Relations for Clifford + T operators on two qubits

Peter Selinger and Xiaoning Bian

Dalhousie University

Contents

Some background

The main theorem

Proof of the main theorem
Greylyn's theorem
Presentation of a subgroup
Choice of C, f, and \bar{h}
Reduction of equations

Why do we need relations?

- For 1 qubit Clifford+T operators
- Exact synthesis algorithm (T-optimal)
- Matsumoto-Amano normal form (T-optimal, unique)

THTSHTHTHTSHTSHTHTZ

- For n qubits Clifford+T operators
- Exact synthesis - Giles-Selinger algorithm (but not T-optimal)
- No normal form so far
- How to minimize the T-count?

Clifford $+T$ operators

The class of Clifford $+T$ operators is the smallest class of unitary operators that includes the operators

$$
\begin{gathered}
\omega=e^{i \pi / 4}, \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & \omega
\end{array}\right) \\
Z_{c}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=-\frac{\square}{-Z-}=\frac{-\boxed{Z}}{\square}=\square
\end{gathered}
$$

and is closed under composition and tensor product.

The main theorem

Theorem. The following set of relations is complete for 2-qubit Clifford+T circuits:

$$
\begin{aligned}
& \omega^{8}=1 \\
& H^{2}=1 \\
& S^{4}=1 \\
& \text { SHSHSH }=\omega
\end{aligned}
$$

The main theorem, continued:

$$
\begin{aligned}
& T T=S \\
& (\text { THSSH })^{2}=\omega \\
& \xrightarrow[\square]{\square T-}=\underset{\square}{\square}
\end{aligned}
$$

Clifford $+T$ operators on 2 qubits

- Notations for 2 qubits Clifford+ T operators:

$$
T_{0}=T \otimes I=\stackrel{\sqrt{T}}{\square}, \quad T_{1}=I \otimes T=\overline{\sqrt{T}}
$$

Similarly for $H_{0}, H_{1}, S_{0}, S_{1}$.

- The group of 2 qubit Clifford $+T$ operators is the smallest group containing

$$
\omega, Z_{c}, T_{0}, T_{1}, H_{0}, H_{1}, S_{0}, S_{1}
$$

Clifford $+T$ and $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$

Theorem (Giles and Selinger, arXiv:1212.0506). The group of 2 qubits Clifford $+T$ operators is the index 2 subgroup of $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$ consisting of operators with determinant $\pm 1, \pm i$.

Here, $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$ is the group of unitary 4×4 matrices with entries in $\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]$.

Greylyn's result

Theorem (Greylyn, arXiv:1408.6204). The group $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$ can be presented by 16 generators

$$
X_{[i, j]}, H_{[i, j]}, \omega_{[k]} \quad(1 \leqslant i<j \leqslant 4,1 \leqslant k \leqslant 4)
$$

and 123 equations.

Here, $\omega_{[k]}$, and $X_{[i, j]}, H_{[i, j]}$ are one- and two-level operators, e.g.:

$$
\omega_{[4]}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \omega
\end{array}\right), \quad X_{[2,3]}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Greylyn's 123 relations

