
AARMS 5910: q-SERIES IN NUMBER THEORY AND COMBINATORICS

HEESUNG YANG

Abstract. We will develop the theory of combinatorial and analytic identities, summation
theorems, and related topics through analytic and combinatorial techniques. The combina-
torics involves counting subspaces and mapping vector spaces over finite fields, and parti-
tioning theoretic identities of number theory. The Möbius function on partially ordered sets
will also be mentioned.

We will pay special attention to identities like the Rogers-Ramanujan identities and their
various generalizations in some detail. A central piece of the analytic development is the
Askey–Wilson integral and its generalizations.

Over all the course will be a bridge between analysis and discrete mathematics through
the use of combinatorial and analytic tools. The treatment we propose is very conceptual
and is a major improvement over the earlier approaches.

The classical approach to q-series is available in [AAR99] and [GR04]. One classic refer-
ence on partitions and number theory is [And98].

The lectures will be based on the lecture notes [IS]. A copy of these notes will be made
available to the students in the class.
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1. Introduction to q-series

We shall define a few notations that will be used throughout this course.

Definition 1.1. The q-Pochhammer symbol or the q-shifted factorial is defined by

(a; q)n := (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

More generally, we shall define

(a1, . . . , ak; q)n :=
k∏
j=1

(aj; q)n

and
(q; q)n

(1− q)n
=

(1− q)(1− q2) · · · (1− qn)

(1− q)n
.

Remark. Observe that

lim
q→1−

(q; q)n
(1− q)n

= lim
q→1−

(1− q)(1− q2) · · · (1− qn)

(1− q)n

= lim
q→1−

n∏
k=1

1− qk

1− q
= lim

q→1−

n∏
k=1

(1 + q + q2 + · · ·+ qk−1) = n!.

We also have the q-analogue of the binomial coefficients and the gamma function.

Definition 1.2. The q-gamma function is defined by

Γq(x) :=
(1− q)1−x(q; q)∞

(qx; q)∞
= (1− q)1−x

∞∏
n=0

1− qn+1

1− qn+x
,

provided that |q| < 1. The q-binomial coefficient is defined by[
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

Remark. We have

Γq(x+ 1)

Γq(x)
=

(1− q)−x

(1− q)1−x
· (qx; q)∞

(qx+1; q)∞

=
(1− qx)(1− qx+1) · · ·
(1− q)(1− qx+1) · · ·

=
1− qx

1− q
.
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Remark. Since expanding the q-binomial coefficient gives[
n
k

]
q

=
(1− q)(1− q2) · · · (1− qn)

(1− q)(1− q2) · · · (1− qk)(1− q) · · · (1− qn−k)
,

it follows that

[
n
k

]
q

has degree
(
n+1
2

)
−
(
k+1
2

)
−
(
n−k+1

2

)
.

2. Theory of integer partitions

2.1. Partition functions and their generating functions

Definition 2.1. The partition of an integer n is (n1, . . . , nk) with n1 ≥ n2 ≥ · · · ≥ nk such
that n1 + n2 + · · ·+ nk = n. The number of partitions of n is denoted by p(n).

Example. There are seven partitions of 5: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1,
and 1 + 1 + 1 + 1 + 1.

Theorem 2.1 (Euler). 1 +
∞∑
n=1

p(n)qn =
1

(q; q)∞
=

1

(1− q)(1− q2) · · ·
.

Remark. Before we delve into the proofs, we will explore where the singularities are. It is
straightforward to see that the given power series is convergent for all |q| < 1; but all the
roots of unity are singularities, which is a dense subset of the unit circle. So this is a tough
function to explore.

Proof. Observe that the RHS is equal to the following infinite product.

(1 + q + q1+1 + q1+1+1 + · · · )(1 + q2 + q2+2 + q2+2+2 + · · · ) · · · . (2.1)

Is it “legal” to write the RHS this way? Yes indeed, as far as computing the coefficient of qn is
concerned. Note that the term we pick from each of (1+xk+x2k+ · · · ) determines how many
times the number k shows up in a partition of n as we compute the coefficient of qn. The
number of ways we can pick one term from each of the infinite products (1 + xk + x2k + · · · )
so that the sum of the exponents is equal to n is precisely the number of partitions of n.
Hence, the number of partitions of n must be p(n) as required. �

But what if we want to find partitions that only consist of numbers from a set S? In this
case, we can use the similar reasoning to see that

∞∑
n=1

pS(n)qn =

(∏
n∈S

(1− qn)

)−1
,

since the infinite product of the form (1 + qk + qk+k + · · · ) shows up in the RHS only when
k ∈ S.

