
AARMS 5910: q-SERIES IN ANALYSIS

HEESUNG YANG

Abstract. We will develop the theory of combinatorial and analytic identities, summation
theorems, and related topics through analytic and combinatorial techniques. The combina-
torics involves counting subspaces and mapping vector spaces over finite fields, and parti-
tioning theoretic identities of number theory. The Möbius function on partially ordered sets
will also be mentioned.

We will pay special attention to identities like the Rogers-Ramanujan identities and their
various generalizations in some detail. A central piece of the analytic development is the
Askey–Wilson integral and its generalizations.

Over all the course will be a bridge between analysis and discrete mathematics through
the use of combinatorial and analytic tools. The treatment we propose is very conceptual
and is a major improvement over the earlier approaches.

The classical approach to q-series is available in [AAR99] and [GR04]. One classic refer-
ence on partitions and number theory is [And98].

The lectures will be based on the lecture notes [IS]. A copy of these notes will be made
available to the students in the class.
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1. Introduction to q-series

We shall define a few notations that will be used throughout this course.

Definition 1.1. The q-Pochhammer symbol or the q-shifted factorial is defined by

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

More generally, we shall define

(a1, . . . , ak; q)n :=
k∏
j=1

(aj; q)n

and
(q; q)n

(1− q)n
=

(1− q)(1− q2) · · · (1− qn)

(1− q)n
.

Remark. Observe that

lim
q→1−

(q; q)n
(1− q)n

= lim
q→1−

(1− q)(1− q2) · · · (1− qn)

(1− q)n

= lim
q→1−

n∏
k=1

1− qk

1− q
= lim

q→1−

n∏
k=1

(1 + q + q2 + · · ·+ qk−1) = n!.

We also have the q-analogue of the binomial coefficients and the gamma function.

Definition 1.2. The q-gamma function is defined by

Γq(x) :=
(1− q)1−x(q; q)∞

(qx; q)∞
= (1− q)1−x

∞∏
n=0

1− qn+1

1− qn+x
,

provided that |q| < 1. The q-binomial coefficient is defined by[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

Remark. We have

Γq(x+ 1)

Γq(x)
=

(1− q)−x

(1− q)1−x
· (qx; q)∞

(qx+1; q)∞

=
(1− qx)(1− qx+1) · · ·
(1− q)(1− qx+1) · · ·

=
1− qx

1− q
.
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2. q-Taylor series

Let f(z) be a function; recall that the Taylor series centred at x = a is of the form

f(z) =
∞∑
n=0

an(z − a)n.

We want some analogue of the q-series. To do so we need a reliable way to compute the
coefficients (the counterparts of an) and a reliable basis (i.e., the counterparts of (x−a), (x−
a)2, . . . ). Recall that the standard basis of any Taylor series centred at x = a satisfies a few
properties:

(1) If we let z = a, then only the constant term remains, namely f(a).
(2) The term-by-term differentiation lowers the degree of each term by 1.

Our goal of this section is to define the q-analogue of the classic differential operator, find
a desirable basis with respect to this q-differential operator (known as the Askey–Wilson
divided difference operator, which will be defined in the next section), and justify that a
basis we chose (known as the Askey–Wilson basis) does have the properties we want it to
hold.

2.1. q-difference operators

We start with the difference operator that F. H. Jackson came up with in 1906.

Definition 2.1. Dq is the (Jackson) q-difference operator which is defined by

Dqf(x) :=
f(x)− f(qx)

x− qx
.

But this is not the type of operator we will mainly use.
To motivate the new definition, think of the following problem. Suppose we want to write

cosnθ in terms of cos θ – in other words, what is f such that cosnθ = f(cos θ)? Note that
cos 2θ = 2 cos2 θ − 1, so in this case we have f(x) = 2x2 − 1. As for the bigger n’s, we can
use de Moivre’s theorem to find some polynomial Tn such that Tn(cos θ) = cosnθ. Similarly,
one can find another polynomial Un(x) that satisfies

sin(n+ 1)θ

sin θ
= Un(cos θ).

This gives rise to the Chebyshev polynomials.

Definition 2.2. Tn is the Chebyshev polynomial of the first kind ; Un is called the Chebyshev
polynomial of the second kind.

What are the relationships between the two kinds of Chebyshev polynomials? Differenti-
ating Tn(x) where x = cos θ yields

dTn(x)

dx
=
−n sin(nθ)

− sin θ
= nUn−1(x).

Suppose z = eiθ. Then since x = cos θ, we have x = 1
2
(z + 1

z
), and by a change of variables,

there is some f̆ such that f(x) = f̆(z). Now we are ready to define another type of difference
operators.
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Definition 2.3. Define Dq (called the Askey–Wilson divided difference operator) by

Dqf(x) =
f̆(q1/2z)− f̆(q−1/2z)

ĭd(q1/2z)− ĭd(q−1/2z)
,

where id(x) = x and ĭd(z) = 1
2
(z + 1

z
). Note that we can simplify the denominator:

ĭd(q1/2z)− ĭd(q−1/2z) =
1

2
(q1/2z + q−1/2z)− 1

2
(q−1/2z + q1/2z)

=
1

2
(q1/2 − q−1/2)

(
z − 1

z

)
.

Thus we have

Dqf(z) =
f̆(q1/2z)− f̆(q−1/2z)
1
2
(q1/2 − q−1/2)(z − 1

z
)
.

Let’s go back to the Tn(x). Indeed, we have Tn(x) = T̆n(z) = (zn + z−n)/2, so

DqTn(x) =
1
2
(zn − z−n)(qn/2 − q−n/2)
1
2
(z − z−1)(q1/2 − q−1/2)

=
qn/2 − q−n/2

q1/2 − q−1/2

(
i(zn − z−n)/(2i)

i(z − z−1)/(2i)

)
=
qn/2 − q−n/2

q1/2 − q−1/2

(
i(sinnθ)

i(sin θ)

)
=
qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x).

Therefore, it follows that

lim
q→1−

DqTn(x) = lim
q→1−

qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x)

= lim
q→1−

(q1/2 − q−1/2)(q(n−1)/2 + q(n−2)/2q−1/2 + · · ·+ q−(n−1)/2)

q1/2 − q−1/2
Un−1(x)

= lim
q→1−

(q(n−1)/2 + q(n−2)/2q−1/2 + · · ·+ q−(n−1)/2)Un−1(x)

= nUn−1(x) =
d

dx
Tn(x).

But since {T0(x), T1(x), . . . } forms a basis of the vector space of polynomials (note that
deg Tn(x) = n), we have

lim
q→1−

Dqf(x) =
d

dx
f(x)

for any polynomial f(x).

2.2. Askey–Wilson basis

Now we shall introduce a new basis (the q-counterpart of (x− a)n) for the q-Taylor poly-
nomials.

Definition 2.4. For x = cos θ and z = eiθ, define

φn(x; a) = (az, az−1; q)n =
n−1∏
k=0

(1− qkaz)

(
1− qka

z

)
=

n−1∏
k=0

(1− 2xaqk + a2q2k),
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with the last equality following from the fact that z+z−1 = 2x. (Just expand (1− qkaz)(1−
qkaz−1), and use z + z−1 = 2x.) The φn(x; a) are called the Askey–Wilson basis.

Upon applying the Askey-Wilson operator to this polynomial, we see

Dqφn(x; a) =
(aq

1
2 z, aq−

1
2 z−1; q)n − (aq−

1
2 z, aq

1
2 z−1; q)n

(q
1
2 − q− 1

2 )
(
z − 1

z

)
1
2

=
(aq

1
2 z, aq

1
2 z−1; q)n−1[(1− azqn−

1
2 )(1− aq− 1

2 z−1)− (1− az−1qn− 1
2 )(1− aq− 1

2 z)]

(q
1
2 − q− 1

2 )
(
z − 1

z

)
1
2

=
φn−1(x; aq

1
2 )
[
−aqn− 1

2

(
z − 1

z

)
+ aq−

1
2 (z − 1

z
)
]

(q
1
2 − q− 1

2 )
(
z − 1

z

)
1
2

=
2aq−

1
2φn−1(x; aq

1
2 )(−qn + 1)

(q
1
2 − q− 1

2 )
= −2

1− qn

1− q
aφn−1(x; aq

1
2 ).

Therefore, we see that Dq does what we expect it to do to φn(x; a), namely giving us some
q-multiple of the Askey–Wilson basis of degree n− 1. Furthermore, we have

lim
q→1−

φn(x; a) =
n−1∏
k=0

(1− 2xa+ a2) = (1− 2ax+ a2)n = (−2a)n
(
x− a2 + 1

2a

)n
,

a variant of the classical Taylor basis polynomial centred at (a2 + 1)/(2a). We finish this
section by formally stating what Dq does to the Askey–Wilson basis.

Theorem 2.1. The action of the Askey–Wilson divided difference operator on the Askey–
Wilson basis is given by

Dqφn(x; a) = −2a(1− qn)

1− q
φn−1(x; aq

1
2 ).

Therefore, more generally, the k-th Askey–Wilson derivative of the Askey–Wilson basis is
given by

Dkqφn(x; a) =

(
−2a(1− qn)

1− q

)(
−2aq

1
2 (1− qn−1)
1− q

)
· · ·

(
−2aq

k−1
2 (1− qn−k+1)

1− q

)
φn−k(x; aq

k
2 )

=
(2a)kq(0+1+···+(k−1))/2

(q − 1)k
· (q; q)n

(q; q)n−k
φn−k(x; aq

k
2 ) =

(2a)kq
k(k−1)

4 (q; q)n
(q − 1)k(q; q)n−k

φn−k(x; aq
k
2 ).

