ACSC/STAT 4703, Actuarial Models II

FALL 2024

Toby Kenney

Homework Sheet 1

Due: Thursday 19th September: 11:30

Note: This homework assignment is only valid for FALL 2024. If you find this homework in a different term, please contact me to find the correct homework sheet.

Basic Questions

- 1. An insurance company models losses as following a gamma distribution with $\alpha = 0.8$ and $\theta = 2000$. The fixed expenses are \$300 per claim, and variable expenses are 12% of loss amount. What is the density function of the distribution of the total cost to the insurance company for a random loss?
- 2. An insurer models the area affected by an earthquake as a circle with radius (in km) following a Pareto distribution with $\alpha = 1.4$ and $\theta = 5$. What is the density function for the distribution of the affected area in km²?
- 3. An insurance company has the following data on its policies:

Policy limit	Losses Limited to					
	50,000	100,000	200,000	500,000	1,000,000	
50,000	3,194,726					
100,000	$5,\!586,\!215$	$10,\!503,\!540$				
200,000	8,947,072	30,793,171	$37,\!895,\!098$			
500,000	$5,\!354,\!052$	12,769,853	$16,\!108,\!054$	$18,\!450,\!094$		
1,000,000	$2,\!854,\!741$	$11,\!529,\!017$	$15,\!416,\!701$	$19,\!129,\!888$	$20,\!171,\!889$	

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using

- (a) The direct ILF estimate.
- (b) The incremental method.
- 4. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 50,000. It has the following loss data on a set of 7,420 policies with limit \$2,000,000.

Losses Limited to	500,000	1,000,000	2,000,000
Total claimed	\$9,950,249	\$13,383,022	\$15,040,978

Calculate the ILF from \$500,000 to \$1,000,000.

Standard Questions

- 5. A health insurance company models claims as being either *preventative* or *curative*. 84% of claims are preventative. Costs for preventative claims are modelled as following a gamma distribution with $\alpha = 2.6$ and $\theta = 180$. Costs for curative claims are broken into *diagnostic costs* which are modelled following a Pareto distribution with $\alpha = 1$ and $\theta = 170$ and *treatment costs*, which are modelled as independent of diagnostic costs, and following a Pareto distribution with $\alpha = 1$ and $\theta = 800$. What is the density function for the total cost of a random claim?
- 6. The pure premium ILF from \$1,000,000 to \$2,000,000 is 1.2. A reinsurer offers excess-of-loss reinsurance of \$1,000,000 over \$1,000,000 for a loading of 25%. An insurer whose premium includes a 10% loading on expected claims and a risk charge equal to the square of the expected claims divided by \$100,000 can reduce its premium for policies with limit \$2,000,000 by 5% by buying reinsurance. What was the premium for policies with limit \$2,000,000 before buying the reinsurance? [It is not 0.]