
Proposed Thesis Research

Xiaoning Bian

Dalhousie University

Abstract

This is a written report for my specialist exam outlining my proposed thesis research. First I introduce
some background on quantum computing (including circuits), lambda calculus and Curry-Howard isomorphism,
intuituitionistic linear logic, quantum lambda calculus, and Proto-Quipper. Then I list some questions which I
plan to address in the thesis research.

1 Quantum computing

1.1 Some facts about Hilbert spaces, operator, and tensor product

We are only interested in finite dimensional complex Hilbert spaces, operators between them, and their tensor product.
So the definitions are adapted accordingly, and the properties irrelevant to the following sections are omitted. Let C
be the set of complex numbers, and let c† be the complex conjugate of c ∈ C.

Definition 1.1. A finite dimensional Hilbert space H is a finite dimensional complex vector space H, equipped with
complex inner product, i.e., a function 〈 | 〉 : H×H→ C satisfying (for all c1, c2 ∈ C and v1, v2, v3 ∈ H)

• linear in the second component, i.e., 〈v3|(c1v1 + c2v2)〉 = c1 〈v3|v1〉+ c2 〈v3|v2〉.

• 〈v1|v2〉 = 〈v2|v1〉†.

• 〈v1|v1〉 > 0.

Remark 1.2. By the first two condition, 〈 | 〉 is conjugate linear in the first component, i.e., 〈(c1v1 + c2v2)|v3〉 =

c†1 〈v1|v3〉+ c†2 〈v1|v3〉.

Definition 1.3. The norm on H induced by the complex inner product is ‖v‖ =
√
〈v|v〉, for v ∈ H.

Example 1.4. Cn is a finite dimensional Hilbert space equipped with the following complex inner product: Let
e1, ..., en be the standard basis of Cn, define the complex inner product between them 〈ei|ej〉 = 1 if i = j, otherwise
〈ei|ej〉 = 0, and then extend to all v1, v2 ∈ Cn uniquely using the linear and conjugate liner conditions. That is, for
v1 = (c1, c2, ...cn) and v2 = (d1, d2...dn),

〈v1|v2〉 = c†1d1 + ...+ c†ndn.

Definition 1.5. A linear map between Hilbert spaces is also called a (linear) operator.

Remark 1.6. Given an operator A from H to H′ , there is a unique operator A† from H′ to H, such that for all
vectors v ∈ H′, v ∈ H, 〈v|Aw〉 =

〈
A†v|w

〉
(we omit the proof). We also note that (A†)† = A without the proof. We

call A† the adjoint of A. An operator S on H (to itself) is self-adjoint if S† = S. An operator U on H is unitary if
UU† = U†U = I, the identity operator.

Remark 1.7. When H is equipped with a chosen basis, the operators on H are in one-to-one correspondence with
n × n complex matrices. We write Mat(A) for the matrix representation of A. The matrix representation of A† is
the conjugate transpose of the matrix representation of A, i.e.,

Mat(A†) = Mat(A)†.

1

Definition 1.8. The tensor product of H ⊗ H′ two complex vector spaces H and H′ defined in the usual way. In
particular, if e1, ..., en is a basis of H and f1, ..., fm is a basis of H′, then {ei ⊗ fj}i,j is a basis of H ⊗ H′. If H and
H′ are equipped with inner products, then there a unique inner product on H⊗H′ satisfying

〈ei ⊗ fj |ek ⊗ fl〉 = 〈ei|fj〉 〈ek|fl〉 .

We write H ⊗ H′ for the Hilbert space equipped with this inner product. More generally, for v1, v2 ∈ H, and
v′1, v

′
2 ∈ H′

〈v1 ⊗ v′1|v2 ⊗ v2〉 = 〈v1|v2〉 〈v′1|v′2〉 .

Remark 1.9. Not every vector in H⊗H′ can be written in the form v ⊗ v′. For example e1 ⊗ e′1 + e2 ⊗ e′2 cannot
be written in this form.

Definition 1.10. Given operators A on H and B on H′, the Kronecker tensor of A and B is an operator on H⊗H
defined by

(A⊗B)(ei ⊗ e′j) = Aei ⊗Be′j .

We usually omit the parentheses when applying an operator to a vector, i.e., Av := A(v). We also write AB = A ◦B
for the composition of two operators. We note without proof that

(A⊗B)† = A† ⊗B†, (A⊗B) ◦ (A′ ⊗B′) = (A ◦A′)⊗ (B ◦B′).

Definition 1.11. Let FdHilb be the category of finite dimensional Hilbert spaces and linear operators, and let
FdHilbu be its subcategory of unitary operators. We are also interested in the following skeletal subcategories of
FdHilb and FdHilbu: Let C be the category whose objets are natural numbers and whose morphisms n→ m are
linear maps Cn → Cm. Let U be its subcategory of unitary maps.

Each category is equipped with a tensor product as above, making them into symmetric monoidal categories.
Moreover, FdHilbu and U are symmetric monoidal groupoids, and C and U are strict monoidal.

1.2 Mathematical framework

Definition 1.12. An n-qubit state ψ is an equivalence class of unit vectors in the 2n dimensional complex Hilbert
space Hn = (C2n

, 〈 | 〉), where v and v′ are equivalent if they are collinear, i.e., v = λv′, where λ is a unit scalar.
Given an n-qubit state ψ and an m-qubit state ϕ, we can always get an n+m-qubit state ψ ⊗ ϕ by tensor product
since

〈ψ ⊗ ϕ|ψ ⊗ ϕ〉 = 〈ψ|ψ〉 〈ϕ|ϕ〉 = 1,

that is, ψ ⊗ ϕ is a unit vector.

In quantum computing, a state ϕ is written |ϕ〉 and called a ket. The adjoint of |ϕ〉 (think of |ϕ〉 as a linear
operator from C to Hn) is written as 〈ψ| and called a bra. The bracket (same notation as the inner product) is

〈ϕ| |ψ〉 = ϕ†(ψ) =
〈
1|ϕ†(ψ)

〉
= 〈ϕ(1)|ψ〉 = 〈ϕ|ψ〉 .

The computational basis of Hn is the standard bass of C2n

. We denote the elements of the computational basis
by {|0〉 , |1〉 , ..., |2n − 1〉}. In order to draw comparisons with boolean circuits from classical computer science, people
sometimes write the number in ‘ket’ using binary string form. For example |0〉=|0...0〉, and |2n − 1〉=|1...1〉, both of
which have n digits. In this notation, |b1...bm〉 ⊗ |b′1...b′n〉 = |b1...bmb′1...b′n〉. Note that for all the matrices (including
vectors) in the following, we use the computational basis.

Example 1.13. A one qubit state is
|ψ〉 = α |0〉+ β |1〉

where |0〉 and |1〉 are the computational basis of H1, and α, β are complex numbers satisfying |α|2 + |β|2 = 1. Under
this basis, |0〉 = (1, 0)T , and |1〉 = (0, 1)T . An n-qubit state is

|ψ〉 = Σ2n−1
i=0 αi |i〉

where |i〉 is the computational basis of Hn, and the αi’s satisfy Σ|αi|2 = 1.

2

Example 1.14. Given a qubit |0〉 and another qubit |1〉, we can form a 2-qubit state |0〉 ⊗ |1〉. Note that, as
already mentioned in Remark 1.9, not every 2-qubit state can be written as a tensor product of two 1-qubit states,
for example

|ψ〉 =
1√
2

(0, 1,−1, 0)T =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

cannot be written in this form. In this case, we say that |ψ〉 is an entangled state.

Definition 1.15. A n-qubit gate is a unitary operator U on Hn.

