Theodore Kolokolnikov Maximizing network diffusivity subject to of how fast the information diffuses through a graph - Corresponds to 2nd eigenvalue of Laplacian Maximize AC among all graphs of grisen # vertices n, and given # edges me - Too hard, how about: Q': Further restrain to dregular graphs any Still hard $m = \frac{a_1 c_2}{\lambda}$ Q¹: Further restrict to de regular and with fixed diameter D, or fixed guilh g - Alon-Boppana-Friedman Lound $AC \leq d - 2 \overline{d - 1} \cos \overline{\mathbb{E}}_{2d}$ N and $N \sim C \log n \to \infty$ as $n \to \infty$

so that
$$
d - 2 \overline{d - 1} \cos \frac{\pi}{L} = d - 2 \overline{d - 1} \cos n \rightarrow \infty
$$

on average, $AC \sim d - 2 \overline{d - 1} \cos n \rightarrow \infty$
lighter bound:

Theorem 1. Suppose that a d -regular graph has girth g and diameter D and let AC be its algebraic connectivity. Then

 $AC \le d - 2(d-1)^{1/2} \cos \theta$

where θ is two of the following four values, depending on the parity of D and g.

If D is even with $D = 2K$, then θ is the smallest positive root of \bullet

$$
\tan(\theta K) = -\frac{d}{d-2}\tan\theta.
$$

If *D* is odd with $D = 2K - 1$, then θ is the smallest positive root of \bullet

$$
\tan(\theta K) = -\frac{\left(2\sqrt{d-1}\cos\theta + d\right)\sin\theta}{\sqrt{d-1}\left(d-2\cos^2\theta\right) + (d-2)\cos\theta}.
$$

If g is even with $g = 2K$, then $\theta = \pi/K$. \bullet

New

If g is odd with $g = 2K + 1$, then θ is the smallest root of \bullet

$$
\tan(\theta K) = -\frac{\sin \theta}{(d-1)^{-1/2} + \cos \theta}.
$$

Waximal graphs: those that attain the

above upper bound

Upper bound for AC in terms of girth									
\overline{d} g	3	$\overline{4}$	5	6	7	8	9	10	11
$\overline{\mathbf{3}}$	4.0000	5.0000	6.0000	7.0000	8.0000	9.0000	10.000	11.000	12.000
$\overline{4}$	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	9.0000	10.000	11.000
5	2.0000	2.6972	3.4384	4.2087	5.0000	5.8074	6.6277	7.4586	8.2984
6	1.5858	2.2679	3.0000	3.7639	4.5505	5.3542	6.1716	7.0000	7.8377
$\overline{7}$	1.1864	1.7466	2.3738	3.0443	3.7458	4.4709	5.2147	5.9739	6.7460
8	1.0000	1.5505	2.1716	2.8377	3.5359	4.2583	5.0000	5.7574	6.5279
9	0.8088	1.3004	1.8706	2.4913	3.1481	3.8322	4.5380	5.2616	6.0000
10	0.7118	1.1975	1.7639	2.3820	3.0366	3.7191	4.4235	5.1459	5.8833
11	0.6069	1.0600	1.5983	2.1912	2.8229	3.4840	4.1685	4.8721	5.5916
12	0.5505	1.0000	1.5359	2.1270	2.7574	3.4174	4.1010	4.8038	5.5228
13	0.4872	0.9168	1.4356	2.0114	2.6277	3.2748	3.9462	4.6376	5.3456
Upper bound for AC in terms of diameter									
\overline{d} D	3	$\overline{4}$	5	6	τ	8	9	10	11
3									
	2.0000	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	9.0000	10.000
$\overline{4}$	1.2679	2.0000	2.7639	3.5505	4.3542	5.1716	6.0000	6.8377	7.6834
5	1.0000	1.6972	2.4384	3.2087	4.0000	4.8074	5.6277	6.4586	7.2984
6	0.7639	1.3542	2.0000	2.6834	3.3944	4.1270	4.8769	5.6411	6.4174
$\overline{7}$	0.6571	1.2266	1.8587	2.5321	3.2356	3.9621	4.7070	5.4671	6.2398
8	0.5505	1.0665	1.6508	2.2810	2.9446	3.6340	4.3440	5.0709	5.8123
9	0.4965	1.0000	1.5762	2.2006	2.8597	3.5456	4.2527	4.9772	5.7164
10	0.4384	0.9111	1.4601	2.0598	2.6964	3.3613	4.0487	4.7546	5.4762
11	0.4069	0.8717	1.4156	2.0118	2.6456	3.3083	3.9939	4.6984	5.4187
12	0.3714	0.8167	1.3436	1.9245	2.5444	3.1941	3.8677	4.5607	5.2701

TABLE 1 Upper bounds for AC in terms of girth and diameter. Known attainable bounds are in bold. Known unattainab are in italics. The rest are unknown.

 \overline{a} Many of the diameter bounds are attainable.

•
$$
2x
$$
 and main idea.

