
ACSC/STAT 3740, Predictive Analytics

WINTER 2024
Toby Kenney

Homework Sheet 2

Model Solutions

[Note: all data in this homework are simulated.]

[The plots included in these model solutions are fairly rough to reflect the
type of plots needed for preliminary data exploration. If you need to write a
report on your data exploration process, the plots would need to be tidied up.]

Standard Questions

1. The file HW2Q1.txt contains the following data from a company’s human
resources department about employee retention

Variable Meaning
job.title The employee’s job title.
job.category The type of work.
salary The employee’s annual salary.
age The employee’s age.
sex The employee’s gender.
experience The number of years of experience in the current job.
training.offered Whether the employee was offered training courses.
training.taken Whether the employee took the offered training courses
retention.5.year Whether the employee is still working in the company after 5 years

Perform data exploration on this data set, and summarise (with tables
and plots to support where appropriate) your initial conclusions about data
issues and appropriate models. You should take into account any concerns
with data collection and processing.

We start with pairwise scatterplots.
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These highlight a few data issues. For most cases, a given job title falls
entirely within one job category. However, there are a few cases where this
does not happen. This might be a data error, or could be individuals with
unusual jobs that do not fit the usual categorisation. We should investi-
gate the effect of removing these individuals. There are some individuals
with very low salaries. These can’t represent annual salaries for full-time
employees, but may represent special circumstances. There are also some
outliers on the high end for salaries. This is possible, as salaries can have
very heavy-tailed distributions. However, some of these are in job titles
that do not usually have such large salaries, and do not have such large
experience. There are two clear outliers in age, with negative values which
are clearly wrong.

Another issue we notice is that there are 4 individuals with training.taken=TRUE

and training.offered=FALSE. From the definitions given, this should be
impossible. It is unclear what the mistake is, so I will remove these obser-
vations.

We remove these outliers. The filtering also removes the NA values in
salary and age, which could influence the results. There are 51 missing
values for salary and 3 missing values for age. The missing values for
salary are all engineers with 20 or more years of experience. They were
all retained. The missing values for age are all male, though this might
be coincidence. Two pairs of the entries with missing salary are dupli-
cates, but this is most likely a coincidence, since most of the non-missing
variables are factors or logical. Given the non-random missing pattern
for salary, there is a danger that the removal could bias the results. We
should consider using other methods to deal with these missing values if
the correct values cannot be obtained.

We next examine pairwise scatterplots coloured by 5-year retention

2



Corr: 0.464***

FALSE: 0.658***

 TRUE: 0.450***

Corr: 0.386***

FALSE: 0.490** 

 TRUE: 0.376***

Corr: 0.809***

FALSE: 0.784***

 TRUE: 0.806***

Corr: 0.033

FALSE: −0.009

 TRUE: 0.045 

Corr: 0.009

FALSE: 0.164

 TRUE: 0.025

Corr: −0.127**

FALSE: −0.049 

 TRUE: −0.110*

Corr: −0.098*

FALSE: −0.281 

 TRUE: −0.078.

Corr: −0.155***

FALSE: −0.251  

 TRUE: −0.120**

Corr: −0.210***

FALSE: −0.367.  

 TRUE: −0.188***

Corr: 0.353***

FALSE: 0.443*  

 TRUE: 0.341***

job.title job.category salary age sex experience training.offered training.taken

job.title
job.category

salary
age

sex
experience

training.offered
training.taken

0255075025507502550750255075025507502550750255075025507502550750255075 0501001500501001500501001500501001500501001500e+00 1e+05 2e+05 3e+05 20 40 60 0 100 200 0 100 200 0 10 20 30 40 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

25

50

75

100

0255075100

0255075100

0255075100

0255075100

0255075100

0e+00

1e+05

2e+05

3e+05

20

40

60

0

20

40

60

0

20

40

60

0

10

20

30

40

50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

We see that there is a strong linear relation between age and experience.
Retention rates are fairly high, but much lower for employees without
much experience. Salary is heavy-tailed and should be log-transformed.
Salary is correlated with experience and job title.

Given the linear relation between age and experience, we might consider
adding a feature for the difference between age and experience. However,
in this case, it is not particularly natural.