(1)	$\omega^{(j)}$	\approx	ϵ	
(2)	$H_{[j, k]}^{2}$	\approx	ϵ	$(j<k)$
(3)	$X_{[j, k]}^{2}$	\approx	ϵ	$(j<k)$
(4)	$\omega_{[j]} \omega_{[k]}$	\approx	$\omega_{[k]} \omega_{[j]}$	$(j \neq k)$
(5)	$\omega_{[\ell]} H_{[j, k]}$	\approx	$H_{[j, k]} \omega_{[\ell]}$	$(j<k, \ell \neq j, k)$
(6)	$\omega_{[\ell]} X_{[j, k]}$	\approx	$X_{[j, k]} \omega_{[\ell]}$	$(j<k, \ell \neq j, k)$
(7)	$H_{[j, k]} H_{[\ell, t]}$	\approx	$H_{[\ell, t]} H_{[j, k]}$	$(j<k, \ell<t,\{\ell, t\} \cap\{j, k\}=\emptyset)$
(8)	$H_{[j, k]} X_{[\ell, t]}$	\approx	$X_{[\ell, t]} H_{[j, k]}$	$(j<k, \ell<t,\{\ell, t\} \cap\{j, k\}=\emptyset)$
(9)	$X_{[j, k]} X_{[\ell, t]}$	\approx	$X_{[\ell, t]} X_{[j, k]}$	$(j<k, \ell<t,\{\ell, t\} \cap\{j, k\}=\emptyset)$
(10)	$X_{[j, k]} \omega_{[k]}$	\approx	$\omega_{[j]} X_{[j, k]}$	$(j<k)$
(11)	$X_{[j, k]} \omega_{[j]}$	\approx	$\omega_{[k]} X_{[j, k]}$	$(j<k)$
(12)	$X_{[j, k]} X_{[j, \ell]}$	\approx	$X_{[k, \ell} X_{[j, k]}$	$(j<k<\ell)$
(13)	$X_{[j, k]} X_{[\ell, j]}$	\approx	$X_{[\ell, k]} X_{[j, k]}$	$(\ell<j<k)$
(14)	$X_{[j, k]} H_{[j, \ell]}$	\approx	$H_{[k, \ell} X_{[j, k]}$	$(j<k<\ell)$
(15)	$X_{[j, k]} H_{[\ell, j]}$	\approx	$H_{[\ell, k]} X_{[j, k]}$	$(\ell<j<k)$
(16)	$\omega_{[j]} \omega_{[k]} X_{[j, k]}$	\approx	$X_{[j, k]} \omega_{[j]} \omega_{[k]}$	$(j<k)$
(17)	$\omega_{[j]} \omega_{[k]} H_{[j, k]}$	\approx	$H_{[j, k]} \omega_{[j]} \omega_{[k]}$	$(j<k)$
(18)	$H_{[j, k]} X_{[j, k]}$	\approx	$\omega_{[k]}^{4} H_{[j, k]}$	$(j<k)$
(19)	$H_{[j, k]} \omega_{[j]}^{2} H_{[j, k]}$	\approx	$\omega_{[j]}^{6} H_{[j, k]} \omega_{[j]}^{3} \omega_{[k]}^{5}$	$(j<k)$
(20)	$H_{[j, k]} H_{[\ell, t]} H_{[j, \ell]} H_{[k, t]}$	\approx	$H_{[j, \ell]} H_{[k, t]} H_{[j, k]} H_{[\ell, t]}$	$(j<k<\ell<t)$

Figure from Greylyn's master thesis arXiv:1408.6204

Proof idea of Greylyn's theorem

1. Build the Cayley graph of the group. Vertices = group elements, edges $=$ generators.

Proof idea of Greylyn's theorem

1. Build the Cayley graph of the group. Vertices = group elements, edges $=$ generators. Cycles $=$ relations.

Proof idea of Greylyn's theorem

1. Build the Cayley graph of the group. Vertices = group elements, edges $=$ generators. Cycles $=$ relations.
2. The Giles-Selinger algorithm gives a canonical path from each group element to the identity. This forms a spanning tree.

Proof idea of Greylyn's theorem, continued

3. Find finitely many relations of the form

such that any arbitrary path can be transformed to the equivalent canonical path. By induction on the "height" of a and b.

Presentation of a subgroup

We have Clifford $+T \subset U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$. Greylyn's result gives us generators and relations for the bigger group.

We face the following problem:
Problem. Let H be a subgroup of G, and suppose we have a presentation of G by generators and relations. Can we find a presentation of H by generators and relations?

Presentation of a subgroup

We have Clifford $+T \subset U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$. Greylyn's result gives us generators and relations for the bigger group.

We face the following problem:
Problem. Let H be a subgroup of G, and suppose we have a presentation of G by generators and relations. Can we find a presentation of H by generators and relations?