\n• 13 graph"
\n• $15 = 4$, $d = 3$, $n = 14$

\n. Double-tree structure as about:

\n• $4x = 3x - 3y$

\n• $\lambda x = 3x - 3y$

\n• $\lambda y = 3y - x$

\n• $\lambda y = 3y - x$

\n• $\lambda y = 3y - x$

\n• $\lambda y = 3 - 5 = 1.2679$

Generalize to any even $D=2K$ λ $\begin{pmatrix} x_1 \\ i \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -3 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 & 4 & 3 & 4 &$ ರಿ Eig. given by $\lambda = 3 - 2\sqrt{3}$ (0.89) $tan(\theta k) = 3 tan \theta$

This actually gives the upper B
This actually gives the upper B
regardless if graph has not regardless if graph has double Proof uses Rayleigh quotient

"Cubic integral Odd diameter: Ex D=5, d=3 Glograph χ y = 3y-23-x
 χ 3 = 33-y-(-23)
(3-30) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ The of This vertex assignment gives upper bound. $3 - 213$ 689 $y = 3$ $\bigcup_{\begin{subarray}{c}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{subarray}} \mathbb{E}[\mathbf{0} \mathbf{0}] \subseteq \mathbb{E}[\mathbf{0}]$ tan (Ok Improvement over A ^B ^F bound in the case of odd D Proof is abit more involved because the two trees ore not separated Additional argument is required to "separate" them

girth bound:

Additional constraints:

Thin: Girith-maximal graphs must be Moore grouphs. (Very restruictive, only exists if $q=3, 4, 6, 8, 12$ or $d=3$ and $q=5$)

Thin: If D=2K-1 is odd, then a D-maximal graph must be bipartite, and consist of two disjoint Moore trees of K levels, that is $n = 2(1 + d + d(d-1) + ... d(d-1)^{K-2})$. Moreaser all edges from leafs of one
tree must go to the other tree. (passibly) maximal $\frac{c_{\chi}}{2}$: not maximal

Thus: if $D = 2K$ is even, then a D-maximal graph consists of two disjoint Moore trees of ^K levels plus ^a center thats is not part of either trees and all edges from leafs of both trees must go into center Such graph has $n > 2(1+d+d(d-1)+\cdots+d(d-1)^{k-2}) + 2(d-1)^{k-1}$ 2 trees inequality and determined in this center vertices
(at least this
number) Examples: $D = 4, n = 14$ $d = 3$ center note edges inside center possible Amin ² but no maximal such graphs Note that $n = ...$ for 0 odd, but $n \geq ...$ for ever D

Algorith f initial configueration is double t $\left(\begin{matrix}a & b & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{matrix}\right)$ choose ^a random edge to add subject to the following constraints $murt$ keep degree $\leq d$ must keep gerin $\geq g$ Leho Cannot add any more: - If the graph is completed [every vertex compute its AC has deg. $d\vec{J}$, \bullet If $AC = max$ bound \to Done Else reset & try again
Else delete a few random edges endloop

Even D: Similog: but initial conotiq. is - Can odd edges between
white 2 red or
white 2 white

Computational Results

 $d=3$ summary

 $d = 3$, $D = 10$ is open! 0 D = 8 % what about $h = 70, 72, 74$... 88? Complexity:
• D=7: All 45 graphs were found in minutes (under an hour) 10 find $D = 9$ we used 6 cpu cores running several days Thisresulted in about ¹⁵⁰⁰ maximal graphs Ofthese 481 were non-isomorphic.

<u>d = 4 Suprimary:</u>

Gallery of maximal ^D graphs

D-maximal family with
$$
D=4
$$
, $d=prime power$

Here, we will construct a d-regular graph G which is an incidence graph of a subset of $PG(2, d)$ (with d a prime power). Its order is $2d^2 - 2$. This graph is likely to be the same as the girth-6 graph of the same order from $\frac{3483536}{3}$, although we use a different construction here to compute its spectrum and girth.

Consider the subset of lines and points of $PG(2, d)$ of the form $(1, b, c)$, where one of b, c are non-zero. For example when $d = 3$, there are 8 such lines and points, namely:

$$
(1,0,1), (1,0,2); (1,1,0), (1,2,0); (1,1,1), (1,2,2); (1,1,2), (1,2,1). \tag{29}
$$

It is easy to see that such a graph is regular of degree d, has order $n = 2d^2 - 2$, has girth $g = 6$ and diameter $D = 4$. We start by giving a sketch of the argument that $D = 4$. Consider two distinct lines $L_1 = (1, a_1, b_1)$ and $L_2 = (1, a_2, b_2)$. They are adjacent to the same point $P = (1, x, y)$ if and only if $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$. If this system has a solution, then the distance between these two lines is 2. In the opposite case, we perpendicular to L_1 . This point has $d-1$ other lines that are perpendicular to it. Pick one such line, call it $L_3 = (1, a_3, b_3)$. Note that $(a_3, b_3) \neq c$ (a_2, b_2) . for any $c \in F$. But then $dist(L_2, L_3) = 2 = dist(L_3, L_1)$ so that $dist(L_1, L_2) = 4$. Similar argument shows that dist(L, P) \leq 3 for any line L and point P.

Conjectures and Open Questions

Conjectures:

Don g-maxomal graph of size n has the highest AC among all graphsof size ⁿ

- A diameter-maximal graph of odd diameter D must have girth $g = D + 1$.
- A diameter-maximal graph of even diameter D must have a girth of either $g = D, D + 1$ or $D + 2$.

Open Questions: $Find \frac{d=3}{D} = 10$ maximal graph Do D-maximal graphs exist for any U Are all Moore graphs girth-maximal? . Find D-maximal graphs with D=4 and p not a prime power [d=6 exists] \cdot Find D-maximal family with $D = 5$

• Référènce:

Exoo G, Kolokolnikov T, Janssen J, and Salamon T, *Attainable bounds for algebraic connectivity and maximally-connected regular graphs*, J Graph Theory. 2024