ACSC/STAT 4703, Actuarial Models II

FALL 2024

Toby Kenney

Homework Sheet 8

Model Solutions

Basic Questions

1. The file HW8_data.txt contains a run-off triangle. Fit an overdispersed Poisson model to this data and use it to find the 95th percentile of estimated outstanding claims.

[The easiest way to do this is by simulation. The parameter estimates should be approximated by a multivariate normal distribution. You can use *vcov* to find the variance matrix of this distribution, and use the *mvrnorm* function in the MASS package to simulate the parameter estimates.]

We first fit the overdispersed Poisson model.

HW8Q1<-read.table("HW8_data.txt")

Fit an overdispersed Poisson model. ODP.model<-glm(value~Acc.Year+Dev.Year,ODP.data,family="quasipoisson")</pre>

This fits the following model:

Parameter	estimate	<i>p</i> -value	Parameter	estimate	<i>p</i> -value
(Intercept)	9.86621	$< 2 \times 10^{-16}$			
Acc.Year2	0.03757	0.6814	Dev.Year2	0.02787	0.5988
Acc.Year3	-0.07005	0.4606	Dev.Year3	-0.72816	1.67×10^{-12}
Acc.Year4	-0.26386	0.0120	Dev.Year4	-1.68290	$< 2 \times 10^{-16}$
Acc.Year5	0.02015	0.8297	Dev.Year5	-1.89206	$< 2 \times 10^{-16}$
Acc.Year6	0.17093	0.0672	Dev.Year6	-2.37550	1.55×10^{-15}
Acc.Year7	0.16856	0.0753	Dev.Year7	-2.81417	1.56×10^{-13}
Acc.Year8	0.06069	0.5337	Dev.Year8	-2.72895	2.72×10^{-12}
Acc.Year9	0.17022	0.0976	Dev.Year9	-2.88302	5.39×10^{-10}
Acc.Year10	-0.03411	0.8051	Dev.Year10	-3.19291	2.34×10^{-06}

The dispersion parameter is fitted as 252.5111.

We then simulate 10000 sets of parameter values from the sampling distribution.

[These are the Poisson means. We could also include the process variance by simulating payments from a Poisson distribution with the simulated means.]

For my simulation, the 95th percentile is \$126,589.

2. A health insurance company classifies policyholders as "Young", "Middleaged" and "Elderly. The experience from policy year 2023 is:

Policyholder	Current differential	Earned premiums (000s)	Loss payments (000s)
Young	0.47	9,600	8,040
Middle-aged	1	14,400	9,330
Elderly	1.82	11,700	8,720

The base premium was \$750. If the expense ratio is 25%, calculate the new premiums for each type of policyholder (ignoring inflation) for policy year 2025.

We calculate the observed loss ratio and new differential for each class.

Policyholder	Old differential	Loss Ratio	New differential
Young	0.47	$\frac{8040}{9600} = 0.8375$	$0.47 \times \frac{0.8375}{0.647916666667} = 0.607524115757$
Middle-aged	1	$\frac{9330}{14400} = 0.647916666667$	1
Elderly	1.82	$\frac{8720}{11700} = 0.745299145299$	$1.82 \times \frac{0.745299145299}{0.6479166666667} = 2.0935476956$

With these differentials, the adjusted total earned premium is

$$14400 + \frac{9600 \times 0.607524115757}{0.47} + \frac{11700 \times 2.0935476956}{1.82} = 40267.5241158$$

The new base premium is therefore $750 \times 0.86388888888 = 647.9166666666$. The premiums are therefore:

type	New premium
Young	$0.607524115757 \times 647.9166666666 = \393.625
Middle-aged	647.92
Elderly	$2.0935476956 \times 647.9166666666 = \$1,356.44$

3. An insurer uses two variables to classify companies. The categories and differentials are given in the following table:

$Size \ Category$		Industry	
Small (1–30 employees)	0.89	Manufacture	1.85
Medium (31-100 employees)	1	Resources	2.21
Large $(> 100 employees)$	1.30	Services	1

The earned premiums from accident year 2023 are:

	Industry			
Size Category	Manufacture	Resources	Services	Total
Small	4,201	3,521	9,105	16,827
Medium	7,367	8,202	12,494	28,063
Large	9,242	7,339	7,322	23,903
Total	20,810	19,062	28,921	68,793

And the claims are:

_

Category	Total Claims
Small	12,593
Medium	23,312
Large	19,690
Manufacture	15,379
Resources	16,022
Services	24,104
Total	55,505

The expense ratio is 0.2. Ignoring inflation, by what factor should they increase the base premium in future years?

