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We expore pattern formation for the GM model on thin domains. If the domain is sufficiently thin,
the pattern consists of a stripes which are nearly one-dimensional. We analyse patterns consisting
of one, two or many stripes. We find that a single stripe can be located either at the thickest or
thinnest part of the channel, depending on the choice of parameters. In the limit of many stripes,
we derive an effective pattern density description of the equilibrium state. The effective density is
easily computable as a solution of a first order ODE subject to an integral constraint. Depending on
problem parameters, the resulting pattern can be either global spanning the entire domain, or can
be clustered near either thickest or thinnest part of the domain. In addition, instability thresholds
are derived from the continuum density limit of many stripes. Full two-dimensional numerical
simulations are performed and are shown to be in agreement with the asymptotic results.

1. INTRODUCTION

In this paper we explore pattern formation for Gierer-Meinhardt (GM) model on thin domains. The standard GM
model is [1, 2]:

at = ε2∆a− a+ ap/hq, 0 = d2∆h− h+ am/hs, (1)

and, as with most of studies of this model, we assume that the activator a diffuses much slower than the inhibitor h,
so that ε ≪ d. As is well known, in this regime the solution consists of spikes (localized concentrations, or spots) that
exhibit a wide variety of phenomena that have been intensively studied over the last 3 decades. We refer the reader to
books [3, 4] and references therein. Similar spot patterns have been studied in many other reaction-diffusion models.
Some prominenet examples include Gray-Scott model [5–9] the Schankenberg model [10–12], vegetation patches in
arid environments [13–18], a model of crime hot-spots in a model of residential burglaries [19–22] and animal skin
patterns, [23–25].

One of the key results going back to [2, 26] is that the parameter d can be used to tune the number of spikes:
increasing d can trigger the so called competition or coarsening instability threshold, which decreases the total number
of spikes; the maximum allowed number of spikes is a decreasing function of d. Similar thresholds exist in other models
as well [9, 11, 21] and in more general contexts, such as in the presence of precursor [27–29] or spatial heterogeneity
[30, 31].

Here, we study spike dynamics and stability for the GM model inside thin channels. See Figures 1,2,4 for examples.
We are interested in the regime where the pattern is quasi-one-dimensional, in the sense that the concentration of
either activator or inhibitor is nearly constant in the direction that is perpendicular to the channel. We will refer to
such a pattern interchangeably as a stripe or a spike. In particular, stripes occur when the channel cross-sectional
thickness is of O(ε): when the domain is too thick, the stripe will break up into spots [32–36].
In the case where domain is very thin in one direction, a standard reduction – see Appendix C – results in a

one-dimensional version of the GM model, but with an additional inhomogeneous drift term which encodes the cross-
sectional area along the domain. This reduction results in the the modified diffusion operator as follows:

∆ → ∂xx +
A′(x)

A(x)
∂x. (2)

Here, x denotes the arclength coordinate along the boundary of the channel, and A(x) is the cross-sectional length

of the domain at location x, and is assumed to be small. For convenience, we also rescale a = âεe, h = ĥεf with
e = −1/ (m− (1 + s) (p− 1)/q) , f = −1/ (mq/(p− 1)− (1 + s)) , so that after dropping the hats the GM model
becomes

at = ε2 (axx + α(x)ax)− a+ ap/hq, (3a)

0 = d2 (hxx + α(x)hx)− h+
1

ε
am/hs (3b)

a Corresponding author: tkolokol@gmail.com
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FIG. 1. Stable equilibrium solutions of the full 2D system (1) consisting of a single spike inside an annular region of uneven
thickness. The outer boundary is unit circle. The inner boundary is a circle which is at a minimum distance of 0.05 and a
maximum distance of 0.15 from the outer boundary. Full 2D time-dependent problem was solved using an initial condition
consisting of a single spike at x = π/2. Snapshots show the solution after it converged to a (stable) equilibrium. Parameters
d and q are as shown, while other parameters are ε = 0.1, p,m, s = 2, 2, 0. Note that the spike is expected to be stable at
the thinnest part of the domain when d is large, regardless of q. When d is small, the spike is stable at the thinnest part if
q < p− 1, but is stable at the thickest part when q > p− 1.

with α = A′/A. The presence of inhomogeneities α(x) in both a and h equations introduces novel features to the GM
model, and the rest of the paper is dedicated to the study of these. A similar model in the context of a convective
flow for the Schnakenberg model, but with a constant α, was studied in [12].
Throughout this paper, for concreteness we will take the domain such as shown in Figure 1. It is a region whose

outer boundary is a unit circle, and whose inner boundary is an off-center circle such that minimum and maximum
distance from the outer boundary is dmin and dmax, respectively, with dmin ≤ dmax ≤ O(ε) ≪ 1. We will assume that
the inner circle is closest to the outer circle on the left. In the limit dmin, dmax ≪ 1, we find the corresponding α(x)
to be

