p), so for the standard deviation
principle to be monotonic, we must have

p+ ϵ(1− p) + k(1− ϵ)
√
p(1− p) ⩾ p+ k

√
p(1− p)

ϵ(1− p− k
√
p(1− p) ⩾ 0

k ⩽
1− p√
p(1− p)

=

√
1− p

p

Thus for any k > 0, we can choose a p such that the standard deviation principle is not monotonic.

Positive Homogeneity We have

ρ(aX) = E(aX) + k
√
Var(aX) = aE(X) + k

√
a2 Var(X) = aρ(X)

Translation Invariance We have

ρ(X + c) = E(X + c) + k
√

Var(X + c) = E(X) + c+ k
√
Var(X) = ρ(X) + c
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35

FX(x) =

(
x

x+ θ

)τ

VaRp(X) is the solution to (
x

x+ θ

)τ

= p

x+ θ

x
= p−

1
τ

θ

x
= p−

1
τ − 1

x =
θ

p−
1
τ − 1
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36 The TVaR of the Pareto distribution is given by

TVaRp(X) =

∫
VaRp(X)

S(x) dx

=

∫
θ
(
(1−p)−

1
α −1

)
(

θ

x+ θ

)α

dx

=

∫
θ
(
(1−p)−

1
α

) θαu−α du

= θα
[
− u1−α

α− 1

]
θ
(
(1−p)−

1
α

)

= θα

(
θ
(
(1− p)−

1
α

))1−α

α− 1

= θ
(1− p)−

1−α
α

α− 1
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37

Monotonicity If P (X ⩾ Y ) = 1, then for all x, we have SX(x) ⩾ SY (x). In particular VaRp(X) ⩾ Varp(Y ).
Now we want to show that

Varp(X) +
1

p

∫ ∞

VaRp(X)

SX(x) dx ⩾ Varp(Y ) +
1

p

∫ ∞

VaRp(Y )

SY (x) dx

Equivalently, we need to show that

Varp(X) +
1

1− p

∫ ∞

VaRp(X)

SX(x)− SY (x) dx ⩾ Varp(Y ) +
1

1− p

∫ VaRp(X)

VaRp(Y )

SY (x) dx∫ ∞

VaRp(X)

SX(x)− SY (x) dx ⩾
∫ VaRp(X)

VaRp(Y )

SY (x) dx− (1− p)(Varp(X)−Varp(Y ))

Now since SX(x) ⩾ SY (x), the left-hand side is positive. On the other hand, the right-hand side is∫ VaRp(X)

VaRp(Y )
(SY (x) − (1 − p)) dx, and since SY (VaRp(Y )) = 1 − p, the integrand is non-positive, so the

right-hand side is ⩽ 0 as required.

Positive Homogeneity It is obvious that VaRp(aX) = aVaRp(X) for any a ⩾ 0. Therefore, aX >
VaRp(aX) if and only if X > VaRp(X). Now

TVaRp(aX) = E(aX|aX > VaRp(aX))

= E(aX|X > VaRp(X))

= aE(X|X > VaRp(X))

= aTVaR(X)

Translation Invariance It is obvious that VaRp(X + c) = VaRp(X) + c for any c. Therefore, X + c >
VaRp(X + c) if and only if X > VaRp(X). Now

TVaRp(X + c) = E(X + c|X + c > VaRp(X + c))

= E(X + c|X > VaRp(X))

= E(X|X > VaRp(X)) + c

= TVaR(X) + c

Subadditivity In the following diagram, the vertical line is VaRp(X), while the diagonal line is VaRp(X+Y ).
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TVaR is subadditive


A

B

C

X

Y

By definition of VaR, the area to the left of the vertical line, and the area below the diagonal line both
have probability p, so P (A) = P (C). (A is the orange area above the diagonal line and to the left of the
vertical line; C is the blue area to the right of the vertical line and below the diagonal line).

Now TVaRp(X) = 1
1−p

∫∫
B∪C

xfX,Y (x, y) dx dy, while TVaRp(X+Y ) = 1
1−p

∫∫
B∪A

(x+y)fX,Y (x, y) dx dy.

We can show that∫∫
A

xfX,Y (x, y)dxdy ⩽ P (A)VaRp(X) = P (C)VaRp(X) ⩽
∫∫

C

xfX,Y (x, y)dxdy

Therefore,

TVaRp(X + Y ) =
1

1− p

∫∫
B∪A

(x+ y)fX,Y (x, y) dx dy

=
1

1− p

(∫∫
B∪A

xfX,Y (x, y) dx dy +

∫∫
B∪A

yfX,Y (x, y) dx dy

)
⩽

1

1− p

(∫∫
B∪C

xfX,Y (x, y) dx dy +

∫∫
B∪A

yfX,Y (x, y) dx dy

)
= TVaR(X) +

1

1− p

(∫∫
B∪A

yfX,Y (x, y) dx dy

)

A similar argument shows that the second integral is at most TVaRp(Y ).
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x F (x) F (⌈x⌉)
0 < x < 1 0.16x 0.16
1 < x < 2 0.34x− 0.18 0.5
2 < x < 3 0.28x− 0.06 0.78
3 < x < 4 0.19x+ 0.21 0.97
4 < x < 5 0.026x+ 0.866 0.996
5 < x < 6 0.004x+ 0.976 1

(a) At the 90% level, we want to solve F (x) = 0.9, which is clearly between x = 3 and x = 4. In this
interval, F (x) = 0.19x+ 0.21, so the VaR is the solution to 0.19x+ 0.21 = 0.9, which is 0.69

0.19 = 3.63157894737.
Now the TVaR is

VaRp(X) + 10

∫ 6

69
19

S(x) dx =
69

19
+ 10

(∫ 4

69
19

(0.79− 0.19x) +

∫ 5

4

(0.134− 0.026x) dx+

∫ 6

5

(0.024− 0.004x) dx

)

=
69

19
+ 10

([
(0.79x− 0.095x2)

]4
69
19

+
[
0.134x− 0.013x2

]5
4
+
[
0.024x− 0.002x2

]6
5

)
= 4.06105263161

(b) At the 99% level, we want to solve F (x) = 0.99, which is clearly between x = 4 and x = 5. In this
interval, F (x) = 0.026x + 0.866, so the VaR is the solution to 0.026x + 0.866 = 0.99, which is 0.124

0.026 = 62
13 =

4.76923076923.
Now the TVaR is

VaRp(X) + 100

∫ 6

62
13

S(x) dx =
62

13
+ 100

(∫ 5

62
13

(0.134− 0.026x) dx+

∫ 6

5

(0.024− 0.004x) dx

)

=
62

13
+ 100

([
0.134x− 0.013x2

]5
67
13

+
[
0.024x− 0.002x2

]6
5

)
= 5.13076923077
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39 The VaR can be found using the qgamma function in R

qgamma(0.95,shape=4,scale=2000)

This gives VaR0.95(X) = 15507.31.
Now to get the TVaR, we calculate

TVaR0.95(X) = 20

∫
VaR0.95(X)

x
xα−1e−

x
θ

θαΓ(α)
dx

= 20θα

∫
VaR0.95(X)

xαe−
x
θ

θα+1Γ(α+ 1)
dx

The integral in this expression is the probability that a Gamma distribution with shape α + 1 and scale θ
exceeds VaR0.95(X), which we can calculate using the pgamma function in R.

pgamma(15507.31,shape=5,scale=2000,lower.tail=FALSE)

This gives 0.1146317 for the integral, so

TVaR0.95(X) = 20× 2000× 4× 0.1146317

= 18341.072
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(a)
The first Pareto distribution has mean 1000

3 and variance 2000000
9 . The second Pareto distribution has mean

1000
7 and variance 4000000

147 .
The mean of the mixture is therefore 0.4× 1000

3 + 0.6× 1000
7 = 219.047619047 The variance of the mixture

is

Var(X) = E(Var(X|Z)) + Var(E(X|Z))

= 0.4× 2000000

9
+ 0.6× 4000000

147
+

(
1000

3
− 1000

7

)2

× 0.4× 0.6

= 113922.902494

Thus the standard deviation principle is ρ(X) = 219.047619047 + 3.5
√
113922.902494 = 1400.38396216.