Remark 1.16. Note that there doesn’t exist a qubit copying gate, i.e., no unitary operator satisfies

U |ϕ〉 ⊗ |k〉 = |ϕ〉 ⊗ |ϕ〉

where |ϕ〉 is any n-qubit state, and |k〉 is some fixed n-qubit state. Say there were a U satisfying this, pick two
n-qubit states |ϕ1〉 and |ϕ2〉, then

U |ϕ1〉 ⊗ |k〉 = |ϕ1〉 ⊗ |ϕ1〉 , U |ϕ2〉 ⊗ |k〉 = |ϕ2〉 ⊗ |ϕ2〉 .

The inner product of two states in the left side of the equations should equal to the one in the right side. Therefore

〈ϕ1|ϕ2〉 = (〈ϕ1|ϕ2〉)2.

This only happens when 〈ϕ1|ϕ2〉 = {0, 1}, i.e., |ϕ1〉 and |ϕ2〉 are the same or orthogonal. This is called the no-cloning
property.

Example 1.17. The following are one qubit gates

I1 =
(

1 0
0 1

)
, ω = eiπ/4, H =

1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, T =

(
1 0
0 ω

)
By abuse of notation, we identify ω with ωI1. Also, since we identify qubit states up to a unit scalar, this scalar has
no effect when it acts on a state. The following are 2-qubit gates

I1 ⊗X =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, Zc =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, CNot = Xc =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, Uc =

 1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11


where U =

(
U00 U01
U10 U11

)
is a 1-qubit gate. Uc is called a controlled U gate, and it acts on 2-qubit states in the

following way
Uc |0b〉 = |0b〉 , Uc |1b〉 = (I ⊗ U) |1b〉

where b = 0, 1. That is when the first digit is 0, Uc does nothing on the state, and when the first digit is 1, it applies
I ⊗ U to the state, or informally it applies U on the second qubit. The CNot and Zc gates are special cases of
controlled U gates.

Definition 1.18. An n-qubit measurement M is given by a finite family {Si}i of operators satisfying the complete-

ness equations Σi∈IS
†
i Si = I. When performing the measurement M on a quantum state |ϕ〉 ∈ Hn, one of the

measurement outcomes i ∈ I will be observed and the state will change. Given an n-qubit state |ϕ〉 ∈ Hn, the
probability of observing measurement outcome i ∈ I is

P (i) = ||Si |ϕ〉 ||2 = 〈ϕ|S†i Si |ϕ〉 .

Note that Σi∈IP (i) = Σi∈I 〈ϕ|S†i Si |ϕ〉 = 〈ϕ| I |ϕ〉 = 1. Moreover, the state after the measurement is

t(i) =
Si |ψ〉√
p(i)

,

provided that outcome i was observed.
Given an m-qubit measurement M (specified by {Si}i∈I), and an n-qubit measurement M ′ (specified by {Si}i∈I),

we can get an m + n-qubit measurement M ⊗ M ′ determined by {Si ⊗ S′j}i∈I,j∈J , since they still satisfy the
completeness equations. We call M ⊗M ′ a tensor measurement.

3

Example 1.19. The trivial measurement, let I = {∗} and S∗ be the identity operator I. For any n-qubit state |ϕ〉,
the measurement outcome will be ∗ with probability 1 and the state is unchanged.

Example 1.20. Let I = {0, 1}, S0 =
(

1 0
0 0

)
and S1 =

(
0 0
0 1

)
. It is easy to verify that S0 and S1 satisfy the

completeness equations. Applying this measurement to a state α |0〉 + β |1〉 will yield outcome 0 with probability
|α|2, outcome 1 with probability |β|2, and the state after the measurement is |0〉 or |1〉, respectively. This is called
computational basis measurement.

Example 1.21. Given a 1-qubit measurement M , let I be the trivial one-qubit measurement as in Example 1.19. The
tensor measurement I ⊗M is also called the measurement on the second qubit. Similarly we can define measurement
on any subset of qubits.

1.3 QRAM model

A useful abstract model of a quantum computer is the so-called QRAM model [11]. In this model, we assume to have
access to N numbered qubits for some fixed, large enough N . That is the QRAM device holds an N -qubit state.
The available operations are:

• prepare qubit i in state |0〉 or |1〉 , as we instruct.

• apply an n-qubit gates U from a fixed finite set of gates to n distinct qubits i1, i2, ..., in.

• measure qubit i in the computational basis (see Example 1.20), and tell us the measurement result (0 or 1).

We symbolically write theses operations as initb(i), U 〈i1, i2, ..., in〉, and meas(i), respectively.

1.4 Quantum circuit

Definition 1.22. Recall that the strict symmetric monoidal groupoid U from Definition 1.11. Quantum circuit are
string diagrams for symmetric monoidal groupoid [10]. Specifically, a quantum circuit is a graphical way to represent
a morphisms in U. The object n is represented by n paralleled wires:

...
...

A morphism U from n to n is represented like this:

U...
...

Composition is represented by connecting wires:

U V...
...

Tensor is represented by juxtaposing wires (for objects) and boxes (for morphisms):

U

V
...

...

...
...

Example 1.23. The following is a quantum circuit for the operator (I ⊗ U) ◦ C (we read the circuit from left to
right, and from top to bottom)

C
U

4

2 Lambda calculus

The lambda calculus was introduced by Church and Curry in the 1930’s [2, 3]. We only summarize the most important
notions, for a more detailed account see [1].

2.1 The untyped lambda calculus

2.1.1 Lambda terms

Definition 2.1. Let V be a countably infinite set of symbols which we call variables. Let A be the disjoint union of
V and the set S of special symbols ‘(’,‘)’,‘λ’, and ‘.’. Let A∗ be the set of strings (finite sequences) over the alphabet
A. The set of lambda terms is the smallest subset L ⊆ A∗ such that:

• For any x ∈ V, x ∈ L

• For any M,N ∈ L, (MN) ∈ L

• For any x ∈ V and M ∈ L, (λx.M) ∈ L

We can use the BNF (Backus-Naur Form) notation for convenience.

Lambda terms M,N ::= x | (MN) | (λx.M)

Terms of these forms are called variables, applications, and lambda abstractions respectively. An occurrence of a
variable x inside a term of the form λx.N is said to be bound. The corresponding λx is called a binder, and we say
that the subterm N is the scope of the binder. A variable occurrence that is not bound is free. Thus for example,
in the term (λx.xy)(λy.yz), x is bound, but z is free. The variable y has both a free and a bound occurrence. Let
FV (M) be the set of variables having free occurrences in M . If FV (M) is empty, we say M is closed.

We can think of a lambda abstraction as a function x 7→ M . We sometimes write M(x) to emphasize that M
contains a variable x. An application is like the function application — M is a function, and N is its argument.

Example 2.2. The following are lambda terms:

x (xx) (λx.x) (λz.((yy)(xx)))

The last lambda term above contains many parentheses, and is not easy to read. We have the following conventions
to make terms look simpler:

• The outermost parentheses are omitted, so λx.M is (λx.M).

• Applications associate to the left i.e. MNO stands for (MN)O.

• The body of a lambda abstraction extends as far to the right as possible, so λx.MN means λx.(MN).

• Multiple lambda abstractions can be contracted, so λx.λy.λz.M can be written as λxyz.M .

With these conventions, the terms from Example 2.1 are written x, xx, λx.x and λz.yy(xx), respectively.

2.1.2 Alpha equivalence

Informally, the names of bound variables do not matter. For example λx.x and λy.y represent the same function,
i.e., the identity function. This is made more precise in the following definition.

Definition 2.3. α-equivalence is the smallest equivalence relation that satisfies the following conditions:

M ∼M ′ N ∼ N ′

MN ∼M ′N ′
M ∼M ′

λx.M ∼ λx.M ′
y /∈M

λx.M ∼ λy.M [y/x]
.

