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Pairwise particle interactions arise in diverse physical systems ranging from insect swarms to self-
assembly of nanoparticles. This letter develops a fundamental theory for the morphology of patterns
in two dimensions - which can range from ring and annular states to more complex spot patterns
with N-fold symmetry. Many of these patterns have been observed in nature although a general
theory has been lacking, in particular how small changes to the interaction potential can lead to
large changes in self-organized state. Emergence of these patterns is explained by a stability analysis
of a ring solution. This analysis leads to analytic formulae involving the interaction potential that
provide detailed information about the structure of complex equilibria.

PACS numbers: 87.18.Ed, 87.10.Ed, 05.45.-a

Collective behavior of interacting systems [1] is a capti-
vating natural phenomenon. Such systems form patterns
that inspire evolutionary [2] and biological [3] questions
as well as structural and physical ones. More recently,
such natural behavior has inspired intelligent design of
control algorithms for unmanned vehicles. Particle in-
teraction models are extremely prevalent in the biology
literature in many contexts such as insect aggregation
[4], locust swarms [5]; however they also arise in other
important physics applications such as self-assembly of
nanoparticles [6], theory of granular gases [7], and molec-
ular dynamics simulations of matter [8]. Regardless of
whether the model is meant to describe a complex bio-
logical system such as a flock or swarm, or a basic physics
application derived from first principles, a common fea-
ture of all particle interaction models is the attractive-
repulsive nature of the potential. Often a ‘steady state’
pattern can be formulated as an extrema of a pairwise
interaction energy

E(~x) =
∑

i,j 6=i

P (|xi − xj |), (1)

for some potential P . Typically ~x is the position vec-
tor of N particles so the equilibrium configuration is a
minimizer of a high dimensional non-convex problem for
which a fully developed predictive theory is elusive. Re-
cent analysis [9] shows that scaling behavior of equilib-
rium configuration depends on the classical H-stability
properties of the interaction potential [10] but does not
provide a theory for morphology or symmetry class of
equilibrium configuration. The last five years has seen
a surge of interest in the physics literature for confin-
ing potentials which tend to yield complex equilibrium
patterns. One particularly interesting question is how to
infer properties of the local interactions from large scale
behavior of the self-organized state [11].
The goal of this letter is to develop a general theory

for prediction and classification of equilibrium patterns
based on properties of the interaction potential. For sim-

FIG. 1: Top: Minimizers of the energy (1) with force law (3).
Bottom: time evolution of (4) with a = 8, b = 0.67.

plicity, we present case studies from two different families
of interaction forces F (r) = P ′(r) that both give spatially
confined patterns: the power law force

F (r) = rp − rq ; 0 ≤ p < q (2)

and a smoothed step discontinuity connecting b± 1 :

F (r) = tanh ((1− r)a) + b; 0 < a; −1 < b < 1. (3)

Minimizers of (1) with confining potentials can exhibit
intricate structure as shown in Figure 1, for the case (3).
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Note the complex patterns ranging from rings and an-
nuli to more complex structures exhibiting period two
and three symmetry breaking to very complex ‘soccer
ball’ like shapes. Related patterns (in particular the an-
nuli and spotted patterns) been observed in experiments
of stressed bacterial colonies [12] which have associated
related nonlocal models [13]. We present a systematic
methodology for predicting structures of these patterns
from basic properties of the interaction potential.

Our theory is based on stability of the interaction en-
ergy under a gradient flow, although the results could be
applied to more sophisticated interaction models such as
those arising from the Morse potential considered in [9].
The gradient flow equations arising from (1) are

dxj

dt
=

1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk

|xj − xk|
, j = 1 . . .N.

(4)
Simulation of this system with a large number of particles
results in a long time equilibrium shape. The shapes in
Fig 1 are the result of a forward Euler time integration of
(4) with N = 5000, computed to t = 1000 with dt = 0.5.
Up to rotation, the results are independent of initial con-
dition, typically taken to be random. Our theoretical
approach to analyzing these patterns involves computing
exact ring solutions of (4) and computing modes of insta-
bility of the ring. We find in all examples that the details
of the linear instability, when it occurs, points towards
specific spatial patterning of the stable equilibrium. The
radius of the exact ring solution is a root of

I(r0) :=

∫ π

2

0

F (2r0 sin θ) sin θdθ = 0, (5)

where we assume N is large and can be approximated by
a continuum. Note that any potential that has repulsion
dominant at small distances and attraction dominant at
large distances possesses such an exact solution. The ring
is a special case of a general extrema of (1) in which the
particles concentrate on a one dimensional curve. In the
limit N → ∞ [14], for solutions concentrated along a
curve, (4) reduces to the continuum equation

ρt = −ρ
< zα, zαt >

|zα|
2 ; zt = K ∗ ρ (6)

where z (α; t) is a parametrization of the solution curve;
ρ (α; t) is its density and K ∗ ρ =