Colouring the plots by job title shows that many things are affected by
job title. I used the default colour scale for this plot, but it may be worth
designing a colour scale so that jobs in the same job category have similar
colours.
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We see that for any given job title, age and experience are extremely highly
correlated, so we may not need both as predictors. We can try to show
all predictors on a single plot to look for additional patterns.
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Since retention is high, the number of employees who left is relatively
small, so it is difficult to judge patterns. However, we see there are clear
differences between male and female employees. Male employees were
more likely to be offered training, and more likely to take it if offered.
They were also more likely to leave after taking training. Employees with
little experience were much more likely to leave. The effect of salary on
retention is unclear.

In summary, the data exploration found the following:

• There are several cases where a job title is placed in an unusual job
category.

• There are a large number of missing values for salary. These are all
from engineers with over 20 years of experience, so removing these
observations could give biased results.

• There are a few missing values for age. These appear to be random,
so can be removed.

• There are several individuals who were not offered training, but took
the training. This seems like a mistake, so we remove these individ-
uals from the data.

• There are some individuals with negative age — clearly a mistake.

• There are some outliers in salary. At the high end, these are possible,
but unlikely. At the low end, these seem infeasible for full-time em-
ployees, and are either mistakes or special circumstances that should
be handled differently. We should therefore remove these values.
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• Age and experience are very strongly correlated, particularly when
divided by job title.

• Salary has a heavy-tailed distribution, so a transformation might be
appropriate.

• Experience is a very important predictor of retention, with experi-
enced employees much less likely to leave. Sex is also an important
predictor, and seems to have interaction with training offered and
training taken, so we may need to include some interaction terms in
our model.

The code used for this exploration is the following:

HW2Q1 <-read.table (" HW2Q1.txt")
library(GGally)
ggpairs(HW2Q1)

summary(HW2Q1)
table(HW2Q1$job.category ,HW2Q1$job.title)

table(HW2Q1$training.offered ,HW2Q1$training.taken)

which(duplicated(HW2Q1))
HW2Q1[c(581 ,609) ,]
HW2Q1%>%filter(is.na(salary ))
HW2Q1%>%filter(is.na(age))

library(dplyr)
HW2Q1_clean <-HW2Q1%>%filter(age >0)%>%

filter(salary <375000)% >% filter(salary >5000)% >%
filter ((job.title !=" administrator ")|( job.category ==" admin "))%>%
filter ((job.title !=" engineer ")|( job.category ==" technical "))%>%
filter ((job.title !=" sales rep ")|( job.category ==" customer "))%>%
filter ((job.title !=" secretary ")|( job.category ==" admin "))%>%
filter(training.offered |! training.taken)

ggpairs(HW2Q1_clean %>%select(-c(" retention .5. year")),
mapping=aes(colour =( HW2Q1_clean$retention .5. year ==1)))

ggpairs(HW2Q1_clean %>%select(-c("job.title","job.category ")),
mapping=aes(colour =( HW2Q1_clean$job.title )))

ggplot(HW2Q1_clean ,
mapping=aes(x=experience ,

y=salary ,
colour=job.title ,
alpha=as.logical(retention .5. year),shape=as.logical(retention .5. year),
size=training.taken ))+

geom_point ()+
facet_grid(sex~training.offered )+
scale_y_log10(labels=scales ::comma ,limit=c(5000 ,500000))+
scale_shape_manual(values=c(1,16),

name="5-year\nretention",
labels=c("No","Yes "))+

scale_alpha_manual(values=c(1,0.3),
name="5-year\nretention",
labels=c("No","Yes "))+

scale_size(breaks=c(0,1),range=c(2,4), labels=c("No","Yes"))
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2. The file HW2Q2.txt contains the following data about school performances
in standardised tests for Grade 8:

Variable Meaning
no.students The number of students in Grade 8 attending the school.
teacher.student.ratio The average number of students per teacher in a class at the school.
funding The schools source of funding — government, independent or private.
specialist.teacher Whether the school employs teachers with specialist knowledge for each

subject.
teacher.5.years The percentage of teachers at the school with at least 5 years of experi-

ence.
parent.employment The percentage of parents of children at the school who are employed.
median.parent.salary The median salary of parents of children at the school
mean.parent.education The average number of years of full-time education of parents of chil-

dren at the school.
average.score.mathematics The average score of children in Grade 8 at the school on the standard-

ised mathematics test.
average.score.english The average score of children in Grade 8 at the school on the standard-

ised English test.