Definition 2.2. We shall denote Po(n) (resp. Pd(n)) the set of partitions of n into odd
parts (resp. the set of partitions of n into distinct parts). po(n) is defined as the number
of partitions of n into odd parts. We shall denote pd(n) the number of partitions of n into
distinct parts.

Example. po(5) = 3 since 5, 3+1+1, and 1+1+1+1+1 are the only available odd partitions
of 5.
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Proposition 2.1. 1 +
∞∑
n=1

po(n)qn =
1

(1− q)(1− q3)(1− q5) · · ·
.

We can also look into partitions into distinct parts. For example, pd(5) = 3 since there are
three partitions into distinct parts, namely 5, 4 + 1, 3 + 2.

Proposition 2.2. 1 +
∞∑
n=1

pd(n)qn = (1 + q)(1 + q2)(1 + q3)(1 + q4) · · · =
∞∏
k=1

(1 + qk).

Proof. Note that the RHS forces that exactly one of qk be chosen for any k ∈ N when we
try to reach qn via multiplication. �

Theorem 2.2 (Euler). The number of odd partitions is equal to the number of partitions
into distinct parts.

Combinatorial proof. It is possible to prove this with generating functions, but we will prove
this in a combinatorial way by displaying a bijection between the two types of partitions.

Let λ = (λ1, λ2, . . . , λk) be a partition of n into distinct parts so that λ1 > λ2 > · · · > λk.
For each λi, let ni ∈ N∪{0} satisfy 2ni ‖λi (i.e., the maximum power of 2 that divides λi). We
define a function Φ : Pd(n)→ Po(n) that does the following for any λ = (λ1, . . . , λk) ∈ Pd(n):

(1) If λi is odd, then leave λi as is.
(2) If λi is even, then break it into two equal parts (i.e., λi = λi/2 + λi/2) until it is

impossible to do so.

Note that the once the second step terminates for each of the even parts of λ ∈ Pd(n),
there are only odd parts. Furthermore, once this algorithm terminates, for each λi, there are
exactly 2ni copies of λ′i := λi/2

ni . Hence,

Φ(λ) = (λ′1, . . . , λ
′
1︸ ︷︷ ︸

2n1 times

, · · · , λ′k, . . . , λ′k︸ ︷︷ ︸
2nk times

);

furthermore, every λ′i is odd due to the way ni is defined, so indeed Φ(λ) ∈ Po(n) as needed.
To show that this is a bijection, we need to display the inverse map Ψ from Po(n) to

Pd(n). We will construct Ψ in a way that collects the repeating odd parts of λ′ ∈ Po(n)
in a specific manner so that the resulting Ψ(λ′) is in Pd(n). For each odd integer k that
shows up in λ′ ∈ Po(n), let rk be the number of times k shows up in λ′. Suppose that
rk = 2mk,1 + 2mk,2 + · · · + 2mk,sk is the binary expansion of rk (i.e., mk,i 6= mk,j whenever
i 6= j). Define Ψ so that for any

λ′ = (λ′1, . . . , λ
′
1︸ ︷︷ ︸

rλ′1
times

, · · · , λ′k, . . . , λ′k︸ ︷︷ ︸
rλ′
k

times

)

with λ′i all odd, we have

Ψ(λ′) = (2
mλ′1,1λ′1, 2

mλ′1,2λ′1, . . . , 2
mλ′1,rλ′1λ′1, . . . , 2

mλ′
k
,r
λ′
k λ′k).

It still is not obvious that Ψ(λ′) is the partition of n into distinct parts. First, Ψ(λ′) is a
partition of n since

n =
k∑
j=1

rλ′jλ
′
j =

k∑
j=1

(2mλj,1 + · · ·+ 2
mλj,sλj )λ′j =

k∑
j=1

sλj∑
t=1

2mλj,tλ′j,
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which shows that the sum of the integers that show up in Ψ(λ′) is indeed n. Furthermore,
since mλ′j ,s

6= mλ′j ,t
for any s 6= t, it follows that any two parts derived from the identical odd

part (some λ′i) cannot be the same. Now suppose that 2
mλ′

j
,aλ′j = 2

mλ′
l
,bλ′l for some j 6= l, a,

and b; without loss of generality, assume mλ′j ,a
> mλ′l,b

. Then we have

2
mλj,a−mλ′l,b = λ′l/λ

′
j.