We first calculate the loss ratios and adjusted differentials for each class:

Category	Current differential	Loss ratio	New differential
Small	0.89	$\frac{12593}{16827} = 0.748380578832$	$0.89 \times \frac{0.748380578832}{0.830702348288} = 0.801801892739$
Medium	1	$\frac{23312}{28063} = 0.830702348288$	1
Large	1.30	$\frac{19690}{23903} = 0.823745973309$	$1.30 \times \frac{0.823745973309}{0.830702348288} = 1.28911368495$
Manufacture	1.85	$\frac{15379}{20810} = 0.739019702066$	$1.85 \times \frac{0.739019702066}{0.833442827012} = 1.64040820139$
Resources	2.21	$\frac{16022}{19062} = 0.840520407093$	$2.21 \times \frac{0.840520407093}{0.833442827012} = 2.22876727651$
Services	1	$\frac{24104}{28921} = 0.833442827012$	1

At these differentials, the adjusted total earned premiums are:

$$\begin{split} 4201\times \frac{0.801801892739}{0.89}\times \frac{1.64040820139}{1.85} + 3521\times \frac{0.801801892739}{0.89}\times \frac{2.22876727651}{2.21} + 9105\times \frac{0.801801892739}{0.89} \\ + 7367\times \frac{1.64040820139}{1.85} + 8202\times \frac{2.22876727651}{2.21} + 12494 + 9242\times \frac{1.28911368495}{1.30}\times \frac{1.64040820139}{1.85} \\ + 7339\times \frac{1.28911368495}{1.30}\times \frac{2.22876727651}{2.21} + 7322\times \frac{1.28911368495}{1.30} \\ = 64781.9936041 \end{split}$$

With these adjusted premium, the base premium needs to be adjusted by a factor

$$\frac{55505}{0.8 \times 64781.9936041} = 1.07099590704$$

Standard Questions

4. An insurance company uses three variables: sex, age category and vehicle type to distinguish policyholders. The base classes are "Female", "Young" and "Car". The total losses from policy year 2023 were \$5,305,444.

The total earned premiums for each combination of age category and vehicle type were as given in the following table:

	Car	Motorcycle	Total
Young	2,895,987	675,686	3,571,673
Elderly	2,557,859	249,931	2,807,790
Total	5,453,846	925,617	6,379,463

The total earned premiums for each combination of age category and sex were as given in the following table:

	Female	Male	Total
Young	1,750,810	1,820,863	3,571,673
Elderly	1,548,972	1,258,818	2,807,790
Total	3,299,782	3,079,681	6,379,463

The total earned premiums for each combination of vehicle type and sex were as given in the following table:

	Car	Motorcycle	Total
Female	2,978,702	321,080	3,299,782
Male	2,475,144	604,537	3,079,681
Total	5,453,846	925,617	6,379,463 6,119,219

After reviewing the data for 2023, they calculate the following new differentials:

Class	Old differential	New differential
Male	1.201	1.323
Elderly	1.103	1.053
Motorcycle	0.536	0.564

With an expense ratio of 0.2, The base premium is adjusted by a factor 1.003274. What were the total earned premiums from elderly female motorcyclists?

Since the base premium is adjusted by a factor of 1.003274, the adjusted earned premiums must be $\frac{5305444}{1.003274 \times 0.8} = 6610163.32527$. Let x be the total earned premiums from elderly female motorcyclists. We compute the adjusted total earned premiums from each combination of classes:

Earned Premiums	Adjustment factor	Adjusted Earned premiums
x	$\frac{1.053}{1.103} \times \frac{0.564}{0.536} = 1.00453985738$	1.00453985738x
1548972 - x	$\frac{1.053}{1.103} = 0.954669084316$	1478755.68087 - 0.954669084316x
249931 - x	$\frac{1.053}{1.103} \times \frac{1.323}{1.201} \times \frac{0.564}{0.536} = 1.10658304023$	276569.405828 - 1.10658304023x
1008887 + x	$\frac{1.053}{1.103} \times \frac{1.323}{1.201} = 1.05164629355$	1060992.27416 + 1.05164629355x
321080 - x	$\frac{0.564}{0.536} = 1.05223880597$	337852.835821 - 1.05223880597x
1429730 + x	1	1429730 + x
354606 + x	$\frac{1.323}{1.201} \times \frac{0.564}{0.536} = 1.15912734413$	411033.510993 + 1.15912734413x
1466257 - x	$\frac{1.323}{1.201} = 1.10158201499$	1615202.34055 - 1.10158201499x
		6610136.04822 + 0.00024054955x
	Earned Premiums x 1548972 - x 249931 - x 1008887 + x 321080 - x 1429730 + x 354606 + x 1466257 - x	$\begin{array}{c cccc} \text{Earned Premiums} & \text{Adjustment factor} \\ x & \frac{1.053}{1.103} \times \frac{0.564}{0.536} = 1.00453985738 \\ 1548972 - x & \frac{1.053}{1.103} \times \frac{1.053}{1.201} = 0.954669084316 \\ 249931 - x & \frac{1.053}{1.103} \times \frac{1.323}{1.201} \times \frac{0.564}{0.536} = 1.10658304023 \\ 1008887 + x & \frac{1.053}{1.103} \times \frac{1.323}{1.201} \times \frac{1.05164629355}{0.536} \\ 321080 - x & \frac{0.564}{0.536} = 1.05223880597 \\ 1429730 + x & 1 \\ 354606 + x & \frac{1.323}{1.201} \times \frac{0.564}{0.536} = 1.15912734413 \\ 1466257 - x & \frac{1.323}{1.201} = 1.10158201499 \end{array}$

Thus, we need to solve 6610136.04822 + 0.00024054955x = 6610163.32527 which gives

$$x = \frac{6610163.32527 - 6610136.04822}{0.00024054955} = \$113,395$$