The test results were published by the examination board. Information on
schools was provided by the schools. Information about parents of children
was taken from surveys conducted by the schools.

Perform data exploration on this data set, and summarise (with tables
and plots to support where appropriate) your initial conclusions about data
issues and appropriate models. You should take into account any concerns
with data collection and processing.

The data set brings together data from a number of sources, which could
cause issues. The calculation of some variables may not be completely
standard. For example, for teacher-student ratio, what classes are in-
cluded? Could a school manipulate this by holding very small classes for
one hour each year, or is it time-weighted? Does this calculation differ be-
tween schools? Survey data always induces sampling bias. Furthermore,
this sampling bias might be different for different schools. For example
the number of parents unwilling to answer questions about their salary
might be different at government-funded and private schools.

We start by plotting pairwise scatterplots. We use colour to indicate the
school funding.
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We see a clear outlier in teacher.student.ratio. This should probably be
removed from the data. There is also an outlier in no.students, but that is
heavy-tailed, so we should consider transforming that variable, and decide
whether that school is an outlier after transformation.
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After transformation, the school is not an outlier. There are no missing
values in the dataset. Checking for duplicates, we see that the following
rows are duplicates: 678 and 679, 728 and 729, 890 and 891, and 1018
and 1019. Given the number of numerical variables, and the fact that
the duplicates are consecutive, it is too implausible that these could be
genuine records. They must surely be data errors, so we should remove
the duplicates.
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We see that the parent variables are very different for private schools, as
might be expected. Parent salary and education are strongly correlated.
The correlation between the scores in the two subjects is relatively low.
The best predictors for average mathematics score appear to be parent ed-
ucation, school funding and number of students; while the best predictors
for English score appear to be parent salary, school funding and number
of students. After log-transforming the number of students the relations
between predictors seem to be mostly linear, suggesting a linear model
may be appropriate. Furthermore, the linear models may be similar for
different school types, though in some cases there are fairly large differ-
ences between correlation coefficients for different school types. This may
be because most schools are government-funded, meaning that the coef-
ficients for private and independent schools are more variable. However,
it may be worth including interaction terms between funding source and
other predictors.

The conclusions from the data exploration are:

• There are some potential issues with combining the data sources. We
should check how teacher-student ratio is defined for each school to
ensure the values are comparable. The parent variables are collected
from surveys, so may be subject to sampling bias.

• There are duplicated records. These are almost certainly data entry
problems and should be removed.

• There is an outlier in teacher-student ratio, which should be removed.

• Number of students is heavy-tailed and should probably be log-
transformed.

• For mathematics score, the best single-variable linear predictors are
parent education, school funding and log number of students.

• For English score, the best single-variable linear predictors are parent
salary, school funding and log number of students.

• There is relatively low correlation between average mathematics score
and average English score.

• Most relations appear to be approximately linear.

• There may be interactions between school funding and other predic-
tors.

3. The file HW2Q3.txt contains the following data from an experiment about
survival times under a certain treatment for a disease.
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Variable Meaning
severity The severity of disease symptoms prior to treatment 1=mild, 10=very

severe.
treatment.wait The number of days the patient needs to wait before being treated.
age The patient’s age at first diagnosis.
sex The patient’s sex.
health.index An index assessing the patient’s overall health — 100=perfect health,

0=dead
outcome Whether the patient dies before the end of the study period.
time.to.outcome The time in years before the patient dies or the end of the study,

whichever happens first.

Severity is assessed by the treating physician at first consultation. Treat-
ment wait is calculated as the difference between the date of the first con-
sultation and the start of treatment, from the hospital database. Age and
sex are from the patient’s medical records. Health index is based on physi-
cian assessment and a questionaire filled out by the patient. Outcome and
time to outcome are from the hospital records.

Most of the data are from hospital records, and should be fairly reliable.
Health index and severity are based on physician assessment, so they may
be slightly subjective, and there may be variation between physicians.
This should not greatly affect the data analysis, but it is possible that
the interpretation is changed, since some physicians may be more skilled
than others, and some phyisician’s may give biased assessment of these
variables. A quick check shows that there are no missing values in the
data. We start with pairwise scatterplots coloured by outcome.
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We immediately see three outliers in time to outcome, with values over 30
— longer than the length of the study. It is possibly that these are in days.
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We remove these outliers. We see that severity has a skewed distribution,
with most patients diagnosed before symptoms become too severe. We see
that treatment wait drops very quickly as severity increases. There are
however several outliers with severity 10 but long treatment waits. These
may be errors in the data, or may be because such severe symptoms cause
difficulties starting treatment. We should examine these outliers carefully
to see whether they appear to be anomalous in other ways. There are also
some outliers in age, with some ages less than 10. Usually paediatric cases
would be removed from the dataset, so these cases may be errors, and we
will remove them in either case. To be thorough, we remove all ages less
than 25.