(b) The VaR at the 99% level is the solution to

0.4

(
1000

1000 + x

)4

+ 0.6

(
1000

1000 + x

)8

= 0.01

Letting v =
(

1000
1000+x

)4
, we get

40v + 60v2 = 1

v =
−40 +

√
402 + 240

120
v = 0.0241268431592

so x = 1000
(

1

0.0241268431592
1
4
− 1
)
= 1537.31785009

Now the TVaR is

1537.31785009 + 100

∫ ∞

1537.31785009

S(x) dx = 1537.31785009 + 100

∫ ∞

1537.31785009

0.4

(
1000

1000 + x

)4

+ 0.6

(
1000

1000 + x

)8

dx

= 1537.31785009 + 100

∫ ∞

2537.31785009

0.4× 10004u−4 + 0.6× 10008u−8 du

= 1537.31785009 + 40× 10004

3× 2537.317850093
+ 60× 10008

7× 2537.317850097

= 2366.21064631
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1 4 Characteristics of Actuarial Models

4.2 The Role of Parameters

41
(a)

Exponential The Survival function ScX(x) = SX

(
X
c

)
. For the exponential distribution, this survival function

is SX(x) = e−
x
θ , so

ScX(x) = SX

(
X

c

)
= e−

x
cθ

which is an exponential distribution with mean cθ.

Gamma The density function of a scaled random variable is given by fcX(x) = 1
cfX

(
x
c

)
. For the Gamma

distribution, this is

fcX(x) =
1

c

(
x
c

)α−1
e−

x
cθ

θαΓ(α)
=

xα−1e−
x
cθ

cαθαΓ(α)

which is the density of a Gamma distribution with shape parameter α and scale parameter θ.

Normal The density function of a scaled random variable is given by fcX(x) = 1
cfX

(
x
c

)
. For the normal

distribution, this is

fcX(x) =
1√
2πcσ

e−
( x

c
−µ)

2

2σ2 =
1√
2πcσ

e−
(x−cµ)2

2c2σ2

which is the density of a normal distribution with mean cµ and variance c2σ2.

Pareto The Survival function ScX(x) = SX

(
X
c

)
. For the Pareto distribution, this survival function is SX(x) =(

θ
θ+x

)α
=
(

1
1+ x

θ

)α
, so

ScX(x) = SX

(
X

c

)
=

(
1

1 + x
cθ

)α

which is the survival function of a Pareto distribution with parameters α and cθ.

(b) Which of the above distributions have scale parameters?
For the exponential, Gamma and Pareto distributions, θ is a scale paremeter. For the normal distribution,

there is no scale parameter with the usual parametrisation. [There are commonly used parametrisations for
the Gamma (and the exponential) distribution that do not have a scale parameter.]

45



42 This year’s claims follow a Pareto distribution with α = 2 and θ. Since θ is a scale parameter, after 6%
inflation, next year’s claims will follow a Pareto distribution with α = 2 and 1.06θ.

The proportion of claims this year that exceed d is SX(d) =
(

θ
θ+d

)2
, while the proportion of claims next

year that exceed d is S1.06X(d) =
(

1.06θ
1.06θ+d

)2
. The ratio r is therefore

(
1.06θ

1.06θ+d

)2
(

θ
θ+d

)2 =

(
1.06(θ + d)

1.06θ + d

)2

As d → ∞, we have θ+d
1.06θ+d → 1, so r → 1.062 = 1.1236.

46



4.3 Semiparametric and Nonparametric methods

43 Using the kernel density distribution, the probability that a claim is larger than 3 is

1

5

(
Φ

(
0.3− 3

0.8

)
+Φ

(
1.2− 3

0.8

)
+Φ

(
1.4− 3

0.8

)
+Φ

(
1.9− 3

0.8

)
+Φ

(
4.7− 3

0.8

))
=

1

5
(Φ (−3.375) + Φ (−2.25) + Φ (−2) + Φ (−1.375) + Φ (2.125)) = 0.2206232
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44 (a)
For x in the interval [2.7, 3.9], the survival function of the kernel smoothing density estimate is

S(x) =
1

5

(
2.4 + 3− x

6
+

2.8 + 3− x

6
+

3.5 + 3− x

6
+

3.9 + 3− x

6
+

4.2 + 3− x

6

)
= 1.06− x

6

Therefore, if it is in this interval, the median is the solution to

1.06− x

6
= 0.5

x = 6(1.06− 0.5)

= 3.18

(b)
Now the kernel density estimate is different in different intervals. By inspection, we see that the median

will lie in the interval [3.4, 3.7]. In this interval, the survival function is

S(x) =
1

5

(
0 + 0 +

3.5 + 0.5− x

1
+

3.9 + 0.5− x

1
+ +1

)
= 1.88− 0.4x

The median is therefore the solution to

1.88− 0.4x = 0.5

0.4x = 1.38

x = 3.45
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45 The probability that the claim exceeds 3.5 is

1

5

(
Φ

(
1.2− 3.5

2

)
+Φ

(
1.4− 3.5

2

)
+Φ

(
2.1− 3.5

2

)
+Φ

(
2.9− 3.5

2

)
+Φ

(
4.3− 3.5

2

))
=

1

5
(Φ(−1.15) + Φ(−1.05) + Φ(−0.70) + Φ(−0.30) + Φ(0.40)) = 0.310281
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46 For a Gamma distribution with parameters α = 3 and θ = 1, the probability of exceeding 5
θ is∫ ∞

5
θ

x2e−x

2
dx =

[
−x2

2
e−x

]∞
5
θ

+

∫ ∞

5
θ

xe−x dx =
1

2

(
5

θ

)2

e−
5
θ +

5

θ
e−

5
θ + e−

5
θ = e−

5
θ

(
1 +

5

θ
+

(
5

θ

)2
)

For the kernel density estimate, we calculate this for all observations

x θ e−
5
θ

(
1 + 5

θ +
(
5
θ

)2)
1.8 0.6 0.01058961
, 2.1 0.7 0.02660242
, 2.1 0.7 0.02660242
2.4 0.8 0.05169997
3.6 1.2 0.21468531

The probability that the kernel density estimate exceeds 5 is therefore

0.01058961 + 0.02660242 + 0.02660242 + 0.05169997 + 0.21468531

5
= 0.066035946
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47
sigma<-seq len(2000)/1000

Q47<-colMeans(pnorm((c(1.4, 1.9, 2.0, 2.8, 3.3)-3.1)%*%t(rep(1,length(sigma)))/(rep(1,5)%*%t(sigma))))

plot(sigma,Q47,type=’l’,xlab="Standard deviation",ylab="P(X 3.1)")
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48

0 1 2 3 4 5

0.
10

0.
15

0.
20

x

f(
x)

f(x) =
1

6
√
2π

(
e−

(x−1.4)2

2 + e−
(x−1.5)2

2 + e−
(x−1.7)2

2 + e−
(x−3.5)2

2 + e−
(x−3.7)2

2 + e−
(x−3.9)2

2

)
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49 The density function of X is fX(x) = xα−1(1 − x)β−1 for 0 < x < 1. The density function of 5X is
therefore

f5X(x) =
1

5
fX

(x
5

)
=

1

5

(x
5

)α−1 (
1− x

5

)β−1

=
xα−1(1− x)β−1

5α+β−1

for 0 < x < 5.
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50 The density of X is fX(x) = xα−xe−
x
θ

θαΓ(α) . The density of X−1 is therefore

fX−1(x) = x−2f(x−1) = x−2x
−(α−1)e−

x−1

θ

θαΓ(α)
=

θ−αe−
θ−1

x

xα+1Γ(α)
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51 The density of X is fX(x) = e
− x2

2σ2
√
2πσ

. The density of X2 is therefore

fX2(x) =
fX(

√
x) + fX(−

√
x)

2
√
x

=
2e−

x
2σ2

2
√
πxσ

This is a Gamma distribution with shape α = 1
2 and scale θ = 2σ2.
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52 The density of X is fX(x) = e
− x2

2σ2
√
2πσ

. The density of eX is therefore

feX (x) =
fX(log(x))

x
=

e−
(log(x)−µ)2

2σ2

√
2πσx

56



53 The survival function of X is SX(x) =
(

θ
θ+x

)α
. Since Y = log

(
1 + x

θ

)
is an increasing function of X,

we have X = θ(eY − 1), so

SY (x) = SX (θ (ex − 1)) =

(
θ

θ + θ (ex − 1)

)α

=

(
1

ex

)α

= e−αx

This is the survival function of an exponential distribution.
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5.2.4 Mixture Distributions