Example.

$$
G=\left\langle A, B, C \mid A^{2}, B^{2}, C^{2},(B C)^{3},(A C)^{2},(A B)^{4}\right\rangle
$$

Let $X=A C, Y=B A$.

$$
H=\langle X, Y|
$$

Presentation of a subgroup

We have Clifford $+T \subset U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$. Greylyn's result gives us generators and relations for the bigger group.

We face the following problem:
Problem. Let H be a subgroup of G, and suppose we have a presentation of G by generators and relations. Can we find a presentation of H by generators and relations?

Example.

$$
G=\left\langle A, B, C \mid A^{2}, B^{2}, C^{2},(B C)^{3},(A C)^{2},(A B)^{4}\right\rangle
$$

Let $X=A C, Y=B A$.

$$
H=\left\langle X, Y \mid X^{2}, Y^{4},(X Y)^{3}\right\rangle
$$

Fortunately, there is a method for computing this.

Presentation of a subgroup

Lemma. If $\left(G_{0}, \mathcal{S}\right)$ is a presentation of group G, and $H=\left\langle H_{0}\right\rangle$ is a subgroup of G, and if C, f, and \bar{h} are chosen as below, then $\left(H_{0}, \mathcal{R}\right)$ is a presentation of H, where \mathcal{R} consists of the following relations:
(A) For each generator $x \in H_{0}$, a relation $x=\bar{g}\left(f_{x}\right) \in \mathcal{R}$; and
(B) For each coset representative $c \in C$ and each relation $s=t \in \mathcal{S}$, a relation $u=v \in \mathcal{R}$, where $(u, d)=\bar{h}(c, s)$, and $(v, e)=\bar{h}(c, t)$.

- Coset representative C
- $x \in H_{0}$ can be written as a finite product f_{x} of elements in G_{0}
- Define a map (where w and d satisfy $c y=w d$)

$$
\begin{aligned}
h: C \times G_{0} & \rightarrow \vec{H}_{0} \times C \\
(c, y) & \mapsto(w, d)
\end{aligned}
$$

- Since $G=\left\langle G_{0}\right\rangle$, extend h, where $h\left(c_{i-1}, y_{i}\right)=\left(w_{i}, c_{i}\right)$

$$
\begin{aligned}
\bar{h}: C \times \vec{G}_{0} & \rightarrow \vec{H}_{0} \times C \\
\bar{h}\left(c_{0}, y_{1} y_{2} \ldots y_{n}\right) & =\left(w_{1} w_{2} \ldots w_{n}, c_{n}\right)
\end{aligned}
$$

- Define $\bar{g}: H \rightarrow H$ given by $\bar{g}(u)=v$ iff $\bar{h}(1, u)=(v, 1)$

Choice of C, f, and h

- $C=\left\{1, \omega_{[4]}\right\}$
- Choice of f_{x}

x	f_{x}
H_{0}	$H_{[1,3]} H_{[0,2]}$
H_{1}	$H_{[2,3]} H_{[0,1]}$
S_{0}	$\omega_{[3]}^{2} \omega_{[2]}^{2}$
S_{1}	$\omega_{[3]}^{2} \omega_{[1]}^{2}$

x	f_{x}
Z_{c}	$\omega_{[3]}^{4}$
ω	$\omega_{[0]}^{4} \omega_{[1]} \omega_{[2]} \omega_{[3]}$
T_{0}	$\omega_{[2]} \omega_{[3]}$
T_{1}	$\omega_{[3]} \omega_{[1]}$

- Choice of h, using the following abbreviations

$$
\text { Swap }=\square \cdot \frac{H}{H} \cdot \sqrt[H]{H} \cdot \sqrt[H]{H}-\quad T^{\dagger}=T^{7}, \quad C X_{0}=H_{0} Z_{c} H_{0}
$$

$$
X_{0}=H_{0} S_{0} S_{0} H_{0}, \quad X_{1}=H_{1} S_{1} S_{1} H_{1}, \quad S^{\dagger}=S^{3}, \quad C X_{1}=H_{1} Z_{c} H_{1}
$$