After removing the outliers in time to outcome and age and log-transforming
treatment wait, we replot the pairwise scatterplots.
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There is still one outlier in age. It is probably not too influential, but we
might consider removing it. We see there is a very clear relation between
severity and log-transformed wait times, with a few outliers with wait
times much longer than usual for the severity. Here is a table of these
outliers (selected by the formula log(treatment.wait)∗(severity−0.5) >
5)

Number Severity Treatment wait Age Sex Health index Outcome Time to Outcome
38 8 3 79 male 59 die 0.7
409 9 4 85 male 61 die 0.0
439 10 66 91 female 96 die 0.2
558 5 14 99 male 51 die 0.3
608 10 4 97 male 71 die 1.0
690 10 2 83 male 53 die 0.1
713 9 24 60 male 66 die 0.2
801 2 56 90 male 63 die 0.2
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Some are only a few days and are probably reasonable. Data points 439,
713 and 801 are a little strange, so we remove these outliers. We also see
that the disease affects men more than women, and a higher proportion of
men died during the study period. We see that higher severity is associated
with a higher chance of dying. Shorter wait times also appear to be
associated with higher chance of dying, possibly because they are more
severe cases. Other variables do not appear to be strongly associated with
chance of dying.

Since we have two times (to treatment and to outcome), it may be appro-
priate to use a pointrange plot to show both.
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We note that there are some cases where the time to outcome is less than
the treatment wait. The time to outcome is in years and rounded to one
decimal place, so there could be rounding effects, but we see that in some
cases, the time to outcome is hundreds of days less than time to treatment.
This may indicate that treatment was planned but not performed, or may
be an error. Since the focus of the study is the effect of the treatment, it
makes sense to remove patients who left or died before receiving treatment.
Because of rounding errors, it is difficult to decide on an exact cut-off.

Since survival rates are so low for higher severity, we restrict to the case
severity=1. This plot may be clearer if we arrange points by wait time. If
we increase the size of points, we can use colour to indicate health index
and use one facet to group ages.
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We see that even restricted to severity 1 cases, longer wait times are
associated with higher survival chance.

An alternative approach would be to ignore the individuals who do not
die, and plot time to death against time to treatment for all individuals.
We remove higher severities as these do not have enough data points.
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This shows a similar pattern with longer wait times associated with longer
survival times, even when considering factors such as age and health index.

There are specialised models for this type of data — the individuals who
leave the study are censored, and need to be treated appropriately.

A summary of the conclusions of the data exploration are the following:
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• There are no missing values.

• There are 3 outliers in time to treatment, and a small number of out-
liers in age, that are either mistakes, or paediatric cases that should
be handled separately. These outliers should be removed.

• There are a number of patients with high severity, but long wait
times. We perform further checking to determine whether they are
anomolous in other ways. There is nothing very obvious, and some
are only a few days. We remove three outliers that have long wait
times.

• The disease affects more men than women, and men appear to have
higher risk of dying. Higher severity is also associated with higher
chance of dying. Even for patients with severity 1, longer wait times
are associated with lower chance of dying, and with longer time until
death.

• There are a number of patients with wait times longer than time to
outcome. We removed these from the data.

• It would be natural to use survival models to model this data set.

4. A credit card company is improving its fraud detection models. It collects
the following data for all purchases made:

Variable meaning
date The date of the transaction.
time The time of the transaction.
location The location of the transaction.
last.location The location of the previous transaction from this credit card.
online Whether the transaction was online.
account.balance The amount owing on the card before the transaction.
credit.limit The credit limit of the card.
recent.spending The amount spent on the card in the previous week.
purchase.amount The cost of the purchase.
fraudulent Whether the purchase was fraudulent.

Most of the data are automatically processed at time of purchase. Fraud-
ulent is based on customer reports and manual reviews. The data are in
the file HW2Q4.txt.