54 The density of the inverse gamma distribution with α = 5 is

f(x) =
θ5e−

θ
x

24x6

The density of the mixture distribution is therefore

f(x) =

∫ ∞

0

e−
v

7000

7000

(1000 + 0.1v)5e−
1000+0.1v

x

24x6
dv

=

∫ ∞

0

(1000 + 0.1v)5e−(
1000+0.1v

x + v
7000 )

168000x6
dv

=

∫ ∞

1000

u5e−(
u
x+ 10u−10000

7000 )

16800x6
du

=
e

10
7

16800x6

∫ ∞

1000

u5e−u( 1
x+ 1

700 ) du

Letting t = 700x
x+700 , we get∫ ∞

1000

u5e−
u
t du =

[
−u5te−

u
t

]∞
1000

+

∫ ∞

1000

5tu4e−
u
t du

= · · ·

=
(
10005t+ 5× 10004t+ 20× 10003t2 + 60× 10002t3 + 120× 1000t4 + 120t5

)
e−

1000
t

Therefore, the density function of the amount paid on a random claim is

f(x) =
e

10
7

16800x6

(
10005

(
700x

x+ 700

)
+ 5× 10004

(
700x

x+ 700

)
+ 20× 10003

(
700x

x+ 700

)2

+60× 10002
(

700x

x+ 700

)3

+ 120× 1000

(
700x

x+ 700

)4

+ 120

(
700x

x+ 700

)5
)
e−

1000(x+700)
700x
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55 Given the hazard rate Θ = θ, the conditional probability that X > 0.5 is e−0.5θ. Therefore, the marginal
probability is

1

10

∫ 11

1

e−0.5θ dθ =
1

10

[
−2e−0.5θ

]11
1

=
e−0.5 − e−5.5

5
= 0.120488777655
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56 The hazard rate is λ(x) = f(x)
S(x) =

− d
dxS(x)

S(x) = d
dx log(S(x)). Therefore the survival function is S(x) =

e−
∫ x
0

λ(t) dt. For this model, we have

S(75) = e−
∫ 10
0

0.0001(20−x) dx−
∫ 75
10

10−5x2 dx

= e
−(0.002×10−0.0001× 102

2 )−10−5
(

753−103

3

)
= e−1.41791666667

= 0.242218112682
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57 For a given risk factor Θ, the probability that a random claim exceeds $1,000 is
(

Θ
Θ+1000

)3
. The

marginal probability that a random loss exceeds $1,000 is therefore

E

((
Θ

Θ+ 1000

)3
)

=

∫ ∞

0

2× 10002

(1000 + θ)3
×
(

θ

θ + 1000

)3

dθ

= 2000000

∫ ∞

1000

(u− 1000)3

u6
du

= 2000000

∫ ∞

1000

(u−3 − 3000u−4 + 3000000u−5 − 109u−6 du

= 2000000

[
−u−2

2
+ 3000

u−3

3
− 3000000

u−4

4
+ 109

u−5

5

]∞
1000

= 2

(
1

2
− 3× 1

3
+ 3× 1

4
− 1

5

)
= 0.1
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58

(a) For a given value of θ, the probability that the time until a claim is at least 6 years is 1 − e−
θ2

62 . The
probability that a random policyholder makes no claims for 6 years is therefore∫ ∞

0

1

4
e−

θ
4

(
1− e−

θ2

62

)
dθ = 1−

∫ ∞

0

1

4
e−

(θ2+9θ)
36 dθ

= 1−
∫ ∞

0

1

4
e−

(θ2+4.5)2−4.52

36 dθ

= 1− 1

4
e

9
16 6

√
π

∫ ∞

0

e−
(θ2+4.5)2

36

6
√
π

dθ

= 1− 1

4
e

9
16 6

√
πΦ

(
− 4.5

3
√
2

)
= 0.3261073072

(b) The probability that a policy makes no claim for 7 years is

∫ ∞

0

1

4
e−

θ
4

(
1− e−

θ2

72

)
dθ = 1−

∫ ∞

0

1

4
e−

(θ2+12.25θ)
49 dθ

= 1−
∫ ∞

0

1

4
e−

(θ2+6.125)2−6.1252

49 dθ

= 1− 1

4
e

6.1252

49 7
√
π

∫ ∞

0

e−
(θ2+6.125)2

49

7
√
π

dθ

= 1− 1

4
e

6.1252

49 7
√
πΦ

(
− 6.125

3.5
√
2

)
= 0.279900503

so the conditional probability of making no claim in the next year is 0.279900503
0.3261073072 = 0.858307976608.
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59 For an individual with a given value of λ, the probability of surviving to 40 is

e−
∫ 40
0

λe0.08x dx = e
−λ

[
e0.08x

0.08

]40
0

= e−λ e3.2−1
0.08

= e−294.156627464λ

The marginal probability of an individual surviving to 40 is therefore∫ ∞

0

λ2e−100000λ

0.000013Γ(3)
e−294.156627464λ dλ =

1015

2

∫ ∞

0

λ2e−100294.156627464λ dλ

=
1015

2
100294.156627464−3Γ(3)

= 1.00294156627464−3

= 0.991226964653

For an individual with a given value of λ, the probability of surviving to 90 is

e−
∫ 90
0

λe0.08x dx = e
−λ

[
e0.08x

0.08

]90
0

= e−λ e7.2−1
0.08

= e−16730.3845549λ

The marginal probability of an individual surviving to 40 is therefore∫ ∞

0

λ2e−100000λ

0.000013Γ(3)
e−16730.3845549λ dλ =

1015

2

∫ ∞

0

λ2e−116730.3845549λ dλ

=
1015

2
116730.3845549−3Γ(3)

= 1.167303845549−3

= 0.628706935472

The probability of someone aged 40 surviving to 90 is therefore 0.628706935472
0.991226964653 = 0.634271421069.
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60 The probability that a gamma distribution with α = 3 and θ = 1000 is less than 2000 is 0.3233236.
Therefore the density at 2000− ϵ tends to

p

0.3233236

20002e−
2000
1000

10003Γ(3)
= 0.000837150664145p

where p is the probability that a claim is small.

The probability that a Pareto distribution with α = 4 and θ = 3000 is more than 2000 is
(

3000
3000+2000

)4
=

0.1296. Therefore the density at 2000 + ϵ tends to

q

0.1296

4× 30004

(3000 + 2000)5
= 0.0008q

where q = 1− p is the probability that a claim is large. For the density to be continuous, these must be equal,
i.e.

0.000837150664145p = 0.0008(1− p)

0.001637150664145p = 0.0008

p = 0.48865386523
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61 Recall that for any random variable Y , E(Y ) = E(E(Y |Z)). Applying this to Y = X and Y = X2 gives

Var(X) = E(X2)− E(X)2

= E(E(X2|Z))− E(E(X|Z))2

= E(E(X2|Z))− E(E(X|Z)2) + E(E(X|Z)2)− E(E(X|Z))2

= E(E(X2|Z)− E(X|Z)2) + Var(E(X|Z))

= E(Var((X|Z)) + Var(E(X|Z))
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62 Let X be the cost of a random claim, and let Θ be the parameter for a random individual. The law of
total variance gives that

Var(X) = E(Var(X|Θ)) + Var(E(X|Θ))

= E
(

αΘ2

(α− 1)2(α− 2)

)
+Var

(
Θ

α− 1

)
=

3

22 × 1
E(Θ2) + Var

(
Θ

2

)
=

3

4

(
Var(Θ) + E(Θ)2

)
+

1

4
Var(Θ)

=
3

4

(
2× 30002 + (2× 3000)2

)
+

1

4
× 2× 30002

= 45000000
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63 For a given policy with parameter θ, the conditional survival function is the conditional distribution
function of a gamma distribution. That is,

Sθ(x) =

∫ θ
x

0

zα−1e−z

Γ(α)
dz

=

∫ θ
x

0

ze−z dz

=
[
−ze−z

] θ
x

0
+

∫ θ
x

0

e−z dz

= 1−
(
1 +

θ

x

)
e−

θ
x

The survival function of a random policy is

S(x) = E(SΘ(x))

= E
(
1−

(
1 +

Θ

x

)
e−

Θ
x

)
=

∫ ∞

0

θe−
θ

1000

10002Γ(2)

(
1−

(
1 +

θ

x

)
e−

θ
x

)
dθ

= 1−
∫ ∞

0

e−θ( 1
1000+

1
x )