Choice of C, f, and h

y	$h(1, y)$	$h\left(\omega_{[4]}, y\right)$
$X_{[0,1]}$	$\left(X_{0} \subset X_{1} X_{0}, 1\right)$	$\left(X_{0} C X_{1} X_{0}, \omega_{[4]}\right)$
$X_{[0,2]}$	$\left(S w a p X_{0} C X_{1} X_{0}\right.$ Swap,1)	$\left(\operatorname{Swap}^{0} \mathrm{X}_{0} C X_{1} X_{0} \operatorname{Swap}, \omega_{[4]}\right)$
$X_{[0,3]}$	$\left(C X_{0} X_{0} C X_{1} X_{0} C X_{0}, 1\right)$	$\left(C X_{0} X_{0} T_{1} C X_{1} T_{1}^{\dagger} X_{0} C X_{0}, \omega_{[4]}\right)$
$X_{[1,2]}$	$\left(C X_{0} X_{1} C X_{1} X_{1} C X_{0}, 1\right)$	$\left(C X_{0} X_{1} C X_{1} X_{1} C X_{0}, \omega_{[4]}\right)$
$X_{[1,3]}$	$\left(S_{w a p}{ }^{\text {P }}{ }_{1}\right.$ Swap, 1)	$\left(S_{w a p} T_{1} C X_{1} T_{1}^{\dagger} S_{\text {wap }} \omega_{[4]}\right)$
$X_{[2,3]}$	$\left(C X_{1}, 1\right)$	$\left(T_{1} C X_{1} T_{1}^{\dagger}, \omega_{[4]}\right)$
$H_{[0,1]}$	$\left(X_{0} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{0}, 1\right)$	$\left(X_{0} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{0}, \omega_{[4]}\right)$
$H_{[0,2]}$	(Swap $X_{0} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{0}$ Swap, 1)	$\left(S w a p X_{0} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{0}\right.$ Swap, $\left.\omega_{[4]}\right)$
$H_{[0,3]}$	$\left(C X_{0} X_{0} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{0} C X_{0}, 1\right)$	$\left(C X_{0} X_{0} T_{1} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} T_{1}^{\dagger} X_{0} C X_{0}, \omega_{[4]}\right)$
$H_{[1,2]}$	$\left(C X_{0} X_{1} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{1} C X_{0}, 1\right)$	$\left(C X_{0} X_{1} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} X_{1} C X_{0}, \omega_{[4]}\right)$
$H_{[1,3]}$	(SwapS ${ }_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1}$ Swap, 1)	$\left(S_{\text {wap }} T_{1} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} T_{1}^{\dagger}\right.$ Swap, $\omega_{[4]}$)
$H_{[2,3]}$	$\left(S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1}, 1\right)$	$\left(T_{1} S_{1}^{\dagger} H_{1} T_{1}^{\dagger} C X_{1} T_{1} H_{1} S_{1} T_{1}^{\dagger}, \omega_{[4]}\right)$
$\omega_{[0]}$	$\left(C X_{0} X_{0} T_{1}^{\dagger} C X_{1} T_{1} C X_{1} X_{0} C X_{0}, \omega_{[4]}\right)$	$\left(C X_{0} X_{0} T_{0} X_{0} C X_{0}, 1\right)$
$\omega_{[1]}$	$\left(S_{w a p} T_{1}^{\dagger} C X_{1} T_{1} C X_{1} \operatorname{Swap}, \omega_{[4]}\right)$	$\left(S w a p T_{0} S w a p, 1\right)$
$\omega_{[2]}$	$\left(T_{1}^{\dagger} C X_{1} T_{1} C X_{1}, \omega_{[4]}\right)$	$\left(T_{0}, 1\right)$
$\omega_{[3]}$	$\left(\epsilon, \omega_{[4]}\right)$	$\left(T_{1} T_{0} C X_{1} T_{1}^{\dagger} C X_{1}, 1\right)$

Reduction of equations

- Apply this lemma, we get $8+246=254$ equations, all very long.