Here M [y/x] is the term with all the free occurrences of x being replaced by y, and y /∈M means that the variable
y doesn’t appear (free or bound) in M . The horizontal line stands for ‘implying’ i.e. if the conditions above the line
hold, then the conclusion below the line is valid. Comparing with the definition of lambda terms, we can see that
α-equivalence is an equivalence relation compatible with the term forming rules. Later we will introduce more term
forming rules, and we can extend α-equivalence accordingly.

From now on, we only consider terms up to α-equivalence, i.e., terms different only in the choice of bound variables
are considered the same.

5

2.1.3 Beta reduction

To make the application MN behave like function application, we need to put the argument N into the term M .
This is the purpose of β-reduction. For M to be a ‘function’, M must be a lambda abstraction, say M = λx.M ′.
Then the application MN should equal to M ′[N/x], i.e., the term M ′ with all free variables x being replaced by N .

We must be careful in how to define M ′[N/x]. For example, if M ′ = λx.y, and N = x, it could be incorrect
to define M ′[N/x] = λx.x, because the free variables x of N has been ‘captured’ by the binder λx, contrary to our
principle that the names of bound variables should not matter. To avoid this this ‘capturing’ of free variables, it
is necessary to first rename the bound variables of M ′ when necessary. The precise definition of capture avoiding
substitution can be found in [1]; for our purposes, the above informal description will suffice.

Definition 2.4. The single step β-reduction is the smallest relation on lambda terms which is compatible with the
term forming rules, and satisfies the following condition:

(λx.M)N →M [N/x]
.

By “compatible with the term forming rules”, we mean that it satisfies the following conditions:

M →M ′

MN →M ′N

N → N ′

MN →MN ′
M →M ′

λx.M → λx.M ′
.

For a term M , if no reduction rule applies, we say it is in normal form. Note that later when we introduce new
term forming rules, we require that β-reduction is compatible with the new rules. Also, we want to reduce the new
terms and hence we will need new reduction rules.

The following theorem states some interesting properties of the untyped lambda calculus.

Theorem 2.5 (Church-Rosser). Let � be the transitive closure of →. Suppose M , N , and P are lambda terms such
that M � N and M � P , then there exists a lambda term Z such that N � Z and P � Z.

Corollary 2.6 (Normal form is unique). For a term M , if there is a reduction M � N with N in normal form,
then N is unique (up to α-equivalence).

2.2 The simply typed lambda calculus

In the untpyed lambda calculus, unlike in mathematics, functions do not have a domain or a codomain; for example
xx is a literally well-formed untyped lambda term, where x is both the function and the argument. To rule out such
terms, we can introduce type system. Informally, a type system assigns a domain and codomain to each function. A
λ-abstractions (function) from a type (domain) A to a type (codomain) B has a type A → B. (We also have other
reasons to introduce types for the lambda calculus such as we will get a correspondence with logic, and such as well
typed terms enjoy some good properties and so on, see Section 3.)

Definition 2.7. Let B be a finite set of symbols which we call the basic types denoted by {A,B,C, ...}. The simple
types T consists of types of the following form:

S, T ::= B | S → T

where B ranges over B. Here we have used a BNF definition, which can be translated to an equivalent mathematical
definition like in Definition 2.1. For example, if A,B are basic types, the following are types: A, A→ B, (A→ B)→
A, We call the type of the form S → T a function type.

We need to assign types to lambda terms in a meaningful way. Recall that we identity terms up to α-equivalence;
for convenience, we will always assume without loss of generality that all bound variables are chosen so that they
don’t clash with anything.

Definition 2.8. An assignment of types is a function from some finite subset of V to T. We write Γ as {x : A, y : B, ...}
to denote that x has type A etc. We write x : A ∈ Γ to denote x is assigned the type A. We write Γ, x : A to denote
the new assignment with x : A added to Γ. A typing judgement is a expression of the form Γ ` M : A (formally a
triple (Γ,M,A) of an assignment, a term, and a type). A typing judgement is valid if it follows from the following
typing rules:

x : A ∈ Γ

Γ ` x : A

Γ `M : A→ B Γ ` N : A

Γ `MN : B

Γ, x : A `M : B

Γ ` λx.M : A→ B

6

Informally Γ `M : A means that the assignment Γ implies M has type A, and if Γ `M : A is a valid, we say M is
well-typed under Γ. Note that, for the application MN to have a type, M and N must have the right types. This
amounts to requiring the function M must be applied to a correctly typed argument N .

Under these rules, not all lambda terms can be assigned a type. For example xx. It is an application but not
satisfying the conditions of the application typing rule since x cannot have types A → B and A at the same time.
The well-typed terms enjoy some good properties such as:

Theorem 2.9 (Subject Reduction). If Γ `M : A and M →M ′, then Γ `M ′ : A.

Definition 2.10. A term M is weakly normalizing if there exists a finite sequence of reductions M →M ′ →M ′′...→
N , such that N is in normal form, and strongly normalizing if every sequence of reductions is finite.

Theorem 2.11 (Strong normalization). If Γ `M : A, then M is strong normalizing which implies weak normalizing.

And of course, the well-typed lambda terms enjoy the Church-Rosser property, and the uniqueness theorem.
Another perspective to look at well-typed lambda terms is that they are picked up from all lambda terms and

they behave as we want them to (i.e., lambda abstraction works as a function, and application works as a function
application), but the remaining terms (‘ill-typed lambda terms’) are not well-behaved, and hence being dropped. We
can think of the typing system as providing a way to eliminate ‘ill-typed lambda terms’. We can also thinks of a
type T as the set of all lambda terms of type T , which makes the ‘types’ more concrete, rather than just string of
symbols.

3 The Curry-Howard Correspondence

We give a very brief overview of the Curry-Howard correspondence (CH correspondence). For more details see [6].

3.1 Intuitionistic propositional logic

Informally, an atomic proposition is a statement or assertion that must be true or false. Propositional formulas
(only the implication fragment) are constructed from atomic propositions by using the logical connective → (called
implication).

Definition 3.1. Let B be countable set of atomic propositions, denoted by {A,B, ...}. Let T be the set of propositional
formulas, given via the BNF (B ∈ B)

Formulas : S, T ::= B | S → T.

Note that this is the same as Definition 2.7, if we identify the atomic formulas and basic types.
The natural deduction system (Gentzen[4, 5] and Prawitz [12]) formalizes how to make a proof. Here we introduce

the implication fragment of intuitionistic natural deduction. A sequent is an expression Γ ` A where Γ is a finite
multiset of formulas, called a context, and A is a formula. The intended interpretation is that the assumptions in Γ
imply A. We have three natural ways (derivations) to prove a formula.

A ∈ Γ

Γ ` A
Γ ` A→ B Γ ` A

Γ ` B
Γ, A ` B

Γ ` A→ B
.

Here Γ, A is a new multiset with A added in the end. Comparing with the typing rules of lambda terms, we find that
they are the same if we drop all the lambda terms and variables. This is the first part of the so-called Curry-Howard
correspondence (Curry [3] and Howard [9]).

3.2 Proofs as terms

The second part of Curry-Howard correspondence is that a well-typed lambda term can be seen as a proof (using
the three derivation rules and finite assumptions) of its type (formula), more precisely:

Theorem 3.2 (proofs-as-terms). The well-typed lambda terms of type A under assignment Γ are in one-to-one
correspondence with the proofs of A under assumptions Γ. As a special case, well-typed closed lambda terms of type
A are proofs of A (from no assumptions).

Sketch of the proof. Given a derivation of Γ ` A, we define a typing judgement ΓL ` M : A, and then prove it is
valid using induction.

7

• ΓL is obtained by labeling the assumptions in Γ = {A1, A2, ..., An} using distinct variables x1, x2, ..., xn from
V.