α(x) ∼ 1

2

−
(
κ2 − 1

)
sinx

1 + κ2 + (κ2 − 1) cosx
; κ = dmax/dmin (4a)

(see Appendix C) where x = θ is the arclength coordinate along the outer circle. The equations (3) are then posed
on x ∈ [0, 2π] with periodic boundary conditions. For concreteness, we will fix

κ = 3 (4b)

for the remainder of the paper; the graph of the resulting α(x) is illustrated in Figure 2(c).
Figures 1,2,4 illustrate main results. We study either a single stripe, a configuration involving two stripes, and N

stripes where N is large. We are primarily concerned with stripe locations. For large N , we also recover instability
thresholds as a function of d (Proposition 3.2). We compute asymptotic stripe locations for 1 or 2 stripes, as well as
effective density distribution for N spikes. It turns there are two distinct regimes: the location as well the extent of a
cluster changes depending on whether q < p− 1 or q > p− 1. The “standard” parameter set (p, q,m, s) = (2, 1, 2, 0)
is on the boundary q = p− 1 and is exceptional in that sense.

2. REDUCED SYSTEM; ONE OR TWO STRIPES

We consider a solution consisting of N stripes, as illustrated in Figure 4. Let xk(t) denote the stripe location
along the channel. This location changes slowly in time. In Appendix A, we use the standard quasi-steady-state
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approximation to derive the following system of algebro-differential equations for evolution of spike centers xk, coupled
with heights Vk ∼ h(xk). We summarize the result as follows.

Proposition 2.1. In the limit ε ≪ d, a quasi-equilibrium solution to (3) consisting of N stripes has the form

a(x, t) ∼
∑

V
q/(p−1)
j w

(
x− xj(ε

2t)

ε

)
, (5)

H(x, t) ∼ bm
∑
j

V γ
j G (x, xj) (6)

where w(y) is a standard ground state solution which satisfies

wyy − w + wp = 0; w′(0) = 0; w (y) → 0 as y → ±∞, (7)

the constant bm is given by

bm =

∞∫
−∞

wm(y)dy, (8)

G(x, ξ) is the Green’s function satisfying

d2 (Gxx + α(x)Gx)−G = −δ(x− ξ), (9)

and xj(tε
2) is the time-dependent location of j-th stripe which is coupled to weights Vj and solves the following

differential-algebraic system:

x′
k = −α(xk)− 2bm

q

p− 1

1

Vk

∑
j

V γ
j Gx(xk, xj) (10a)

Vk = bm
∑
j

V γ
j G(xk, xj); (10b)

γ =
qm

p− 1
− s; (10c)

where Gx(xk, xk) =
1
2

(
Gx(x

+
k , xk) +Gx(x

−
k , xk)

)
.

Note how the thickness α(x) of the domain appears in both the Green’s function (9) as well as in equation (10).
For a general α(x) and d, the Green’s function equation (9) does not have an explicit solution. However in the limits
of large or small d, further asymptotics are possible. We now consider one and two-stripe configurations.

Single stripe. We begin by considering a single stripe, whose center we denote by x0. In this case, equations (10)
reduce to

x′
0 = −α(x0)− 2

q

p− 1

Gx(x0, x0)

G (x0, x0)
. (11)

First, suppose d is sufficiently large. This is the so-called near-shadow limit [37]. In this case it is easy to show that
Gx(x0,x0)
G(x0,x0)

= O(d−2), so that −α(x) in (11) is dominant and we obtain

x′
0 ∼ −α(x0), d ≫ 1 (12)

Consequently, equilibrim location for x0 then correspond to zeros of a = A′/A, with stable equilibrium corresponding
to the minimum of cross-sectoional area A(x).
Next, we consider the case of small d. We use WKB techinques to estimate G in this case – see Appendix B,

equations (46), (47). As a result, we obtain the following equation of motion for a single spike:

x′
0 ∼

(
−1 +

q

p− 1

)
α(x0), d ≪ 1. (13)

Equations (12) and (13) show that in the cases of d either small or large, the equilibria locations x′
0 = 0 correspond

to zeros of α (x) = A′(x)/A(x), but their stability can switch depending on the sign of q + 1− p : if p > q + 1, stable
equilibria correspond to the minimum of A, and unstable to the maximum of A; this is reversed when p < q + 1.
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FIG. 2. Two spikes inside an annular region of uneven thickness. The outer boundary is unit circle. The inner boundary is the
a circle through points −1 + 0.05, 1 − 0.15 (i.e. κ = 3 in (4)). The first column shows the equilibrium state for the full 2D
system (1). Second column shows the corresponding equilibrium in the 1D system (3), approximating the solution along the
boundary of the domain. (a-c) Parameter values are ε = 0.07, D = 0.2, p,m, s = 2, 2, 0, and with q as indicated. (c) The
sketch of α(x) given by (4) with κ = 3, which was used in computations of the second column. (d) Equilibrium spike positions
as a function of q for two-spike configurations; other parameters as in (a). Curve “pde 2D” is obtained by simulating the full
2D problem (1). Curve “pde 1D” simulates the reduced 1D problem (3). Curve “asympt q < 1” is the spike locations as given
by Proposition 2.2 with expansion near x0 = π. Curve “asympt q > 1” is the expansion near x0 = 0.

