ACSC/STAT 4703, Actuarial Models II

FALL 2024 Toby Kenney Homework Sheet 1 Model Solutions

Basic Questions

1. An insurance company models losses as following a gamma distribution with $\alpha = 0.8$ and $\theta = 2000$. The fixed expenses are \$300 per claim, and variable expenses are 12% of loss amount. What is the density function of the distribution of the total cost to the insurance company for a random loss?

If the loss amount is X, then the insurer pays a total of 1.12X + 300. 1.12X follows a gamma distribution with $\alpha = 0.8$ and $\theta = 2240$. The density function is therefore

$$f(x) = \begin{cases} \frac{(x-300)^{-0.2}e^{-\frac{x}{2240}}}{2240^{0.8}\Gamma(0.8)} & \text{if } x > 300\\ 0 & \text{otherwise} \end{cases}$$

2. An insurer models the area affected by an earthquake as a circle with radius (in km) following a Pareto distribution with $\alpha = 1.4$ and $\theta = 5$. What is the density function for the distribution of the affected area in km²?

The area of a circle is πr^2 , so the we need the density function

$$f_{\pi R^2}(x) = \frac{f_R\left(\sqrt{\frac{x}{\pi}}\right)}{2\sqrt{\pi x}}$$

= $\frac{\frac{1.4 \times 5^{1.4}}{(5 + \sqrt{\frac{x}{\pi}})^{2.4}}}{2\sqrt{\pi x}}$
= $\frac{0.7 \times 5^{1.4}}{\sqrt{\pi x} \left(5 + \sqrt{\frac{x}{\pi}}\right)^{2.4}}$
= $\frac{3.75907602693}{x^{0.5} \left(5 + \sqrt{\frac{x}{\pi}}\right)^{2.4}}$

3. An insurance company has the following data on its policies:

Policy limit	Losses Limited to						
	50,000	100,000	200,000	500,000	1,000,000		
50,000	3,194,726						
100,000	5,586,215	10,503,540					
200,000	8,947,072	30,793,171	37,895,098				
500,000	5,354,052	12,769,853	16,108,054	18,450,094			
1,000,000	2,854,741	11,529,017	15,416,701	19,129,888	20,171,889		

Use this data to calculate the ILF from \$50,000 to \$1,000,000 using

(a) The direct ILF estimate.

The direct ILF estimate is $\frac{20171889}{2854741} = 7.06610126803$

(b) The incremental method.

The incremental ILF is

20171889	518450094 + 19129888	37895098 + 16108054 + 15416701	(10503540 + 30793171 + 12769853 + 11529017)	= 4.56854826961
19129888	$\overline{16108054 + 15416701}$	30793171 + 12769853 + 11529017	5586215 + 8947072 + 5354052 + 2854741	- 4.00004020901

4. An insurance company charges a risk charge equal to the square of the average loss amount, divided by 50,000. It has the following loss data on a set of 7,420 policies with limit \$2,000,000.

Losses Limited to	500,000	1,000,000	2,000,000
Total claimed	\$9,950,249	\$13,383,022	\$15,040,978

Calculate the ILF from \$500,000 to \$1,000,000.

The pure premium for limit \$500,000 is $\frac{9950249}{7420} = 1341.00390836$. The risk charge is $\frac{1341.00390836^2}{50000} = 35.9658296448$. Thus the total premium is 1341.00390836 + 35.9658296448 = \$1376.969738. The pure premium for limit \$1,000,000 is $\frac{13383022}{7420} = 1803.64177898$. The risk charge is $\frac{1803.64177898^2}{50000} = 65.0624733376$. Thus the total premium is 1803.64177898 + 65.0624733376 = 1868.70425232. The ILF is therefore $\frac{1868.70425232}{1376.969738} = 1.35711352309$.

Standard Questions

5. A health insurance company models claims as being either preventative or curative. 84% of claims are preventative. Costs for preventative claims are modelled as following a gamma distribution with α = 2.6 and θ = 180. Costs for curative claims are broken into diagnostic costs which are modelled following a Pareto distribution with α = 1 and θ = 170 and treatment costs, which are modelled as independent of diagnostic costs,

and following a Pareto distribution with $\alpha = 1$ and $\theta = 800$. What is the density function for the total cost of a random claim?