10002

(
θ +

θ2

x

)
dθ

= 1− x2

(x+ 1000)2

∫ ∞

0

θe
− θ

( 1000x
x+1000 )(

1000x
x+1000

)2 dθ − 2000x3

x(x+ 1000)3

∫ ∞

0

θ2e
− θ

( 1000x
x+1000 )(

1000x
x+1000

)3
Γ(3)

dθ

= 1− x2

(x+ 1000)2
− 2000x2

(x+ 1000)3

The VaR is therefore the solution to

1− x2

(x+ 1000)2
− 2000x2

(x+ 1000)3
= 0.05

x2

(x+ 1000)2
+

2000x2

(x+ 1000)3
= 0.95

x2(x+ 1000) + 2000x2 = 0.95(x+ 1000)3

Numerically, we get x = 6388.232908696
Now the TVaR is

1

0.05

∫ ∞

VaR0.95

S(x) dx = 20

∫ ∞

6388.232908696

(
1− x2

(x+ 1000)2
− 2000x2

(x+ 1000)3

)
dx

This integral is undefined.
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64 Let Z = 1 if X is in the component with mean µ1 and variance σ1
2, Z = 2 if X is in the component

with mean µ2 and variance σ2
2, and Z = 3 if X is in the component with mean µ3 and variance σ3

2.
Now we have

E(X) = E(E(X|Z)) = p1µ1 + p2µ2 + p3µ3

and

Var(X) = E(Var(X|Z)) + Var(E(X|Z))

= p1σ1
2 + p2σ2

2 + p3σ3
2 + p1µ1

2 + p2µ2
2 + p3µ3

2 − (p1µ1 + p2µ2 + p3µ3)
2
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65
For thefts, the proportion of claims above 10000 is

1−
(
1 +

4000

10000

)−3

= 0.63556851311953352770

For collisions, the proportion of claims above 10000 is

e−100

(
1 + 100 + · · ·+ 10050

50!

)
= 2.401592e− 08

For other claims, the proportions above 10000 is e−10000/3000 = 0.03567399
The total proportion is therefore 0.15×0.63556851311953352770+0.75×2.401592e−08+0.1×0.03567399 =

0.09890269
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66 The density function of the transformed beta distribution is

fX(x) =

(
Γ(α+ τ)

Γ(α)Γ(τ)

)
γ
(
x
θ

)γτ
x
(
1 +

(
x
θ

)γ)α+τ

so the density of 1
X is

f 1
X
(x) =

1

x2
fX

(
1

x

)
=

1

x2

(
Γ(α+ τ)

Γ(α)Γ(τ)

)
γ
(

1
θx

)γτ
x−1

(
1 +

(
1
θx

)γ)α+τ

=

(
Γ(α+ τ)

Γ(α)Γ(τ)

)
γ
(

1
θx

)γτ
(θx)γ(α+τ)

x
(
1 +

(
1
θx

)γ)α+τ
(θx)γ(α+τ)

=

(
Γ(α+ τ)

Γ(α)Γ(τ)

)
γ (θx)

γα

x ((θx)γ + 1)
α+τ

If we set ϕ = 1
θ then

f 1
X
(x) =

(
Γ(α+ τ)

Γ(α)Γ(τ)

) γ
(

x
ϕ

)γα
x
(
1 +

(
x
ϕ

)γ)α+τ

This is a transformed beta distribution with α = τ , τ = α and θ = 1
θ .
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67 The density function of the transformed beta distribution is

fX(x) =

(
Γ(α+ τ)

Γ(α)Γ(τ)

)
γ
(
x
θ

)γτ
x
(
1 +

(
x
θ

)γ)α+τ

We rearrange this as

fX(x) =

(
Γ(α+ τ)

Γ(α)Γ(τ)

)(
xγ

θγ + xγ

)τ
γ

x
(
1 +

(
x
θ

)γ)α
If θτ

1
γ = ξ, then θγ = ξγ

τ . Substituting this into the density gives

fX(x) =

(
Γ(α+ τ)

Γ(α)Γ(τ)

)(
τxγ

ξγ + τxγ

)τ
γ

x
(
1 + τ

(
x
ξ

)γ)α
As τ → ∞, we have Γ(α+τ)

Γ(α)Γ(τ) → τα. Substituting this in gives

fX(x) → 1

Γ(α)

(
τxγ

ξγ + τxγ

)τ
γτα

x
(
1 + τ

(
x
ξ

)γ)α
=

γ

xΓ(α)

(
1 +

(
ξ

x

)γ

τ−1

)τ (
τ−1 +

(
x

ξ

)γ)−α

=
γ

xΓ(α)

(
ξ

x

)γα(
1 +

(
ξ

x

)γ

τ−1

)τ (
1 +

(
ξ

x

)γ

τ−1

)−α

→ γ

xΓ(α)

(
ξ

x

)γα

e−(
ξ
x )

γ

This is the density of an inverse transformed gamma distribution with τ = γ and θ = ξ.
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68
The density of the transformed gamma distribution is

f(x) =
τxατe−(

x
θ )

τ

xΓ(α)θατ

We substitute Stirlings formula:
Γ(α) ≈ e−ααα− 1

2

√
2π

Now the conditions given imply θτ = σ2τ2 and α = µ
σ2τ + 1

σ2τ2 . We see that (αθτ )α = (1 + µτ)α. Since

α = µ
σ2τ + 1

σ2τ2 = µ
σ2τ

(
1 + 1

µτ

)
, we have that

(1 + µτ)α = (1 + µτ)
µ

σ2τ

(
(1 + µτ)

1
µτ

) µ

σ2τ
= e

µ2

σ2 e
µ

σ2τ

Substituting this into the formula, we have that

f(x) =
τ
√
αxατe−(

x
θ )

τ

eα

xe
µ

σ2τ
+µ2

σ2
√
2π

We have that θτ = σ2τ2, and xτ = eτ log x = 1 + τ log(x) + τ2(log(x))2

2 + . . .. Therefore
(
x
θ

)τ
= 1

σ2τ2 + log(x)
σ2τ +

(log(x))2

2σ2 + . . .. Substituting this in we get

f(x) =
τ
√
αxατeα−

1
σ2τ2 − log(x)

σ2τ
− (log(x))2

2σ2 − µ

σ2τ
−µ2

σ2

x
√
2πα

recalling α = 1
σ2τ2 + µ

σ2τ , we get

f(x) =
τ
√
αxατe−

log(x)

σ2τ
− (log(x))2

2σ2 −µ2

σ2

x
√
2π

=
τ
√
αelog(x)(ατ−

1
σ2τ

)− (log(x))2

2σ2 −µ2

σ2

x
√
2π

Since ατ − 1
σ2τ = µ

σ2 , we have obtained

f(x) =
τ
√
αe

2µ log(x)−(log(x))2

2σ2 −µ2

σ2

x
√
2π

Finally, as τ
√
α =

√
1
σ2 + µτ

σ2 , as τ → 0, this becomes 1
σ , so

f(x) =
e

2µ log(x)−(log(x))2

2σ2 −µ2

σ2

x
√
2πσ

=
e

(log(x)−µ)2

σ2

x
√
2πσ

which is the density of a log-normal distribution.
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69
Let [a, b] be the support of the distribution (a and b can be ±∞). We know that

∫ b

a
p(x)er(θ)xdx = q(θ).

Differentiating with respect to θ gives

q′(θ) =
d

dθ

∫ b

a

p(x)er(θ)xdx =

∫ b

a

p(x)
d

dθ
er(θ)xdx =

∫ b

a

p(x)xr′(θ)er(θ)xdx = r′(θ)µ(θ)q(θ)

This gives µ(θ) = q′(θ)
r′(θ)q(θ) .

Differentiating again gives

µ′(θ)q(θ) + µ(θ)q′(θ) =
d

dθ

∫ b

a

xp(x)er(θ)xdx =

∫ b

a

r′(θ)x2p(x)er(θ)xdx = r′(θ)q(θ)µ′
2(θ)

Dividing through by r′(θ)q(θ), we get
µ′(θ)

r′(θ)
+ µ(θ)2 = µ′

2(θ)

Since the variance is µ′
2(θ)− µ(θ)2, this is equal to µ′(θ)

r′(θ) .
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70 The Gamma distribution is linear exponential with p(x) = xα−1, r(θ) = −θ−1 and q(θ) = θαΓ(α). The
mean is therefore

µ(θ) =
q′(θ)

r′(θ)q(θ)
=

αθα−1Γ(α)

θ−2θαΓ(α)
= αθ

The variance is
µ′(θ)

r′(θ)
=

α

θ−2
= αθ2
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71 (a) The PGF of the Poisson distribution is given by

P (z) = E(zX)

=

∞∑
n=0

e−λλ
n

n!
zn

= e−λ
∞∑

n=0

(λz)n

n!