• M = Top(Γ ` A) is obtained by recursion on the derivation of Γ ` A. ‘Top’ is short for Term Of Proof, and is
defined as follows:

1. Top(A∈Γ
Γ`A) = x, and x is the label of A in ΓL.

2. Top(Γ`B→A Γ`B
Γ`A) = M1M2, where M1 = Top(Γ ` B → A), and M2 = Top(Γ ` B).

3. Top(Γ,A`B
Γ`A→B) = λx.N , where N = Top(Γ, A ` B), and x is the label of A in (Γ, A)L.

Now we prove ΓL `M : A is valid. If M = x, then it is valid trivially. If M = M1M2, then by induction hypothesis,
ΓL ` M1 : B → A and ΓL ` M2 : B are valid, so ΓL ` M : A is valid by the second typing rule. Similarly for the
case M = λx.N .

Conversely, given well-typed term M , fix a Γ under which M is well-typed, then there is only one typing derivation
for the typing judgement Γ ` M : A since the last typing rule used is unique. We define a derivation of ΓF ` A by
recursion on the typing derivation of Γ `M : A. Here, ΓF is the assumptions dropping all the variables, and Pot is
short for Proof Of Terms.

1. Pot(x:A∈Γ
Γ`x:A) = A∈ΓF

ΓF`A .

2. Pot(Γ`M1:B→A Γ`M2:B
Γ`M1M2:A) = D1 D2

ΓF`A , where D1 = Pot(Γ `M1 : B → A), and D2 = Pot(Γ `M2 : B).

3. Pot(Γ,x:A`N :B
Γ`λx.N :A→B) = D′

ΓF`A→B , where D′ = Pot(Γ, x : A ` N : B).

What Pot does is essentially dropping all the lambda terms and variables in the type derivation. Similarly by
induction, the derivation we got complies with the natural deduction rules, i.e., it is valid.

The Curry-Howard Correspondence refers to the correspondence between types and formulas, and between terms
and proofs.

4 Intuitionistic propositional linear logic

As we noted before, a context of intuitionistic logic is a multiset. The rules of intuitionistic logic permit us to treat
it as a set, i.e., to permute the elements and to identify equal elements.

Lemma 4.1 (Exchange). If Γ, A,B,∆ ` C is valid, then Γ, B,A,∆ ` C is valid.

Lemma 4.2 (Contraction). If Γ, A,A,∆ ` C is valid, then Γ, A,∆ ` C is valid.

Lemma 4.3 (Weakening). If Γ, A,∆ ` C is valid, then Γ, A,B,∆ ` C is valid.

In other words, the following so-called structural rules are derived rules:

Γ, A,B,∆ ` C
Γ, B,A,∆ ` C

ex,
Γ, A,A,∆ ` C

Γ, A,∆ ` C
contr,

Γ, A,∆ ` C
Γ, A,B,∆ ` C

w

What happens if we disallow the contraction and weakening rules? (We will always allow the exchange rule).
To disallow the contraction rule means if we use A twice to prove C, we may not be able to prove C using A only
once. To disallow the weakening rule means if we use one A to prove C, we may not be able to prove C given A
and additional assumptions. If we think of assumptions and conclusion as resources, things becomes clear. If it is
possible to produce C using two A’s, then it may not be possible to produce C using only one A. If consuming one
A produces a C, no one likes to spend more resources B.

Linear logic is a formalization of this idea.

Definition 4.4. Formulas for intuitionistic propositional linear logic are defined via BNF:

Formulas : S, T ::= A | S ⊗ T | S (T | S&T | S ⊕ T | !S

where A ranges over a countable set of atomic propositions A. ⊗, (, &, and ⊕ are (binary) connectives. ! reads as
‘bang’.

8

The natural deduction derivation rules:

A ` A
id,

Γ, !A, !A ` B
Γ, !A ` B

contr,
Γ ` B

Γ, !A ` B
w

!Γ ` A
!Γ `!A

!I ,
Γ ` A ∆, A ` B

Γ,∆ ` B
cut

Γ, A ` B
Γ ` A(B

(I ,
Γ ` A(B ∆ ` A

Γ,∆ ` B
(E

Γ ` A, ∆ ` B
Γ,∆ ` A⊗B

⊗I ,
Γ ` A⊗B ∆, A,B ` C

Γ,∆ ` C
⊗E

Γ ` A
Γ ` A⊕B

⊕I1,
Γ ` B

Γ ` A⊕B
⊕I2,

Γ ` A⊕B ∆, A ` C ∆, B ` C
Γ,∆ ` C

⊕E

Γ ` A Γ ` B
Γ ` A&B

&I ,
Γ ` A&B

Γ ` A
&E1,

Γ ` A&B

Γ ` B
&E2

Note that the rule (ex) continues to be a derived rule because contexts are multisets. One way to understand the
difference between rules ⊗, &, and ⊕ is via the resource interpretation:

• if given resources A and B, then we can produce A⊗ B, and if given a resource A⊗ B, we can produce both
A and B;

• if using resources Γ we can choose to produce A or B, but only one of them, then we can produce A&B, and
if using resources Γ we can produce A&B, then we have the right to choose to produce A or B.

• if using resources Γ we can produce A or B, then we can produce A ⊕ B, and if using resources Γ we can
produce A ⊕ B, then we can produce A or B (we don’t know which one). ⊕ is the ‘or’ connective but in a
linear logic background.

(is called linear implication. It is like the the usual implication but with a linear logic background. A(B can
also be explained by resource interpretation: consuming A, producing B, and having resources A (B and A, we
can produce B.

!A is some resource that can be used any number of times (including 0). So the contraction and weakening rules
for ‘banged’ resources still hold. !Γ in rule !I stands for a context with all formulas of the form !A. The rule !I means
that if all the resources used to produce A can be used many times, then we can produce A many times.

5 Quantum Lambda Calculus

There are several versions of Quantum Lambda Calculus (QLC) (see [20, 14, 15, 16, 17, 21, 18], and [13]). Here we
introduce the version [21] with a slightly change in formalization. The main change is that we use quantum names,
instead of variables in the formalization of the operational semantics.

5.1 Types, terms, and values

Definition 5.1. The types of QLC are defined by

Type A,B ::= > | bit | qubit | A(B | A⊗B | !A.

The intending meaning of types is as follows: > is a singleton type containing a unique element ∗, which we can
think of as the 0-tuple; bit is a two-element type containing only two constants 0 and 1; qubit is the type of quantum
names, i.e., pointers to a qubit in the QRAM; A(B is the function type ((comes form linear logic, see section
4); A ⊗ B is the type of pairs 〈a, b〉 of elements a of type A and b of type B; !A the subset of elements of type A
that can be used many times (including 0 times). We use T to denote the set of all types. We use the following
convention when writing a type:

!nA := !!...!A A⊗n := A⊗A⊗ ...⊗A

9

Definition 5.2. The terms of QLC are defined by

Terms : M,N,P ::= x | λx.M | MN

| ∗ | 〈M,N〉 | let 〈x, y〉 = M in N | let ∗ = M in N

| 0 | 1 | if P then M else N

| new | meas | U | q

where U ranges over a given set U of term constants, q ranges over a given infinite set of quantum names, and x
ranges over V (as before, the variables).

The intended meaning of abstraction and application is the same as before. The term 〈M,N〉 means a pair of
terms M and N ; the ∗ is the unique 0-tuple; the term let 〈x, y〉 = M in N is the program which first evaluates M to
compute a pair 〈V,W 〉, then assigns V to x and W to y before executing N ; the term let ∗ = M in N is a syntax for
reduction of M and returning nothing; the terms 0 and 1 mean ‘false’ and ‘true’, and the term if P then M else N
stands for a case distinction. When P = 0 (respectively 1), this term will be reduced to M (respectively N).

new is a function for state preparation. It inputs a classical bit, i.e., 0, 1, and outputs a quantum bit prepared
in state |0〉, and |1〉 respectively. meas is a function for measurement. It inputs a quantum bit, measures it in
computational basis {|0〉 , |1〉}, and outputs the result as a classical bit. The term constants in U stand for unitary
gates of varying arities. For example, we probably require U to contain H,S, T, Cnot, and Swap etc. q should be
considered as a label of a qubit in QRAM.

