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Homework Sheet 7
Model Solutions

Basic Questions

1. An insurance company has an insurance policy where the loss amount
follows an inverse Gamma distribution with « = 3 and 0 = 200. Calculate
the expected payment per claim if the company introduces a deductible of
d.
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For the inverse Gamma distribution f(z) = . The expected

payment per loss is
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The probability that a loss results in a claim is
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Thus, the expected payment per claim is
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2. The severity of a loss on a home insurance policy follows a log-logistic
distribution with v = 2 and 6 = 1500. Calculate the loss eliminatrion
ratio of a deductible of $2,000.

Without the deductible, the expected payment per loss is 1500I (1 + ) I' (1 — 1) =
750m. With the deductible, the expected payment is
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Therefore the loss elimination ratio is
1500 (§ — tan” '(3))  2tan™'(3)
T

=0 = 59.03%

3. An insurance company has a policy where losses follow a Pareto distri-
bution with o = % and 6 = 1000. The company wants the TVaR at the
95% level for this policy to be $10,000,000. What policy limit should the
company put on the policy to achieve this?
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The survival function of the Pareto distribition is S(z) = (101(%)205) The
VaR at the 95% level is therefore obtained by solving
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With limit u, the TVaR is
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where we have used the substitution v = 1000 + . We therefore need to
solve

7999000 -+ 300 ((u +1000)% — 40000) = 10000000
300 ((u +1000)3 — 40000) — 2001000
((u +1000)5 — 40000) = 6670
(u+ 1000)5 = 46670

u+ 1000 = 466707 = 10082232.3403
u = 10083232.3403

4. Aggregate payments have a compound distribution. The frequency dis-
tribution is negative binomial with r = 2.4 and B = 0.5. The severity
distribution has mean 2,278 and variance 11,925,000. Use a Pareto ap-
prozimation to aggregate payments to estimate the expected payment on a
reinsurance policy with attachment point $500,000.

The frequency distribution has mean 2.4 x 0.4 = 1.2 and variance 2.4 X
0.5 x 1.5 = 1.8. Therefore the aggregate loss distribution has mean 1.2 x
2278 = 2733.6 and variance 1.2 x 11925000 + 1.8 x 22782 = 23650711.2.
Setting these equal to the mean and variance of a Pareto distribution with
parameters o and 6 gives

0
— =2733.6
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a  23650711.2
a—2  2733.62

1- % = 0.315955359516

= 23650711.2

= 3.16500407378

o = 2.92378579062
0 = 2733.6 x 1.92378579062 = 5258.86083724

For these parameters, the expected payment on a reinsurance policy with
attachment point $500,000 is
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Standard Questions

5. For a certain insurance policy, losses follow a Pareto distribution. with no
policy limit, a deductible of $1,000 would achieve a loss elimination ratio
of 10%, and a deductible of $5,000 would achieve a loss elimination ratio
of 20%. What is the loss elimination ratio of a $1,000 deductible with a
policy limit of $100,000 applied after the deductible.

[The parameter 0 for the Pareto distribution is one of the following values:
(i) 0 = 437.04846

(i) 6 = 630.39300

(iii) 0 = 883.47821

(iv) 6 = 1522.03242
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We first need to find the values of o and . With deductible d and limit
u — d, the expected payment per loss is
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With no policy limit, The loss elimination ratio for a deductible of d is
therefore
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Substituting the given values for d = $1,000 and d = $5,000, we get the

equations
0 a—1
(1000 + 9) =09

0 a—1
(5000+9) =08

(a—1)log (1000 0

- 1)1
(= 1)log (5000 0
log (5000+0> _ log(0
!
log (1000+9> og(0

log(0) — log(5000 + )
log(#) — log(1000 + 0)

= 2.1179048899

We compute % — 2.1179048899 for the given values of 6:

Tog(0)—Tog(5000+0)
0 —10§(0) 132(1000%) — 2.1179048899

437.0485  5.044288 x 1077
630.3930  0.1863628
883.4782  0.3867380
1522.0324  0.7634537

We see that 6 = 437.04846. We solve for the corresponding value of «:

0 a—1
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log(0.9)

1 ( 437.04846 )
1437.04846

o = 1.08851574558

With a policy limit of $100,000 applied after the deductible, the expected
payment on a policy with no deductible is

0 1 1 ~437.05108%5 1 1
(f)>=1 (100000 +#)>—1 ) 1.0885 — 1 \ (437.05)1-0885-1  (100437.05)1-0885—1

= 1886.17845816

a—1

With a deductible of $1,000, the expected payment is
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= 1395.10093148

Ce .1 _ 1395.10093148 _
so the loss elimination ratio is 1 158817845816 = 26.04%.

. An insurance company models loss frequency as negative binomial with
r = 0.2 and B = 160, and loss severity as Pareto with a« = 0.5 and
0 = 1600. The insurer sets a policy limit u per loss. The insurer buys stop-
loss reinsurance for aggregate losses above the expected aggregate losses,
the price for which is based on using a Pareto distribution for aggregate
losses with parameters fitted using the method of moments. The expected
payment on this reinsurance is $500,000. What is the policy limit u?

The negative binomial distribution has mean 0.2 x 160 = 32 and variance
0.2 x 160 x 161 = 5152. The expected payment on the Pareto distribution
with policy limit u is
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To simplify the algebra, we let s = v/u + 1600. The expected square of
the payment with policy limit u is
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The variance of the loss is therefore
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The aggregate loss therefore has mean 32 x 80 (s — 40) = 2560(s — 40)
and variance 32 x 190 (s — 40)® + 5152 x (80(s — 40))2. For the Pareto
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approximation to aggregate losses, the parameters are given by solving
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Setting w = g5, this becomes
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Under this model, the expected payment on the reinsurance policy is
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We have a = so the expected payment on the reinsurance is
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Substituting the equations

o — 1 =

(2w — 1)

Numerically solving this

w4289
9 a—1 a-l w + 289 w+193
=1024002w — 1) | ———— =
a—1 < « ) 02400(2w — 1) (2(11) +241)) 500000

gives w = 5.74312, which gives s = 80 x 5.74312 = 459.4496 and u =
52 — 1600 = 459.4496% — 1600 = $209, 493.93.