= e−λeλz

= e−λ(1−z)

(b) If X1 and X2 are independent Poisson random variables with parameters λ1 and λ2 respectively, then

PX1+X2
(z) = PX1

(z)PX2
(z) = e−λ1(1−z)e−λ2(1−z) = e−(λ1+λ2)(1−z)

This is the PGF of a Poisson distribution with mean λ1 + λ2.
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72 Let N be the number of losses and let C be the number of claims. We have that N ∼ Poisson(λ) and
C|N ∼ B(N, p). Therefore we have P (C = m|N = n) =

(
n
m

)
pm(1− q)n−m. Therefore

P (C = m) =

∞∑
n=0

P (N = n)P (C = m|N = n)

=

∞∑
n=m

e−λλ
n

n!

(
n

m

)
pm(1− p)n−m

= e−λ p
m

m!

∞∑
n=m

λn

(n−m)!
(1− p)n−m

= e−λ p
mλm

m!

∞∑
n=m

(λ(1− p))n−m

(n−m)!

= e−λ p
mλm

m!
eλ(1−p)

= e−λp (λp)
m

m!

This is the probability mass function for a Poisson distribution with mean λp.
We can also show this more easily with probability generating functions. Let Z1, . . . , ZN be indicator

variables of whether a loss leads to a claim. Then C = Z1 + · · ·+ ZN , so

E(zC |N) = E(zZ1 · · · zZn |N) = E(zZ1)N = ((1− p) + pZ)N

Therefore

PC(z) = E(zC) = E(E(zC |N)) = E(((1− p) + pz)N ) = pN ((1− p) + pz)− e−λ(1−(1−p+pz)) = e−λp(1−z)

which is the PGF of a Poisson distribution with mean λp.
Next we need to show that the C and N − C are independent. We have that

P (C = m,N − C = k) = P (C = m,N = m+ k)

= P (N = m+ k)P (C = m|N = m+ k)

= e−λ λm+k

(m+ k)!

(
m+ k

m

)
pm(1− p)k

= e−λ (λp)
m(λ(1− p))k

m!k!

As this separates as a product of functions of m and k, we see that C and N − C are independant.
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73 (a) The probability that the number of claims is zero is 0.810 = 0.1073741824.
(b) The probability that the number of claims is three is

(
10
3

)
0.230.87 = 0.201326592.
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74 A binomial random variable is a sum of independant Bernoulli random variables. Let the Bernoulli
random variables be Z1, . . . , Zn, where each P (Zi = 1) = p. This gives PZi(z) = E(zZi) = (1 − p) + pz. We
have X = Z1 + · · ·+ Zn, so PX(z) = PZ1

(z) · · ·PZn
(z) = PZ1

(z)n = (1− p+ pz)n.
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75
If X is a gamma mixture of Poisson random variables with parameters α and θ, then

P (X = n) =

∫ ∞

0

e−λλ
n

n!

λα−1

θαΓ(α)
e−

λ
θ dλ =

1

n!Γ(α)θα

∫ ∞

0

λn+α−1e−λ(1+ 1
θ )dλ

We make the substitution τ = λ
(
1 + 1

θ

)
, then we have dτ =

(
1 + 1

θ

)
dλ the integral becomes(

1 +
1

θ

)−(n+α) ∫ ∞

0

τn+α−1e−τdτ = Γ(n+ α)

(
1 +

1

θ

)n+α

and so

P (X = n) =
Γ(n+ α)

n!Γ(α)

(
θ

1 + θ

)n(
1

1 + θ

)α

A negative binomial distribution with r = α and β = θ
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76
X has a negative binomial distribution with r = 70, β = 0.08, so P (X = 0) =

(
1

1.08

)70
= 0.004574431, so

prob at least one claim is 1− 0.004574431 = 0.99543.
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77 Let X be a negative binomial random variable with parameters r and β.

PX(z) =

∞∑
n=0

(
n+ r − 1

n

)(
β

1 + β

)n(
1

1 + β

)r

zn

=

(
1

1 + β

)r ∞∑
n=0

(
n+ r − 1

n

)(
βz

1 + β

)n

=

(
1

1 + β

)r (
1− βz

1 + β

)−r

= (1 + β − βz)
−r
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78 The PGF of the negative binomial distribution is P (z) = (1 + β − βz)
−r

. If rβ = λ, then this becomes

P (z) =

(
1 +

λ(1− z)

r

)−r

→ e−λ(1−z)

as r → ∞. Therefore, we have that the limit of the negative binomial distribution is Poisson with mean λ.
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79

Binomial
pk

pk − 1
=

(
n
k

)
pk(1− p)n−k(

n
k−1

)
pk−1(1− p)n−k+1

=
(n− k)p

k(1− p)
= − p

1− p
+

np
1−p

k

This is from the (a, b, 0) class with a = − p
1−p and b = np

1−p .

Poisson
pk

pk − 1
=

e−λ λk

k!

e−λ λk−1

(k−1)!

=
λ

k

This is from the (a, b, 0) class with a = 0 and b = λ.

Negative Binomial

pk
pk − 1

=

(
k+r−1

k

) (
β

1+β

)k (
1

1+β

)r
(
k+r−2
k−1

) (
β

1+β

)k−1 (
1

1+β

)r =
(k + r − 1)β

k(1 + β)
=

β

1 + β
+

(r − 1) β
1+β

k

This is from the (a, b, 0) class with a = β
1+β and b = (r−1)β

1+β .

Conversely, suppose X is from the (a, b, 0) class. We ignore the degenerate case P (X = 0) = 1, so p0 > 0
and p1 > 0. If a > 0, we must have b > −a, since otherwise p1

p0
⩽ 0. If a > 1, then for all sufficiently large k,

we have pk > pk+1, which is impossible for a distribution. Therefore, we must have a ⩽ 1.
If a = 1, then b > −1, we have pn =

(
1− b

n

)
pn−1 >

(
1− 1

n

)
pn−1 = n−1

n pn−1. Iterating this give pn > 1
np0,

and again
∑∞

n=0 pn does not converge, so we do not get a distribution.
If 0 < a < 1, then let β = a

1−a , and r = b
a + 1, and we see that X follows a negative binomial distribution

with parameters r and β.
If a = 0, then X follows a Poisson distribution with mean λ = b.
If a < 0, then for large enough n, we have a+ b

n < 0, so pn =
(
a+ b

n

)
pn−1 is only possible if pn = pn−1 = 0.

To achieve this, there must be some N such that a+ b
N = 0. That is, we must have b = −Na for some N . If we

let p = −a
−a+1 , then we see that a = − p

1−p and b = Np
1−p , so X follows a binomial distribution with parameters

N and p.
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80
k kpk

pk−1

1 122/861=0.141695703
2 26/122=0.213114754
3 15/13=1.153846154
4 4/3=1.3333333
5 0

This ratio is increasing, so we have b < 0. This suggests a negative binomial distribution is most appropri-
ate.
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6.6 Truncation and Modification at zero

81

P (X = 0) = 1.06−3.4 = 0.8202761

P (X = 1) = 3.4× 1.06−3.4 0.06

1.06
= 0.157864457

P (X = 2) = 4.4× 3.4× 1.06−3.4 0.06
2

1.062
= 0.019658593

So P (X > 0) = 0.1797, P (X > 3) = 0.00220085, so the probability that the zero-truncated random variable
is at least 3 is 0.00220085

0.1797 = 0.012245728.
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82 The distribution is a zero-modified negative binomial distribution. Without the modification, the
probability that an individual makes no claims is 1.7−0.8 = 0.654095050552. Therefore the probability that
a random individual buys the policy is 1 − 0.654095050552

2 = 0.672952474724. The probability that an insured
individual makes 0 claims is therefore 0.654095050552

2×0.672952474724 = 0.485989037205. The probability that an individual
makes n claims, for n > 0 is

1

0.672952474724
(1.7)−0.8

(
n+ r − 1

n

)(
7

17

)n
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83
(a) For truncated (a, b, 1) distribution, since the probabilities sum to 1 we have

1 = p1

(
1 +

(
a+

b

2

)
+

(
a+

b

2

)(
a+

b

3

)
+ . . .