Perform data exploration on this data set, and summarise (with tables
and plots to support where appropriate) your initial conclusions about data
issues and appropriate models.

The automatically collected data should be unbiased. Any processing
errors are likely to be random. For fraudulent transactions, it is possible
that some fraudulent purchases were unnoticed by the customers, or that
the manual reviews were inconclusive in some cases, which could lead
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to fraudulent cases not labelled as fraudulent. Non-fraudulent purchases
labelled as fraudulent seems less likely, but not impossible.

A quick summary of the data shows that there are no missing values. We
also see that the data are very unbalanced, with only 32 fraudulent uses
out of almost 6000 transactions. We start with pairwise scatterplots, using
colour to indicate the fraudulent transactions.
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We notice that there are a number of transactions where account balance,
recent spending and purchase amount all exceed credit limit, which seems
implausible. Furthermore, most of these transactions also have credit limit
not a round number, and purchase amount a round number, suggesting
that purchase amount and credit limit have been swapped. As these cases
are not fraudulent, and there are not many of them, we remove these cases,
rather than attempt to fix them.

We see that the rate of fraudulent claims has been increasing. Payments
are not evenly distributed over the year, being much more frequent in
December and January. Most payments in December are towards the end
of the month, and most in January are towards the beginning, but in
other months, the payments are uniformly distributed. Most payments
are made between 5:00 in the morning and 10:00 in the evening, with
payments outside these hours more likely to be fraudulent. Most payments
occur in Canada, and most payments occur in the same location as the
last payment. About 46% of purchases are made online, with similar
proportions of fraudulent payments online and in-person. We see that
account balance is always less than credit limit, and recent spending is less
than account balance. Purchase amounts have a heavy-tailed distribution,
and may benefit from log-transformation. After removing the problematic
data, there are only two cases where purchase amount exceeds credit limit.
In both cases, credit limit is $1,000 and the transactions were fraudulent.
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Higher purchase amounts are more likely to be fraudulent.

Given how related all the variables are to credit limit, it may be appro-
priate to calculate balance, recent spending and purchase amount as a
percentage of credit limit, or recent spending as a percentage of account
balance. Since credit limit only has a limited number of values, we can
colour the pairwise scatterplots by the interaction of credit limit and fraud
status.
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This plot is a little difficult to read. The correlation between account bal-
ance, recent spending and purchase amount is reduced when considering
a single credit limit, but is still significant.

We plot the new features. To simplify the figure, we exclude the fraudulent
transactions and colour by credit limit.
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From this plot, we see that the transformed features are much more stable
over credit limits, and there is still a low correlation between purchase
percent and both percent used and percent recent. Purchase percent still
has a long-tailed distribution, so may benefit from log transformation.

We next plot the same transformed features, but coloured by fraud status.
We also set alpha to 0.5 to make it easier to see the overlapping histograms.
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We see that several fraudulent transactions appear as outliers in time or
purchase percent. [The density plots for online look different, but this is
an artefact of bandwidth selection due to low sample size for fraudulent
transactions.]

We have identified the following conclusions:
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• The data are very unbalanced with only 32 fraudulent transactions
in the data set.

• There are some problematic records with purchase amount and credit
limit seeming to be switched.

• The rate of fraudulent claims has been increasing over time.

• Account balance, recent spending and purchase amount are all strongly
correlated with credit limit. Creating new features by expressing
these as percentages of credit limit or other amounts may be help-
ful. After doing this, these features have similar distributions for all
credit limits.

• Payments are not evenly distributed over the year, being much more
frequent in December and January. Most payments in December
are towards the end of the month, and most in January are towards
the beginning, but in other months, the payments are uniformly dis-
tributed.

• Most payments are made between 5:00 in the morning and 10:00 in
the evening, with payments outside these hours more likely to be
fraudulent.

• Most payments occur in Canada, and most payments occur in the
same location as the last payment.

• Purchase amount divided by credit limit still has a long-tailed distri-
bution, so may benefit from log transformation.

• There are some outliers in time and purchase percent, which are
fraudulent.

5. A scientist is studying the effect of climate on road maintainance costs.
She collects the following data from a large number of cities

Variable name Meaning
ave.winter.temp The average daily maximum temperature for the months January–March.
ave.summer.temp The average daily maximum temperature for the months June–August.
total.precipitation The total yearly rainfall (mm)
days.below.freezing The number of days during the year where the maximum temperature is below 0◦C.
total.snow The total annual snowfall (cm)
car.usage The total distance driven annually by all inhabitants of the city. (km)
annual.costs The total annual costs for road maintainance ($).