∫

F (|z(α′)− z(α)|)
z(α′)− z(α)

|z(α′)− z(α)|
ρ(α′, t)dS(α′). (7)

The formula (6) is a generalization of the classical
Birkhoff-Rott equation for 2D vortex sheets [15] - ap-
plied to gradient vector fields rather than divergence free
flow [14]. Linear analysis of the B-R equation describes

FIG. 2: Dynamics of (4). First column: F (r) = r − r2,
N = 80. Second column: F (r) = r0.5 − r6, N = 300. Third
column: Simluation of the continuum limit (6) with F as in
the second column. Fourth column: F (r) = r−r3.2, N = 100.
Fifth column: F (r) = r0.5 − r1.5, N = 300.

the classical Kelvin-Helmoltz instability in fluid dynam-
ics and we use this as an analogy to our study of equilib-
rium patterns for the pairwise interaction energy (1).
Consider the perturbations of the ring of N particles

of the form xk = r0 exp (2πik/N) (1 + exp(tλ)φk) where
φk ≪ 1. After some algebra we obtain

λφj =
1

N

∑

k=1..N
k 6=j

G+

(

π(k−j)
N

)(

φj − φk exp
(

2πi(k−j)
N

))

+G−

(

π(k−j)
N

)(

φ̄k − φ̄j exp
(

2πi(k−j)
N

))

,

where j = 1 . . .N , G±(θ) =
1
2 (G1 ±G2), and

G1(θ) = F ′(2r0 |sin θ|), G2(θ) =
F (2r0 |sin θ|)

2r0 |sin θ|
.

Next we substitute φj = b+e
2mπij/N + b−e

−2mπij/N

where we assume that b± are real, and m is a strictly
positive integer. This leads to a 2x2 eigenvalue problem

λ

(

b+
b−

)

= M(m)

(

b+
b−

)

where

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 1, 2, . . . ; (8)

I1(m) =
4

N

N/2
∑

l=1

G+(sin
πl

N
) sin2

(

(m+ 1)
πl

N

)

;

I2(m) =
4

N

N/2
∑

l=1

G−(sin
πl

N
)

[

sin2(
πl

N
)− sin2

(

m
πl

N

)]

.
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Taking the limit N → ∞, we obtain

I1(m) =
4

π

∫ π

2

0

G+(θ) sin
2 ((m+ 1)θ) dθ; (9a)

I2(m) =
4

π

∫ π

2

0

G−(θ)
[

sin2(θ) − sin2 (mθ)
]

dθ. (9b)

The ring is linearly stable if the eigenvalues λ of (8) are
non-positive for all integers m ≥ 1; otherwise it is unsta-
ble. There are two possible types of instabilities - ones
in which the ring is long-wave unstable, corresponding to
an instability of a low order mode (small m) but stabil-
ity of higher order modes. The second type corresponds
to ill-posedness of the ring in which the eigenvalues are
positive in the m → ∞ limit and grow as m increases.
In the latter case the ring completely breaks up and of-
ten forms a fully two-dimensional pattern. Such stability
analysis is well-known for other types of curve evolutions
involving active scalar problems – most notably the clas-
sical Kelvin-Helmholtz instability (ill-posedness) of the
vortex sheet for the 2D Euler equations [15].
Figure 2 shows evolutionary behavior of (4) with force

law (2). In the first column, the equilibrium solution
is a stable ring. Random initial conditions quickly con-
verge to a ring shape (t = 20); this is followed by slow
dynamics along the ring until equilibrium is achieved by
t = 10000. In column 2 a mode m = 3 instability is
triggered on a slower timescale than the initial collapse
to a ring shape. The final steady-state is a triangular
shape, which retains some of the features of the initial
instability. Column three is the direct numerical sim-
ulation of the continuum equations (6) with the same
parameters as Column two. The thickness represents the
variable density ρ. In the fourth column, the ring appears
as a transient state, but final equilibrium consists of just
three points. Column five shows another type of insta-
bility, which corresponds to very high modes m; the ring
solution is not only linearly unstable but also linearly ill-
posed; the resulting swarm has a two-dimensional shape.
For interaction force (2), and with p = 1, q = 2 we have

tr M (m) = −

(

4m4 −m2 − 9
)

(4m2 − 1)(4m2 − 9)
< 0, m = 2, 3, . . .

detM(m) =
3m2(2m2 + 1)

(4m2 − 9)(4m2 − 1)2
> 0, m = 2, 3, . . .