The four cases (q ≶ p − 1, d large or small) are illustrated in Figure 1. Interestingly, the case p = q + 1 (which
includes the so-called “standard” GM exponents p = 2, q = 1) is on the boundary q = p − 1: higher-order analysis
(outside the scope of this paper) would be required to analyse the dynamics of a single spike in this case.

Two symmetric stripes. Figure 2 illustrates our results for symmetric configurations consisting of two stripes.
Here, we only consider the case where d is asymptotically small, and the two stripes are symmetrically located with
respect to domain as shown in Figure 2: either near the minimum or the maximum (when d is large, two spikes are
unstable due to a competition instability).

More generally, suppose that the channel has a reflection symmetry with the axis of reflection perpendicular to the
channel. We will then look for a two-stripe symmetric solution close to the axis of symmetry. Take x to be transversal
coordinate with x = 0 located at the symmetry point. Then A(x) is an even function so that α(x) is odd. We look
for a symmetric solution with respect to x = 0. Setting r = x1 = −x2 and V1 = V2, equations (10) then become

r′ = −α(r)− 2
q

p− 1

Gx (r, r) +Gx (r,−r)

G (r, r) +G (r,−r)
.

For small d, we use the WKB approximation (48), (49) to estimate

Gx (r, r) +Gx (r,−r)

G (r, r) +G (r,−r)
∼

− 1
2β(r) + exp

(
− 2r

d

) (
− 1

d − 1
2β (r)

)
1 + exp

(
− 2r

d

) .
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so that

r′ ∼
2q
p−1

1
d exp

(
− 2r

d

)
1 + exp

(
− 2r

d

) + α (r)

(
−1 +

q

p− 1

)
. (14)

In the case q = p − 1, the term having α completely disappears from the equation. In this case the two spikes
locally repel each other regardless of the choice of α, and there is no equilibrium near r = 0.

More generally, we seek a steady state of (14) for small r. We may then expand in Taylor series α(r) ∼ rα′(0), so
that (14) becomes

r′ ∼
2q
p−1

1
d exp

(
− 2r

d

)
1 + exp

(
− 2r

d

) + rα′(0)

(
−1 +

q

p− 1

)
. (15)

The steady state with r small exists and is stable with respect to the ODE (15) if and only if α′(0) (q − p− 1) < 0.
We summarize as follows

Proposition 2.2. Suppose that α (x) has a root at x = x0 and suppose that α′(x0) (q − p− 1) < 0. Then there is a
two-spike steady state with spike positions at x ∼ x0 ± r, where r = O(d log d−1) asymptotes to the small solution of

e2r/d ∼ 1

r

1

d

2q

α′(x0) (p− 1− q)
. (16)

No such solution exists if q = p− 1 or α′(x0) (q − p− 1) > 0,

Figure 2 shows a direct comparison between the full 2D model (1) and its one-dimensional reduction (3) with α(x)
given by (4). Note that

α′(0) = −
(
κ2 − 1

)
4κ2

< 0, α′(π) =

(
κ2 − 1

)
4

> 0 (17)

Consequently, according to Proposition 2.2, two stripes appear on the right q > p− 1, and on the left when q < p− 1.
This is confirmed with direct simulations.

3. MANY STRIPES

For more than two spikes, equations of motion (10) and its equilibrium become too complex to solve exactly.
However as the number N of spikes increase, it becomes possible to gain insight by looking at the limit of large N,
as was done in [28, 29], in the limit d = O(N−1). In this section, we use the ideas introduced in [28] to compute the
effective spike density in the limit of large N .

Let us first define what we mean by spike density ρ(x). We first sort spike positions in increasing order, x1 < x2 <
. . . < xN . As we will show, the typical inter-spike will be of O(d). We therefore introduce a continuous function x (s),
s = 0 . . . dN , such that xk = x(s), where s = kd. Finally, define

u(x) := x′(s); (18)

and note that then xj+1 − xj ≈ u(xj)d. The effective density is then defined by ρ(x) := 1
u(x) Note that ρ(x)dx =

1
x′(s)

dx
ds ds = ds, so that

∫ b

a
ρ(x)dx = s|ba. In particular,

∫
D
ρ(x)dx = Nd, where D is the support of ρ(x).