The operational semantics of QLC uses a call-by-value strategy, i.e., when doing a β-reduction, one first reduces
the argument to a value. A value is informally a term that cannot be reduced.

Definition 5.3. A value of QLC is a term defined by

Value V,W ::= x | λx.M

| ∗ | 〈V,W 〉
| 0 | 1

| new | meas | U | q

5.2 Type system

5.2.1 Subtyping rules

We say that A is a subtype of B, in symbols A <: B, if every term that has type A also has type B. For example,
!A is a subtype of A, because a term that can be duplicated doesn’t have to be duplicated. Also, !!A and !A are
subtypes of each other, and in this case, we say that the types are equivalent. More formally, subtyping is defined as
follows.

Definition 5.4. We define the subtyping relation <: to be the smallest relation on types satisfying the following
rules:

! A <: A

! A <: B

!A <: ! B

A1 <: B1 A2 <: B2

(A1 ⊗A2) <: (B1 ⊗B2)
⊗ A <: A′ B <: B′

(A′(B) <: (A(B′)
(

The (-rule is because a function that takes arguments of type A can be applied to arguments of type A′ (seen
as subset of A). The function of output type B′ can be seen as having output type B (seen as a superset of B′). We
write A ≡ B if A <: B and B <: A.

5.2.2 Typing rules

Typing judgements are slightly different from Definition 2.8.

Definition 5.5. A typing judgement is a quadruple

Γ;Q `M : T

where Γ is a type assignment (a function from a finite subset of V to types), Q is a finite subset of Q called a quantum
context, M is a term and T is a type. A typing judgement is valid if it can be inferred using the rules in Table 1.

10

!∆,Γ1;Q1 `M : A(B !∆,Γ2;Q2 ` N : A

!∆,Γ1,Γ2;Q1, Q2 `MN : B
app

Γ, x : A;Q `M : B

Γ;Q ` λx.M : A(B
λ1

!∆, x : A; ∅ `M : B

!∆; ∅ ` λx.M : !(A(B)
λ2

!∆,Γ1;Q1 `M : !nA !∆,Γ2;Q2 ` N : !nB

!∆,Γ1,Γ2;Q1, Q2 ` 〈M,N〉 : !n(A⊗B)
⊗ .I

!∆; ∅ ` ∗ : >
>

!∆,Γ1;Q1 `M : !n(A⊗B) !∆,Γ2, x : !nA, y : !nB;Q2 ` N : C

!∆,Γ1,Γ2;Q1, Q2 ` let 〈x, y〉 = M in N : C
⊗ .E

!∆,Γ1;Q1 ` P : bit !∆,Γ2;Q2 `M : A !∆,Γ2;Q2 ` N : A

!∆,Γ1,Γ2;Q1, Q2 ` if P then M else N : A
if

A <: B

!∆, x : A; ∅ ` x : B
axv

!∆; {q} ` q : qubit
axq

!∆; ∅ ` c : Ac
axc

Table 1: Typing rules for QLC

There is an implicit condition for all rules that the domain of !∆,Γ1,Γ2 are disjoint from each other and Q1 and Q2

are disjoint. In all rules, n > 0. In the rule axc,

A0, A1 = bit AU = !(qubit⊗m(qubit⊗m)

Anew = !(bit(qubit) Ameas = !(qubit(bit).

Note that using these rules, we cannot get a term of type qubit→ qubit⊗ qubit. In this sense, our typing system
enforces the ‘non-cloning’ theorem.

5.3 Operational semantics

In lambda calculus, we only have one reduction rule — β-reduction (together with the congruence rules). In QLC,
we have more terms, so we need to introduce new rules and new congruence rules. Moreover as the example in [18]
shows, different reduction strategies can affect the computation result. For example, in an application (λx.M)N ,
one strategy is to reduce N first and then do a substitution. This is call the call-by-value strategy. Another strategy
is to always do the substitution first, before reducing N . This is called the call-by-name strategy. Since different
evaluation strategies give different results, we need to choose a strategy, which needs more rules to describe.

The reduction rules are defined on closures. This is because a quantum name is intended to point to a qubit in
the QRAM, and the name itself only serves as a reference constant and has no computational ability. Informally
speaking, a closure consists of a quantum state, a QLC term (classical control), and a linking list assigning quantum
names to specific qubit in the quantum state.

Definition 5.6. A quantum closure is a triple [Q,L,M] where

• Q is a n-qubit state.

• L is a list of n distinct quantum names, written as |q1q2...qn〉.

• M is a QLC term.

If L = |q1...qn〉, we say that qi points to the ith qubit of the quantum state.

Example 5.7. The quantum closure

[
1√
2

(|00〉+ |11〉), |pq〉 , λx.xpq]

denotes a term λx.xpq with two embedded qubits p, q in the entangled state |pq〉 = 1√
2
(|00〉+ |11〉).

Definition 5.8. The reduction rules are shown in Tables 2–4. We write [Q,L,M] →p [Q′, L′,M ′] for a single-step
reduction of quantum closures that takes place with probability p. In the rules for λx.M , let, and if , M [V/x] denotes
the term M where the free variable x has been replaced by V (renaming bound variables if necessary). In the rule

11

[Q,L, (λx.M)V]→1 [Q,L,M [V/x]]

[Q,L, let 〈x, y〉 = 〈V,W 〉 in M]→1 [Q,L,M [V/x,W/y]]

[Q,L, let ∗ = ∗ in N]→1 [Q,L,N]

[Q,L, if 0 then M else N)]→1 [Q,L,N]

[Q,L, if 1 then M else N)]→1 [Q,L,M]

Table 2: Reduction rules: classical control

[Q, |q1, ...qn〉 , U 〈qj1 , ..., qjn〉]→1 [Q′, |q1, ...qn〉 , 〈qj1 , ..., qjn〉]

[α |Q0〉+ β |Q1〉 , |q1, ...qn〉 , meas qi]→|α|2 [Q0, |q1, ...qn〉 , 0]

[α |Q0〉+ β |Q1〉 , |q1, ...qn〉 , meas qi]→|β|2 [Q1, |q1, ...qn〉 , 1]

[Q, |q1, ...qn〉 , new 0]→1 [Q⊗ |0〉 , |q1, ...qn, qn+1〉 , qn+1]

[Q, |q1, ...qn〉 , new 1]→1 [Q⊗ |1〉 , |q1, ...qn, qn+1〉 , qn+1]

Table 3: Reduction rules: quantum data

for reducing the term U 〈xj1 , ..., xjn〉, U is an n-ary built-in unitary gate, j1, ..., jn are pairwise distinct, 〈xj1 , ..., xjn〉
is short for 〈xj1 , 〈xj2 , ...〉〉 and Q′ is the quantum state obtained from Q by applying this gate to qubits j1, ..., jn. In
the rule for measurement, |Q0〉 and |Q1〉 are states of the form

|Q0〉 = Σjαj
∣∣ϕ0
j

〉
⊗ |0〉 ⊗

∣∣ψ0
j

〉
, |Q1〉 = Σjβj

∣∣ϕ1
j

〉
⊗ |1〉 ⊗

∣∣ψ1
j

〉
where ϕ0

j and ϕ1
j are i− 1-qubit states (so that the measured qubit is the one pointed to by xi). In the rule for new,

Q is an n-qubit state, so that Q⊗ |i〉 is an (n+ 1)-qubit state.

5.4 Safety properties

Definition 5.9. We say [Q, |x1, ..., xn〉 ,M] is well-typed of type C, written as [Q, |x1, ..., xn〉 ,M] : C, if ∅; {x1, ..., xn} `
M : C is a valid typing judgement.

