
ACSC/STAT 3703, Actuarial Models I

WINTER 2025
Toby Kenney

Homework Sheet 4

Model Solutions

Basic Questions

1. A distribution has survival function

S(x) = e−ex

for x ⩾ 0. How does the tail weight of this distribution compare to that of
a normal distribution with µ = 0 and σ2 = 1, when tail-weight is assessed
by

(a) Asymptotic behaviour of hazard rate.

We differentiate S(x) to get

f(x) = ex−ex

so

λ(x) =
f(x)

S(x)
= ex

For the normal distribution, we have S(x) = Φ(−x) and f(x) = 1√
2π

e−
x2

2 ,

so λ(x) = e−
log(x)2

2√
2πΦ(−x)

. Taking the ratio of hazard rates gives

e−x− x2

2

√
2πΦ(−x)

Letting u = 1
x , the ratio of hazard rates becomes

e−u−1−u−2

2

√
2πΦ(−u−1)

We want to take the limit as u → 0. By l’Hôpital’s rule, this limit is

lim
u→0

d
due

−u−1−u−2

2

d
du

√
2πΦ(−u−1)

= lim
u→0

e−u−1−u−2

2

(
u−2 − u−3

)
u−2e−

u−2

2

= lim
u→0

e−u−1 (
1− u−1

)
= 0
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so the normal distribution has a heavier tail.

(b) Existence of moments.

For the normal distribution, the moment generating function exists for all
t, and therefore all finite moments exist. For the given distribution, the
moment generating function is

MX(t) = E(etX) =

∫ ∞

0

etxexe−ex dx =

∫ ∞

0

e(t+1)x−ex dx

It is easy to see that e(t+1)x−ex → 0 very quickly for large x, so the
integral converges for all t, meaning that both distributions have moment
generating functions defined for all t ∈ R, so we cannot use existence of
moments to determine which distribution has the heavier tail.

2. Which coherence properties are satisfied by the following measure of risk?

ρ(X) =
√
E(X2|X > π0.95(X))

Give a proof or a counterexample for each property.

[we can alternatively express this as ρ(X) =
√
TVaR0.95((X+)2).]

Sub-additivity We first need to show that for positive random variables
A and B, TVaR0.95(AB) ⩽

√
TVaR0.95(A2) TVaR0.95(B2) We have

TVaR0.95(AB) = E(AB|AB > π0.95) ⩽
√

E(A2|AB > π0.95(AB))E(B2|AB > π0.95(AB)) ⩽
√
E(A2|A > π0.95(A))E(B2|B > π0.95(B)) =

√
TVaR0.95(A2) TVaR0.95(B2)

This gives

TVaR0.95((X+Y+)
2) ⩽ TVaR0.95((X+)

2) TVaR0.95((Y+)
2)

For random variables X and Y , we know that TVaR is coherent, and
((X + Y )+)

2 ⩽ (X+)
2 + (Y+)

2 + 2(X+Y+) so we have

ρ(X+Y ) =
√

TVaR0.95(((X + Y )+)2) ⩽
√

TVaR0.95(((X+)2 + (Y+)2 + 2(X+Y+))) ⩽
√

TVaR0.95((X+)2) + TVaR0.95((Y+)2) + 2TVaR0.95((X+Y+)) ⩽
√
TVaR0.95((X+)2) + TVaR0.95((Y+)2) + 2

√
TVaR0.95((X+)2) TVaR0.95((Y+)) = ρ(X)+ρ(Y )

Monotonicity This follows directly from monotonicity of TVaR — if
X ⩽ Y , then (X+)

2 ⩽ (Y+)
2, so

Positive homogeneity For any c > 0, we have ((cX)+)
2 = c2((X+)

2),
so since TVaR satisfies positive homogeneity, we get

ρ(cX) =
√
TVaR0.95(((cX)+)2) =

√
c2 TVaR0.95((X+)2) = cρ(X)
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3. Calculate the TVaR at the 99% level of a distribution with survival function
SX(x) = e

√
x+1−1−x for x > 0.

The VaR at the 99% level is the solution to SX(x) = 0.01, which is

e
√
x+1−1−x = 0.01

1 + x−
√
x+ 1 = log(100)

√
x+ 1 =

1 +
√

1 + 4 log(100)

2
= 2.70344507216

[The second solution of the quadratic equation is negative.] This gives
x = 2.703445072162 − 1 = 6.30861525819

The TVaR is therefore

6.30861525819 +
1

0.01

∫ ∞

6.30861525819

S(x) dx = 6.30861525819 +
1

0.01

∫ ∞

6.30861525819

e
√
x+1−1−x dx

= 6.30861525819 + 100

∫ ∞

2.70344507216

2ueu−u2

du

= 6.30861525819 + 100e0.25
∫ ∞

2.70344507216

2ue−(u−0.5)2 du

= 6.30861525819 + 100e0.25
∫ ∞

2.70344507216

(2(u− 0.5) + 1)e−(u−0.5)2 du

= 6.30861525819 + 100e0.25
∫ ∞

2.20344507216

(2v + 1)e−v2

dv

= 6.30861525819 + 100e0.25
([

−e−v2
]∞
2.20344507216

+

∫ ∞

2.20344507216

e−v2

dv

)
= 6.30861525819 + 100e0.25

(
e−2.203445072162 +

√
πΦ(−2.20344507216

√
2)
)

= 7.517124

If calculating this integral analytically is too challenging, we can alterna-
tively compute it numerically.

nstep < -50000000 # number of steps

stepsize < -0.000001

VaR < -6.30861525819

x<-VaR+seq_len(nstep )* stepsize # Steps of 0.000001

Sx <-exp(sqrt(x+1)-x-1)

TVaR <-100* sum(Sx)* stepsize+VaR

TVaR
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This gives the same answer to 6 decimal places. Using fewer steps or a
larger step size may produce less accurate answers.