To obtain a continuum approximation, we shall use the fact that the Green’s function decay exponentially fast for
small d, which makes it possible to simplify the sums in (10). Let j = k + l and expand

xk = x(s) = x;

xj = x (s+ dl) = x(s) + dlx′(s) + d2
l2

2
x′′(s) + . . . .

We then estimate x′′(s) = uxu so that

xk = x; xj = x+ dlu+ d2
l2

2
uux + . . . (19)
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FIG. 3. (a-c): Solutions of ODE (21) for the density ρ(x) = 1/u(x) corresponding to different admissable initial conditions (for
which ρ(x) < ρc) with q as indicated, and with α(x) as in (4) and p = 2,m = 2, s = 0. (d) Plot of ρmax(x) as a function of q,
other parameters are as in (a-c). (e) Nmaxd and cluster size Rmax as a function of q, see text.

We now expand
∑

j V
γ
j G(xk, xj). Introduce a continuum variable V (x) with the property that Vk = V (xk). Using

(??) we estimate ∑
V γ
j G(xk, xj) ∼

1

2d
V γ(x)

∞∑
l=−∞

e−|l|u ∼ 1

2d
V γ(x) coth(u/2);

so that

V (x) =

(
1

d

bm
2

coth (u/2)

) 1
1−γ

. (20)

Next, we compute
∑

j V
γ
j Gx(xk, xj), which requires a two-order expansion due to cancellation at the leading order.

We have:

2d2Gx(xk, xj) ∼ sign le−|l|u + d

{
β(x)

2
(|l|u− 1) e−|l|u − l2

2
uuxe

−|l|u
}

V γ
k = V γ(x); V γ

j ∼ V γ (x) + dluγV γ−1(x)V ′(x)

so that

2d2
∑

V γ
j Gx ∼ dγV γ−1V ′(x)

∑
|l|ue−|l|u + dV γ

{
β

2

∑
(|l|u− 1) e−|l|u − ux

∑ l2

2
ue−|l|u

}
where all the sums are

∑
=
∑∞

l=−∞ . We further compute:

V γ−1(x) = d
2

bm
tanh (u/2) ;

V γ−2V ′(x) = d
1

bm (γ − 1)
sech2 (u/2)ux
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FIG. 4. Simulations of (1) starting with random initial conditions ε = 0.018, p = 2,m = 2, s = 0 and with q and d as shown.
First column is the colour plot the eventual equilibrium state of a(x). Second column shows the comparison of the steady
state along the outer boundary with the continuum limit of many spikes as well as the equilibrium state profile as given by
Proposition 3.1. Third column shows the time-space plot along the outer boundary of a(x, t) as well as the cluster radius in
the case of q = 0.75 as given in Figure 3(e).

so that

1

Vk

∑
V γ
j Gx ∼ ux

bm
F1 +

β

bm
F2

where

F1 =
u

2

{
γ

γ − 1
sech2 (u/2)

∑
|l| e−|l|u − tanh (u/2)

∑
l2e−|l|u

}
,

F2 =
1

2
tanh (u/2)

{∑
(|l|u− 1) e−|l|u

}
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Using
∑

e−|l|u = coth (u/2) ,
∑

|l| e−|l|u = −∂u coth (u/2) and so on we obtain, after some simplifications,

F1 = u

(
γ+1
γ−1 − cosh(u)

2 sinh2(u)

)
, F2 =

u

2 sinh(u)
− 1

2
.

The steady state then satisfies −α(x)− 2p−1
q (uxF1(u) + α(x)F2(u)) = 0, or

ux = α(x)

((
p−1
q − 1

) sinhu

u
+ 1

)
sinh(u)

cosh(u)− γ+1
γ−1

. (21)

This is a separable ODE and determines the effective effective inter-spike distance ud in the limit of large N. We
summarize as follows.‘

Proposition 3.1. Suppose that N ≫ O(1) and Nd ≤ O(1). Let x1 . . . xN be the equilibrium state of (10), sorted in
increasing order. Its density distribution is given by ρ(x) = 1/u(x), where u(x) satisfies (21) subject to an integral
constraint ∫

D

ρ(x)dx = Nd. (22)

where D is the support of ρ(x).

Note that the right hand side of (21) has a singularity when cosh(u) − γ+1
γ−1 . As in [28], it is observed numerically

that when u is below this critical value, the solution is unstable, and in fact the reduced system (10) does not converge
to a steady state. This is summarized as follows.

Proposition 3.2. Let

uc := arccosh

(
γ + 1

γ − 1

)
, ρc := 1/uc. (23)

Any stable equilibrium solution must satisfy ρ(x) ≤ ρc or equivalently, u(x) ≥ uc for all x in the support of ρ(x). In
particular, the inter-spike distance must be larger than ucd.