This proves that the ring pattern corresponding to
F (r) = r − r2 is locally stable. Moreover, for large
m, the two eigenvalues are λ ∼ − 1

4 and λ ∼ − 3
8m2 → 0

as m → ∞. The presence of small eigenvalues implies
the existence of slow dynamics near the ring equilibrium.
Further analysis shows that the eigenvector correspond-
ing to the small eigenvalue and large m is nearly tangen-
tial to the circle; the other eigenvector is nearly perpen-
dicular. The corresponding two-time dynamics are also
clearly visible in simulations (Figure 2, column 1).

FIG. 3: Stability diagram for (2). The curves shown cor-
respond to the boundaries of the stability det(M(m)) = 0,
with m = 3, 4, 5 and m = ∞, as indicated. The line p = q

is also drawn. Crossing any of the curves destabilizes the
ring. The intersection of m = ∞ and m = 3 boundaries is at
p = 0.10779, q = 9.277102.

In general, if F (0) > 0 and F is C2, the asymptotics
for large m yield

I1 (m) ∼ I1(−m) ∼
F (0)

2πr0
lnm+O(1) as m → ∞.

This shows that trace M(m) > 0 for sufficiently large m.
It follows that the necessary condition for well-posedness
of a ring is that F (0) = 0. If in addition, F is C4, then
using integration by parts we obtain

tr M(m) ∼
2

π

∫ π/2

0

(

F (2r0 sin θ)
2r0 sin θ − F ′(2r0 sin θ)

)

dθ +O
(

1
m2

)

;

det(M(m)) ∼ tr M(m)
F ′′(0)r0

m2
+O

(

1

m4

)

.

In summary, if F (r) is C4 on [0, 2r0], then the neces-
sary and sufficient conditions for well-posedness
of a ring are:

F (0) = 0, F ′′(0) < 0 and (10)
∫ π/2

0

(

F (2r0 sin θ)

2r0 sin θ
− F ′(2r0 sin θ)

)

dθ < 0. (11)

In particular, the ring solution for the force (3) is
always ill-posed, since F (0) > 0. Another general re-
sult is if F is odd and C∞ on [0, 2r0]. In that case, one
can show that det(M(m)) = 0 for all m; the ring then
has infinitely many zero eigenvalues. This observation
may be relevant for the Kuramoto model F (r) = sin(r)
[16].
For the force of type (2) with 0 < p < q, the asymp-

totics of the mode m = ∞ can be computed in terms
of Gamma functions. It can be shown that the mode
m = ∞ is stable if and only if pq > 1 and p < 1. In
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FIG. 4: Stability of discrete vs. continuous system for
F (r) = tanh(4(1−r))−0.5. Top: det(M(m)).Dashed line cor-
responds to continuum eq. (10) and crosses to discrete eq. (9)
with N = 120, 160. Instability occurs iff det(M(m)) < 0. Bot-
tom: steady states of discrete dynamics with N as indicated;
inserts show the blowup of the ring structure.

addition, the low modes m = 2, 3, 4, . . . may also become
unstable, see Figure 3. The dominant unstable mode
corresponds to m = 3, which bounds the stability region
from above. This boundary is given implicitly by

0 = 723− 594(p+ q)− 27(p2 + q2)− 431pq

+ 106
(

pq2 + p2q
)

+ 19
(

p3q + pq3
)

+ 10
(

p3q2 + p2q3
)

+ 6
(

p3 + q3
)

+ p3q3

and is shown in Figure 3. Similarly, the stability bound-
ary for m = 2 mode is given by 0 = 7 + 38(p + q) +
12pq + 3(p2 + q2) + 2

(

pq2 + p2q
)

− p2q2; this boundary
happens to lie well outside the area shown in Figure 3.
The stability boundaries for modes m = 4, 5, . . . are also
expressed in terms of higher order polynomials in p, q.

Even if (4) is ill-posed in the continuous limit N → ∞,
the ring of discrete particles (4) may be stable with a rel-
atively large N as in Figure 4. Note the slight instability
for N = 160 but stability when N = 120. The continuous
limit is well approximated with N = 5000; the resulting
steady state appears to be a thin annulus, whose inner
and outer radius are approximately r0 given by (5).

Many open questions remain. In a recent work [17],
the authors studied the collapse of N particles into K
points in one dimension, each point having roughly N/K
particles. When F (r) = r − rs, they showed that N
particles collapse to two points when s ≥ 2; no collapse
occurs when 1 < s < 2. In contrast, our analysis of this
problem in 2D shows that the ring is stable for all 1 <

s < 3. Numerics show that the ring collapses into three
points when s > 3.

Another open question is to study the annulus and
spot-type solutions, such as shown in Figure 1. These
tend to arise in the limit where F (r) has a sharp transi-
tion from repulsive to attractive regime. Unlike the ring
solutions discussed above or point solutions of [17], the
requirement F (0) = 0 is not necessary.

Numerics suggest that random initial conditions tend
to converge to ring solutions, whenever the ring is stable.
Global stability of the ring remains an open question.
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