)
Now we have a = β

1+β and b = (r−1)β
1+β , so r = b

a + 1, and

1 = p1

(
1 +

(
1 + r

2
a

)
+

(
1 + r

2
a

)(
2 + r

3
a

)
+ . . .

)
Multiplying out each term and multiplying by ra gives

1 =
p1
ra

(
ra+

r(1 + r)

2
a2 +

r(1 + r)(2 + r)

3!
a3 + . . .

)
The series in the brackets is a binomial expansion of (1− a)−r − 1, so we have

p1 =
ra

(1− a)−r − 1
=

rβ

(1 + β)((1 + β)r − 1)

(b) The expected value is given by

E(X) = p1 + 2

(
a+

b

2

)
p1 + 3

(
a+

b

2

)(
a+

b

3

)
p1 + . . .

= p1

(
1 + 2a+ 3a

(
a+

b

2

)
+ 4a

(
a+

b

2

)(
a+

b

3

)
+ . . .+ b+ b

(
a+

b

2

)
+ b

(
a+

b

2

)(
a+

b

3

)
+ . . .

)
= p1 + a+ aE(X) + b

We solve this to get

E(X) =
p1 + a+ b

1− a

For the ETNB, this is

E(X) =
p1 +

(r−1)β
1+β + β

1+β

1− β
1+β

= p1(1 + β) + rβ

Substituting p1 from (a) gives

E(X) =
rβ

((1 + β)r − 1)
+ rβ = rβ

(
1 +

1

((1 + β)r − 1)

)
=

rβ

(1− (1 + β)−r)

(c) If r = 0, then b = −a and we have pn

pn−1
= a− a

n = an−1
n , so pn = p1a

n−1

n . We therefore get

1 = p1

(
1 +

a

2
+

a2

3
+ · · ·

)
=

−p1 log(1− a)

a
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Since a = β
1+β , we have − log(1− a) = log(1 + β) This gives

p1 =
β

(1 + β) log(1 + β)

(d) The expectation of a logarithmic distribution is

E(X) =

∞∑
n=1

npn

=

∞∑
n=1

np1
an−1

n

= p1
∑

n = 1∞an−1

=
p1

1− a

=
β

log(1 + β)
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84 (a) From Question 83(a), we have

p1 =
rβ

(1 + β)((1 + β)r − 1)
=

−0.6× 0.8

1.8(1.8−0.6 − 1)
= 0.897286525399

We also have a = β
1+β = 0.8

1.8 = 4
9 and b = −1.6a, so pn

pn−1
= 4

9

(
1− 1.6

n

)
. This gives

pn = 0.897286525399

(
4

9

)n−1(
1− 1.6

2

)
·
(
1− 1.6

n

)
From Question 83(b),

E(X) =
p1 + a+ b

1− a
=

0.897286525399− 0.6× 4
9

5
9

= 1.13511574572

(b) From Question 83(c), we have

p1 =
β

(1 + β) log(1 + β)
=

0.5

1.5 log(1.5)
= 0.822101154126

We also have a = β
1+β = 0.5

1.5 = 1
3 and b = −a, so pn

pn−1
= 1

3

(
n−1
n

)
and pn = p1

3n−1n = 2.46630346238
3nn .

From Question 83(d), we have

E(X) =
β

log(1 + β)
=

0.5

log(1.5)
= 1.23315173119

89



8 Frequency and Severity with Coverage Modifications

8.2 Deductibles

85 The Burr distribution has survival function

S(x) =
1(

1 +
(
x
θ

)γ)α
(a)
The new distribution has survival function

S(x) =

(
1

(1+( x+1000
θ )

γ
)
α

)
(

1

(1+( 1000
θ )

γ
)
α

) =

(
θγ + 1000γ

θγ + (x+ 1000)γ

)α

(b) with a franchise deductible, expected value of the claim is

1000 +

∫ ∞

1000

(
θγ + 1000γ

θγ + xγ

)α

dx

Numerically, we see this integral is 33442.51
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8.3 Loss Elimination Ratio and the Effect of Inflation

86
The inverse Gamma has pdf

f(x) =

(
θ
x

)α
e−

θ
x

xΓ(α)
=

(
2000
x

)3.2
e−

2000
x

2.423965x

The expected value is 2000
2.2 . On the other hand, if the company introduces a deductible of $500, the expected

claim value per loss is∫ ∞

500

(x− 500)

(
2000
x

)3.2
e−

2000
x

2.423965x
dx =

∫ ∞

500

x

(
2000
x

)3.2
e−

2000
x

2.423965x
dx− 500

∫ ∞

500

(
2000
x

)3.2
e−

2000
x

2.423965x
dx

We substitute y = 2000
x with dy

dx = − 2000
x2 = − y2

2000 . Now the expected claim per loss is∫ 4

0

2000y1.2e−y

2.423965
dx− 500

∫ 4

0

2000y0.2e−y

2.423965
dx = 553.0085− 276.2932 = 276.7153

So the loss elimination ratio is 1− 276.7153×2.2
2000 = 1− 0.30438683 = 0.69561317.
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87
wlog θ = 1, so the expected loss without a deductible is 1

α = 1
2 . With a deductible, the expected loss is∫ ∞

2

1

(1 + x)2
dx =

∫ ∞

3

y−2dy =
1

18

The loss elimination ratio is therefore 8
9 .

After inflation of 100%, θ has doubled, so the deductible is now equal to θ. We can again assume wlog that
θ = 1, so with the deductible, the expected loss is∫ ∞

1

1

(1 + x)2
dx =

∫ ∞

2

y−2dy =
1

8

The loss elimination ratio is therefore 3
4 .
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88
(a) The Weibull distribution has survival function e−(

x
θ )

τ

, so the expected loss is∫ ∞

0

e−(
x
θ )

τ

dx = 3000

∫ ∞

0

e−y3

dy = 3000

∫ ∞

0

e−a

3a
2
3

da = 1000Γ

(
1

3

)
= 2678.939

(b) With the policy limit, the expected loss is∫ 5000

0

e−(
x
θ )

τ

dx = 3000

∫ 5
3

0

e−y3

dy = 3000

∫ ( 5
3 )

3

0

e−a

3a
2
3

da

= 1000Γ

(
1

3

)
P

(
X <

(
5

3

)3
)

= 2675.811

(c) If there is 20% inflation, the new distribution is a Weibull distribution with θ = 3.6 and τ = 3, so the
expected claim with the policy limit is∫ 5000

0

e−(
x
θ )

τ

dx = 3600

∫ 25
18

0

e−y3

dy = 3600

∫ ( 25
18 )

3

0

e−a

3a
2
3

da

= 1200Γ

(
1

3

)
P

(
X <

(
25

18

)3
)

= 3179.07

This is an increase of 3179.07
2675.811 − 1 = 18.81%
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89
For loss of $6,000, the insurance pays $4,000, so the insured pays $2,000. The insured has paid $10,000

when the total loss is $14,000. The expected claim is therefore

0.8

∫ 6000

1000

1(
1 + x

5000

)2 dx+ 0.9

∫
14000

∞ 1(
1 + x

5000

)2 dx
Substituting y = 5000 + x, we get the expected claim amount is

0.8

∫ 11000

6000

50002y−2dy + 0.9

∫ ∞

19000

50002y−2dy = 50002(0.8[−y−1]110006000 + 0.9[−y−1]∞14000)

= 50002
(

0.8

6000
− 0.8

11000
+

0.9

14000

)
=

308000− 168000 + 297000

462
=

437000

462

= $945.89
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90
The probability that a loss results in a payment is e−3.
By the memoryless property of the exponential distribution, Y P is exponentially distributed with mean

10000. It therefore has mean 10000 and variance 100002, so the coefficient of variation is 1.

E(Y L) = 10000

∫ ∞

3

e−xdx = 10000e−3

and
Var(Y L) = 100002e−3(1− e−3) + e−3100002 = 100002e−3(2− e−3)

The coefficient of variation of the per-loss random variable is therefore√
e−3(2− e−3)

e−3
= e

3
2

√
2− e−3 = 6.25868
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2 9 Aggregate Loss Models

9.2 Model Choices

91

96



9.3 The Compound Model for Aggregate Claims

92 Let the moments of the primary distribution be µ1, µ2, µ3 (and similar notation for raw moments). Let the
moments of the secondary distribution be ν1, ν2, ν3 (and similar notation for raw moments).