4. Which of the following distribution functions with parameters α, and β
are scale distributions? Which have scale parameters?

(i) F (x) = e−βe−x+α

(ii) F (x) =
x
β+e

x
α −1

e
x
α

(iii) F (x) = 1 + β
α − β

x+α + e−
β

x+β

(i) is not a scale distribution since

FcX(x) = F
(x
c

)
= e−βe−

x
c
+α

which is not of the same form.

(ii) This is a scale distribution since

FcX(x) = F
(x
c

)
=

x
cβ + e

x
cα − 1

e
x
cα

which is clearly of the same form with α replaced by cα and β replaced
by cβ. We also see that there is no scale parameter.

(iii) We see that

FcX(x) = F
(x
c

)
= 1 +

β

α
− β

x
c + α

+ e
− β

x
c
+β

=1+ β
α− cβ

x+cα+e
− cβ

x+cβ

which is clearly of the same form with α replaced by cα and β replaced
by cβ. We also see that there is no scale parameter.

5. An insurance company observes the following sample of claims (in thou-
sands):

0.3 0.4 1.0 1.3 1.6 2.6 7.2 10.3

They use a kernel density model with Gaussian kernel with standard devi-
ation 1. What is the variance of the fitted distribution?

There are 8 sample points, The fitted distribution is a mixture of normal
distributions. We can calculate the variance using law of total variance

Var(X) = EVar(X|Z) + Var(E(X|Z) = 1 + Var(Z)

where Z is the empirical distribution from the sample.

We calculate E(Z) = 0.3+0.4+1.0+1.3+1.6+2.6+7.2+10.3
8 = 3.0875 and E(Z2) =

0.09+0.16+1.0+1.69+2.56+6.76+51.84+106.09
8 = 21.27375. Thus, Var(Z) = 21.27375−

3.08752 = 11.74109375. This gives Var(X) = 12.74109375.
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Standard Questions

6. An generalised Pareto distribution with α = τ and θ = 1 has mean α
α−1

and variance α(2α−1)
(α−1)2(α−2) . You can simulate n random variables following

this generalised Pareto distribution with the command

sim=1/rbeta(n,shape1=alpha,shape2=alpha)

[This is simulating a beta distribution then taking the inverse.]

Based on the central limit theorem, if we take the average of a sample of
n generalised Pareto random variables, this should approximately follow a

normal distribution with mean α
α−1 and variance α(2α−1)

n(α−1)2(α−2) . Plot the

distribution of this sample average for α = 10, α = 2.5 and α = 2.05,
for sample sizes 500, 1000, and 5000, and compare it with the normal
distribution. What happens if we run the simulation with α = 1.5?

There is a typo’ in the question — the correct code for simulating the data
should be

sim=1/rbeta(n,shape1=alpha,shape2=alpha)-1

This is why in many of your plots, the distributions will not have lined up
well.

We run the simulations using the following code
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library(ggplot2)

GenParCLTplot <-function(alpha ,n,nsamp){

### alpha is the inverse gamma shape parameter

### n is the sample size

### m is the number of samples

samp <-1/ rbeta(n*nsamp ,shape1=alpha ,shape2=alpha)-1

## simulate generalised Pareto random variables

samples <-matrix(samp ,n,nsamp)

means <-colMeans(samples)

## arranging into a matrix and using the column means function is

## an efficient way to calculate the sample means. You could also

## use a loop.

if(alpha >2){

dm<-alpha /(alpha -1)

dv<-alpha *(2* alpha -1)/( alpha -1)^2/( alpha -2)

x<-seq_len (100000)*0.0001* sqrt(dv/n)+dm -5* sqrt(dv/n)

## x covers 5 standard deviations either side of the mean

ncomp <-geom_line(data=data.frame(x=x,y=dnorm(x-dm ,sd=sqrt(dv/n))),

mapping=aes(x=x,y=y),

colour ="red")

}else{

ncomp <-NULL

}

return(

ggplot(data=data.frame(x=means),mapping=aes(x=x))+

geom_density ()+

ncomp+

scale_y_continuous(name="f(x)")+

theme(axis.title=element_text(size =18),

axis.text=element_text(size =16),

plot.title=element_text(size=18, hjust =0.5))

)

}

for(alpha in c(10 ,2.5 ,2.05)){

for(ss in c(500 ,1000 ,5000)){

pdf(paste(" alpha",alpha ," ssize",ss ,".pdf",sep =""))

print(GenParCLTplot(alpha ,ss ,10000))

dev.off()

}

}

6



.

Sample size α = 10 α = 2.5 α = 2.05

500

0

5

10

15

1.00 1.05 1.10 1.15 1.20
x

f(
x)

0

1

2

3

1.0 1.5 2.0 2.5 3.0
x

f(
x)

0.0

0.5

1.0

1.5

2.0

0.0 2.5 5.0 7.5
x

f(
x)

1000

0

5

10

15

20

1.05 1.10 1.15 1.20
x

f(
x)

0

1

2

3

4

5

1.5 2.0 2.5
x

f(
x)

0

1

2

3

0 2 4 6
x

f(
x)

5000

0

10

20

30

40

50

1.07 1.09 1.11 1.13 1.15
x

f(
x)

0.0

2.5

5.0

7.5

10.0

1.6 1.8 2.0 2.2 2.4 2.6
x

f(
x)

0

2

4

6

1 2 3 4 5 6
x

f(
x)

When α = 1.5 the variance is infinite, and the sample mean will not
converge to a distribution. As the sample size gets larger, the sample
means get more spread out.

Sample size 1000:
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