This threshold has simple interpretation in terms of the original model (3): ucd is the minimum possible distance
between the spikes; spikes that are closer than that distance are unstable. Formula (23) generalizes the famous
instability thresholds of a homogeneous GM system first derived in [2]. To see the equivalence between uc and results
in [2], consider a homogeneous problem (α = 0) on the domain of size L. Then ux = 0 so the density ρ(x) is constant,

and (22) yields ρ(x) = 1
NdL . The instability threshold (23) then becomes NL = d arccosh

(
γ+1
γ−1

)
. Some algebra shows

that this is equivalent to the formula (4.65) in [2]. This equivalence was first observed in [28] for the “standard” case
(p, q,m, s) = (2, 1, 0, 2) .
Let us now define

Definition 3.3. We call the density ρ(x) = 1/u(x) “admissable” if ρ(x) ≤ ρc for all x, where ρc is given by (23).
We call ρ(x) maximal admissable density, denoted it by ρmax(x), if ρmax(x) ≥ ρ(x) for any admissable density ρ(x).

Figure 3(a) shows different possible admissable solutions for ρ(x), all below ρc with parameters as specified in the
figure. Since ρ(x) solves an ODE whose solution is unique, the different solutions cannot intersect. As such, ρmax(x)
must touch ρc at its maximum. To solve (21) we fix initial conditions u(π) and then integrate (21) numerically, until
either u(x) blows up or entire domain is filled. (in figure 3(c), we took initial conditions u(0) instead of u(π), in order
to capture solutions supported near x = 0). The corresponding value of Nd can then be recovered from (22). The
different curves in each subfigure correspond to different initial conditions u0 = u (π) (or u0 = u(0)). Depending on
parameters, either u(x) will blow up at some points x = a, b (in which case ρ(x) is compactly supported on [a, b]
with ρ(a) = ρ(b) = 0), or else the solution u(x) exists on the entire domain of definition (x ∈ [0, 2π] periodic in our
example).

In the case of a blowup at x = a, b, the density ρ (x) = 1/u(x) is compactly supported on the domain D = (a, b) .
This happens, for example in Figure 3(a) (q = 0.7) for any admissable ρ. Due to symmetry of α(x), we find that
D = (π −R, π +R) for some R that depends on the choice of initial conditions u(π). In this case, the solution is said
to have a cluster, with spikes inside D and no spikes outside of D.
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Let Rmax be the radius of the cluster corresponding to ρmax. Figure 3(d) gives the values of Rmax corresponding to
umax, as well as Nmaxd =

∫
D
ρmax(x)dx, for a given value of q. Note the transition from a cluster to a global solution

around q ≈ 0.82. In the absence of the blowup for u, the spikes are globally distributed throughout [0, 2π] and no
cluster forms.

When q = 0.7, note that as ρ(π) is decreased, the corresponding radius R approaches to zero, and Nd defined
through (22) also approaches zero. As a consequence, the cluster becomes localized near x = π as d → 0 (and with
fixed N) in this case.

Definition 3.4. We call N -spike equilibrium a “cluster” solution on (a, b) if the corresponding density ρ(x) is com-
pactly supported on x ∈ (a, b), that is u(x) blows up (has vertical asymptote) at x = a, b. If u(x) is defined on entire
domain, we call it a “global” solution.

An important special case is q = p− 1. In this case the blowup is not possible: for large u, equation (21) reduces to
ux ∼ α(x) which does not have vertical asymptote. As illustrated in Figure 3(b), the density approaches constant as
Nd → 0 in this case (this corresponds to the solution of ux ∼ α(x) subject to initial conditions u(x0) = u0 ≫ 1; the
solution is indeed u(x) ∼ u0 +

∫ x

x0
α(s)ds ∼ u0).

The situation is very different for q ̸= p− 1: the cluster solution appears for sufficiently small d, either at x = π (if
q < p− 1) or at x = 0 (if q > p− 1) as we will now show.

Suppose α(0) = 0 and we look for cluster solution localized near x = 0, with ρ(x) small (i.e. u(x) big). Assuming
u(x) is large and the cluster is near x = 0, equation (21) can be written as

ux ∼ 2α1xe
u/u, u ≫ 1, (24)

where

α1 := α′(0)
1

4

(
p− 1

q
− 1

)
(25)

Assuming α1 > 0, this ODE is integrable and after some algebra, its solution ρ = 1/u is approximated by

ρ ∼ 1

−2 logRα1 − log
(
1−

(
x
R

)2) ∼
{

1
−2 logRα1

, |x| < R

0, |x| > R
. (26)

Equation (22) then yields an estimate

Nd ∼ R

− logRα1
.

More generally, we summarize as follows.