Thus the left-hand side is a power of 2, so λ′l/λ
′
j must be a power of 2 as well. However,

λ′l/λ
′
j is odd, so it can be some power of 2 only when λ′l/λ

′
j = 1. Hence λ′j = λ′l, so it follows

thatmλ′j ,a
= mλl,b. This proves that each part of Ψ(λ′) is distinct as required. Observe

that Ψ is the reverse process of Φ, so Ψ is the inverse of Φ we are looking for. The claim
follows. �

Analytic proof. Observe that

1 +
∞∑
n=1

po(n)qn =

(
∞∏
k=0

(1− q2k+1)

)−1
=
∞∏
k=1

1− q2k

1− qk
=
∞∏
k=1

(1 + qk) = 1 +
∞∑
n=1

pd(n)qn,

so it follows that po(n) = pd(n) for any n as required. �

2.2. Graphical representation of a partition

One can use the Ferrers diagram to represent a partition, by using dots. Such graphical
representation gives us one insight regarding partition. Upon flipping the diagram with
respect to the diagonal going toward the down-right direction, we are flipping between the
largest part and the number of parts, as shown in the diagram below.

If we have a theorem involving the number of parts, we automatically get a theorem involving
the largest part, as observed in the above example.

Example.
1

(1− q)(1− q2) · · · (1− qm)
= 1 +

∑
f(n)qn where f(n) denotes the number of

partition of n whose largest part is at most m. Note that we can replace “whose largest part
is at most m” with “whose number of parts is at most m”.

2.3. Partitions fitting in a “box”

In the previous section, we looked at the graphical representation of a partition, and from
there we could see the bijections between the partitions of n with at most m parts and
the partitions of n whose largest part is at most m. First we briefly survey the generating
functions for the partition function with only one of the two restrictions (the largest part or
the maximum number of parts).

5



Theorem 2.3. Let pk(n) be the number of partitions of n whose largest part is at most k.
Then

∞∑
n=0

pk(n)qn =
1

(q; q)k
.

Proof. Apply the similar reasoning as Euler did in Theorem 2.1 while noting that

1

(q; q)k
= (1 + q + q1+1 + · · · )(1 + q2 + q2+2 + · · · ) · · · (1 + qk + qk+k + · · · ). �

Corollary 2.1. Suppose that sk(n) is the number of partitions of n that have at most k
parts. Then

∞∑
n=0

sk(n)qn =
1

(q; q)k
.

Proof. Recall that there is a one-to-one correspondence between the number of partitions of
a fixed size whose largest part is at most k and partitions that have at most k parts. �

Proposition 2.3. Let Pm(n) denote the number of partitions of n consisting of exactly m
parts. Its generating function is

∞∑
n=0

Pm(n)qn =
qm

(q; q)m
.

Proof. It suffices to count how many partitions of n there are whose largest part is exactly
m. Thus, we have

∞∑
n=0

Pm(n)qn =
1

1− q
1

1− q2
· · · (qm + q2m + · · · )

=
qm

(1− q)(1− q2) · · · (1− qm)
=

qm

(q; q)m
. �

Definition 2.3. Let λ be a partition. Then the weight of λ, written w(λ) is

w(λ) = qsxt,

where s is the size of λ and t is the number of parts of λ.

Theorem 2.4. (xq; q)−1∞ =
∑
λ

w(λ) =
∞∑
n=0

qnxn

(q; q)n
.

Proof. Observe that

1

(xq; q)∞
=

1

(1− xq)(1− xq2) · · ·
= (1 + xq + x2q2 + . . . )(1 + xq2 + x2q2+2 + · · · ),

so the power of x keeps track of how many parts there are, whereas the power of q keeps
track of the size of λ. As for the second equality, note that∑

λ

w(λ) =
∑
m

xm ·
∞∑
n=0

Pm(n)qn,
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and by Proposition 2.3, we have

(xq; q)−1∞ =
∑
λ

w(λ) =
∞∑
m=0

xm
qm

(q; q)m
,

as desired. �

We now shall move towards what we are particularly interested in exploring this section:
in the number of partitions of n having both restrictions. In other words, we focus on the
partitions of n which fit in, say, a box of dimension k×m (i.e., a partition’s largest part must
be at most m, and it must have at most k parts.). Let fm,k(n) be the number of partitions
satisfying the desirable condition.

Theorem 2.5.
∞∑
n=0

fm,k(n)qn =

[
m+ k
k

]
q

.

Before proving this claim, we will prove the following proposition first.

Proposition 2.4.

[
m+ k
k

]
q

=

[
m+ k − 1

k

]
q

+ qm
[
m+ k − 1
k − 1

]
q

.