2.3. q-Taylor series for polynomials

Now that we found a workable basis in the previous section, we are only left with finding
the coefficient for each of the φn(x; a). That is, if f(x) is a polynomial, then we want to find
the appropriate fk so that we have

f(x) =
n∑
k=0

fkφk(x; a).

Let’s take a brief detour to the classical case. Any Taylor polynomial of degree n of f(x)
centred at x = a gives us the constant, namely f(a) when x = a, i.e., when the classical
Taylor basis elements are all zero, and the coefficient of xk is determined by the values of
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f (k)(a). Thus, it is natural to consider for which xk we have φk(xk; a) = 0. Furthermore, we
would expect Dkqf(xk) to show up in fk in some way.

Recall also that if f(x) =
∑
fk(x − a)k is the Taylor series of f(x) centred at x = a, we

can find fk by differentiation:

dj

dxj
f(x) = j!fj +

∞∑
k=j+1

fk[k]j(x− a)k−j,

where [k]j := (k)(k−1) · · · (k− j+ 1) is the falling factorial. In the classical case, it happens
that plugging in x = a uniformly cancels out everything except for j!fj, so indeed we have

dj

dxj
f(a) = j!fj.

However, in the Askey–Wilson case, we need to choose the x value carefully depending on the
degree of the Askey–Wilson basis, as we will see shortly, one of the key differences between
the classical case and the q-analogue case.

For a polynomial f(x), let

f(x) =
n∑
j=0

fkφk(x; a),

and compute the k-th Askey–Wilson derivative, i.e.,

Dkqf(x) =
n∑
j=0

Dkqfjφj(x; a)

=
n∑
j=k

fj
(2a)kqk(k−1)/4(q; q)n

(q − 1)k(q; q)n−k
φj−k(x; aq

k
2 )

= fk
(2a)kqk(k−1)/4(q; q)n

(q − 1)k(q; q)n−k
+

n∑
j=k+1

fj
(2a)kqk(k−1)/4(q; q)n

(q − 1)k(q; q)n−k
φj−k(x; aq

k
2 ). (2.1)

Similar to the classical case, upon substituting x with some appropriate value, we want only

the constant term to remain. To do so, we need to find xk so that φj−k(x; aq
k
2 ) = 0. If

j = k + 1, then we obtain the equation

1− 2aq
k
2x+ a2qk = 0,

so we have

x =
1

2

(
aq

k
2 +

1

aq
k
2

)
=: xk.

We claim that this xk also satisfies φj−k(xk; aq
k
2 ) = 0 for all j > k. Indeed, we have

φj−k(xk; aq
k
2 ) =

j−k−1∏
m=0

(1− 2xkaq
k
2
+m + a2qk+2m)

=

j−k−1∏
m=0

(1− a2qk+m − qm + a2qk+2m)
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=

j−k−1∏
m=0

(1− qm)(1− a2qk+m),

which is clearly equal to 0 as 1− qm = 0 when m = 0. Thus if x = xk, (2.1) becomes

Dkqf(xk) = fk
(2a)kqk(k−1)/4(q; q)n

(q − 1)k(q; q)n−k
,

so it follows that

fk =
(q − 1)kq−k(k−1)/4(q; q)n−k

(2a)k(q; q)n
Dkqf(xk) =

(q − 1)kq−k(k−1)/4

(2a)k(q; q)k
Dkqf(xk).

Our work gives the following theorem, which we formally state.

Theorem 2.2. Let x = cos θ. Then for any polynomial f(x), we have

f(x) =
∑

fkφk(x; a),

where

fk :=
(q − 1)kq−k(k−1)/4

(2a)k(q; q)k
Dkqf(xk)

and

xk :=
1

2

(
aq

k
2 +

1

aq
k
2

)
.

We finish by noting that the Askey–Wilson basis as one possible Taylor basis for the
q-analogue. Now we introduce two new basis, both discovered by Ismail and Stanton (as
always, x = cos θ and z = eiθ).

φn(x) = (q1/4z, q1/4z; q1/2)n

ρn(x) = (1 + e2iθ)e−inθ(−q2−ne2iθ; q2)n−1
ρ0(x) = 1.

For the sake of completeness, we will state the q-Taylor theorems for the two Ismail–Stanton
basis without proof.

Theorem 2.3. If {φn(x)} and {ρn(x)} are the Ismail–Stanton bases as defined above, then
the Askey–Wilson difference operator acts on these bases in the following manner.

Dqφn(x) = −2q1/4
1− qn

1− q
φn−1(x),

Dqρn(x) = 2q(1−n)/2
1− qn

1− q
ρn−1(x).

Theorem 2.4. Suppose that f is a polynomial of degree n, and let ζ0 := 1
2
(q1/4 + q−1/4), and

let fk(φ) (resp. fk(ρ)) be the corresponding coefficient for φk(x) (resp. ρk(x) in the q-Taylor
series of f with respect to {φn(x)} (resp. {ρn(x)}). Then we have

fk(φ) =
(q − 1)kq−k/4

2k(q; q)k
(Dkqf)(ζ0)

fk(ρ) =
(1− q)kqk(k−1)/4

2k(q; q)k
(Dkqf)(0).
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3. q-Hypergeometric functions and q-summation theorems (Analysis)

3.1. q-hypergeometric functions

In the previous section, we established that the Askey–Wilson operator, and that the
Askey–Wilson basis behaves in a way that the classical Taylor basis counterpart (i.e., (x −
a), (x−a)2, . . . ) with respect to the Askey–Wilson operator. Now we present some examples
of the q-Taylor series for polynomials. Before presenting the example, we will introduce a
notation that will be used throughout this section and this lecture note.

Definition 3.1. The q-hypergeometric function is defined by

rφs

(
a1, a2, · · · , ar
b1, b2, · · · , bs

∣∣∣∣ q, z) = rφs(a1, . . . , ar; b1, . . . , bs; q, z)

:=
∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

zn
(
−q(

n
2)
)s−r+1

.

The generalized hypergeometric function is defined by

rFs

(
a1, . . . ar
b1, . . . , bs

∣∣∣∣ z) :=
∞∑
n=0

(a1, . . . , ar)n
(1, b1, . . . , bs)n

zn,

where (a1, . . . , ar)n denotes the multi-shifted factorial, i.e.,

(a1, . . . , ar)n :=
n∏
j=1

(aj)n =
n∏
j=1

aj(aj + 1) · · · (aj + n− 1).

If n = 0, then (a)0 := 1.

Remark. If one of the numerator parameters is of the form q−k, then the infinite sum in the
definition of the q-hypergeometric function terminates at k.

3.2. q-summation theorems

Let f(x) = φn(x; b), and we want to find the q-Taylor series for f(x) centred at a. Indeed,
we have

Dqφn(x; b) = −2b(1− qk)
1− q

φn−1(x; bq
1
2 ).

So in general, we have, by virtue of Theorem 2.1,

Dkqφn(x; b) =
(2b)k(1− q)n · · · (1− qn−k+1)q

k(k−1)
4

(q − 1)k
φn−k(x; bq

k
2 )

∴ Dkqφn(xk; b) =
(2b)k(1− q)n · · · (1− q)n−k+1q

k(k−1)
4

(q − 1)k

(
bqk/2aqk/2,

bqk/2

aqk/2
; q

)
n−k

=
(2b)k(1− qn) · · · (1− qn−k+1)q

k(k−1)
4

(q − 1)k

(
abqk,

b

a
; q

)
n−k

,

so by Theorem 2.2, it we have

fk =
(q; q)n

(q; q)n−k(q; q)k

(
b

a

)k (
abqk,

b

a
; q

)
n−k

.
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On the other hand,

(bz, b/z; q)n =
n∑
k=0

[
n
k

]
q

(
b

a

)k ( b
a
; q
)
n−k (ab; q)n

(ab; q)k

(
az,

a

z
; q
)
k

= (ab; q)n(q; q)n

n∑
k=0

(b/a)k

(ab, q; q)k
·
(
b
a
; q
)
n−k

(q; q)n−k

(
az,

a

z
; q
)
k

∗
=

n∑
k=0

(ab, q; q)n( b
a
; q)n

(q; q)n(q, ab; q)k
· (q−n; q)k(

q1−na
b

; q
)
k

(qa
b

)k ( b
a

)k (
az,

a

z
; q
)
k

= 3φ2

(
q−n, az, a

z

ab, q
1−na
b

∣∣∣∣ q, q)(ab; q)n

(
b

a
; q

)
n

.

(†)

with the
∗
= following from the identity

(a; q)n−k
(b; q)n−k

=
(a; q)n

(
q1−n

b
; q
)
k

(b; q)n

(
q1−n

a
; q
)
k

(
b

a

)k
.

Our work above gives rise to the following theorem.

Theorem 3.1 (q-Pfaff-Saalschütz theorem). For cd = abq1−n,

3φ2

(
q−n, a, b

c, d

∣∣∣∣ q, q) =
(d/a, d/b; q)n
(d, d/(ab); q)n

.

Definition 3.2. We say f(z) is analytic at z0 if f is differentiable for all z ∈ Br(z0) for some
r > 0.

Proposition 3.1. If f is analytic at z0, then all of its derivatives are also analytic at z0.
Furthermore, f can be expressed in the Taylor series for all z ∈ Br(z0), i.e., there exist
coefficients fk so that

f(x) =
∞∑
k=0

fk(z − z0)k

for all z ∈ Br(z0).

Definition 3.3. The points where f is not analytic are called singularities.

