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Why do we need relations?

I For 1 qubit Clifford+T operators
I Exact synthesis algorithm (T-optimal)
I Matsumoto-Amano normal form (T-optimal, unique)
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I For n qubits Clifford+T operators
I Exact synthesis – Giles-Selinger algorithm (but not T-optimal)
I No normal form so far
I How to minimize the T-count?
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Clifford+T operators

The class of Clifford+T operators is the smallest class of unitary
operators that includes the operators

ω = e iπ/4, H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 ω

)

Zc =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =
Z

=
Z

= ,

and is closed under composition and tensor product.



The main theorem

Theorem. The following set of relations is complete for 2-qubit
Clifford+T circuits:
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The main theorem, continued:
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Clifford+T operators on 2 qubits

I Notations for 2 qubits Clifford+T operators:

T0 = T ⊗ I = T , T1 = I ⊗ T =
T

Similarly for H0,H1,S0, S1.

I The group of 2 qubit Clifford+T operators is the smallest
group containing

ω,Zc ,T0,T1,H0,H1, S0, S1



Clifford+T and U4(Z[ 1√
2
, i ])

Theorem (Giles and Selinger, arXiv:1212.0506). The group of 2
qubits Clifford+T operators is the index 2 subgroup of
U4(Z[ 1√

2
, i ]) consisting of operators with determinant ±1,±i .

Here, U4(Z[ 1√
2
, i ]) is the group of unitary 4× 4 matrices with

entries in Z[ 1√
2
, i ].



Greylyn’s result

Theorem (Greylyn, arXiv:1408.6204). The group U4(Z[ 1√
2
, i ]) can

be presented by 16 generators

X[i ,j],H[i ,j], ω[k] (1 6 i < j 6 4, 1 6 k 6 4)

and 123 equations.

Here, ω[k], and X[i ,j],H[i ,j] are one- and two-level operators, e.g.:

ω[4] =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω

, X[2,3] =

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





Greylyn’s 123 relations

Figure from Greylyn’s master thesis arXiv:1408.6204



Proof idea of Greylyn’s theorem

1. Build the Cayley graph of the group. Vertices = group
elements, edges = generators.

Cycles = relations.

2. The Giles-Selinger algorithm gives a canonical path from each
group element to the identity. This forms a spanning tree.
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Proof idea of Greylyn’s theorem, continued

3. Find finitely many relations of the form

a•

• •

b•

•

•

such that any arbitrary path can be transformed to the
equivalent canonical path. By induction on the “height” of a
and b.



Presentation of a subgroup

We have Clifford+T ⊂ U4(Z[ 1√
2
, i ]). Greylyn’s result gives us

generators and relations for the bigger group.

We face the following problem:

Problem. Let H be a subgroup of G, and suppose we have a
presentation of G by generators and relations. Can we find a
presentation of H by generators and relations?

Example.

G = 〈A,B,C | A2,B2,C 2, (BC )3, (AC )2, (AB)4〉

Let X = AC ,Y = BA.

H = 〈X ,Y |

X 2,Y 4, (XY )3

〉

Fortunately, there is a method for computing this.
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Presentation of a subgroup

Lemma. If (G0,S) is a presentation of group G, and H = 〈H0〉 is
a subgroup of G , and if C , f , and h are chosen as below, then
(H0,R) is a presentation of H, where R consists of the following
relations:

(A) For each generator x ∈ H0, a relation x = g(fx) ∈ R; and

(B) For each coset representative c ∈ C and each relation
s = t ∈ S, a relation u = v ∈ R, where (u, d) = h(c , s), and
(v , e) = h(c , t).