Proof. The RHS can be re-written using the q-Pochhammer symbols:

RHS =
(q; q)m+k−1

(q; q)k(q; q)m−1
+ qm

(q; q)m+k−1

(q; q)k−1(q; q)m

=
(q; q)m+k−1

(q; q)k(q; q)m

[
1− qm + qm(1− qk)

]
=

(q; q)m+k−1

(q; q)k(q; q)m

[
1− qk

]
=

(q; q)m+k

(q; q)k(q; q)m
=

[
m+ k
k

]
q

= LHS. �

Proof of Theorem 2.5. Note that any partition fitting into a k ×m box can be broken into
two types: first, partitions that fit into the k × (m− 1) box; second, partitions that do not
fit into that smaller box. For the sake of simplicity of notation, let

∑
fm,k(n)qn =: G(m, k).

Then the generating function for the number of partitions of n fitting into the k × (m− 1)
rectangle is precisely G(m− 1, k). Observe that any partition of the second type must have
the largest part m; upon removing that largest part, the remaining partition necessarily fits
into the (k−1)×m box; the generating function for the number of partitions satisfying such
condition is G(m, k − 1). But we need to multiply by the factor of qm to account for the
largest part that we removed. Therefore we have G(m, k) = G(m − 1, k) + qmG(m, k − 1)
for any m and k, so by Proposition 2.4 the claim follows. �

Corollary 2.2.
1

(xq; q)m
=
∞∑
k=0

[
m+ k − 1

k

]
q

qkxk.

Proof. The left-hand side is the generating function for the function that counts all the
partitions whose largest part is at most m. Specifically, the coefficient of xk from the LHS is
the generating function of all partitions whose largest part is at most m and have exactly k

parts (i.e., fits into a k ×m box). Thus it suffices to argue that

[
m+ k − 1

k

]
q

qk is precisely

what we want. Consider any partition that can fit into a k × m box. Removing the left
7



column, which must have exactly k elements, gives an arbitrary partition that fits into a
k × (m − 1) box. The generating function of all partitions satisfying such condition is[
m+ k − 1

k

]
q

, as observed in the proof of Theorem 2.5. We multiply

[
m+ k − 1

k

]
q

by qk to

account for the first column with k elements we separated from the original partition. �

Since there can be at most mk objects in the k × m box, it follows that the degree of∑
fm,k(n)qn is mk. Thus the degree of

[
m+ k
k

]
q

is mk as well. Also, for any n, we have

fm,k(n) = fm,k(mk− n), since there is a one-to-one correspondence between a partition of n
in an k ×m box and the “complement” of that partition (i.e., at any spot that didn’t have
an object, put an object and vice versa), which gives a partition for mk − n that fit in an
k ×m box.

3. q-binomial theorems and the Jacobi triple product

Key tools in partition theory include the q-binomial theorems and the Jacobi triple prod-
uct, which we need to develop before proving the Rogers-Ramanujan identities, which give
insights on the partitions consisting of integers from 1 or 4 modulo 5 (the first identity) or
from 2 or 3 modulo 5 (the second identity). In this section we will develop and prove these
tools.

Theorem 3.1 (q-binomial theorem, finite version). (−xq; q)m =
m∑
k=0

[
m
k

]
q

q(
k+1
2 )xk.

Proof. Since
(−xq; q)m = (1 + xq)(1 + xq2) · · · (1 + xqm),

the coefficient of xk denotes the number of partitions into k distinct parts with the largest
part at most m. Let λ = (λ1, . . . , λk) be a partition with k distinct parts whose largest
part is at most m, and let µ = (λ1 − k, λ2 − (k − 1), . . . , λ − k − 1 − 2, λk − 1) be the new
partition. The largest part must be at most m − k, so µ fits in a k × (m − k) box. The

generating function of any such partitions is

[
m
k

]
q

; q(
k+1
2 ) needs to be multiplied to add back

the 1 + 2 + · · ·+ k =
(
k+1
2

)
elements we removed from λ in order to create µ. �

Remark. Notice that if q = 1, then we get the regular binomial theorem.

Theorem 3.2 (q-binomial theorem, infinite version). (−xq; q)∞ =
∞∑
k=0

q(
k+1
2 )xk

(q; q)k
.

Proof. Since
(−xq; q)∞ = (1 + qx)(1 + q2x) · · · (1 + qnx) · · · ,

the coefficient of xk in (−xq; q)∞ contains q1+2+···+k = q(
k+1
2 ) and qNk , where Nk denotes the

number of partitions with at most k parts.
Observe that

(
k+1
2

)
= 1 + 2 + · · ·+ k, so once you add 1 in the kth part, 2 in the (k− 1)th

part, . . . , k in the first part, then we guarantee that each part is distinct. The exponent of
x keeps track of how many parts there are; the (q; q)−1k is responsible for counting how many
partitions with k parts there are (no restrictions on the largest part), per Corollary 2.1. �
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Theorem 3.3 (Jacobi triple product). (q; q)∞(−z; q)∞

(
−q
z

; q
)
∞

=
∞∑

n=−∞

q(
n+1
2 )zn.