Example. Consider the following function

f(z) = 2φ1

(
a, b

c

∣∣∣∣ q, z) =
∞∑
n=0

anz
n

where

an :=
(a; q)n(b; q)n
(c; q)n(q; q)n

.

We see that as long as |z| < 1, the series converges, making it analytic, since

lim
n→∞

an+1

an
= lim

n→∞

(a; q)n+1(b; q)n+1

(c; q)n+1(q; q)n+1

(c; q)n(q; q)n
(a; q)n(b; q)n
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= lim
n→∞

(1− aqn)(1− bqn)

(1− cqn)(1− qn+1)
= 1.

So for any |z| < 1,

(1− z)f(z) =
∞∑
n=0

anz
n −

∞∑
n=0

anz
n+1

= a0 +
∞∑
n=0

an+1z
n+1 −

∞∑
n=0

anz
n+1

= a0 +
∞∑
n=0

zn+1(an+1 − an)

= a0 +
∞∑
n=0

zn+1 (a; q)n(b; q)n
(c; q)n+1(q; q)n+1

[
(1− aq)n(1− bqn)− (1− cqn)(1− qn+1)

]
.

But we can further simplify upon recognizing that

(1− aqn)(1− bqn)− (1− cqn)(1− qn+1) = qn(−a− b+ c+ q) + q2n(ab− cq),
which yields

(1− z)f(z) = a0 + z
∞∑
n=0

znqnCn,

where

Cn :=
(a; q)n(b; q)n

(c; q)n+1(q; q)n+1

[(−a− b+ c+ q) + qn(ab− cq)]

which we know is bounded. This shows that (1− z)f(z) is analytic for |qz| < 1.

The example above proves the following theorem.

Theorem 3.2. (c; q)∞(z; q)∞ 2φ1

(
a, b

c

∣∣∣∣ q, z) is analytic for all c and all z ∈ C except for

the point at infinity.

Theorem 3.3 (q-Chu-Vandermonde sum).

2φ1

(
q−n, a

c

∣∣∣∣ q, q) =
(c/a; q)n
(c; q)n

an.

Proof. Start with the expression from Theorem 3.1. Letting b→ 0 gives

2φ1

(
q−n, a

c

∣∣∣∣ q, q) = lim
b→0

(c/a; q)n
(c; q)n

(b− c)(b− qc) · · ·(
b− c

a

) (
b− c

a
q
)
· · ·

=
(c/a; q)n
(c; q)n

an. �

Recall that we can exchange the limit operator and the summand, i.e.,

lim
n→∞

n∑
k=0

fk(n) =
∞∑
k=0

lim
n→∞

fk(n)

only under certain circumstances, and the following theorem illustrates when we are permit-
ted to do so.

10



Theorem 3.4 (Tannery’s theorem). Suppose {fk(z, n)}n is a sequence such that fk(z, n)→
fk(z) as n→∞. If |fk(z, n)| ≤Mk for some Mk, and

∑
Mk <∞, then

lim
n→∞

n∑
k=0

fk(z, n) =
∞∑
k=0

fk(z).

With this in mind, we will prove the q-analogue of the Gauss summation theorem (also
known as the Gauss hypergeometric theorem).

Theorem 3.5 (q-Gauss summation theorem). Provided |c/(ab)| < 1, we have

2φ1

(
a, b

c

∣∣∣∣ q, cab
)

=
(c/a, c/b; q)∞
(c, c/(ab); q)∞

.

Proof. To prove this, we will compute the limit as n → ∞ in 3φ2 from Theorem 3.1. Note
that such operation (taking the limit inside the summation) is justified by Tannery’s theorem
since (a, b; q)k/(q, c; q)k is bounded for all |q| < 1.

(q−n; q)k
(q1−n(ab)/c; q)k

=
(1− q−n) · · · (1− q−n+k−1)

(1− ab
c
q1−n) · · · (1− ab

c
q1−n+k−1)

=
qk(k−1)/2ck

(ab)kqk(k+1)/2
· (1− qn) · · · (1− qn−k)

(1− c
ab
qn−1) · · · (1− c

ab
qn−k)

=
( c
ab

)k 1

qk
(q; q)n

(q; q)n−k

( c
ab

; q)n−k

( c
ab

; q)n
→
(

c

abq

)k
· 1,

as n→∞. Hence, as n→∞ we get

∞∑
k=0

(a; q)k(b; q)k
(c; q)k(q; q)k

( c
ab

)
=

(c/a; q)∞(c/b; q)∞
(c; q)∞(c/(ab); q)∞

. �

From this, the classical Gauss summation theorem readily follows.

Corollary 3.1 (Gauss summation theorem). For all Re(C − A−B) > 0,

2F1

(
A,B

C

∣∣∣∣ 1

)
=

Γ(C)Γ(C − A−B)

Γ(C − A)Γ(C −B)
,

Proof. Let a, b, and c be as they appear from Theorem 3.5. let a = qA, b = qB, c = qC . Then
Theorem 3.5 becomes

2φ1

(
qA, qB

qC

∣∣∣∣ q, qC−A−B) =
(qC−A, qC−B; q)∞
(qC , qC−A−B; q)∞

=

(
(q; q)∞

(qC ; q)∞

)(
(q; q)∞

(qC−A−B; q)∞

)(
(qC−A; q)∞

(q; q)∞

)(
(qC−B; q)∞

(q; q)∞

)
× (1− q)1−C(1− q)1−C+A+B

(1− q)1−C+A(1− q)1−C+B

=
Γq(C)Γq(C − A−B)

Γq(C − A)Γq(C −B)
.

11



Also, note that q → 1− gives:

(a; q)k
(1− q)k

=
1− qA

1− q
1− qA−1

1− q
· · · 1− q

A+k−1

1− q
→ A(A+ 1) · · · (A+ k − 1).

Hence the limit is
∞∑
k=0

A(A+ 1) · · · (A+ k − 1)B(B + 1) · · · (B + k − 1)

C(C + 1) · · · (C + k − 1)k!
1k = 2F1

(
A,B

C

∣∣∣∣ 1

)
.

Furthermore, Γq(z)→ Γ(z) as q → 1−, so indeed it follows that

2F1

(
A,B

C

∣∣∣∣ 1

)
=

Γ(C)Γ(C − A−B)

Γ(C − A)Γ(C −B)
. �

Corollary 3.2. If |z| < 1 or a = q−n, then

1φ0

(
a

·

∣∣∣∣ q, x) =
(ax; q)∞
(x; q)∞

=
∞∑
k=0

(a; q)k
(q; q)k

xk,

where |x| < 1.

Proof. Write c = abx in Theorem 3.5, and then let b→ 0. The second equality follows from
the general q-binomial theorem. �

We finish with the following summation theorem proved by Ismail and Stanton. Since the
proof involves the Ismail–Stanton φ-basis, the proof is beyond the scope of this lecture note.

Theorem 3.6.
(az, a/z; q2)n
(aq−1/2; q)2n

= 4φ3

(
q−n,−q−n, q1/2z, q1/2z

−q, aq−1/2, −q
2n+3

2

a

∣∣∣∣ q, q).

3.3. Sears transformation and special cases due to Euler

Theorem 3.7 (Sears transformation).

(ab, ac, ad; q)n
an

4φ3

(
q−n, qn−1abcd, az, a

z

ab, ac, ad

∣∣∣∣q, q) =
(ba, bc, bd; q)n

bn
4φ3

(
q−n, qn−1abcd, bz, b

z

ba, bc, bd

∣∣∣∣q, q)
Proof. From (†) we have

(bz, b/z; q)m
(q; q)m

=
m−1∑
k=0

bk

ak
(az, a/z; q)k(abq

k, b/a; q)m−k
(q; q)k(q; q)m−k

But since (abqk; q)m−k = (ab; q)m/(ab; q)k, we have

4φ3

(
q−n, abcdqn−1, bz, b/z

ab, ac, ad

∣∣∣∣ q, q) =
∑

n≥m≥k≥0

(q−n, abcdqn−1; q)mq
m

(q, ab; q)k(ac, ad; q)m

bk

ak
.

Now change the variable from m to m+ k. Now the RHS of the above can be re-written as
follows. ∑

m

bk

ak
· (q−n, abcdqn−1; q)k

(q, ab, bc, ad; q)k
qk
∑
k

(q−n+k, abcdqn−1; q)m(b/a; q)m
(qkbc, qkbd, q; q)m

qm,

12



which is equal to

3φ2

(
q−n+k, abcdqn−k−1, b/a

qkbc, qkbd

∣∣∣∣ q, q).
The claim follows upon noting that, indeed

b

a
q−n+k+1abcdqn+k−1 = qkbcqkbd. �

Now we present a few special cases from Euler.

Theorem 3.8 (Euler). eq(x) :=
∞∑
n=0

xn

(q; q)n
=

1

(x; q)∞
.

Proof. Start with Theorem 3.7, and apply a = 0. �

Theorem 3.9 (Euler). Eq(z) := (−z; q)∞ = lim
a→∞

∞∑
n=0

(a; q)n
(q; q)n

zn

an
=
∞∑
n=0

zn

(q; q)n
q(

n
2)

Proof. Let x = −z/a, and let a→∞ as it appears from Theorem 3.7.

lim
a→∞

∞∑
n=0

(1− a)(1− aq) · · · (1− aqn−1)
(q; q)n

(−z)n

qan
=
∑
n

zn

(q; q)n
q(

n
2). �

Corollary 3.3. lim
q→1−

eq((1− q)x) = ex and lim
q→1−

Eq((1− q)x) = ex.

4. Ramanujan 1ψ1 sum

The main goal in this section is to evaluate the Ramanujan 1ψ1 sum. Before stating
Ramanujan’s theorem, we first define mψm.

