ACSC/STAT 4703, Actuarial Models II

FALL 2024

Toby Kenney

Homework Sheet 5

Model Solutions

1. A home insurance company classifies policyholders as high-risk, mediumrisk or low-risk . Annual claims from high-risk policyholders follow a Pareto distribution with $\alpha = 2.4$ and $\theta = 830$. Annual claims from medium-risk policyholders follow a Pareto distribution with $\alpha = 4.6$ and $\theta = 960$. Annual claims from low-risk policyholders follow a gamma distribution with $\alpha = 4$ and $\theta = 59$. 16% of policyholders are high risk, 68% are medium risk and 16% are low risk.

(a) Calculate the expectation and variance of the aggregate annual claims from a randomly chosen policyholder.

- For a high-risk policyholder, the expected claim is $\frac{830}{1.4} = 592.857142857$. The variance is $\frac{2.4 \times 830^2}{1.4^2 \times 0.4} = 2108877.55102$
- For a medium-risk policyholder, the expected claim is $\frac{960}{3.6} = 266.66666666667$. The variance is $\frac{960^2 \times 4.6}{3.6^2 \times 2.6} = 125811.965812$
- For a low-risk policyholder, the expected claim is $59 \times 4 = 236$. The variance is $59^2 \times 4 = 13924$.

The overall expected claim amount is

For the variance, we can either calculate the raw moment, then subtract the square of the mean, or use the law of total variance.

Calculating raw moments:

The expected squared claim amount is

```
0.16 \times (592.857142857^2 + 2108877.55102) + 0.68 \times (266.666666666667^2 + 125811.965812) + 0.16 \times (236^2 + 13924) = 538704.035166
```

The variance of the claim amount is therefore $538704.035166 - 313.950476191^2 = 440139.133665$.

Law of total variance:

The expected conditional variance is

 $0.16 \times 2108877.55102 + 0.68 \times 125811.965812 + 0.16 \times 13924 = 425200.384915$

The variance of conditional expectation is

so the total variance is 425200.384915 + 14938.7487494 = 440139.133664.

(b) Given that a policyholder's annual claims over the past 2 years were \$1,421 and \$119, what are the expectation and variance of the policyholder's claims next year?

• The likelihood of these claims for a high-risk policyholder is

$$\frac{2.4^2 \times 830^{2 \times 2.4}}{(830 + 1421)^{3.4} (830 + 119)^{3.4}} = 1.78326350448 \times 10^{-7}$$

• The likelihood of these claims for a medium-risk policyholder is

$$\frac{4.6^2 \times 960^{2 \times 4.6}}{(960 + 1421)^{5.6}(960 + 119)^{5.6}} = 7.3728993092 \times 10^{-8}$$

• The likelihood of these claims for a low-risk policyholder is

$$\frac{1421^3 \times 119^3 e^{-\frac{1421+119}{59}}}{59^8 \Gamma(4)^2} = 4.2216522276 \times 10^{-12}$$

The posterior probabilities are therefore:

$$\frac{0.16 \times 1.78326350448 \times 10^{-7}}{0.16 \times 1.78326350448 \times 10^{-7} + 0.68 \times 7.3728993092 \times 10^{-8} + 0.16 \times 4.2216522276 \times 10^{-12}} = 0.362688716863$$

$$\frac{0.68 \times 7.3728993092 \times 10^{-8}}{0.16 \times 1.78326350448 \times 10^{-7} + 0.68 \times 7.3728993092 \times 10^{-8} + 0.16 \times 4.2216522276 \times 10^{-12}} = 0.637302696937$$
and

 $\frac{0.16 \times 4.2216522276 \times 10^{-12}}{0.16 \times 1.78326350448 \times 10^{-7} + 0.68 \times 7.3728993092 \times 10^{-8} + 0.16 \times 4.2216522276 \times 10^{-12}} = 8.58619954718 \times 10^{-6}$