Recall that P (z) = M(logz), so P ′(z) = M ′(log(z))
z , P ′′(z) = M ′′(log(z))−M ′(log(z))

z2 , and P ′′′(z) = M ′′′(log(z))−3M ′′(log(z))+2M ′(log(z))
z3 .

In particular, P ′(1) = µ, P ′′(1) = µ′
2 − µ and P ′′′(1) = µ′

3 − 3µ′
2 + 2µ.

m.g.f. of compound model is P (M(z)) first 3 derivatives of this at 0 are:

M ′(0)P ′(M(0)) = M ′(0)P ′(1) = µν

M ′′(0)P ′(1) +M ′(0)2P ′′(1) = µν′2 + (µ′
2 − µ)ν2

M ′′′(0)P ′(1) + 3M ′′(0)M ′(0)P ′′(1) +M ′(0)3P ′′′(1) = µν′3 + 3(µ′
2 − µ)νν′2 + (µ′

3 − 3µ′
2 + 2µ)ν3
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93
For a given claim, the amount reimbursed has mean
1000 + 0.8× 500 = 1400, and variance 5002 + 0.82 × 3002 + 2× 0.8× 100000 = 467, 600.
The mean of the aggregate claims is therefore: 4× 1400 = 5600. The variance is given by the law of total

variance

Var(A) = E(N Var(Xi)) + Var(NE(Xi))

= E(N)Var(Xi) + E(Xi)
2 Var(N)

= 4× 467600 + 14002 × 4

= 9710400

Alternatively, the raw second moment is

4× (467600 + 14002) + (20− 4)× 14002 = 1, 870, 400 + 7, 840, 000 + 31, 360, 000 = 41, 070, 400

The variance is this minus 56002, which is 9, 710, 400.
The standard deviation is the square root of this or 3, 116.15.
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94
mean=4 × 6 × 16 = 384. Variance=µν2 + µ2ν

2 = 6 × 16 × 82

12 + 42 × 16 × 6 × 7 = 512 + 512 × 21

The standard deviation is therefore 32
√
11. 95th percentile is 1.645 standard deviations above the mean or

384 + 52.64
√
11 = 558.59.
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95
Prob of stop-loss is e−1.25. Expected stop-loss claim conditional on claim is θ, so expected stop-loss

claim=e−1.25θ. Premium is 2e−1.25θ.
in fact value 0.9θ was used instead of theta, so premium is 1.8e−1.25θ, and stop loss is really set at 1.25×

0.9θ = 1.125θ, so expected payment on stop-loss is e−1.125θ. Percentage loading is therefore 1.8e−1.25θ
e−1.125θ − 1 =

1.8e−0.125 − 1 = 1.588494− 1 = 58.85%.
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9.8 Individual Risk Model

96
We will use a normal approximation for the first three types of workers, then treat the senior managers

separately. We have the following for the first 3 types of workers:
Type of E(N) Var(N) E(S) Var(S)
Worker (millions) ×1010

Manual Labourer 46.22 45.7578 4.622 45.7578
Administrator 7.08 7.06584 0.6372 5.7233304
Manager 8.02 7.9398 1.604 31.7592
Total 6.8632 83.2403304

Thus the aggregate losses for the first three groups can be approximated by a normal distribution with
mean $6,863,200 and standard deviation

√
832403304000 = $912, 361.388924. We find the probability that the

aggregate losses exceed $10,000,000 by conditioning on the number of senior managers who die.
We can consider the various cases in a table
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Senior Managers Probability Z-statistic Probability aggregate more than 10,000,000 P
0 4.832131× 10−01 3.4381113 0.0002928934 1.415300× 10−04

1 3.550137× 10−01 2.3420544 0.0095889599 3.404212× 10−03

2 1.267906× 10−01 1.2459975 0.1063826587 1.348832× 10−02

3 2.932572× 10−02 0.1499406 0.4404057460 1.291522× 10−02

4 4.937494× 10−03 −0.9461163 0.8279553694 4.088025× 10−03

5 6.448972× 10−04 −2.0421732 0.9794328242 6.316334× 10−04

6 6.799936× 10−05 −3.1382301 0.9991501431 6.794157× 10−05

7 5.947466× 10−06 −4.2342870 0.9999885361 5.947398× 10−06

8 4.399911× 10−07 −5.3303439 0.9999999510 4.399911× 10−07

9 2.793594× 10−08 −6.4264008 0.9999999999 2.793594× 10−08

10 1.539327× 10−09 −7.5224577 1.0000000000 1.539327× 10−09

11 7.425327× 10−11 −8.6185146 1.0000000000 7.425327× 10−11

12 3.157027× 10−12 −9.7145715 1.0000000000 3.157027× 10−12

13 1.189461× 10−13 10.8106285 1.0000000000 1.189461× 10−13

14 3.987988× 10−15 11.9066854 1.0000000000 3.987988× 10−15

15 1.193683× 10−16 13.0027423 1.0000000000 1.193683× 10−16

16 3.197366× 10−18 14.0987992 1.0000000000 3.197366× 10−18

17 7.676750× 10−20 15.1948561 1.0000000000 7.676750× 10−20

18 1.653722× 10−21 16.2909130 1.0000000000 1.653722× 10−21

19 3.197313× 10−23 17.3869699 1.0000000000 3.197313× 10−23

20 5.546360× 10−25 18.4830268 1.0000000000 5.546360× 10−25

21 8.624078× 10−27 19.5790837 1.0000000000 8.624078× 10−27

22 1.200011× 10−28 20.6751406 1.0000000000 1.200011× 10−28

23 1.490697× 10−30 21.7711975 1.0000000000 1.490697× 10−30

24 1.647879× 10−32 22.8672544 1.0000000000 1.647879× 10−32

25 1.614249× 10−34 23.9633113 1.0000000000 1.614249× 10−34

26 1.393778× 10−36 25.0593682 1.0000000000 1.393778× 10−36

27 1.053498× 10−38 26.1554251 1.0000000000 1.053498× 10−38

28 6.910704× 10−41 27.2514820 1.0000000000 6.910704× 10−41

29 3.890614× 10−43 28.3475389 1.0000000000 3.890614× 10−43

30 1.852674× 10−45 29.4435958 1.0000000000 1.852674× 10−45

31 7.318000× 10−48 30.5396527 1.0000000000 7.318000× 10−48

32 2.333546× 10−50 31.6357096 1.0000000000 2.333546× 10−50

33 5.772531× 10−53 32.7317665 1.0000000000 5.772531× 10−53

34 1.039471× 10−55 33.8278234 1.0000000000 1.039471× 10−55

35 1.212212× 10−58 34.9238803 1.0000000000 1.212212× 10−58

36 6.871948× 10−62 36.0199372 1.0000000000 6.871948× 10−62

Total probability 0.0347433.
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97
The mean aggregate loss is 6863200 + 720000 = $7, 583, 200, and the variance of the aggregate loss is

832403304000 + 705600000000 = 1538003304000, (so the standard deviation is 1240162.61192)
(a) Using a normal distribution, the probability that the aggregate loss exceeds 10,000,000 is 1−Φ

(
10000000−7583200

1240162.61192

)
=

1− Φ(1.94877669813) = 0.02566105.
(b) Using a gamma distribution, we have θ = 1538003304000

7583200 = 202817.188522 and α = 7583200
202817.188522 =

37.3893359594 We are trying to calculate the probability that the distribution is more than 49.3054857573θ,

which is given by
∫ ∞
49.3054857573

xα−1e−xdx

Γ(α) = 0.03494672

(c) Using a log-normal distribution, the mean of a log-normal distribution is eµ+
σ2

2 , while the variance is

e2µ+σ2

(eσ
2 − 1). We therefore have eσ

2 − 1 = 1538003304000
75832002 = 0.0267455940133, so σ2 = log(1.02674559401) =

0.0263941826449. This gives eµ = 7583200√
1.02674559401

= 7483781.279 so µ = 15.8282487408

The probability that this is greater than 10,000,000 is therefore 1 − Φ
(

log(10000000)−15.8282487408√
0.0263941826449

)
= 1 −

Φ (1.78408099245) = 0.03720525
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98
Type of Driver E(N) Var(N) E(S) Var(S)