Definition 4.1. A bilateral hypergeometric function is defined by

mψm

(
a1, . . . , am
b1, . . . , bm

∣∣∣∣ q, z) :=
∞∑

n=−∞

(a1, . . . , am; q)n
(b1, . . . , bm; q)n

zn.

We also recall one more theorem from complex analysis that we will need in the final
step of the theorem. Recall that for the notion of analyticity and holomorphicity coincide in
complex analysis.

Theorem 4.1 (Identity theorem for holomorphic functions). Assume that f and g are ana-
lytic on a domain D, and {zn} is a sequence that converges to a ∈ D. If f(zn) = g(zn), then
f ≡ g for all points in D.

Now we state our main theorem.

Theorem 4.2 (Ramanujan 1ψ1 sum). Suppose |b/a| < |z| < 1. Then we have

1ψ1

(
a

b

∣∣∣∣ q, z) =
∞∑

n=−∞

(a; q)n
(b; q)n

zn =
(b/a, q, q/(az), az; q)∞
(b, b/(az), q/a, z; q)∞

.

The following proof was given by Ismail in [Ism77].
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Proof. Recall that, for any n > 0,

(c; q)−n =
1

(cq−n; q)n
. (4.1)

This observation will come handy in proving Theorem 4.2. As a function of b, (b; q)n is
analytic in b provided that |b| < 1 and n ≥ 0. (b; q)n is also analytic when n < 0. Also, note

that 1ψ1

(
a

b

∣∣∣∣ q, z) is analytic as a function of b for |b| < |az|. Indeed, by our observation

(4.1), we can rewrite the given Ramanujan 1ψ1 sum as follows.

1ψ1

(
a

b

∣∣∣∣ q, z) =
−1∑

n=−∞

(a; q)n
(b; q)n

zn +
∞∑
n=0

(a; q)n
(b; q)n

zn

=
∞∑
n=1

(bq−n; q)n
(aq−n; q)n

(
1

z

)n
+
∞∑
n=0

(a; q)n
(b; q)n

zn

=
∞∑
n=1

(1− bq−n) · · · (1− bq−1)
(1− aq−n) · · · (1− aq−1)

(
1

z

)n
+
∞∑
n=0

(a; q)n
(b; q)n

zn

=
∞∑
n=1

(b−1 − q−n) · · · (b−1 − q−1)
(a−1 − q−n) · · · (a−1 − q−1)

(
b

az

)n
+
∞∑
n=0

(a; q)n
(b; q)n

zn.

But since

b−1 − q−k = −q−k(1− qkb−1),
we have

(b−1 − q−n) · · · (b−1 − q−1)
(a−1 − q−n) · · · (a−1 − q−1)

=
(−1)nq−(n+1

2 )(1− b−1qn) · · · (1− b−1q)
(−1)nq−(n+1

2 )(1− a−1qn) · · · (1− a−1q)
=

(qb−1; q)n
(qa−1; q)n

.

Thus all in all, we have

1ψ1

(
a

b

∣∣∣∣ q, z) =
∞∑
n=1

(qb−1; q)n
(qa−1; q)n

(
b

az

)n
+
∞∑
n=0

(a; q)n
(b; q)n

zn,

so indeed we need |b| < |az| and |b| < 1 in order for the sum to be analytic.
If we let b = qm+1 for m = 0, 1, 2, . . . , then for n > 0 we have

1

(b; q)−n
= (bq−n; q)n = (qm+1−n; q)n = (1− qm+1−n) · · · (1− qm),

so if n > m then the product is always 0. So it follows that
∞∑

n=−∞

(a; q)n
(qm+1; q)n

zn =
∞∑

n=−m

(a; q)n
(qm+1; q)n

zn =
∞∑
k=0

(a; q)−m+k

(qm+1; q)−m+k

z−m+k.

with the last equality following by letting n = −m + k. Since (λ; q)j+s = (λ; q)j(λq
j; q)s for

all j and s, we now have
∞∑
k=0

(a; q)−m+k

(qm+1; q)−m+k

z−m+k =
(a; q)−m

(qm+1; q)−m
z−m

∞∑
k=0

(aq−m; q)k
(q; q)k

zk

14



= z−m
(a; q)−m

(qm+1; q)−m
· (aq−mz; q)∞

(z; q)∞
(by the q-binomial theorem)

=
z−m(a; q)−m
(qm+1; q)−m

(aq−mz; q)m
(z; q)∞

(az; q)∞

= z−m
(q; q)m(azq−m; q)m
(q−ma; q)m(z; q)∞

(az; q)∞.

Note that

(azq−m; q)m
(aq−m; q)m

=
(1− azq−m) · · · (1− azq−1)
(1− aq−m) · · · (1− aq−1)

= zm
(1− q

az
)(1− q2

az
) · · · (1− qm

az
)

(1− q
a
) · · · (1− qm

az
)

= zm
( q
az

; q)∞( q
m+1

a
; q)∞

( q
m+1

az
; q)∞( q

a
; q)∞

,

so

z−m
(q; q)m(azq−m; q)m
(q−ma; q)m(z; q)∞

(az; q)∞ =
( q
az

; q)∞( b
a
; q)∞

( q
a
, b
az

; q)∞

(q; q)m(az; q)∞
(z; q)∞

=
( q
az
, b
a
, az, q; q)∞

( q
a
, b
az
, b, z; q)∞

.

This proves that the Ramanujan 1ψ1 sum is equal to the right side of the equation for all
b = qm+1. But since |q| < 1, the sequence {qm+1} converges to 0, which is clearly inside the
unit disc. Therefore the equality holds for every |b| < 1 and |b| < |az| by Theorem 4.1. �

We also note that the Ramanujan 1ψ1 sum includes the Jacobi triple product.

Theorem 4.3 (Jacobi triple product).
∞∑

n=−∞

qn
2

zn = (q2; q2)∞(−qz−1; q2)∞(−qz; q2)∞.

Proof. Apply Theorem 4.2 to the following identity first. Note (0; q)n = 1 for any n ∈
Z ∪ {∞}, so

1ψ1

(
−1/c

0

∣∣∣∣ q2, qzc) =
∞∑

n=−∞

(
−1

c
; q2
)
n

(qzc)n =
(q2,−qz−1,−qz; q2)∞

(−q2c, qzc; q)∞
. (4.2)

By Tannery’s theorem, we may apply the limit c→ 0 inside the infinite sum.
∞∑

n=−∞

lim
c→0

(
−1

c
; q2
)
n

(qzc)n =
∞∑

n=−∞

lim
c→0

(1 + c−1)(1 + c−1q2) · · · (1 + c−1q2(n−1))(qzc)n

=
∞∑

n=−∞

lim
c→0

c−n(c+ 1)(c+ q2) · · · (c+ q2n−2)qncnzn

=
∞∑

n=−∞

lim
c→0

(c+ q)(c+ q3) · · · (c+ q2n−1)zn

=
∞∑

n=−∞

q1+3+···+(2n−1)zn =
∞∑

n=−∞

qn
2

zn.

(4.3)
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On the other hand, we have

lim
c→0

(q2,−qz−1,−qz; q2)∞
(−q2c, qzc; q)∞

= (q2; q2)∞(−qz−1; q2)∞(−qz; q2)∞. (4.4)

Putting (4.3) and (4.4) together yields us

∞∑
n=−∞

qn
2

zn = (q2; q2)∞(−qz−1; q2)∞(−qz, q2)∞. �

5. More on the Askey–Wilson calculus

We will further derive the Askey–Wilson counterpart of some calculus rules (e.g. product
rule, Leibniz rule). For the sake of completeness, we will state that the product rule and the
Leibniz rule from the classical calculus.

Theorem 5.1. If f, g : R→ R are Cn (i.e., n times differentiable functions), we have

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

dn

dxn
(f(x))g(x)) =

n∑
j=0

(
n

k

)
f (n−k)(x)g(k)(x).

Definition 5.1. Let Aq be the Askey–Wilson average operator defined by

Aqf(x) =
f̆(q1/2z) + f̆(q−1/2z)

2
.

Theorem 5.2 (Askey–Wilson product rule). Dq(fg) = AqfDqg +DqfAqg.

More generally, Ismail proved the Leibniz rule counterpart for Dq:

Theorem 5.3 (Askey–Wilson Leibniz rule). We have

Dnq (fg) =
n∑
k=0

[
n
k

]
q

qk(k−n)/2Dn−kq f(qk/2z)Dkqg(q−(n−k)/2z).

Cooper proved the nth Askey–Wilson derivative formula.

Theorem 5.4 (Cooper). The nth Askey–Wilson derivative of f is

Dnq f(x) =
2nqn(1−n)/4

(q1/2 − q−1/2)n
n∑
k=0

[
n
k

]
q

qk(n−k)z2k−nf̆(q(n−2k)/2z)

(q1+n−2kz2; q)k(q2k−n+1z−2; q)n−k
.

6. q-Gamma function

In this section we explore the q-analogue of the gamma function.
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6.1. Classical gamma function

Definition 6.1. The (classical) gamma function is defined by

Γ(z) :=

∫ ∞
0

xz−1e−x dx

for all Re(z) > 0.

The gamma function is one of the functions such that f(1) = 1 and f(x+1) = xf(x) for all
positive real number x, leading us to conclude that Γ(n) = (n− 1)! for all n ∈ N. However,
with just two aforementioned restrictions, one can generate infinitely many functions of such
kind by multiplying any periodic analytic functions that hits 1 for any positive integer.
However, with one additional restriction called log-convexity, the solution is unique: it turns
out that the gamma function is the only function satisfying all three properties. This theorem
is known as the Bohr-Mollerup theorem. This prompt us to introduce the following definition.