This means that the overall expected claim amount is

 $0.362688716863 \times 592.857142857 + 0.637302696937 \times 266.66666666667 + 8.58619954718 \times 10^{-6} \times 236 = 384.972008619$

The expected squared claim amount is

 $\begin{array}{l} 0.362688716863 \times (592.857142857^2 + 2108877.55102) + 0.637302696937 \times (266.6666666667^2 + 125811.965812) \\ + 8.58619954718 \times 10^{-6} \times (236^2 + 13924) = 1017843.98095 \end{array}$

The variance of the claim amount is therefore $1017843.98095-384.972008619^2 = 869640.53353$.

2. An insurance company sets the book pure premium for its auto insurance at \$630. The expected process variance is 17,215,000 and the variance of hypothetical means is 196,000. If a policyholder has aggregate claims of \$15,400 over the past 12 years, calculate the credibility premium for this policyholder's next year's insurance using the Bühlmann model.

The credibility of 12 years of experience is $Z = \frac{12}{12 + \frac{17215000}{12}} = 0.120202381561$. The credibility premium for this individual is therefore $0.120202381561 \times \frac{15400}{12} + 0.879797618439 \times 630 = \708.53 .

3. An insurance company has the following data on its auto insurance policies for a certain model of car.

Year	1	2	3	4	5
Distance driven (1,000 km)	6,221	4,495	7,251	6,304	7,554
$Aggregate \ claims$	\$1,484,100	\$1,226,000	\$1,609,300	\$1,355,300	\$1,664,700

The book premium is \$142 per 1000km. The variance of hypothetical means per 1000km is 842. The expected process variance per 1000km is 6,237,157,440. Using a Bühlmann-Straub model, calculate the credibility premium for Year 6 for a car that is expected to be driven 14,623km.

The aggregate claims were of \$7,339,400 from 31,825,000km of driving. The credibility of 31,825,000km of driving is $Z = \frac{31825}{31825 + \frac{6237157440}{842}} = 0.00427791289894$ Therefore the new premium per 1,000km is $0.00427791289894 \times \frac{7339400}{31825} + 0.995722087101 \times 142 = 142.379097686$. The total premium for a driver who expects to drive 14,623km is therefore $14.623 \times 142.379097686 =$ \$2,082.01.

Standard Questions

- 4. A workers' compensation insurer classifies workplaces as "low-risk" and "high-risk". It estimates that 84% of workplaces are low-risk. Annual claims from low-risk workplaces are modelled as following a Pareto distribution with α = 6.6 and θ = 7585. Annual claims from high-risk workplaces are modelled as following a Pareto distribution with unkown α and θ. A company is initially charged the book premium of \$1,192, then after claiming \$19,521 in its first year, it is charged a new premium of \$1,284. Which of the following is the value of the unknown parameter α, and what is the corresponding value of the unknown parameter θ?
 - (i) 1.94
 - (ii) 2.77

(iii) 4.22(iv) 6.50

The expected claim for low-risk workplaces is $\frac{7585}{5.6} = 1354.46428571$. Let x be the expected claim for high-risk workspaces. Since 16% of workspaces are high-risk, we have

$$\begin{array}{l} 0.84 \times 1354.46428571 + 0.16x = 1192 \\ 0.16x = 54.25 \\ x = 339.0625 \end{array}$$

Thus, the unknown parameters α and θ satisfy $\frac{\theta}{\alpha-1} = 339.0625$. After claiming \$19,521 in its first year, the company is charged a new premium of \$1,284. If p is the posterior probability of the company being high-risk, we have

$$(1-p) \times 1354.46428571 + p \times 339.0625 = 1284$$

1015.40178571 $p = 70.46428571$
 $p = 0.0693954715283$

The likelihood of claiming \$19,521 if the company is low-risk is $\frac{6.6 \times 7585^{6.6}}{(7585+19521)^{7.6}} = 5.44444354718 \times 10^{-8}$. We let q be the likelihood of claiming \$19,521 for a high-risk company. This q is given by $q = \frac{\alpha \theta^{\alpha}}{(\theta+19521)^{\alpha+1}}$. To get posterior probability 0.0693954715283, we must have