Proof. We will start by looking at the following product:

(−z; q)N

(
−q
z

; q
)
N

=
(

1 +
q

z

)(
1 +

q2

z

)
· · ·
(

1 +
qN

z

)
(−z; q)N

=
1

zN
q(

N+1
2 )(1 + q−Nz) · · · (1 + q−1z)(1 + z)(1 + qz) · · · (1 + qN−1z)

=
1

zN
q(

N+1
2 )(−zq−N ; q)2N

∗
=

1

zN
q(

N+1
2 )

2N∑
k=0

[
2N
k

]
q

(zq−N)kq(
k
2)

†
= q(

N+1
2 )

N∑
j=−N

(q; q)2Nz
jq−N(N+j)

(q; q)N+j(q; q)N−j
q(

N+j
2 ),

where
∗
= follows from Theorem 3.1, and

†
= follows upon replacing k with N + j.

Now let’s look at the power of q for each individual term. Our calculations show that the
power of q is

N(N + 1)

2
−N2 −Nj +

(N + j)2

2
− N + j

2
=
j(j + 1)

2
.

Now letting N →∞ gives us(
−z,−q

z
; q
)
∞

=
1

(q; q)∞

∞∑
j=−∞

q(
j+1
2 )zj. �

We also present an alternative form of the Jacobi triple product identity.

Theorem 3.4 (Jacobi triple product II). (q2; q2)∞(−zq; q2)∞(−z−1q; q2)∞ =
∞∑

n=−∞

qn
2

zn.

Proof. We will start by looking at the following product:

(−zq; q2)N
(
−q
z

; q2
)
N

=
(

1 +
q

z

)(
1 +

q3

z

)
· · ·
(

1 +
q2N−1

z

)
(−zq; q2)N

= (1 + q−(2N−1)z) · · · (1 + q−1z)(1 + qz)(1 + q3z) · · · (1 + q2N−1z)

=
1

zN
(z + q2N−1) · · · (z + q)(1 + qz) · · · (1 + q2N−1z)

=
1

zN

[
N∏
k=1

q−(2k−1)(q−(2k−1)z + 1)

]
(z + q)(1 + qz) · · · (1 + q2N−1z)

=
1

zN
qN

2

(−zq−(2N−1); q2)2N

∗
=

1

zN
qN

2
2N∑
k=0

(q2; q2)2N
(q2; q2)k(q2; q2)2N−k

(zq−(2N−1))kq2(
k
2)
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†
= qN

2
N∑

j=−N

(q2; q2)2Nz
jq−(2N−1)(N+j)

(q2; q2)N+j(q2; q2)N−j
(q2)(

N+j
2 ),

where
∗
= follows from Theorem 3.1, and

†
= follows upon replacing k with N + j.

Now let’s look at the power of q for each individual term. Our calculations show that the
power of q is

N2 − (2N − 1)(N + j) + (N + j)2 − (N + j) = j2.

Now letting N →∞ gives us(
−zq,−q

z
; q2
)
∞

=
1

(q2; q2)∞

∞∑
j=−∞

qj
2

zj. �

We finish this section with the general non-terminating version of the q-binomial theorem.

Theorem 3.5 (General q-binomial theorem).
(qax; q)∞
(qx; q)∞

=
∞∑
k=0

qkxk
(a; q)k
(q; q)k

.

Proof. By Theorem 3.1, upon replacing x with −a/q we have

(a; q)m
(q; q)m

=
m∑
k=0

q(
k
2)(−a)k

(q; q)k(q; q)m−k
.

But then note that if

ak :=
q(

k
2)(−a)k

(q; q)k
and bk :=

1

(q; q)k
,

then

cn :=
(a; q)n
(q; q)n

=
n∑
k=0

akbn−k.

Thus we have
∞∑
k=0

ckx
k =

(
∞∑
k=0

akx
k

)(
∞∑
k=0

bkx
k

)
∞∑
k=0

(a; q)k
(q; q)k

xk =

(
∞∑
k=0

q(
k
2)(−ax)k

(q; q)k

)(
∞∑
k=0

1

(q; q)k
xk

)
∞∑
k=0

(a; q)k
(q; q)k

xk = (ax; q)∞

(
∞∑
k=0

1

(q; q)k
xk

)
by Theorem 3.2. Finally, by Theorem 2.4 (replace x from the statement with xq−1), it follows
that

∞∑
k=0

(a; q)k
(q; q)k

xk = (ax; q)∞

(
∞∑
k=0

1

(q; q)k
xk

)
=

(ax; q)∞
(x; q)∞

.