Definition 6.2. A function f is said to be convex on (a, b) if f is positive in (a, b), and for
all λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If log f is convex, then f is said to be log-convex or logarithmically convex.

We state the Bohr–Mollerup theorem for the sake of comparing with the q-analogue case
which we will explore in the remainder of this section.

Theorem 6.1 (Bohr–Mollerup theorem). The gamma function Γ(z) is the unique function
f on Re(z) > 1 satisfying all three properties listed below.

(1) f(1) = 1,
(2) f(x+ 1) = xf(x) for all positive x ∈ R, and
(3) f is log-convex.

6.2. q-gamma function

We want to find Γq satisfying all the properties that the regular Γ has, namely:

(1) Γq(1) = 1

(2) Γq(z + 1) =
1− qz

1− q
Γq(z).

Note that the second condition implies that, for any n ∈ N,

Γq(n+ 1) =
1− qn+1

1− q
Γq(n) =

(1− qn+1)(1− qn)

(1− q)2
Γq(n− 1) = · · · = (q; q)n

(1− q)n
.

It is not obvious that such Γq is unique. (In fact, with just these two conditions, the answer is
no, just like in the classical case.) But again as with the classical case, with the log convexity
restriction added, it turns out that Γq is the unique function satisfying all three conditions.
We first start with a simple lemma regarding convexity.

Lemma 6.1. Suppose that f is convex on (a, b), and suppose that 0 < x < y < z < b. Then

f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
≤ f(z)− f(y)

z − y
.
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Proof. Let y = λx+ (1− λ)z with λ ∈ (0, 1). Then we have

f(y)− f(x)

y − x
≤ λf(x) + (1− λ)f(z)− f(x)

λx+ (1− λ)z − x
=

(1− λ)(f(z)− f(x))

(1− λ)(z − x)
=
f(z)− f(x)

z − x
,

so this proves the first inequality. One can employ the similar type of argument for the
second inequality. �

Askey proved in 1978 the q-gamma counterpart of the Bohr-Mollerup theorem, which
provided the complete characterization of the gamma function, and that such function must
be unique.

Theorem 6.2 (“q-Bohr–Mollerup theorem”, proved by Askey (1978)). If log f is a convex
function such that

f(z + 1) =
1− qz

1− q
f(z) and f(1) = 1,

then

f(z) =
(1− q)1−z(q; q)∞

(qz; q)∞
=: Γq(z).

Proof. Let 0 < x < 1 so that we have n < n + 1 < n + 1 + x < n + 2. By Lemma 6.1, we
have

log f(n+ 1)− log f(n) ≤ log f(n+ 1 + x)− log f(n+ 1)

x
≤ log f(n+ 2)− log f(n+ 1).

Hence

log

(
1− qn

1− q

)
≤ 1

x

(
log

f(n+ 1 + x)(1− q)n

(q; q)n

)
≤ 1− qn+1

1− q
. (6.1)

But then we have

f(n+ 1 + x) =
1− qn+x

1− q
· · · 1− q

x

1− q
f(x) =

(qx; q)n+1

(1− q)n+1
,

so (6.1) becomes

log
1− qn

1− q
≤ 1

x
log

(qx; q)n+1f(x)

(q; q)n(1− q)
≤ log

1− qn+1

1− q
.

Now letting n→∞ gives us

− log(1− q) ≤ 1

x
log

(qx; q)∞f(x)

(q; q)∞(1− q)
≤ − log(1− q).

In conclusion, we have

f(x) =
(q; q)∞
(qx; q)∞

(1− q)−x+1 =: Γq(x). �

Theorem 6.3 (Legendre duplication formula). The q-gamma function satisfies the Legendre
duplication formula, i.e.,

Γq(z) =
Γq2(

z
2
)Γq2(

z
2

+ 1
2
)

Γq2(
1
2
)(1 + q)1−z

.
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Proof. Notice that both sides are log-convex since all of Γq(z),Γq2(z/2),Γq2((z + 1)/2), (1 +
q)1−z are log-convex as well. Also, if z = 1, then both sides are 1 as well. Let the right-hand
side be f(z). Then we have

f(z + 1)

f(z)
=

Γq2(
z+1
2

)Γq2(
z+2
2

)(1 + q)

Γq2(
z
2
)Γq2(

z+1
2

)

=
1− (q2)z/2

1− q2
(1 + q) =

1− qz

1− q
,

so the claim follows from the uniqueness of the q-gamma function. �

Theorem 6.4 (Generalized Legendre duplication formula). For any n ∈ N, we have the
following duplication formula.

Γq(z) =
Γqn( z

n
)Γqn( z

n
+ 1

n
) · · ·Γqn( z

n
+ n−1

n
)

Γqn( 1
n
)Γqn( 2

n
) · · ·Γqn(n−1

n
)

(
1− qn

1− q

)z−1
.

Proof. We imitate the proof of the Bohr-Mollerup theorem. Suppose that f(z) is equal to
the RHS. We need to verify that f satisfies the functional equation satisfied by Γq(z). Again,
log f is convex since each of Γqn( z

n
+ i

n
) is for 0 ≤ i ≤ n− 1. Clearly, f(1) = 1. Furthermore,

f(z + 1) =
Γqn( z

n
+ 1)

Γqn( z
n
)

f(z)
1− qn

1− q

=
(1− (qn)

z
n )

1− qn
f(z)

1− qn

1− q
=

1− qz

1− q
f(z).

So f satisfies all the functional equations, so f ≡ Γq as required. �

6.3. q-integrals

For this section, we will return to the Jackson operator. Recall that

Dqf(x) :=
f(x)− f(qx)

x− qx
,

so it is straightforward to see that

Dqx
n =

1− qn

1− q
xn−1.

Therefore, as q → 1− we see that

lim
q→1−

Dq =
d

dx
,

the classical differential operator from the first-year calculus courses.

Definition 6.3. The q-integral is defined by∫ a

0

f(x) dqx := f(a)(a− aq) + f(aq)(aq − aq2) + · · ·+ f(aqn)(aqn − aqn+1) + · · ·

= a(1− q)
∞∑
n=0

qnf(aqn).∫ b

a

f(x) dqx :=

∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx.
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As with the differential operator, we would expect that letting q → 1− yields us the classic
integral. In fact, Fermat’s work showed such is the case for xm. Indeed,∫ a

0

xm dqx = a(1− q)
∞∑
n=0

qn(aqn)m = am+1(1− q)
∞∑
n=0

qn(m+1) =
am+1(1− q)

1− qm+1
,

so q → 1− gives us am+1

m+1
, which is what we would expect.

Theorem 6.5 (q-integration by parts). For any a,∫ a

0

(Dqf(x))g(x) dqx = f(a)g(aq−1)− f(0)g(0)− 1

q

∫ a

0

f(x)Dq−1g(x) dqx.

Proof. We start from the definition.∫ a

0

(Dqf(x))g(x) dqx = a(1− q) lim
m→∞

m∑
n=0

qn
f(qna)− f(qn+1a)

qna− qn+1a
g(aqn).

Notice that
m∑
n=0

qn
f(qna)− f(qn+1a)

qna− qn+1a
g(aqn) =

m∑
n=0

f(aqn)g(aqn)− f(aqn+1)g(aqn)

a(1− q)

=
1

a(1− q)

[
m∑
n=0

g(aqn)(f(aqn)− f(aqn+1))

]
.

But then
m∑
n=0

g(aqn)(f(aqn)− f(aqn+1)) = f(a)g(aq−1)− f(aqm+1)g(aqm) +
m∑
n=0

f(aqn)(g(aqn)− g(aqn−1))

= f(a)g(aq−1)− f(aqm+1)g(aqm)+
m∑
n=0

f(aqn)
g(aqn)− g(aqn−1)

aqn − aqn−1
(aqn − aqn−1).

Now letting m→∞ gives us∫ a

0

(Dqf)g dqx = f(a)g(aq−1)− f(0)g(0) + a(1− q)1− q−1

1− q

∞∑
n=0

[
qnf(aqn)

g(aqn)− g(aqn−1)

aqn − aqn−1

]

= f(a)g(aq−1)− f(0)g(0) +
q − 1

q
· 1

1− q

[
a(1− q)

∞∑
n=0

qnf(aqn)Dq−1g(aqn)

]

= f(a)g(aq−1)− f(0)g(0)− 1

q

∫ a

0

f(x)Dq−1g(x) dqx. �

Now that we introduced the q-integral, we are ready to state Γq(z) in terms of a q-integral
just like how the regular gamma function can be written in terms of an integral.

Proposition 6.1. The q-gamma function Γq(z) is

Γq(z) :=

∫ 1
1−q

0

tz−1Eq(−q(1− q)t) dqt
20



for all Re(z) > 0. E(x) is the exponential function defined by

Eq(x) :=
∞∑
n=0

xn

(q; q)n
q(

n
2) = (−x; q)∞.

Proof. We have∫ 1
1−q

0

tz−1Eq(−q(1− q)t) dqt =
1

1− q
(1− q)

∞∑
n=0

qn
(

qn

1− q

)z−1
(qn+1; q)∞

= (1− q)1−z
∞∑
n=0

qnz
(q; q)∞

(1− q)(1− q2) · · · (1− qn)

= (1− q)1−z(q; q)∞
∞∑
n=0

qnz

(q; q)n
=

(1− q)1−z(q; q)∞
(qz; q)∞

. �

6.4. q-Beta function

Definition 6.4. The beta function B(x, y) is defined by

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt,

which converges for all Re(x),Re(y) > 0.