For curative claims, the total cost is the sum of the diagnostic costs and the treatment costs, namely a Pareto distribution with $\alpha = 1$ and $\theta = 170$ and a Pareto distribution with $\alpha = 1$ and $\theta = 800$. The density of this sum is given by the convolution

$$\begin{split} f_C(x) &= \int_0^x f_D(y) f_P(x-y) \, dy \\ &= \int_0^x \frac{170}{(170+y)^2} \frac{800}{(800+x-y)^2} \, dy \\ &= 136000 \int_0^x \left(\frac{1}{(170+y)(800+x-y)}\right)^2 \, dy \\ &= \frac{136000}{(970+x)^2} \int_0^x \left(\frac{1}{(170+y)} + \frac{1}{(800+x-y)}\right)^2 \, dy \\ &= \frac{136000}{(970+x)^2} \int_0^x \left(\frac{1}{(170+y)^2} + \frac{1}{(800+x-y)^2} + \frac{2}{970+x} \left(\frac{1}{(170+y)} + \frac{1}{(800+x-y)}\right)\right)^2 \, dy \\ &= \frac{136000}{(970+x)^2} \left(\int_{170}^{x+170} u^{-2} + \frac{2u^{-1}}{970+x} \, du + \int_{800}^{800+x} v^{-2} + \frac{2v^{-1}}{970+x} \, dv\right) \\ &= \frac{136000}{(970+x)^2} \left(\frac{1}{170} - \frac{1}{170+x} + \frac{2\log\left(\frac{170+x}{170}\right)}{970+x} + \frac{1}{800} - \frac{1}{800+x} + \frac{2\log\left(\frac{800+x}{800}\right)}{970+x}\right) \\ &= \frac{136000}{(970+x)^2} \left(\frac{970}{136000} - \frac{1}{170+x} - \frac{1}{800+x}\right) + \frac{272000}{(970+x)^3} \log\left(\frac{(170+x)(800+x)}{136000}\right) \end{split}$$

The density of the mixture distribution is therefore

$$0.84f_R(x) + 0.16f_C(x) = 0.84\frac{x^{1.6}e^{-\frac{x}{180}}}{180^{2.6}\Gamma(2.6)} + 0.16\left(\frac{136000}{(970+x)^2}\left(\frac{970}{136000} - \frac{1}{170+x} - \frac{1}{800+x}\right) + \frac{272000}{(970+x)^3}\log\left(\frac{(170+x)(800+x)}{136000}\right)\right)$$

6. The pure premium ILF from \$1,000,000 to \$2,000,000 is 1.2. A reinsurer offers excess-of-loss reinsurance of \$1,000,000 over \$1,000,000 for a loading of 25%. An insurer whose premium includes a 10% loading on expected claims and a risk charge equal to the square of the expected claims divided by \$100,000 can reduce its premium for policies with limit \$2,000,000 by 5% by buying reinsurance. What was the premium for policies with limit \$2,000,000 before buying the reinsurance? [It is not 0.] Let C be the expected claim for a policy with limit \$1,000,000. The expected claim for a policy with limit \$2,000,000 is therefore 1.2C. The reinsurer's premium for the excess-of-loss insurance is therefore, $0.2C \times 1.25 = 0.25C$. The insurer's premium for policies with limit \$1,000,000 is $1.1C + \frac{C^2}{100000}$, and the premium for policies with limit \$2,000,000 is $1.32C + \frac{1.44C^2}{100000}$ without reinsurance, and $1.1C + \frac{C^2}{100000} + 0.25C$ with reinsurance. Since the reinsurance allows a 5% reduction in premium, we have

$$1.1C + \frac{C^2}{100000} + 0.25C = 0.95 \left(1.32C + \frac{1.44C^2}{100000} \right)$$
$$1.35C + \frac{C^2}{100000} = 1.254C + \frac{1.368C^2}{100000}$$
$$0.096C = \frac{0.368C^2}{100000}$$
$$C = \frac{0.096 \times 100000}{0.368}$$
$$= 26086.9565217$$

Thus the premium for policies with limit \$2,000,000 without reinsurance is

$$26086.9565217 \times 1.32 + \frac{1.44 \times 26086.9565217^2}{100000} = \$44,234.40$$