Quantum lambda calculus enjoys the following safety properties.

Theorem 5.10 (Subject reduction). Suppose [Q,L,M] : A, and [Q,L,M]→p [Q′, L′,M ′], then [Q′, L′,M ′] : A.

Theorem 5.11 (Progress). Suppose [Q,L,M] : A, then either [Q,L,M] is a value state (i.e., M is a value), or there
exists a closure [Q′, L′,M ′] such that then [Q,L,M] →p [Q′, L′,M ′]. Moreover the total probability of all possible
single-step reduction from [Q,L,M] is 1.

6 Proto-Quipper

Quipper is a programming language for quantum computation (see [19, 7, 8], and [22]). Quipper provides a syntax
to express and manipulate quantum circuits as data. However Quipper is implemented as an embedded program-
ming language and is not type-safe. Proto-Quipper (PQ) is a typed lambda calculus intended as a mathematical
formalization of a fragment of Quipper. In some sense, PQ is an extension of QLC with a circuit-as-data feature
(but without state preparation and measurement). This section follows the Proto-Quipper section in Ross’s Ph.D.
thesis [13].

6.1 Types, terms, and values

Definition 6.1. The types of PQ are defined by

Type A,B ::= > | bit | qubit | A(B | A⊗B | !A | Circ(T,U).

12

[Q,L,N]→p [Q′, L′, N ′]

[Q,L,MN]→p [Q′, L′,MN ′]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L,MV]→p [Q′, L′,M ′V]

[Q,L,M2]→p [Q′, L′,M ′2]

[Q,L, 〈M1,M2〉]→p [Q′, L′, 〈M1,M ′2〉]

[Q,L,M1]→p [Q′, L′,M ′1]

[Q,L, 〈M1, V 〉]→p [Q′, L′, 〈M ′1, V 〉]

[Q,L, P]→p [Q′, L′, P ′]

[Q,L, if P then M else N]→p [Q′, L′, if P ′ then M else N]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L, let 〈x, y〉 = M in N]→p [Q′, L′, let 〈x, y〉 = M ′ in N]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L, let ∗ = M in N]→p [Q′, L′, let ∗ = M ′ in N]

Table 4: Reduction rules: congruence rules

where T,U are quantum data types defined by

T,U ::= > | qubit | T ⊗ U.

All the types except Circ(T,U) are inherited from QLC. In QLC, an element of type qubit is seen as the name
of a qubit in the QRAM. In PQ, it is seen as the name of a wire in a quantum circuit. Elements of quantum data
types are tuples of wire names, and work as the interfaces of circuits. The type Circ(T,U) is the set of all circuits
with input interface of type T and output interface of type U .

Definition 6.2. The terms of PQ are defined by

Terms : M,N,P ::= x | λx.M | MN

| ∗ | 〈M,N〉 | let 〈x, y〉 = M in N | let ∗ = M in N

| 0 | 1 | if P then M else N

| (t, C,M) | rev | unbox | boxT | q

where t is a quantum data term defined by

t, u ::= ∗ | q | 〈t, u〉 .

Here, C ranges over a set C of circuit constants, whose structure is described in more detail below.

The first three lines are inherited from QLC. In the fourth line, we don’t have new,meas and U ’s, since PQ
extends a minimal version of QLC which doesn’t have measurement and state preparation, and also since unitaries
U ’s are replaced by circuit constants C.

A circuit constant C represents a quantum circuit, whose inputs and outputs are labelled by elements of Q. We
assume there exists a constant for every possible quantum circuit. Let FSD(Q) is the set of finite sequences of
distinct elements of Q. Each C is equipped with two sequences In(C), Out(C) ∈ FSD(Q), representing the labels
on the input and output wires of C, respectively.

The intended meaning of the terms in the last line are: In (t, C,M), t is a tuple of quantum names that works
as an interface to the circuit constant C, and M is any term. Our intention is that C is a circuit constant currently
being constructed, and the purpose of M is to add more gate to C.

rev is a function on the set of terms of the form (t, C, t′), which reverses the reversible circuit C, and interchanges
the interfaces t, t′. unbox will be assigned types Circ(T,U) → (T → U), and transforms a quantum circuit to a
corresponding term of function type for future computation. boxT will be assigned types (T → U) → Circ(T,U),
and transforms a term of function type to quantum circuit for future manipulation. It is indexed by a quantum type
T , which will be useful when defining the operational semantics.

13

Definition 6.3. A value of PQ is a term defined by

Value V,W ::= x | λx.M

| ∗ | 〈V,W 〉
| 0 | 1

| (t, C, u) | rev | unbox | boxT | unbox V | q

unbox V is a function waiting for an argument, hence is considered as a value.

6.2 Typing system

The type system of PQ extends the one of QLC by adding types for the new constants and one more typing rule for
the new term introduced.

Remark 6.4. If T,U are quantum data types, then T <: U implies T = U . This is easily shown by induction.
Therefore we do not need a subtyping rule of the form

A <: A′ B <: B′

Circ(A′, B) <: Circ(A,B′)
Circ

Definition 6.5. rev, unbox, and boxT are assigned a series of types indexed by quantum data types (T,U):

Arev =!(Circ(T,U)(Circ(U, T))

Aunbox =!(Circ(T,U)(!(T (U))

AboxT =!(!(T (U)(Circ(T,U))

Definition 6.6. Typing judgements for PQ are the same as for QLC. The typing rules of PQ are inherited from QLC
with a notice that the constant rule axc now applies to the new constants — boxT , unbox, rev, 0, 1 (and new,meas, U
have been removed). We also need a new rule for terms (t, C,M):

!∆;Q1 ` t : T !∆;Q2 `M : U In(C) = Q1 Out(C) = Q2

!∆, ∅ ` (t, C,M) : Circ(T,U)
circ

Note that we see Q1 in a typing judgement as a set by dropping the sequence structure.

6.3 Operational semantics

The reduction rules of PQ are defined on closures [C,M] of a labelled circuit (definitions later) and a term. To define
the reduction rules, we must assume some additional structure on circuit constants, which we now describe.

6.3.1 Circuit constructor

Recall that in Section 1.4, we introduced quantum circuits. Now we add changeable labels to these circuits.

Definition 6.7. Consider the category LC with objects finite sequences of distinct elements from Q, and morphisms
between 〈q1, q2, ..., qn〉 and 〈p1, p2, ..., pn〉 are quantum circuits defined in 1.4 with n inputs and n outputs. We say
that the i-th input wire has label qi, and the j-th output wire has label pj . We call the morphisms labelled quantum
circuits.

• For any object 〈q1, q2, ..., qm〉, there is a unique identity circuit.

• Composition D ◦C is defined by connecting the output wires of C to the input wires of D with the same labels
(only defined when the source of D and target of C are the same).

• Associativity is satisfied since morphisms are quantum circuits.

We use dom and cod as the maps sending a morphism to its domain and codomain.

Example 6.8. For example
...

...U
q1

qn

p1

pn is a labelled quantum circuit. Any quantum circuit with input and

output labelled by quantum names is a labelled quantum circuit.

14

Definition 6.9. A labelled identity circuit such as
...

...
q1

qn

p1

pn is called a renaming (or binding as in Ross’s

thesis [13]). Equivalently, a binding is the unique order-preserving (the sequence order) bijection between two finite
sequences of Q.

Definition 6.10. We define a ‘partial tensor’ on the category LC. If two objects s1, s2 are disjoint (seen as sets),
we define s1 ⊗ s2 as the sequence obtained by appending s2 to s1. The tensor product of two morphisms is just the
tensor product of two labelled quantum circuits.