Proposition 3.5. Supplose that α′(x0) = 0 and let α1 be as in (25) but with α′(0) replaced by α′(x0). Moreover
suppose that α1 > 0. Then there exists a stable cluster of spikes centered at x0 of radius R ≪ 1 having N ≫ 1 spikes
when

d ∼ 1

N

R

log (1/(Ra))
. (27)

The corresponding spike density inside this cluster asymptotes to (26).

Starting from random initial conditions. The existence of a maximal admissable density ρmax(x) has impli-
cations for coarsening phenomenon widely observed for GM systems. Define

Nmax :=
1

d

∫
ρmax(x)dx. (28)

Given a solution with N spikes corresponding to a density ρ(x), we have that Nd =
∫
ρ(x)dx ≤

∫
ρmax(x)dx = Nmaxd.

It follows that an equilibrium state can have at most Nmax spikes. However, it is possible to have a quasi-equilibrium
state with more than Nmax spikes; in this case, coarsening is observed whereby some spikes are gradually eliminated
until at most Nmax remain. In particular this occurs naturally as a result of a Turing bifurcation when starting with
random initial conditions as we illustrate below.
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FIG. 5. Simulations of (1) starting with random initial conditions, with ε = 0.018, p = q = m = 2, s = 0 and with slowly
decreasing d according to d = 0.447 + 10−7(0.153 − 0.447)t, t = 0 . . . 107. Snapshots show direct comparison with continuum
density for d as indicated as well as the corresponding steady state. Note that the spike distribution is uniform when d = 0.361
(see text); and a cluster starts to form around d = 0.221, in full agreement with the theory.

Figure 4 shows the dynamics and the steady state of (1) for three different values of q (either q < p− 1, q = p− 1
or q > p − 1), and starting with initial conditions which consist of small random perturbations off a constant.
Turing analysis reveals that the most unstable mode scales like O(1/ε), and as such, very high-mode instability is
triggered. This is followed very quickly by a development of numerous spikes – in fact, more than than the domain
can support. As a result, the initial spike pattern undergoes a coarsening process, whereby several spikes are killed
in a succession, until N ∼ Nmax. The coarsening process eventually terminates and the pattern converges to an
equilibrium configuration. As shown in Figure 4 (first row), when q = 0.75, the resulting equilibrium conists of a
cluster of four spikes, concentrated near the thinnest part of the domain. By contrast, when q = 1 or 2, the resulting
equilibrium spans an entire domain. The number of spikes in each case is is predicted by Nmax as given in (28) and
indicated in the figure. It agrees very well with actual observations.

Our theory approximates both the maximum number of stable spikes supported by the domain, whether the
resulting steady state consists of a cluster of spikes or spikes distributed (non-uniformly) throughout the domain, as
well as the actual spike density within the cluster. In all three cases, the resulting equilibrium is well approximated
by the continuum limit. This is true even for a relatively small number of spikes (N = 4 in Figure 4).

Decreasing d. Figure 5 shows a sequence of admissable densities with q = 2. Note that ρmax(x) is global and has
a maximum at x = π. On the other hand, a smaller ρ(x) forms a cluster around x = 0 and has a maximum there.
Inbetween, there is a value of d for which the density is constant. This corresponds to a constant solution of (21) which

satisfies
(

p−1
q − 1

) sinhu

u
+1 = 0 or

sinhu

u
= 2 or u ≈ 2.1773. The corresponding value of Nd =

∫ 2π

0
1

2.1773 = 2.8857.

Setting N = 8 as in the figure, yields the value of d = 0.361. And indeed, the solution is observed to have uniform
distribution of spikes at that value as shown in the figure. Similarly, according to the theory, the cluster first appears
(near x = 0) when d = 0.221. As d is further reduced, the cluster radius decreases. Excellent agreement between the
theory and the full 2D numerical PDE simulations is observed throughout entire range of d.

Increasing d. Increasing d generally results in a sequence of coarsening thresholds, as illustrated in Figure 6.
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FIG. 6. Simulations of (1) starting with random initial conditions, with α(x) as in (4), ε = 0.03, p = q = m = 2, s = 0 and with
slowly increasing d according to d = 0.16 + (3 − 0.0.16)10−6t, t = 0 . . . 106. Left: Full solution to the PDE. Right: N , number
of spikes, as a function of d : comparison between the full PDE and the continuum theory (see text)

For parameters in this simulation, we find that dNmax =
∫ 2π

0
ρmax(x)dx = 3.708. Since dNmax is a fixed constant,

increasing d will decrease Nmax, the maximum possible number of spikes. The location where the coarsening takes
place corresponds to the corner in the plot of ρmax(x), i.e. at x = π in this case (c.f. Figure 3). The continuum limit
prediction d ≈ 3.708/Nmax compares well with the full PDE simulation (Figure 6(b)).