 $\frac{0.16q}{0.84 \times 5.44444354718 \times 10^{-8} + 0.16q} = 0.0693954715283$ $0.16q = 3.17368570819 \times 10^{-9} + 0.0111032754445q$ $0.148896724556q = 3.17368570819 \times 10^{-9}$ $q = 2.1314677792 \times 10^{-8}$

Thus, we have two equations:

$$\frac{\theta}{\alpha - 1} = 339.0625$$
$$\frac{\alpha \theta^{\alpha}}{(\theta + 19521)^{\alpha + 1}} = 2.1314677792 \times 10^{-8}$$

We therefore check the given values:

α	heta	$\frac{lpha heta^{lpha}}{(heta+19521)^{lpha+1}}$
1.94	318.71875	$3.23339004565 \times 10^{-8}$
2.77	600.140625	$8.19351708421 \times 10^{-9}$
4.22	1091.78125	$8.44212529237 \times 10^{-10}$
6.50	1864.84375	$3.94585713177 \times 10^{-11}$

We see that (i) $\alpha = 1.94$ is the closest to the required value, and that the corresponding value of θ is 4561.

5. An insurance company uses the Bühlmann-Straub model to calculate credibility. A new customer pays the book premium for 223 units of exposure, paying a total net premium of \$78,719 in its first year. It claims a total of \$92,218. In the second year, the customer pays a credibility premium of \$60,332 and claims a total of \$34,902. In the third year, the customer has 353 units of exposure, and pays a premium of \$121,666. How many units of exposure did the customer have in the second year?

In the first year, the book premium per unit of exposure is $\frac{78719}{223} = 353$, and the customer's average claim per unit of exposure is $\frac{92218}{223} = 413.533632287$. Let x be the number of units of exposure in the second year, and let $K = \frac{\text{EPV}}{\text{VHM}}$ for the credibility per unit of exposure. The credibility of 223 units of exposure is $Z = \frac{223}{223+K}$, and the credibility premium in the second year is 353(1-Z) + 413.533632287Z = 353 + 60.533632287Z per unit of exposure. We therefore have the equation

$$\left(353 + 60.533632287 \frac{223}{223 + K}\right)x = 60332$$

The credibility of the first two units of experience is $Z_2 = \frac{223+x}{223+x+K}$, and the average losses per unit of experience over the first two years is $\frac{127120}{223+x}$. The credibility premium per unit of experience for the third year is therefore

$$353(1-Z_2) + Z_2 \frac{127120}{223+x} = 353 \frac{K}{223+x+K} + \frac{127120}{223+x+K} = \frac{353K+127120}{223+x+K}$$

Since the company pays \$121,666 for 353 units of experience, the credibility premium is $\frac{121666}{353} = 344.662889518$ per unit of experience. We therefore have the equation

$$\frac{353K + 127120}{223 + x + K} = 344.662889518$$

We thus just need to solve the two equations:

 $\begin{pmatrix} 353 + 60.533632287 \frac{223}{223 + K} \end{pmatrix} x = 60332 \\ \frac{353K + 127120}{223 + x + K} = 344.662889518 \\ (92218 + 353K) x = 13454036 + 60332K \\ 353K + 127120 = 76859.8243625 + 344.662889518x + 344.662889518K \\ 8.337110482K = 344.662889518x - 50260.1756375 \\ K = 41.3408086965x - 6028.48861677 \\ 92218x + 353Kx = 13454036 + 60332K \\ 92218x + 353x(41.3408086965x - 6028.48861677) = 13454036 + 60332(41.3408086965x - 6028.48861677) \\ 14593.3054699x^2 - 2035838.48172x = 2494173.67028x - 350256739.227x \\ 14593.3054699x^2 - 4530012.152x + 350256739.227 = 0 \\ x = \frac{4530012.152 \pm \sqrt{4530012.152^2 - 4 \times 14593.3054699 \times 350256739.227}{4530012.152^2 - 4 \times 14593.3054699 \times 350256739.227} \\ \end{cases}$