On B(x, y), perform the change of variables via

t =
u

1 + u
.

The change of variable from t to u gives us

B(x, y) =

∫ ∞
0

ux−1

(1 + u)x−1
1

(1 + u)y−1
du

(1 + u)2
=

∫ ∞
0

ux−1

(1 + u)x+y
du =

Γ(x)Γ(y)

Γ(x+ y)
.

Unfortunately, we cannot change variables in q-integrals. Nonetheless, the q-analogue of the
beta function can be defined, and enjoys the analogous properties enjoyed by the regular
beta function.

Definition 6.5. The q-beta function is defined by

Bq(x, y) :=

∫ 1

0

ux−1
(qu; q)∞
(qyu; q)∞

dqu.

Theorem 6.6. The q-beta function Bq(x, y) satisfies the following properties.

(1) Bq(x, y) =
1− qy−1

1− qx
Bq(x+ 1, y − 1).

(2) Bq(x, y) = Bq(x, y + 1) + qyBq(x+ 1, y)

(3) Bq(x, y) =
1− qx+y

1− qy
Bq(x, y + 1) =

Γq(x)Γq(y)

Γq(x+ y)
.

Proof. For the first claim, we have by integration by parts,

1− qx

1− q
Bq(x, y) =

∫ 1

0

1− qx

1− q
ux−1

(qu; q)∞
(uqy; q)∞

dqu
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= −1

q

∫ 1

0

ux
(
Dq−1

(qu; q)∞
(uqy; q)∞

)
dqu,

since the boundary terms add up to 0. Evaluating the Dq−1 operator gives

Dq−1

(qu; q)∞
(uqy; q)∞

=

[
(qu; q)∞
(uqy; q)∞

− (u; q)∞
(uqy−1; q)∞

]
1

u(1− q−1)

=
(qu; q)∞

(uqy−1; q)∞

1− uqy−1 − (1− u)

u(1− q−1)
=

(qu; q)∞
(uqy−1; q)∞

u(1− qy−1)
u(1− q−1)

.

Hence
1− qx

1− q
Bq(x, y) =

1− qy−1

1− q

∫ 1

0

ux(qu; q)∞
(uqy−1; q)∞

dqu,

and the claim follows upon noting that the integral portion is Bq(x+ 1, y − 1).
For the second claim, note that

Bq(x, y + 1) =

∫ 1

0

ux−1(qu; q)∞
(uqy+1; q)∞

dqu =

∫ 1

0

ux−1
(qu; q)∞(1− uqy)

(uqy; q)∞
dqu

=

∫ 1

0

ux−1
(qu; q)∞
(uqy; q)∞

− qy
∫ 1

0

ux
(qu; q)∞
(uqy; q)∞

= Bq(x, y)− qyBq(x+ 1, y).

The third one follows from the first two claims. From the first part, we have

Bq(x, y + 1) =
1− qy

1− qx
Bq(x+ 1, y).

So by the second part,

Bq(x, y) = Bq(x, y + 1) + qy
(

1− qx

1− qy
Bq(x, y + 1)

)
=

(1− qy) + (qy − qx+y)
1− qy

Bq(x, y + 1) =
1− qx+y

1− qy
Bq(x, y + 1).

Now we have

B(x, y) =
1− qx+y

1− qy
B(x, y+1) = · · · = (1− qx+y)(1− qx+y+1) · · · (1− qx+y+n)

(1− qy) · · · (1− qy+n)
B(x, y+n+1).

But then

lim
n→∞

B(x, y + n) = lim
n→∞

∫ 1

0

ux−1(qu; q)∞
(uqy+n; q)∞

dqu

=

∫ 1

0

ux−1(qu; q)∞ dqu = (1− q)
∞∑
n=0

qnqn(x−1)(qn+1; q)∞(q; q)n
(q; q)n

= (1− q)(q; q)∞
∞∑
n=0

qnqnx(q; q)∞
(q; q)n

=
(1− q)(q; q)∞

(qx; q)∞
.

So it follows that

Bq(x, y) =
(qx+y; q)∞(1− q)(q; q)∞

(qy; q)∞(qx; q)∞
=

Γq(x)Γq(y)

Γq(x+ y)
. �
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6.5. Evaluation of q-beta integrals

Proposition 6.2.

∫ ∞
a

f(x) dx =

∫ a+1

a

(
∞∑
n=0

f(x+ n)

)
dx.

The observation above may appear pretty straightforward, but this evident observation
led to some non-trivial results by Ramanujan.

Recall from Theorem 4.2 the Ramanujan 1ψ1 sum is

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
∞∑

n=−∞

(bqn; q)∞(a; q)nz
n

(b; q)n(bqn; q)∞
= (∗).

Factoring a out in (a; q)n gives

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1) = (−1)nanq(
n
2)(q1−n/a; q)n,

so it follows

(∗) =
1

(b; q)∞

∞∑
n=−∞

(bqn; q)∞(q1−n/a; q)nq
(n
2)(−1)n(a−1; q)∞

(a−1; q)∞

=
1

(b, a−1; q)∞

∞∑
n=−∞

(bqn; q)∞

(
q

aqn
; q

)
∞
q(

n
2)einπ(az)n.

Define

I(a, b) :=

∫
R
(bqx, q1−x/a; q)∞q

(x
2)(az)xeiπxw(x) dx =

∫ 1

0

∞∑
n=−∞

f(x+ n) dx

=

∫ 1

0

∞∑
n=−∞

(bqx+n, q1−n−x; q)∞q
(x+n

2 )(az)x+neiπ(x+n)w(x+ n) dx

=

∫ 1

0

∞∑
n=−∞

(bqx+n, q1−n−x; q)∞q
(x+n

2 )(az)x+neiπx(−1)nw(x+ n) dx,

where w(x) has period 1. Now consider

(bqx+n, q1−n−x/a; q)∞ = (bqx, q1−x/a; q)∞
(q1−x−n/a; q)n

(bqx; q)n

=
(bqx, q1−x/a; q)∞

(bqx; q)n
(−1)n(aqx; q)n(−q1−x/a)nq−(n+1

2 ),

where the last step follows by applying the identity

(aq−n; q)n = (qa−1; q)n(−a)nq−(n+1
2 )

onto (q1−x−n/a; q)n. So putting these together,

I(a, b) =

∫ 1

0

(bqx, q1−x/a; q)∞q
(x
2)eiπx(az)xw(x)

∞∑
n=−∞

(aqx; q)n
(bqx; q)n

zn dx,
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as long as |b/a| < |z| < 1. Now apply Theorem 4.2 onto the infinite sum to get

I(a, b) =
(b/a, q; q)∞

(b/(az), z; q)∞

∫ 1

0

w(x)

(
bqx,

q1−x

a
; q

)
∞
q(

x
2)eiπx(az)x

(q1−x/(az), aqxz; q)∞
(bqx, q1−x/a; q)∞

dx

=
(b/a, q; q)∞

(b/(az), z; q)∞

∫ 1

0

w(x)q(
x
2)eiπx(az)x(q1−x/(az), aqxz; q)∞ dx.

Observe that q(
x
2)(az)xeiπx(azqx, q1−x/(az); q)∞ has period 1. With this in mind, we choose

w(x) to be

w(x) =
q−

x
2 (az)−xe−iπx

(azqx, q1−x/(az); q)∞
p(x),

where p(x) is any unit-periodic function, i.e., p(x+ 1) = p(x) such that

∫ 1

0

p(x) dx 6= 0. We

also verify that w(x) has period 1. Indeed as we desired, we have

w(x+ 1)

w(x)
=
q(

x
2)−(x+1

2 )

az
(−1)

(q1−x/(az), azqx; q)∞
(q−x/(az), azqx+1; q)∞

=
q−x

az
(−1)

1− azqx

1− q−x/(az)
= 1.

Therefore,

I(a, b) =
(b/a, q; q)∞

(b/(az), z; q)∞

∫ 1

0

p(x) dx.

Finally, letting qx =: u (hence x = log u
log q

) gives us∫ ∞
0

(bu, q/(au); q)∞
(q/(auz), auz; q)∞

p

(
log u

log q

)
du

u
=

(b/a, q; q)∞
(b/(az), z; q)∞

(− log q)

∫ 1

0

p(x) dx.

A corollary is another Ramanujan-type integral: letting p(x) ≡ 1 and (a, b, z) := (−q−α,−qβ,−qα)
gives us ∫ ∞

0

(−tqβ,−qα+1/t; q)∞
(−t, q/t; q)∞

dt

t
=

log q

1− q
Γq(α)Γq(β)

Γq(α + β)
,

for all 0 < q < 1 and Re α,Re β > 0. Thus we have proved the following ideas.

Theorem 6.7. We have the Ramanujan-type integration∫ ∞
0

(bu, q/(au); q)∞
(azu, q/(azu); q)∞

p

(
log u

log q

)
du

u
= − log q

(q, b/a; q)∞
(z, b/(az); q)∞

∫ 1

0

p(x) dx.

Theorem 6.8 (q-analogue of the beta integral). We have the Ramanujan-type integral∫ ∞
0

(−tqβ,−qα+1; q)∞
(−t,−q/t; q)∞

dt

t
=

log q

1− q
Γq(α)Γq(β)

Γq(α + β)

whenever 0 < q < 1 and Re α,Re β > 0.
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7. q-Hermite polynomials

Definition 7.1. Hermite polynomials are orthogonal polynomials with respect to the normal
distribution, i.e., ∫

R
e−x

2

Hm(x)Hn(x) dx =
√
π2nn!δm,n

defined by the relation
2xHn(x) = Hn+1(x) + 2nHn−1(x).