The data are in the file HW2Q5.txt. The weather data are from historical
weather records at nearby weather stations. Car usage is estimated from
surveys. Annual costs are from local government reports.

Perform data exploration on this data set, and summarise (with tables
and plots to support where appropriate) your initial conclusions about data
issues and appropriate models.
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Recent weather records are usually quite reliable, and would not be ex-
pected to be subject to bias. However, in some cases, the weather stations
are not as close to the city, which could result in some measurements be-
ing inaccurate. Surveys can be very unreliable. There is not an obvious
direction for possible bias, but sampling bias could significantly affect the
estimated car usage. The reliability of local government reports can vary.
In some places, the reports may be deliberately false. In other places, dif-
ferent accounting methods could result in the values not being perfectly
comparable — expenses classified as road maintainance by one council
may be differently classified by another.

There are no missing values and no duplicate values in the dataset. We
start by plotting pairwise scatterplots.
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We see a large number of outliers. There are some cases with a negative
number of days below zero, which are clearly errors. We remove these
points. There are also three cities with over 100 days below freezing.
Given that these cities have average winter temperatures above zero, this
is probably a mistake, and we also remove these points. There are two
cities with average summer and winter temperatures of about 40◦C, which
is not impossible, but quite extreme. We should check how much these
observations influence the fitted model. Total precipitation and total snow
are very heavy-tailed, and should probably be log-transformed. There are
potential outliers for these variables, but these should be reassessed after
the log-transformation. Car usage is also heavy-tailed and should be log-
transformed.

After removing the outliers and log-transforming the heavy-tailed vari-
ables, we replot pairwise scatterplots.
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After log transformation, the large values for total precipitation and total
snow are no longer outliers. There is a very strong linear relation between
log-transformed car usage and log-transformed annual costs. The slope of
this is close to 0.5, so it might be appropriate to consider the transformed
variable cost/

√
car usage. After removing outliers, days below freezing is

still heavy-tailed, so may benefit from log transformation.

Other variables are not significantly correlated with log-transformed an-
nual cost, with the possible exception of days below freezing. This could
be because they are not correlated with car usage. There is quite strong
correlation between average winter temperature and days below freezing.
It may be appropriate to remove one from the model.

When we plot the feature cost/
√

car usage, we see there are two outliers
in this feature, where the annual costs are very low. After removing these
outliers and replotting pairwise scatterplots:

19



Corr:

0.428***

Corr:

−0.774***

Corr:

−0.141.

Corr:

−0.371***

Corr:

−0.433***

Corr:

0.211*

Corr:

0.161.

Corr:

0.021

Corr:

−0.159.

Corr:

−0.074

Corr:

−0.297***

Corr:

0.079

Corr:

0.461***

Corr:

0.003

Corr:

0.233**

ave.winter.temp ave.summer.temp days.below.freezing log.prec log.snow log.car log.cost.per.car

ave.w
inter.tem

p
ave.sum

m
er.tem

p
days.below

.freezing
log.prec

log.snow
log.car

log.cost.per.car

−5 0 5 10 15 10 15 20 25 30 0 25 50 75 0 2 4 6 0 1 2 3 4 7.5 10.0 12.5 15.0 17.5 4 5 6

0.00

0.02

0.04

0.06

10

15

20

25

30

0

25

50

75

0

2

4

6

0

1

2

3

4

7.5

10.0

12.5

15.0

17.5

4

5

6

We see that log days below freezing and average winter temperature are
strongly correlated with the transformed variable.

Thus, the conclusions to our data exploration are:

• There are no missing values or duplicates.

• There are some impossible values for days below zero, and some im-
plausible values, which should all be removed.

• There are two slight outliers in temperature, that we do not remove,
but we should monitor the influence of these outliers.

• Total precipitation, total snow, days below freezing, car usage and
annual costs are heavy-tailed and should be log-transformed.

• Car usage is the best predictor of annual costs, and after log-transformation
is very strongly linearly related with annual costs.

• After removing the effect of car usage, there is an association between
average winter temperature or log-transformed days below freezing
and log transformed annual cost. This association is fairly linear

• Average winter temperature and days below freezing are strongly
negatively correlated.
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