

MATH 5230/4230, Homework 4

1. Consider the eigenvalue problem

$$\begin{aligned}
 \Delta u + \lambda u &= 0, \quad \text{inside } B_1(0) \subset \mathbb{R}^2 \\
 \partial_n u &= 0, \quad \text{on } \partial B_1(0) \\
 u &= 0, \quad \text{on } \partial B_\varepsilon(\xi)
 \end{aligned} \tag{1}$$

Here, ε is assumed small and $B_\varepsilon(\xi) \subset B_1(0)$.

- (a) First, suppose that $\xi = 0$ so that the problem is radially symmetric. In this case, find an implicit expression for λ in terms of Bessel J_0 and Y_0 functions. See Wikipedia or ask me if you need more info on Bessel functions.
- (b) Using the following expansions for Bessel J_0 and Y_0 functions of small arguments,

$$\begin{aligned}
 Y_0(z) &\sim \frac{2}{\pi} \ln(z) + \frac{2}{\pi} (\gamma - \ln 2) \quad \text{as } z \rightarrow 0, \\
 J_0(z) &\sim 1 + O(z^2) \quad \text{as } z \rightarrow 0,
 \end{aligned}$$

where $\gamma = 0.577\dots$ is the Euler constant, find the asymptotic formula for λ in the limit $\varepsilon \rightarrow 0$.

- (c) Use Maple to compute λ as determined by (a). Hint: the command `fsolve` will be useful here: for example `fsolve(x^2=2, x=1.4)`; uses `fsolve` to solve for $\sqrt{2}$, the second argument provides an initial guess. Then compare with the asymptotic formula for λ that you obtained in part (b). Do this for two values, $\varepsilon = 0.1$ and $\varepsilon = 0.05$. Comment on what you observe for the error behaviour.
- (d) Now do the case of general ξ in (1). Here are some steps:
 - Assume λ is small and expand $u(x) = 1 + \lambda u_1(x) + \dots$
 - In the outer region (away from ξ), $u_1 \sim AG(x, \xi)$ where A is some constant that you will need to determine and G is the same Neumann's Green's function that we saw in class.
 - In the inner region, change variables $x = \xi + \varepsilon y$ and solve.
 - Match inner and outer region to estimate λ .
- (e) Double-check that your answer in (d) agrees with part (b) when $\xi = 0$. How does the answer depend on ξ ?
- (f) Suppose that you replace $B_\varepsilon(\xi)$ by an ellipse $E_\varepsilon(\xi)$ that is parallel with x and y axes and whose major and minor axes have radii εa and εb , respectively. Determine how a and b effects λ .