C , f , and h

I Coset representative C

I x ∈ H0 can be written as a finite product fx of elements in G0

I Define a map (where w and d satisfy cy = wd)

h : C × G0 → ~H0 × C

(c , y) 7→ (w , d)

I Since G = 〈G0〉, extend h, where h(ci−1, yi ) = (wi , ci )

h : C × ~G0 → ~H0 × C

h(c0, y1y2...yn) = (w1w2...wn, cn)

I Define g : H → H given by g(u) = v iff h(1, u) = (v , 1)



Choice of C , f , and h

I C = {1, ω[4]}
I Choice of fx

x fx

H0 H[1,3]H[0,2]

H1 H[2,3]H[0,1]

S0 ω2
[3]ω

2
[2]

S1 ω2
[3]ω

2
[1]

x fx

Zc ω4
[3]

ω ω[0]ω[1]ω[2]ω[3]

T0 ω[2]ω[3]

T1 ω[3]ω[1]

I Choice of h, using the following abbreviations

Swap = H

H

H

H

H

H
, T † = T 7, CX0 = H0ZcH0

X0 = H0S0S0H0, X1 = H1S1S1H1, S† = S3, CX1 = H1ZcH1



Choice of C , f , and h

y h(1, y) h(ω[4], y)

X[0,1] (X0CX1X0, 1) (X0CX1X0, ω[4])
X[0,2] (SwapX0CX1X0Swap, 1) (SwapX0CX1X0Swap, ω[4])

X[0,3] (CX0X0CX1X0CX0, 1) (CX0X0T1CX1T †1X0CX0, ω[4])
X[1,2] (CX0X1CX1X1CX0, 1) (CX0X1CX1X1CX0, ω[4])

X[1,3] (SwapCX1Swap, 1) (SwapT1CX1T †1Swap, ω[4])

X[2,3] (CX1, 1) (T1CX1T †1 , ω[4])

H[0,1] (X0S†1H1T †1CX1T1H1S1X0, 1) (X0S†1H1T †1CX1T1H1S1X0, ω[4])

H[0,2] (SwapX0S†1H1T †1CX1T1H1S1X0Swap, 1) (SwapX0S†1H1T †1CX1T1H1S1X0Swap, ω[4])

H[0,3] (CX0X0S†1H1T †1CX1T1H1S1X0CX0, 1) (CX0X0T1S†1H1T †1CX1T1H1S1T †1X0CX0, ω[4])

H[1,2] (CX0X1S†1H1T †1CX1T1H1S1X1CX0, 1) (CX0X1S†1H1T †1CX1T1H1S1X1CX0, ω[4])

H[1,3] (SwapS†1H1T †1CX1T1H1S1Swap, 1) (SwapT1S†1H1T †1CX1T1H1S1T †1Swap, ω[4])

H[2,3] (S†1H1T †1CX1T1H1S1, 1) (T1S†1H1T †1CX1T1H1S1T †1 , ω[4])

ω[0] (CX0X0T †1CX1T1CX1X0CX0, ω[4]) (CX0X0T0X0CX0, 1)

ω[1] (SwapT †1CX1T1CX1Swap, ω[4]) (SwapT0Swap, 1)

ω[2] (T †1CX1T1CX1, ω[4]) (T0, 1)

ω[3] (ε, ω[4]) (T1T0CX1T †1CX1, 1)



Reduction of equations

I Apply this lemma, we get 8 + 246 = 254 equations, all very
long.

I We already know some “obvious” equations:
I All Clifford equations
I Obvious Clifford+T equations

TT = S

(THSSH)2 = ω
T = T

H

H

H

H T
= T H

H

H

H

I After automatic reduction, we have 40 left

I After manual reduction, we have 3 left
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Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo
(arXiv:1308.4134), we define, for any Pauli operators P,Q:

R(P ⊗ Q) =
1 + ω

2
I +

1− ω
2

(P ⊗ Q).

Then every Clifford+T operator can be written (not uniquely) as

R(P1 ⊗ Q1) · · ·R(Pk ⊗ Qk) C ,

where Pj ,Qj are Pauli and C is Clifford. We can use the “obvious”
equations to convert any Clifford+T operator to this form. Also,
R(P ⊗ Q) and R(P ′ ⊗ Q ′) commute iff P ⊗ Q and P ′ ⊗ Q ′

commute. Using these techniques, most of the 254 equations can
be automatically proven.
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This concludes the proof of the main theorem!

Theorem. The following set of relations is complete for 2-qubit
Clifford+T circuits:

Clifford equations

TT = S

(THSSH)2 = ω
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