The q-Hermite polynomials are the q-analogues of Hermite polynomials, and is defined by
the following recurrence relation.

2xHn(x |q) = Hn+1(x |q) + (1− qn)Hn−1(x |q), H0(x |q) = 1, H1(x |q) = 2x.

The closed form of Hn is

Hn(x |q) =
n∑
k=0

[
n
k

]
q

ei(n−2k)θ.

Dividing both sides of by (q; q)n (n ≥ 1), we get

2x
Hn(x |q)
(q; q)n

= (1− qn+1)
Hn+1(x |q)
(q; q)n+1

+
(1− qn)Hn−1(x |q)
(1− qn)(q; q)n−1

. (7.1)

Now let

F (t) =
∞∑
n=0

Hn(x |q)tn

(q; q)n
.
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Multiply both sides of (7.1) by tn+1, and add each term for all n = 0, 1, 2, . . . . This gives
us

2tx(F (t)− 1) = F (t)− F (qt)− 1− H1

1− q
t+ 1 +

H1

1− q
qt+ t2F (t)

2xtF (t) = F (t)− F (qt) + t2F (t)

F (t) =
F (qt)

1− 2xt+ t2
=

F (qt)

(1− teiθ)(1− te−iθ)
=

1

(teiθ, te−θ; q)n
F (qnt)→ 1

(teiθ, te−θ; q)∞
.

as n→∞.

1

(teiθ; q)∞

1

(te−iθ; q)∞
=
∑ eikθ

(q; q)k

∑ e−ijθ

(q; q)j
.

Thus

Hn(x |q)
(q; q)n

=
∑
k+j=n

eikθe−ijθ

(q; q)j(q; q)k
=

n∑
j=0

eiθ(n−2j)

(q; q)j(q; q)n−j
.

Theorem 7.1. w(x |q) =
(e2iθ, e−2iθ; q)∞√

1− x2
on [−1, 1], and∫ 1

−1
w(x)Hm(x |q)Hn(x |q) =

2π

(q; q)∞
(q; q)nδm,n.

Before getting into the proof, we first claim that by induction one can prove that Hn(−x |
q) = (−1)nHn(x |q). We also need the following lemma for orthogonality.

Lemma 7.1.

∫ π

0

2ijθ(e2iθ, e−2iθ; q)∞ dθ =
π(−1)j

(q; q)∞
(1 + qj)q(

j
2).

Proof. Recall that ∫ π

−π
einθ dθ =

{
2π (n = 0)

0 (n 6= 0).

Thus we have

(e2iθ, e−2iθ; q)∞ =
1− e2iθ

(q; q)∞
(qe2iθ, e−2iθ, q; q)∞

=
1− e2iθ

(q; q)∞

∞∑
n=−∞

q
n2

2 (
√
qe2iθ)n(−1)n.

Hence the integral becomes∫ π

0

2ijθ(e2iθ, e−2iθ; q)∞ dθ =
1

(q; q)∞

∞∑
n=−∞

q(
n+1
2 )(−1)n

∫ π

0

eijθ(1− e2iθ)e2inθ dθ

=
π

(q; q)∞

∞∑
n=−∞

q(
n+1
2 )(δj+n,0 − δ1+j+n,0)(−1)n

=
π

(q; q)∞

{
(−1)nq(

j
2) + (−1)jq(

j+1
2 )
}
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=
π

(q; q)∞
(−1)nq(

j
2)(1 + qj). �

Proof of Theorem 7.1. Suppose that n and m have different parity. Then the integral be-
comes 0, since the weight function w(x |q) is an even function.

(e2iθ; q)∞(e−2iθ; q)∞ =
∞∏
n=1

(1− qne2iθ)(1− qne−2iθ)

=
∞∏
n=1

(1− 2qn(2x2 − 1) + q2n)

Thus we may assume that m and n have the same parity. Without loss of generality, suppose
that m = n+ 2k for some k ∈ N. Now evaluate∫ π

0

Hm(x |q)(e2iθ, e−2iθ; q)∞ei(m−2k)θ dθ.

Since Hn only has non-zero coefficients for einθ, ei(n−2)θ, ei(n−4)θ, and so forth, we have∫ π

0

Hm(x |q)(e2iθ, e−2iθ; q)∞ei(m−2k)θ dθ =
m∑
j=0

[
m
j

]
q

∫ π

0

ei(m−2j)θ(e2iθ, e−2iθ; q)∞e
i(m−2k)θ dθ

=
m∑
j=0

[
m
j

]
q

∫ π

0

eiθ(m−2j+m−2k)(e2iθ, e−2iθ; q)∞ dθ.

By the lemma above, we have

π

(q; q)∞

m∑
j=0

[
m
j

]
q

(−1)m−j−k(1 + qm−j−k)q(
m−j−k

2 ).

Replacing m by m− j gives

π

(q; q)∞
(−1)k

m∑
j=0

[
m
j

]
q

(−1)j(1 + qj−k)q(
j−k
2 ) =

π

(q; q)∞

m∑
j=0

[
m
j

]
q

(−1)j(1 + qj−k)q
(j−k)(j−k−1)

2

=
π(−1)k

(q; q)∞
qk(k+1)/2

m∑
j=0

(−1)j
[
m
j

]
q

(1 + qj−k)q2q−kj.

Now replacing q−j with xk gives

π(−1)k

(q; q)∞
q(

k+1
2 ) [(q−k; q)m + qk(q1−k; q)m

]
.

Notice that above expression becomes 0 if 0 < k < m. If k = 0, then the integral becomes
π

(q; q)∞
(q; q)mδk,0. If k = m, then we have

π

(q; q)∞
{(q; q)mδk,0 + (−1)mq(

m+1
2 )(q−m; q)mδk,m} =

2π

(q; q)∞
(q; q)m

since (−1)mq(
m+1

2 )(q−m; q)m = (q; q)m. So all in all, if k = 0 or k = m, we have
π

(q; q)∞
(q; q)m(δk,0 + δk,m).

27



Putting the things together, it follows that∫
HmHmw dx =

π

(q; q)∞
(q; q)m

m∑
k=0

[
m
k

]
q

(δk,0 + δk,m) = 2π
(q; q)m
(q; q)∞

. �

Theorem 7.2 (Rogers). We have

Hm(x |q)Hn(x |q) =

min(m,n)∑
k=0

(q; q)m(q; q)n
(q; q)k(q; q)m−k(q; q)n−k

Hm+n−2k(x |q).

Proof. Suppose

HmHn =
∑

am,n,kHm+n−2k.

We observe a few properties that the coefficients am,n,k satisfy. First, am,0,k = an,0,k = δk,0.
Also, we need am,n,0 = 1. The leading term of Hn(x | q) must have the coefficient 2n due to
the recurrence relation satisfied by the q-Hermite polynomials.

By the recurrence relation we have∑
am+1,n,kHm+1+n−2k + (1− qm)

∑
am−1,n,kHm+n−1−2k

=
∑

am,n,k[Hm+n−2k+1 + (1− qm+n−2k)Hm+n−2k−1],

so it follows

am+1,n,k + (1− qm)am−1,n,k−1 = am,n,k + (1− qm+n+2−2k)am,n,k−1.

Upon changing the variable from k to k + 1, we have

am+1,n,k+1 − am,n,k+1 = am,n,k+1 + (1− qm+n−2k)am,n,k − (1− qm)am−1,n,k. (7.2)

If k = 0, then

am+1,n,1 − am,n,1 = (1− qm+n)am,n,0 − (1− qm)am−1,n,0

am+1,n,1 − am,n,1 = 1− qm+n − 1 + qm = qm(1− qn).

So telescoping gives us
m∑
r=0

ar+1,n,1 − ar,n,1 = am+1,n,1 − a0,n,1 = (1− qn)

(
1− qm+1

1− q

)
.

Now, plugging in k = 1 in (7.2); solving for am+1,n,2 (again, taking advantage of telescoping)
gives

am+1,n,2 − a0,n,2 =
(1− qn)(1− qn−1)(1− qm+1)(1− qm)

(1− q)(1− q2)
.

Continuing with induction on k, we see that

am,n,k =
(q; q)m(q; q)n

(q; q)m−k(q; q)n−k(q; q)k
. �

Consider f(x) :=
∑
anpn(x), where pn(x) satisfies

∫
pmpnw dx = δm,n. If

an :=

∫
R
f(x)pn(x)w(x) dx,
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then

f(x) =
∞∑
n=0

pn(x)

∫
R
f(y)pn(y)w(y) dy =

∫
R
f(x)

[
∞∑
n=0

pn(x)pn(y)

]
w(y) dy.

Does this work? Not quite because
∑
pn(x)pn(y)w(y) diverges. However, the following

works (note that we cannot bring in the limit as we just saw).

Definition 7.2. Suppose that {Pn(x)} is a sequence of monic polynomials such that degPn(x) =
n, and that {Pn(x)} satisfies the orthogonality relation∫ ∞

−∞
Pm(x)Pn(x) dµ(x) = ζnδm,n,

where µ is the Lebesgue measure. The Poisson kernel of {Pn(x)} is defined by

Pr(x, y) =
∞∑
n=0

rnPn(x)Pn(y)/ζn.

Theorem 7.3 (Poisson kernel formula). f(x) = lim
r→1−

∫
R
f(x)

(
∞∑
n=0

rnpn(x)pn(y)

)
w(y) dy.