The theorem follows upon replacing x with qx. �
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4. Number-theoretic applications of the Jacobi triple product

In this section we will explore the application of the Jacobi triple product in combinatorial
number theory.

4.1. Sum of two squares theorem

Recall that the product rule implies that, for functions {fj},

d

dx
log

(∏
j

fj

)
=
∑
j

f ′j
fj

=
d
dx

(
∏
fj)∏
fj

. (4.1)

This observation be useful in proving the following theorem.

Theorem 4.1.

(
∞∑

n=−∞

qn
2

)2

= 1 + 4

[
∞∑
n=0

q4n+1

1− q4n+1
−
∞∑
n=0

q4n+3

1− q4n+3

]
.

Remark. We first examine what the LHS and the RHS each represent. Note that every term
in the left-hand side will consist of sum of two squares. Now try to expand the right-hand
side first and observe that

q4n+1

1− q4n+1
= q4n+1(1 + q4n+1 + q2(4n+1) + · · · ) =

∞∑
j=0

qjc(j),

where c(j) denotes the number of divisors of j that are congruent to 1 mod 4. Similarly

q4n+3

1− q4n+3
= q4n+3(1 + q4n+3 + q2(4n+3) + · · · ) =

∞∑
j=0

qjc′(j),

where c′(j) denotes the number of divisors of j that are congruent to 3 mod 4.

Proof. We start from (
1− 1

z2

)(
q, qz2,

q

z2
; q
)

=

(
q, qz2,

1

z2
; q

)
∞
,

and we apply Theorem 3.4 (let Z := −√qz2 and Q :=
√
q):(

q, qz2,
1

z2
; q

)
∞

= (Q2,−ZQ,−QZ−1;Q2)∞ =
∞∑

n=−∞

Qn2

Zn

=
∞∑

n=−∞

qn
2/2(−1)nz2nqn/2 =

∞∑
n=−∞

q(
n+1
2 )(−1)nz2n.

Break the last summand into even (n = 2k) and odd (n = 2k − 1):

∞∑
n=−∞

q(
n+1
2 )(−1)nz2n =

∞∑
k=−∞

q(
2k+1

2 )z4k −
∞∑

k=−∞

q(
2k
2 )z4k−2

=
∞∑

k=−∞

qk(2k+1)z4k − z−2
∞∑

k=−∞

qk(2k−1)z4k

11



†
=

∞∑
k=−∞

qk(2k+1)z4k − z−2
∞∑

k=−∞

qk(2k+1)z4k.

Note that
†
= holds since, via the change of variable k → −k, i.e.,

∞∑
k=−∞

qk(2k−1)z4k =
∞∑

k=−∞

q−k(−2k−1)z−4k =
∞∑

k=−∞

qk(2k+1)z4k.

Apply Theorem 3.4 again to the summand, qk(2k+1)z4k:

∞∑
k=−∞

qk(2k+1)z4k =
∞∑

k=−∞

(q2)k
2

(z4q)k

= ((q2)2,−(q2)(qz4),−(q2)/(qz4); (q2)2)∞

=
(
q4,−q3z4,− q

z4
; q4
)
∞
.

Notice that using our observation (4.1) gives

d

dz

∣∣∣∣
z=1

(−cz4; q4)∞ = (−cz4; q4)∞
d

dz

∣∣∣∣
z=1

log(−cz4; q4)∞

= (−c; q4)∞
∞∑
n=0

4cz3q4n

1 + cz4q4n

∣∣∣∣∣
z=1

= 4(−c; q4)∞
∞∑
n=0

cq4n

1 + cq4n
.

(4.2)

Using the identity (4.2) on the (q4,−q3z4,−qz−4; q4)∞ gives us

d

dz

∣∣∣∣
z=1

(
q4,−q3z4,− q

z4
; q4
)
∞

= 4(q4,−q,−q3; q4)∞

[
∞∑
n=0

q4n+3

1 + q4n+3
−
∞∑
n=0

q4n+1

1 + q4n+1

]
=: A.

Thus
d

dz

∣∣∣∣
z=1

[(
q4,−q3z4,− q

z4
; q4
)
∞
− z−2

(
q4,−q3z4,− q

z4
; q4
)
∞

]
= A+ 2(q4,−q3,−q; q4)∞ − (−A) = 2A+ 2(q4,−q3,−q; q4)∞.