Definition 6.11. Given two morphisms C,D of LC, if dom(D) ⊂ cod(C) (seen as sets) and cod(D) ∩ (cod(C) \
dom(D)) = ∅ as set, then the ‘partial composition’ D ◦′ C is defined as follows:

• First extend D to D′ such that cod(C) = dom(D′) as sets. Specifically, let r = cod(C)\dom(D) as a set. Make
a sequence −→r from the set r. Let D′ = D ⊗ I−→r , where I−→r is the identity on −→r .

• Then rename cod(C) such that cod(C) = dom(D′) as sequences. The renaming b : cod(C)→ dom(D′), i.e. the
unique order-preserving bijection, will do.

• Finally compose D′ ◦ b ◦ C using the composition of LC.

Example 6.12. The purpose of partial composition D ◦′ C is to append circuit D to C, when dom(D) and cod(C)
are not the same. In this example, r = {q1, q2}, and b is the bijection renaming 〈q1, q2, p3, p4, p5〉 to 〈q1, q2, r3, r4, r5〉

C

D

q1

q2

q3

q4

q5

q1

q2

p3

p4

p5

r3

r4

r5

p3

p4

p5

Definition 6.13. A circuit constructor is the category LC equipped with the partial composition ◦′.

With a circuit constructor, we let C = Obj(LC), In = dom, and Out = cod.

6.3.2 Reduction rules

First we introduce some technical definitions used to transform tuples in lambda calculus to finite sequences in the
circuit constructor, and the other way around.

Definition 6.14. If u is a quantum data term, define Seq(u) to be the unique sequence that forgets the pair structure
and keeps the quantum names and their occurrence order. Equivalently, we can use the following recursive definition:

Seq(〈a, b〉) = Seq(a), Seq(b) (the concatenation of two sequences)

Seq(q) = q (q is a quantum name)

Seq(∗) = ∅ (empty sequence)

Definition 6.15. If T is a quantum data type, define the length of T to be the number of occurrence of type qubit
written as len(T). Equivalently, len(T) is defined by the following recursive definition:

len(T ⊗ U) = len(T) + len(U)

len(qubit) = 1

len(∗) = 0

Definition 6.16. If T is a quantum data type, and s is a sequence of length len(T) with distinct element from Q,
define Term(s, T) to be the unique quantum data term u of type T that keeps the quantum names in s and the
sequence order (i.e. such that Seq(u) = s). Equivalently, we can use the following recursive definition:

Term(s, T ⊗ U) = 〈Term(s1, T), T erm(s2, U)〉
Term(q, qubit) = q (q is a quantum name)

Term(∅,>) = ∗ (the empty pair)

where s1 and s2 are subsequences of length len(T) and len(U) such that s1, s2 = s.

15

Definition 6.17. If two objects r and s in LC are of the same length, define bind(r, s) to be the unique renaming
from r to s. If two quantum data terms u and t are of the same quantum data type, define bind(u, t) to be the
unique renaming from Seq(u) to Seq(t).

Definition 6.18. Any occurrence of a quantum name in a term (t, C,M) is called a bound occurrence (to circuit
C); any other occurrence is called a free occurrence. If M is a term, define FQ(M) to be the set of quantum names
that occur freely in M . If b is a renaming such that dom(b) = {q1, ..., qn} ⊂ FQ(u) as set, the b(u) is a new term
with quantum names renamed

b(u) = u[b(q1)/q1, ..., b(qn)/qn]

Definition 6.19. A circuit closure is a pair [C,M] where

• C is a labelled circuit from the circuit constructor LC.

• M is a lambda term.

Definition 6.20. The one-step reduction relation, written as →, is defined on circuit closures by the rules given in
Table 5, 6, and 7.

The following example illustrates how to do reductions in PQ.

Example 6.21. We assume that the circuit constructor contains the following gate H,S, T, Cnot. Let H ′ =
unbox(p,H, p), S′ = unbox(q, S, q), and Cnot′ = unbox(〈r, t〉 , Cnot, 〈r, t〉). Let F = λz.(let 〈x, y〉 = z in Cnot′ 〈H ′x, S′y〉).

Now consider the closure

[−, boxqubit⊗qubitF]. (1)

where ‘−’ is any circuit. The box rule applies. Pick a sequence s of length len(T) = 2. Say s = 〈q1, q2〉, and then
t = 〈q1, q2〉. Then (1) reduces to

[−, (〈q1, q2〉 ,
q1

q2

q1

q2
, F 〈q1, q2〉)]. (2)

Since F 〈q1, q2〉 is not a value, rule circ applies. We need to reduce the closure

[
q1

q2

q1

q2
, F 〈q1, q2〉)]. (3)

to a value, i.e., the when the term in it is a value. According to the reduction rules, in an application, reduce the
argument first. In a pair, reduce the second component first.

3→ [
q1

q2

q1

q2
, F 〈q1, q2〉)]

→ [
q1

q2

q1

q2
, let 〈x, y〉 = 〈q1, q2〉 in Cnot′ 〈H ′x, S′y〉]

...

→ [
q1

q2

q1

q2
, Cnot′ 〈H ′q1, S

′q2〉]

= [
q1

q2

q1

q2
, Cnot′ 〈H ′q1, unbox(q, S, q)q2〉].

Now, the unbox rule applies. Specifically, C =
q1

q2

q1

q2
, u = q,D = Sq q , u′ = q, V = q2, and b =

bind(V, u) is the renaming from q2 to q. b′ = bind(dom(D), cod(D)) is the renaming from q to q, and b′(u′) = q. So
it reduces by unbox and congruence rule to

16

[C, (λx.M)V]→ [C,M [V/x]]

[C, let 〈x, y〉 = 〈V,W 〉 in M]→ [C,M [V/x,W/y]]

[C, let ∗ = ∗ in N]→ [C,N]

[C, if 0 then M else N)]→ [C,N]

[C, if 1 then M else N)]→ [C,M]

Table 5: Reduction rules: classical control

[C, rev (t,D, t′)]→ [C, (t,D−1, t′)]

[D,M]→ [D′,M ′]

[C, (t,D,M)]→ [C, (t,D′,M ′)]
circ

s ∈ Obj(LC) len(s) = len(T) t = Term(s, T)

[C, boxT (M)]→ [C, (t, Ids,Mt)]
box

b = bind(V, u) b′ = bind(dom(D), cod(D))

[C, (unbox(u,D, u′))V]→ [D ◦′ (b ◦′ C), b′(u′)]
unbox

Table 6: Reduction rules: circuit operations

[
q1

q2 S

q1

q
, Cnot′ 〈H ′q1, q〉]

By repeatedly using unbox and congruence rule, we get

[
q1

q2
Xc

S

H r

s
, 〈r, s〉].

Back to (2), it reduces by circ rule to

[−, (〈q1, q2〉 ,
q1

q2
Xc

S

H r

s
, 〈r, s〉].

6.4 Safety properties

Definition 6.22. We say [C,M] is well-typed of type A, written as [C,M] : A, if ∅;FQ(M) `M : A is a valid typing
judgement.

PQ enjoys the following safety property.

Theorem 6.23 (Subject reduction). Suppose [C,M] : A, and [C,M]→ [C ′,M ′], then [C ′,M ′] : A.

Theorem 6.24 (Progress). Suppose [C,M] : A, then either M is a value, or there exists a closure [C ′,M ′] such that
then [C,M]→ [C ′,M ′].

17

[C,N]→ [C ′, N ′]

[C,MN]→ [C ′,MN ′]

[C,M]→ [C ′,M ′]

[C,MV]→ [C ′,M ′V]

[C,M2]→ [C ′,M ′2]

[C, 〈M1,M2〉]→ [C ′, 〈M1,M ′2〉]

[C,M1]→ [C ′,M ′1]

[C, 〈M1, V 〉]→ [C ′, 〈M ′1, V 〉]

[C,P]→ [C ′, P ′]

[C, if P then M else N]→ [C ′, if P ′ then M else N]

[C,M]→ [C ′,M ′]

[C, let 〈x, y〉 = M in N]→ [C ′, let 〈x, y〉 = M ′ in N]

[C,M]→ [C ′,M ′]

[C, let ∗ = M in N]→ [C ′, let ∗ = M ′ in N]

Table 7: Reduction rules: congruence rules

7 Problems to address

In my thesis research, I plan to address the following problems: extending Proto-Quipper with additional features that
are present in quantum lambda calculus; devising an efficient type inference algorithm for Proto-Quipper; extending
Proto-Quipper with imperative-style features; addressing problems of ancilla mangagement; and investigating the
possible use of dependent types to address the distinction between parameters and state. I will briefly comment on
each of these problems in the following sections.