7.1. Poisson kernel for q-Hermite polynomials

From the linearization formula, multiplying both sides by rmsn gives(
∞∑
m=0

Hm(x |q)rm

(q; q)m

)(
∞∑
n=0

Hn(x |q)sn

(q; q)n

)
=
∑
k,m,n

rmsnHm+n−2k(x |q)
(q; q)k(q; q)m−k(q; q)n−k

.

Note that the left-hand side is equal to (reiθ, re−iθ, seiθ, se−iθ; q)∞; as for the right-hand side,
changing the variables (m→ k +m and n→ k + n) gives us

∑
k,m,n

rm+ksn+k

(q; q)k

HN(x |q)
(q; q)m+n

=
∑
k,N,n

(rs)k

(q; q)k

HN(x |q)
(q; q)m+n

=
N∑
n=0

rN−nsn(q; q)m+n

(q; q)N−n(q; q)n

=
1

(rs; q)∞

∑
N

HN(x |q)
(q; q)n

N∑
n=0

rN−nsn
[
N
n

]
q

.

where N := m+ n. Now change of variables from r to ueiφ and s to ue−iφ gives us

1

(rs; q)∞

∑
N

HN(x |q)
(q; q)n

unHn(cos θ |q)

=
1

(uei(φ+θ), uei(φ−θ), uei(θ−φ), ue−i(θ+φ); q)∞

In conclusion,∑ Hn(cos θ |q)Hn(cos θ |q)
(q; q)n

tn =
(t2; q)∞

(tei(φ+θ), tei(φ−θ), tei(θ−φ), te−i(θ+φ); q)∞
.
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8. Proof of the Rogers–Ramanujan identities

8.1. The sum side of Rogers–Ramanujan I

First note that [
n
k

]
q−1

= qk(k−n)
[
n
k

]
q

,

and that
∞∑
n=0

Hn(x |q−1)
(q; q)n

tn(−1)n = (teiθ, te−iθ; q)∞.

Thus putting them together we have

Hn(x |q−1)
(q; q)n

tn(−1)nq(
n
2) =

∞∑
n=0

(−t)nq(
n
2)

(q; q)n

n∑
k=0

[
n
k

]
q−1

eiθ(n−2k)

=
∞∑
n=0

(−t)n

(q; q)n
q(

n
2)qk(k−n)

[
n
k

]
q

ei(n−2k)θ

=
∑
n≥k

(−t)nq(
n
2)+k2−nkei(n−2k)θ

(q; q)k(q; q)n−k
.

Changing the variable n to n+ k gives
∞∑
k=0

(−t)n+k

(q; q)k(q; q)n
q(

n+k
2 )+k2−(n+k)kei(n−k)θ.

Simplifying the exponent gives(
n+ k

2

)
+ k2 − (n+ k)k =

(
n

2

)
+

(
k

2

)
.

All in all,

Hn(x |q−1)
(q; q)n

tn(−1)nq(
n
2) =

(
∞∑
k=0

(−t)k

(q; q)k
q(

k
2)e−ikθ

)(
∞∑
n=0

(−t)n

(q; q)n
q(

n
2)einθ

)
= (te−iθ; q)∞(teiθ; q)∞.

Now consider the following integral, which Ismail and Stanton came up with. Using this
integral, we can not only prove the Rogers–Ramanujan identities, but a general family of
such identities. Define

I(t) :=

∫ π

0

(teiθ, te−iθ; q)∞(e2iθ, e−2iθ; q)∞ dθ.

Then we have

I(t) =
1

2

∫ π

−π
(teiθ, te−iθ; q)∞(e2iθ, e−2iθ; q)∞ dθ

=
1

2

∫ π

−π

∞∑
n=0

Hn(x |q−1)
(q; q)n

(−1)nq(
n
2)(e2iθ, e−2iθ; q)∞ dθ
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=
1

2

∞∑
n=0

(−t)n

(q; q)n
q(

n
2)
bn/2c∑
k=0

q−k(n−k)(q; q)n
(q; q)k(q; q)n−2k

Hn−2k(x |q)(e2iθ, e−2iθ; q)∞ dθ

=
1

2

∞∑
n=0

t2n

(q; q)2n
q(

2n
2 )−n(2n−n) 2π

(q; q)∞

(q; q)2n
(q; q)n

=
π

(q; q)∞

∞∑
n=0

t2n

(q; q)n
qn(2n−1)−n

2

=
π

(q; q)∞

∞∑
n=0

t2n

(q; q)n
qn

2−n.

The last line is important in proving Rogers–Ramanujan, so we formally re-record the result.

I(t) =
π

(q; q)∞

∞∑
n=0

t2n

(q; q)n
qn

2−n =

∫ π

0

(teiθ, te−iθ; q)∞(e2iθ, e−2iθ; q)∞ dθ. (8.1)

8.2. The product side of Rogers–Ramanujan I

Theorem 4.3 implies that

(q,−z√q,−√q/z; q)∞ =
∞∑

n=−∞

q
n2

2 zn.

Apply this to I(−√q).

I(−√q) =
1/2

(q; q)∞

∫ π

−π

∞∑
n=−∞

qn
2/2einθ(e2iθ, e−2iθ; q)∞ dθ

=
1

(q; q)∞

∞∑
n=−∞

q2n
2

∫ π

0

e2inθ(e2iθ, e−2iθ; q)∞ dθ,

since only the terms with n even remain. Hence,

I(−√q) =
1

(q; q)∞

∞∑
n=−∞

q2n
2 π(−1)n

(q; q)∞
(1 + qn)q(

n
2) =

1

(q; q)∞

∞∑
n=−∞

q2n
2 π(−1)n

(q; q)∞
(1 + qn)q(

n
2)

=
π

(q; q)2∞

∞∑
n=−∞

(−1)nq
5n2−n

2 (1 + qn) =
2π

(q; q)∞

∞∑
n=−∞

(−1)n(q5)n
2/2q−n/2

=
2π

(q; q)2∞
(q5, q5/2−1/2, q5/2+1/2; q5)∞ =

2π

(q; q)∞

(q5, q3, q2; q5)∞
(q; q)∞

=
2π

(q; q)∞

1

(q, q4; q5)∞
.

Hence this proves Rogers–Ramanujan I.

8.3. Proof of Rogers–Ramanujan II

Rogers–Ramanujan II can be proved similarly, but this time use the integral

I(q) =

∫ π

0

(qeiθ, qe−iθ; q)∞(1− e2iθ)(e2iθ, e−2iθ; q)∞ dθ

=
1

2

∫ π

−π
(qeiθ, qe−iθ; q)∞(1− e2iθ)(e2iθ, e−2iθ; q)∞ dθ

=
1

2(q; q)2∞

∫ π

−π
(q, eiθ, qe−iθ; q)∞(q, qe2iθ, e−2iθ; q)∞ dθ.
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Now we can apply the Jacobi triple product to the two infinite products from the right-hand
side. Applying the Jacobi triple product gives us

I(q) =
1/2

(q; q)2∞

∫ π

−π

∞∑
n=−∞

q
n2

2

(
− 1
√
q

)n ∞∑
m=−∞

m2

q2
(−√q)m

=
1
2
(2π)

(q; q)2∞

{
∞∑

m=−∞

q2m
2+m+m2

2
+m

2 (−1)m − q
∞∑

m=−∞

q
(2m+1)2

2
− 2m+1

2 (−1)mq
m2+m

2

}

=
π

(q; q)2∞

{
∞∑

m=−∞

q
1
2
m(5m+3)(−1)m −

∞∑
m=−∞

(−1)mq
5m2+7m+m

2

}

=
π

(q; q)2∞

{
∞∑

m=−∞

(q5)
m2

2 q
3m
2 (−1)m + q

∞∑
m=−∞

(q5)
m2

2 q
7m
2 (−1)m

}
=

π

(q; q)2∞

{
(q5, q−3/2+5/2, q5/2+3/2; q5)∞− (q5, q7/2+5/2, q5/2−7/2; q5)∞

}
=

π

(q; q)2∞

{
(q5, q1, q4; q5)∞ − q(1− q−1)(q5, q6, q4; q5)∞

}
=

π

(q; q)2∞

{
(q5, q1, q4; q5)∞ − (q5, q, q4; q5)∞

}
=

2π

(q; q)∞

1

(q2, q3; q5)∞
.

Hence
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
,

as required.
Consider the function

f(m,n) := q(
m
2 )
∞∑
n=0

qn
2

(q; q)n
qmn.

Then one sees that

f(0, q) =
1

(q, q4; q5)∞
and f(1, q) =

1

(q2, q3; q5)∞
.

Theorem 8.1. f(m+ 2, q) + f(m+ 1, q) = qmf(m, q).

Proof.

f(m+ 1, q)− qmf(m, q) = q(
m+1

2 )
∞∑
n=0

qn
2

+ (m+ 1)n

(q; q)n
− qm+(m

2 )
∞∑
n=0

qn
2

(q; q)n

= q(
m+1

2 )
∞∑
n=1

qn
2+mn

(q; q)n
(qn − 1)

= q(
m+1

2 )
∞∑
n=0

q(n+1)2+m(n+1)

(q; q)n
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= −q(
m+1

2 )
∞∑
n=0

qn
2+(m+2)n+(m+1)

(q; q)n
= −f(m+ 2, q). �

Theorem 8.2 (Garrett–Ismail–Stanton). We have

q(
m
2 )
∞∑
n=0

qn
2+mn

(q; q)n
=

(−1)mam(q)

(q, q4; q5)∞
− (−1)mbm(q)

(q2, q3; q5)∞
,

where

am(q) :=
∞∑
j=0

qj
2+j

[
m− j − 2

j

]
q

bm(q) :=
∞∑
j=0

qj
2

[
m− j − 1

q

]
q

.
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