Reduction of equations

- Apply this lemma, we get $8+246=254$ equations, all very long.
- We already know some "obvious" equations:
- All Clifford equations
- Obvious Clifford+T equations

$$
\begin{aligned}
& T T=S \\
& (\text { THSSH })^{2}=\omega \\
& \xrightarrow{-T}!=\square^{T-T}
\end{aligned}
$$

Reduction of equations

- Apply this lemma, we get $8+246=254$ equations, all very long.
- We already know some "obvious" equations:
- All Clifford equations
- Obvious Clifford+T equations

$$
\begin{aligned}
& T T=S \\
& (\text { THSSH })^{2}=\omega \\
& \xrightarrow{-T 1}=\square^{T-T}
\end{aligned}
$$

- After automatic reduction, we have 40 left
- After manual reduction, we have 3 left

Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo
(arXiv:1308.4134), we define, for any Pauli operators P, Q :

$$
R(P \otimes Q)=\frac{1+\omega}{2} I+\frac{1-\omega}{2}(P \otimes Q) .
$$

Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo (arXiv:1308.4134), we define, for any Pauli operators P, Q :

$$
R(P \otimes Q)=\frac{1+\omega}{2} I+\frac{1-\omega}{2}(P \otimes Q) .
$$

Then every Clifford $+T$ operator can be written (not uniquely) as

$$
R\left(P_{1} \otimes Q_{1}\right) \cdots R\left(P_{k} \otimes Q_{k}\right) C
$$

where P_{j}, Q_{j} are Pauli and C is Clifford.

Sketch of the automated reduction

Following Gosset, Kliuchnikov, Mosca, and Russo (arXiv:1308.4134), we define, for any Pauli operators P, Q :

$$
R(P \otimes Q)=\frac{1+\omega}{2} I+\frac{1-\omega}{2}(P \otimes Q) .
$$

Then every Clifford $+T$ operator can be written (not uniquely) as

$$
R\left(P_{1} \otimes Q_{1}\right) \cdots R\left(P_{k} \otimes Q_{k}\right) C
$$

where P_{j}, Q_{j} are Pauli and C is Clifford. We can use the "obvious" equations to convert any Clifford $+T$ operator to this form. Also, $R(P \otimes Q)$ and $R\left(P^{\prime} \otimes Q^{\prime}\right)$ commute iff $P \otimes Q$ and $P^{\prime} \otimes Q^{\prime}$ commute. Using these techniques, most of the 254 equations can be automatically proven.

This concludes the proof of the main theorem!

Theorem. The following set of relations is complete for 2-qubit Clifford $+T$ circuits:

Clifford equations

$$
\begin{aligned}
& T T=S \\
& (\text { THSSH })^{2}=\omega \\
& -T=]^{-T-T} \\
& \overline{-H \cdot} \cdot \sqrt{H} \cdot \sqrt{H-T}-\sqrt{T}=\frac{H-\sqrt{H}}{-T-H!-\sqrt{H}!}
\end{aligned}
$$

References

围 B．Giles and P．Selinger．
Exact synthesis of multiqubit Clifford $+T$ circuits．
Physical Review A，87（3）：032332， 2013.
D．Gosset，V．Kliuchnikov，M．Mosca，and V．Russo．
An algorithm for the t－count．
Quantum Information \＆Computation，14（15－16）：1261－1276， 2014.

图 S．E．M．Greylyn．
Generators and relations for the group $U_{4}\left(\mathbb{Z}\left[\frac{1}{\sqrt{2}}, i\right]\right)$ ．
arXiv preprint arXiv：1408．6204， 2014.
目 P．Selinger．
Generators and relations for n－qubit Clifford operators．
arXiv preprint arXiv：1310．6813， 2013.

Thank You!