(4.3)

On the other hand, since (1; q)∞ = 0, it follows

d

dz

∣∣∣∣
z=1

(q; q)∞(qz2; q)∞(z−2; q)∞ = (q; q)∞(q · 12; q)∞

[
d

dz

∣∣∣∣
z=1

(z−2; q)∞

]
= (q; q)2∞

[{
(2z−3)

∞∏
j=1

(1− qjz−2)

}
+ (1− z−2)(· · · )

]∣∣∣∣∣
z=1

= 2(q; q)3∞.
(4.4)
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Combining (4.3) and (4.4) gives

(q; q)3∞
(q4,−q,−q3; q4)∞

= 4
∞∑
n=0

[
q4n+3

1 + q4n+3
− q4n+1

1 + q4n+1

]
+ 1. (4.5)

The LHS of (4.5) can be further simplified, since (−q,−q3; q4)∞ = (−q; q2)∞. (Note that the

product (−q,−q3; q4)∞ is equal to the product
∏
k odd

(1 + qk).) Also, note that we can split

(q; q)∞ into the product of even powers and odd powers, i.e.,

(q; q)∞ =
∏
k odd

(1 + qk)
∏

k even
k≥2

(1 + qk) = (q, q2; q2)∞.

Thus, we have

(q; q)3∞
(q4,−q,−q3; q4)∞

=
(q, q2; q2)3∞

(q2,−q2; q2)∞(−q; q2)∞
=

(q; q2)3∞(q2; q2)2∞
(−q,−q2; q2)∞

=
(q; q2)3∞(q2; q2)2∞

(−q; q)∞
.

But by the analytic proof of Theorem 2.2, we have (−q; q)∞ = (q; q2)−1∞ , so

(q; q2)3∞(q2; q2)2∞
(−q; q)∞

= (q; q2)4∞(q2; q2)2∞ = (q2, q, q; q2)2∞.

Now performing a change of variable (from q to −q) gives us

(q2,−q,−q; q2)2∞ = 1 + 4
∞∑
n=0

[
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

]
.

But then applying the Jacobi triple product (Theorem 3.4) on the left-hand side gives us

(q2,−q,−q; q2)2∞ =

(
∞∑

n=−∞

qn
2

)2

,

so the proof is complete. �

Definition 4.1. We will denote rk(n) the number of ways to write n as a sum of k squares.

We will count in how many ways, say, we can write 17 as a sum of two squares. There
are eight ways (we count a partition with different signs as distinct; a2 + b2 and b2 + a2

are also considered distinct): 12 + 42, (−1)2 + (−4)2, 12 + (−4)2, (−1)2 + 42, 42 + 12, (−4)2 +
(−1)2, (−4)2 + 12, 42 + (−1)2. Therefore, r2(17) = 8.

Theorem 4.2 (Jacobi). Let dj(n) denote the number of divisors of n that are congruent to
j mod 4. Then r2(n) = 4(d1(n)− d3(n)) for all n ≥ 1.

Proof. Evidently, we have (
∞∑

n=−∞

qn
2

)2

= 1 +
∞∑
n=1

r2(n)qn,

and thanks to Theorem 4.1, we have

1 +
∞∑
n=1

r2(n)qn = 1 + 4
∞∑
n=0

[
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

]
= 1 + 4

∞∑
n=0

∞∑
k=1

[qk(4n+1) − qk(4n+3)].
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Note that qn will appear from each summand in the right-hand side if and only if n can be
written in the form n = dn′ where d ≡ 1 or 3 mod 4; and since the coefficient of each power
is ±1, it follows that each factor of n congruent to 1 mod 4 will contribute 1 toward the
coefficient of qn whereas each factor of n congruent to 3 mod 4 will contribute −1 toward
the coefficient of qn. Therefore, we indeed have

1 + 4
∞∑
n=0

∞∑
k=1

[qk(4n+1) − qk(4n+3)] = 1 + 4
∞∑
n=1

(d1(n)− d3(n))qn,

so indeed r2(n) = 4(d1(n)− d3(n)) for all n ≥ 1 as required. �

Example. Consider n = 10. There are four divisors: 1, 2, 5, 10. Then d3(10) = 0 and
d1(10) = 2. So by the theorem above, there are 8 ways to write 10 as a sum of two squares:
(−1)2 + 32, 32 + (−1)2, (−1)2 + (−3)2, (−3)2 + (−1)2, 12 + 32, 32 + 12, 12 + (−3)2, (−3)2 + 12.

This gives us a combinatorial proof of the following theorem, which one encounters at the
beginning of algebraic number theory (in the context of Z[i], the ring of Gaussian integers).