(thousands) (millions)
Safe 16 15.68 48 177.12
Average 105 99.75 420 1864.8
Unsafe 60 52.8 300 1455

768 3496.92

(a) The gamma approximation therefore has θ = 3496920000
768000 = 1165640

256 = 4553.28125 and α = 768000
4553.28125 =

168.669572080573.
We get 800000

θ = 175.697470917264
The expected payment on the stop-loss insurance is therefore

θ

Γ(α)

∫ ∞

175.697470917264

(xα − 175.697470917264xα−1)e−xdx = $11, 234.2

The expected square of the payment on the stop-loss insurance is therefore

θ2

Γ(α)

∫ ∞

175.697470917264

(xα+1 − 2× 175.697470917264xα + 175.6974709172642xα−1)e−xdx = 740555835

so the variance of the stop-loss payment is 614348585, and the standard deviation is $24, 786.06
The reinsurance premium is therefore $36,020.26.
(b) The normal approximation has µ = 768000 and σ2 = 3496920000, so the standard deviation is

59134.761350664128 and the cut-off for the stop-loss is 0.541136875656 standard deviations above the mean.
The expected payment of the stop-loss is therefore

59134.761350664128

∫∞
0.541136875656

(x− 0.541136875656)e−
x2

2

√
2π

= 59134.761350664128

(
[e−

x2

2 ]∞0.541136875656√
2π

− 0.541136875656(1− Φ(0.541136875656))

)

= 59134.761350664128

(
e−

0.5411368756562

2

√
2π

− 0.541136875656(1− Φ(0.541136875656))

)
= 10963.59
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The expected square of the payment is

59134.7613506641282
∫∞
0.541136875656

(x− 0.541136875656)2e−
x2

2

√
2π

= 59134.7613506641282
∫∞
0.541136875656

(x2 − 1.082273751312x+ 0.292829118194)e−
x2

2

√
2π

=
59134.7613506641282√

2π

(∫ ∞

0.541136875656

x
(
xe−

x2

2

)
dx− 1.082273751312

∫ ∞

0.541136875656

xe−
x2

2 dx

+0.292829118194

∫ ∞

0.541136875656

e−
x2

2 dx

)
=

59134.7613506641282√
2π

([
−xe−

x2

2

]∞
0.541136875656

+

∫ ∞

0.541136875656

e−
x2

2 dx− 1.082273751312
[
−e−

x2

2

]∞
0.541136875656

+ 0.292829118194 (1− Φ(0.541136875656))

)
= 59134.7613506641282

(
1.292829118194 (1− Φ(0.541136875656))− 0.541136875656√

2π
e−

0.5411368756562

2

)
= 677982110.383

So the variance is 677982110.383− 10963.592 = 557781804.695
The standard deviation is 23617.4046986 26038.088226267980, so the premium is 10963.59+23617.4046986 =

$34, 580.99.
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99
if 20% are smokers, the expected number of claims per policy is 0.2 × 0.02 + 0.8 × 0.01 = 0.012, so the

premium is set to 1.1 × 12 = 1.32. If 30% are smokers, the expected number of claims is per policy is 0.013.
The variance of the number of claims is 0.3× 0.02× 0.98 + 0.7× 0.01× 0.99 = 0.01281. The mean aggregate
claim is therefore 13n and the variance of the aggregate claims is 12810n. The total premium is 13.2n. The

probability that the total claims exceed total premiums is therefore 1−Φ
(

13.2n−13n√
12810n

)
< 0.2. This means that

13.2n−13n√
12810n

= 0.00176707682335
√
n > 0.8416212 This means n >

(
0.8416212

0.00176707682335

)2
= 226841.479733.

So at least 226841 lives.
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17 Introduction and Limited Fluctuation Credibility

17.2 Limited Fluctuation Credibility Theory

17.3 Full Credibility

100
(a) The number of claims made is a binomial distribution with n = 372× 7 = 2604 and some unknown p.

The expected number of claims is np and the variance is np(1− p), so the relative error X−ξ
ξ is approximately

normally distributed with mean zero and variance 1−p
np . We therefore want to check whether Φ

(
0.05√
1−p
np

)
⩾ 0.975

(two-sided confidence interval).
In this example, the total number of claims in seven years of experience is 9. This sets p = 9

2604 , and

Φ

 0.05√
1−p
np

 = Φ

 0.15√
1− 9

2604

 = 0.5597202 < 0.975

So the company should not assign full credibility.
(b) Suppose we continue with the assumption that p = 9

2604 . Then we want to find the n such that

Φ

 0.05√
1−p
np

 = Φ

(
0.15

√
n√

2595

)
= 0.975

0.15
√
n√

2595
= 1.96

n =
1.962 × 2595

0.152
= 443064.5

If the company continues to employ 372 employees, then this equates to 1191.034 years.
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Recall that we had

Φ

 0.05√
1−p
np

 = 0.975

0.05

√
np

1− p
= 1.96

np

1− p
= 39.22

np = 1536.64(1− p)

(n+ 1536.64)p = 1536.64

p =
1536.64

n+ 1536.64

np =
1536.64n

n+ 1536.64

If p is small (and n is large), we can approximate 1 − p = 0, so the standard for full credibility is 1568.64
claims. If n is smaller, then the standard for full credibility also gets smaller. For example, if n = 1536.64,
then the standard for full credibility is only half as much.
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102
(a)
Based on the data, the coefficient of variation is 3605.52

962.14 = 3.747396. Assuming the number of claims is
large enough to use a normal approximation, we have that the critical value is 1.96 at the 95% confidence level.
This means that the coefficient of variation for the average X is 3.747396√

41876
= 0.01831247. Multiplying by 1.96

gives us the relative 95% confidence interval as 0.03589244. Since this is less than 0.05, the company should
assign full credibility to this data.

(b) The insurance company will assign full credibility if

3.747396√
n

× 1.96 ⩽ 0.05

n ⩾

(
1.96× 3.747396

0.05

)2

= 21579
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17.4 Partial Credibility

103

The partial credibility assigned is Z =
√

7
1191.034 = 0.0766632

The credibility premium is therefore

0.0766632× 126000

372
+ 0.9233368× 1000 = $949.303367742

Using 1568.64 claims as the standard for full credibility gives Z =
√

9
1568.64 = 0.075746

The credibility premium is therefore

0.075746× 338.7097 + 0.924254× 1000 = $949.91

110



104

(a) The credibility for claim frequency is Z =
√

19
421 = 0.2124397, so the credibility estimate for claim

frequency is 0.2124397× 1.9 + 0.7875603× 1.2 = 1.348708.

The credibility for claim severity is Z =
√

19
1240 = 0.1237844, so the credibility estimate for claim severity

is 0.1237844 × 5822
19 + 0.8762156 × 230 = 239.4597. The credibility estimate for aggregate claims is therefore

1.348708× 239.4597 = $322.9613.

(b) The credibility for claim frequency is Z =
√

19
1146 = 0.128761, so the credibility estimate for claim

frequency is 0.128761× 1.9 + 0.871239× 1.2 = 1.290133.

The credibility for claim severity is Z =
√

19
611 = 0.1763422, so the credibility estimate for claim severity

is 0.1763422 × 5822
19 + 0.8236578 × 230 = 243.4763. The credibility estimate for aggregate claims is therefore

1.290133× 243.4763 = $314.1168.

(c) The credibility for aggregate losses is Z =
√

10
400 = 0.1581139. The credibility premium is therefore

0.1581139× 582.2 + 0.8418861× 276 = $324.4145.

(d) The credibility for aggregate losses is Z =
√

10
1000 = 0.1. The credibility premium is therefore 0.1 ×

582.2 + 0.9× 276 = $306.62.
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17.5 Problems with this Approach

105
Using a normal approximation, the standard for full credibility is

Φ

(
r
√
n

τ

)
⩾ 1− p

2

where τ is the coefficient of variation of X. For our data, we have

τ =

√
8240268× 3722

3506608
= 3.046911

The standard for full credibility is therefore given by

√
n =

3.046911

r

(
Φ−1

(
1− p

2

))
The credibility is

Z =

√
3722

n
=

√
3722

3.046911Φ−1
(
1− p

2

)r =
20.02297r

Φ−1
(
1− p

2

)
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