4. DISCUSSION

We have described stripe evolution and their equilibrium distributions on thin channels for GM model. We found a
rather intricate interplay between exponents p, q, the inhibitor diffusion d, and the domain thickness. Unlike interface-
minimizing systems as Allen-Cahn, where the dynamics push the interface to minimize its length and therefore be
located at the thinnest part of the channel [38–41], in the GM system it is possible for stripes to be clustered near the
maximum of the channel thickness when q > p− 1 and d is sufficiently decreased. However even in the case q > p− 1,
the spike density that arises as a result of a Turing bifurcation is typically higher at the thinner part. It is only when
d is sufficiently decreased that the spike density “switches” to the thicker part.

In our analysis and in simulations, we took the domain thickness to be sufficiently small so as to avoid the breakup
instability of a stripe into spots [32–36]. For thicker domain (or smaller ε), spots and stripes can coexist, as illustrated
in Figure 7. The analysis of this hybrid pattern is left for future work. In particular it would be interesting to
construct solutions where the activator is fully two-dimensional, but the inhibitor is is nearly one-dimensional except
near the spot. We mention related works [42, 43] which studied the stability and motion of boundary spikes for the
GM model.

An interesting “degenerate” case is what happens when a channel is curved but has uniform thickness. Numerical
experiments reveal that the stripe will move at a much slower speed in this case, and a rich variety of steady states
and equilibria positions is possible; the curvature of the channel seems to play a crucial role. It is an open question
to study the motion in this case.
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FIG. 7. Coexistence of stripes and spikes. Full simulation of (1) inside a channel whose outer boundary is a unit circle and
whose inner boundary is a smaller circle with d1 and d2 is the minimum and maximum thickness of the channel. Parameters
are (p, q,m, s) = (2, 0.75, 2, 0) with other parameters as indicated. First row: for ε = 0.1, four stripes first appear but only
two survive and move towards the thinnest part of the channel. Second row: ε = 0.05, the eventual equilibrium consists of
one-dimensional stripes and two-dimensional spots. Third row: Thicker channel and smaller d allows for more spots and stripes
to co-exist.

APPENDIX A: EQUATIONS OF MOTION

In this appendix we derive the equations of motion (10) starting with the PDE system (3). Let xk denote the
position of k-th spike. In the inner region near xk we expand,

x = xk(ε
2t) + εy,

α(x) = α(xk) + α′(xk)εy . . .

a(x, t) = U0(y) + εU1(y) + . . . ,

h(x, t) = V0(y) + εV1(y) + . . . ,

Then to leading order we have

0 = U0yy − U0 +
Up
0

V q
0

, 0 = V0yy (29)

and at the next order we obtain

(−x′
k − α (xk))U0y = U1yy − U1 + p

Up−1
0 U1

V q
0

− q
Up
0

V q+1
0

V1 (30)

0 = V1yy + U2
0 (31)
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Then V0 is a constant which we denote by V0 = Vk and therefore U0 can be written as

U0 = w(y)V r1
k , r1 = q/(p− 1) (32)

where w is the unique ground-state solution to

wyy − w + wp = 0; w′(0) = 0, w → 0 as |y| → ∞ (33)

whose explicit solution is given by

w(y) =

(
p+ 1

2
sech2

(
p− 1

2
y

)) 1
p−1

. (34)

In the outer region, we write

h(x) ∼
N∑
j=1

SjG(x, xj) (35)

where G is the Green’s function solution to

d2 (Gxx + α(x)Gx)−G+ δ(x, y) = 0. (36)

The weights Sj are computed as

Sj =

x+
j∫

xj−

um(x)

hs(x)

1

ε
dx ∼ V mr1−s

j

∫
wmdy.

Matching inner and outer region we have Vk ∼ h(xk) so that

Sk ∼ V mr1−s
k bm, where bm =

∫
wmdy, (37)

Vk ∼
N∑
j=1

SjG(xk, xj) (38)

Finally we formulate the solvability condition to determine xk. Multiplying (30) by U0y and integrating by parts,
we then obtain

(−x′
k − α (xk))

∫
U2
0y = −

∫
qU0y

Up
0

V q+1
0

V1 (39)

0 = V1yy + Um
0 /V s

0 (40)

We compute

−
∫

qU0y
Up
0

V q+1
0

V1 =
q

V q+1
0

1

p+ 1

∫
Up+1
0 V1y

∼ q

p+ 1
V

−q−1+r1(p+1)
0 ⟨hx⟩k

∫
wP+1 (41)

where ⟨hx⟩k denotes the average of the slopes in the outer regions for h(x), ⟨hx⟩k :=
hx(x

+
k )+hx(x

−
k )

2 .
Finally, we multiply (33) by w′ or w and then integrate to obtain the identities