 2×14593.3054699

 $= 155.208570167 \pm 9.40783616037$

This gives x = 164.616406327. [Thus, $K = 41.3408086965 \times 164.616406327 - 6028.48861677 = 776.8867455$.]

[The other solution to the quadratic, x = 145.800734007 gives $K = 41.3408086965 \times 145.800734007 - 6028.48861677 = -0.96836438$, which is not possible.]

- 6. A health insurance company is pricing its policies for an individual. It has 4 years of past history for this individual, and the annual claims from year i are denoted X_i . It uses the formula $\hat{X}_5 = \alpha_0 + \sum_{i=1}^4 \alpha_i X_i$. It makes the following assumptions about the claims each year:
 - The expected aggregate claims is \$417 in each year.
 - The variance of the annual claims is 2,241,433.
 - The correlation between claims in Years i and j for $i \neq j$ is 0.55 if i and j are consecutive, and 0.40 otherwise.

Find a set of equations which can determine the values of α_i for $i = 0, 1, \ldots, 5$. [You do not need to solve these equations.]

We use our standard equations:

$$\mathbb{E}(X_5) = \alpha_0 + \sum_{i=1}^4 \alpha_i \mathbb{E}(X_i)$$
$$\operatorname{Cov}(X_5, X_j) = \sum_{i=1}^4 \alpha_i \operatorname{Cov}(X_i, X_j)$$

From the first condition, we have $\mathbb{E}(X_i) = 417$, $\operatorname{Var}(X_i) = 2241433$, and for $i \neq j$,

$$\operatorname{Cov}(X_i, X_j) = \begin{cases} 0.55 \times 2241433 = 1232788.15 & \text{if } |i - j| = 1\\ 0.4 \times 2241433 = 896573.2 & \text{otherwise} \end{cases}$$

Substituting in the numbers given, these equations become:

$$\begin{split} &417 = \alpha_0 + 417\alpha_1 + 417\alpha_2 + 417\alpha_3 + 417\alpha_4 \\ &896573.2 = 2241433\alpha_1 + 1232788.15\alpha_2 + 896573.2\alpha_3 + 896573.2\alpha_4 \\ &896573.2 = 1232788.15\alpha_1 + 2241433\alpha_2 + 1232788.15\alpha_3 + 896573.2\alpha_4 \\ &896573.2 = 896573.2\alpha_1 + 1232788.15\alpha_2 + 2241433\alpha_3 + 1232788.15\alpha_4 \\ &1232788.15 = 896573.2\alpha_1 + 896573.2\alpha_2 + 1232788.15\alpha_3 + 2241433\alpha_4 \end{split}$$

Dividing the covariance equations by 2241433, gives.

 $1 = \frac{\alpha_0}{417} + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ $0.4 = \alpha_1 + 0.55\alpha_2 + 0.4\alpha_3 + 0.4\alpha_4$ $0.4 = 0.55\alpha_1 + \alpha_2 + 0.55\alpha_3 + 0.4\alpha_4$ $0.4 = 0.4\alpha_1 + 0.55\alpha_2 + \alpha_3 + 0.55\alpha_4$ $0.55 = 0.4\alpha_1 + 0.4\alpha_2 + 0.55\alpha_3 + \alpha_4$

[The solution to these equations is $\alpha_1 = 0.14470145$, $\alpha_2 = 0.13125336$, $\alpha_3 = 0.04034427$, $\alpha_4 = 0.41742873$ and $\alpha_0 = 111.03550323$.]