7.1 Extension of PQ

Proto-Quipper extends a minimal version of quantum lambda calculus. One of the first problems I want to address
is how to incorporate additional features of the quantum lambda calculus in Proto-Quipper, such as coproducts,
recursion, and measurement.

To add measurements to Proto-Quipper, we will take the same approach as in Quipper: we will extend the notion
of quantum circuit to also include classical wires, which hold a classical bit at circuit execution time. Measurement
can then be treated as simply another kind of gate, namely, a gate that inputs a qubit and outputs a classical bit.
It will be given the type meas : qubit→ bit.

Note that there is a difference between the type “bool”, which holds a boolean whose value is known at circuit
generation time, and the type “bit”, which holds a boolean whose value is only known at circuit execution time.
Values that are known at circuit generation time are also called “parameters” (we think of a program as describing
a family of circuits, indexed by parameters). Values that are only known at circuit execution time are called “state”.
The interplay between parameters and state is subtle, and we will revisit it in Section 7.4 below.

Introducing classical bits and measurements into our circuits introduces a further complication: it is no longer
the case that all circuits are reversible. This means that the “rev” operation of Proto-Quipper is no longer totally
defined. In order to retain type-safety, it will therefore be necessary to extend the type system to be aware of the
fact that certain circuits are reversible, while others are not. How best to do this is another open problem that I
hope to address.

7.2 Type inference

Valiron described [20] a type inference algorithm for QLC. The input is an untyped QLC program. The output is
a typing derivation, if it exists, or otherwise failure. Type inference is useful because it is tedious for programmers
to write type annotations. But it is not known whether it can be done efficiently, i.e., in polynomial time. An
interesting open problem is to find efficient type inference algorithm for QLC and/or PQ.

18

7.3 Imperative style

A quantum program typically contains section of code that just describe circuits in a sequential way, e.g.,

let (x, y) = Cnot(x, y) in

let y = Hy in

let (y, x) = subroutine(y, x) in

...

In Quipper, it is possible to use a simpler ‘imperative style’ syntax like this

Cnot(x, y);

Hy;

subroutine(y, x);

...

There is no theoretical foundation for such a syntax yet. It is still a research problem to design one. The problem is
not as simple as it seems. It gets complicated when

• functions produce ‘garbage’ (ancilla qubits to hold intermediate results of the computation).

• function have some imperative and some non-imperative arguments. For example,

let x′ = Cnot(x, y).

• functions are in the body of loops. For example,

let 〈x, 〈y, z〉〉 = loop 100 (λ 〈x, 〈y, z〉〉 .let x = Hx in 〈x, 〈y, z〉〉) 〈x, 〈y, z〉〉 .

It is still a open problem how to do this in a type-safe way.

7.4 Parameter-state distinction

In PQ, we have boxT (M). Note that the annotation T is a quantum data type, which has a fixed length n. So
when we run this program, it will start with an identity circuit on n qubits. In general, we want our programming
language to describe families of circuits, not just single circuits. For example, consider the Fourier transform

QFTn...
...n

2

1

There is a QFT for every size n. It would be natural to define a circuit family as a lambda term

QFT : (n : Nat)(⊗nqubit(⊗nqubit.

But this requires dependent types, i.e., the type ⊗nqubit depends on an earlier input (here n). When talking about
a family of circuits Cn, we say that n is a parameter, and that the circuit family is parameterized by n. Parameters
(such as n) are very different from state (such as qubits) because parameters must be known when a circuit is
generated, whereas state is only known when a circuit is executed. Designing a type system (and semantics) to
distinguish parameters and state is an open problem.

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Sole Distributors for the U.S.A. And
Canada, Elsevier Science Pub. Co., 1984.

[2] A. Church. A set of postulates for the foundation of logic. Annals of mathematics, pages 346–366, 1932.

[3] H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy of Sciences, 20(11):584–
590, 1934.

19

[4] G. Gentzen. Untersuchungen über das logische schließen. i. Mathematische Zeitschrift, 39(1):176–210, 1935.

[5] G. Gentzen. Untersuchungen über das logische schließen. ii. Mathematische Zeitschrift, 39(1):405–431, 1935.

[6] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types, volume 7. Cambridge University Press Cambridge,
1989.

[7] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. An introduction to quantum programming
in quipper. CoRR, abs/1304.5485, 2013.

[8] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: A scalable quantum programming
language. CoRR, abs/1304.3390, 2013.

[9] W. A. Howard. The formulae-as-types notion of construction. 1995.

[10] A. Joyal and R. Street. The geometry of tensor calculus, i. Advances in Mathematics, 88(1):55–112, 1991.

[11] E. Knill. Conventions for quantum pseudocode. Technical report, Citeseer, 1996.

[12] D. Prawitz. Natural Deduction: A Proof-theoretical Study. Dover books on mathematics. Dover Publications,
2006.

[13] N. J. Ross. Algebraic and logical methods in quantum computation. arXiv preprint arXiv:1510.02198, 2015.

[14] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. In Proceedings of
the 7th International Conference on Typed Lambda Calculi and Applications, TLCA 2005, Nara, Japan, volume
3461 of Lecture Notes in Computer Science, pages 354–368. Springer, 2005.

[15] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. Mathematical
Structures in Computer Science, 16(3):527–552, 2006.

[16] P. Selinger and B. Valiron. A linear-non-linear model for a computational call-by-value lambda calculus. In Pro-
ceedings of the 11th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2008, Budapest, volume 4962 of Lecture Notes in Computer Science, pages 81–96. Springer, 2008.

[17] P. Selinger and B. Valiron. On a fully abstract model for a quantum linear functional language. Electronic Notes
in Theoretical Computer Science, 210:123–137, 2008.

[18] P. Selinger, B. Valiron, et al. Quantum lambda calculus. Semantic Techniques in Quantum Computation, pages
135–172, 2009.

[19] J. M. Smith, N. J. Ross, P. Selinger, and B. Valiron. Quipper: Concrete resource estimation in quantum
algorithms. CoRR, abs/1412.0625, 2014.

[20] B. Valiron. A functional programming language for quantum computation with classical control. PhD thesis,
University of Ottawa (Canada), 2004.

[21] B. Valiron. Semantics for a higher order functional programming language for quantum computation. PhD
thesis, University of Ottawa, 2008.

[22] B. Valiron, N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith. Programming the quantum future.
Communications of the ACM, 58(8):52–61, 2015.

20

	Quantum computing
	Some facts about Hilbert spaces, operator, and tensor product
	Mathematical framework
	QRAM model
	Quantum circuit

	Lambda calculus
	The untyped lambda calculus
	Lambda terms
	Alpha equivalence
	Beta reduction

	The simply typed lambda calculus

	The Curry-Howard Correspondence
	Intuitionistic propositional logic
	Proofs as terms

	Intuitionistic propositional linear logic
	Quantum Lambda Calculus
	Types, terms, and values
	Type system
	Subtyping rules
	Typing rules

	Operational semantics
	Safety properties

	Proto-Quipper
	Types, terms, and values
	Typing system
	Operational semantics
	Circuit constructor
	Reduction rules

	Safety properties

	Problems to address
	Extension of PQ
	Type inference
	Imperative style
	Parameter-state distinction