0 = −
∫

w2
y −

∫
w2 +

∫
wp+1

0 =
1

2

∫
w2

y −
1

2

∫
w2 +

1

p+ 1

∫
wp+1
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so that ∫
wp+1∫
w2

y

= 2
p+ 1

p− 1
;

this yields

x′
k(ε

2t) = −α (xk) + 2
q

p− 1
v−1
k ⟨vx⟩k . (42)

Finally we have

⟨hx⟩k = bm

N∑
j=1

V mr1−s
k Gx(xk, xj). (43)

where Gx(xk, xk) = limε→0
Gx(xk+ε,xk)+Gx(xk−ε,xk)

2 . Substituting (43) into (42) yields the system (10).
For a single spike, this reduces to:

x′
0(ε

2t) = −α (x0)− 2
q

p− 1

Gx(x0, x0)

G(x0, x0)
. (44)

Finally for small D, this simplifies (see Appendix B) to

x′
0(ε

2t) =

(
−1 +

q

p− 1

)
α(x0). (45)

APPENDIX B: GREEN’S FUNCTION AND WKB THEORY

We are looking for solution to the equation

d2 (Gxx + a(x)Gx)−G = −δ(x− ξ); d ≪ 1.

We use the standard WKB anzatz:

ϕ′2 = 1;
1

Y

(
Y 2ϕ′)′ + Y ϕ′β = 0.

Since we require decay at infinity, we take ϕ′ = − sign (x− ξ) and equation for Y yields

Y = C exp

−1

2

x∫
ξ

α (s) ds

 .

Applying the jump condition d2Gx|ξ
+

ξ− = −1; then yeilds

G(x, ξ) =
1

2d
exp

−1

2

x∫
ξ

α (s) ds

 exp

(
−|x− ξ|

d

)
.

In particular we have:

G(ξ, ξ) =
1

2d
(46)

Gx(ξ, ξ) =
Gx(ξ

+, ξ) +Gx(ξ
−, ξ)

2
= −α (ξ)

4d
; (47)

and two-order for x = ξ + dy yields

G(ξ + dy, ξ) ∼ 1

2d
e−|y| − α (ξ)

4
ye−|y|; (48)

Gx(ξ + dy, ξ) ∼ − 1

2d2
sign ye−|y| + d

α(ξ)

4d
(|y| − 1) e−|y| (49)
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APPENDIX C: THIN CHANNEL REDUCTION

Reduction to 1D. We now show the derivation of (2). Assume a channel has cross-sectional area A(s), where s is
the acrlength coordinate along one of the boundaries. We will show that the general equation ∆u+ F = 0 inside the

channel with Neumann boundary conditions reduces to uss+
A′(s)
A(s) us+F = 0. Here, u is a multi-component variable,

and F = F (u, ut) is the remaining nonlinearity.
In curvilinear coordinates, Laplacian is written as:

∆u = uηη −
κ

1− κη
uη +

1

1− κη

(
1

1− κη
us

)
s

(50)

Here, s is the arclength coordinate along a boundary, and η is the coordinate ornonormal to s, pointing inside the
domain, and κ = κ(s, η) is the curvature along the curve s = const. as illustrated in the following figure:

We have:

κ(s, η) =
κ0(s)

1 + ηκ0(s)

so that (50) becomes

∆u = uηη − κ0uη + (1 + ηκ0) ((1 + ηκ0)us)s .

The boundary condition ∂nu = 0 at η = δf(s) becomes, to leading order:

δf ′(s)us ∼ uη at η = δf(s) (51)

Rescale η = zδ. We have:

∆u =
1

δ2
uzz −

1

δ
κ0uz + (1 + zδκ0)

2
uss + (1 + zδκ0) zδκ

′
0(s)us

and (51) yields

uz ∼ δ2f ′(s)us at z = f(s).

The equation is ∆u+ F = 0. Integrate in the z = 0 . . . f(s) to obtain, to leading order,

f ′(s)us + f(s)uss + f(s)F = 0

or uss +
f ′(s)
f(s) us + F = 0.

Annular region. Consider an annular domain as in 1 where the outer boundary is a unit circle and the inner
boundary is circle such that minimum and maximum distance from the outer boundary is m and κm, respectively.
Assume without loss of generality that the distance is at the minimum at θ = π and is maximum at θ = 0. The
length of cross-section corresponding to angle θ is given by L(θ) =

∣∣c+ reiθ − eiθ
∣∣ , where r = 1 − m

2 (1 + κ) and

c = 1− κm− r = m
(
1
2 − κ

2

)
. We we find that:

L(θ) =
m

4

(
1 + κ2 +

(
κ2 − 1

)
cos θ

)1/2
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so that α = β = L′/L:

α = β =
1

2

−
(
κ2 − 1

)
sin θ

1 + κ2 + (κ2 − 1) cos θ
;

here, κ is the ratio of maximum versus minimum.
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