Theorem 4.3. Let p be a prime. Then p can be written as a sum of two squares if and only
if p ≡ 1 (mod 4).

Proof. If p ≡ 1 (mod 4), then d1(p) = 2 (namely, 1 and itself) whereas d3(p) = 0. Thus
r2(p) = 8. On the other hand, if p ≡ 3 (mod 4), then d1(p) = 1 (namely, 1) and d3(p) = 1
(namely, p itself). Thus in this case, r2(p) = 4(1− 1) = 0, so p cannot be written as a sum
of two squares. �

4.2. Square, triangular numbers, and pentagonal numbers

Definition 4.2. Any number that is the of the integers between 1 and n inclusive is called
a triangular number. Thus, any triangular number is of the form

(
n
2

)
.

Definition 4.3. If n objects can be arranged in a regular pentagonal shape, then n is a
pentagonal number. Any pentagonal number is of the form 3n2−n

2
.

Theorem 4.4 (Euler pentagonal number theorem). (q; q)∞ =
∞∑

n=−∞

q(3n
2−n)/2(−1)n.

Proof. By the Jacobi triple product (Theorem 3.4),
∞∑

n=−∞

qn
2

(−z)n = (q2, qz, q/z; q2)∞.

Let q = p3/2 and z = p1/2. Then
∞∑

n=−∞

p3n
2/2(−1)np−n/2 = (p3, p, p2; p3)∞ = (p; p)∞. �
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5. Integer partitions modulo 5 and the Rogers-Ramanujan identities1

Theorem 5.1 (Rogers-Ramanujan identity I). We have

1 +
∞∑
k=1

qk
2

(q; q)k
=
∞∏
k=0

1

(1− q5k+1)(1− q5k+4)
=

1

(q, q4; q5)∞
(5.1)

Therefore, there is a bijection between the set of partitions of n whose difference between
consecutive parts is at least 2 and the set of partitions of n whose parts consist entirely of
integers congruent to 1 or 4 mod 5.

Theorem 5.2 (Rogers-Ramanujan identity II). We have

1 +
∞∑
k=1

qk
2+k

(q; q)k
=
∞∏
k=0

1

(1− q5k+2)(1− q5k+3)
=

1

(q2, q3; q5)∞
. (5.2)

Therefore, there is a bijection between the set of partitions of n whose difference between
consecutive parts is at least 2 and whose every part is at least 2 and the set of partitions of
n whose parts consist entirely of integers congruent to 2 or 3 mod 5.

There are dozen available proofs of these remarkable identities, but none of them too
“simple” and “straightforward”. Indeed, Hardy’s famous comment remains valid: “None of
the proofs of [the Rogers-Ramanujan identities] can be called ‘simple’ or ‘straightforward’
[...]; and no doubt it would be unreasonable to expect a really easy proof” [Har40]. One may
try to draw a bijection between these two sets of partitions of different nature to prove this.
This is indeed possible, as demonstrated by [BP06], but the construction of the bijection is
rather elaborate and indeed is far from “simple” or “straightforward”.

Before proving these identities, we will define

Gi(z; q) :=
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)−in(1− zi+1q(2n+1)(i+1))

(q; q)n
∞∏

j=n+1

(1− zqj)

and prove the following lemma about Gi(z; q).

Lemma 5.1. We have

(1) G1(z; q) = G0(z; q) + zqG0(zq; q),
(2) G−1(z; q) = 0, and
(3) G0(z; q) = G1(zq; q).

Proof. For the first claim, note that

G1(z; q)−G0(z; q) =
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)(q−n − z2q3n+2 − 1 + zq2n+1)

(q; q)n
∞∏

j=n+1

(1− zqj)

1During the lecture, only the significance of the left-hand side was explained; the proof was not covered
until later in the course during the analysis lecture. I gave a more elementary proof in this note, based on
Sections 13-2 and 14-1 of [And71].
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=
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)(q−n(1− qn) + zq2n+1(1− zqn+1))

(q; q)n
∞∏

j=n+1

(1− zqj)

∗
=
∞∑
n=1

(−1)nz2nq
1
2
n(5n+3)q−n(1− qn)

(q; q)n
∞∏

j=n+1

(1− zqj)
+
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)zq2n+1(1− zqn+1)

(q; q)n
∞∏

j=n+1

(1− zqj)

†
=
∞∑
n=0

(−1)n+1z2n+2q
1
2
(n+1)(5n+8)q−n−1

(q; q)n
∞∏

j=n+2

(1− zqj)
+
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)zq2n+1

(q; q)n
∞∏

j=n+2

(1− zqj)
.

Note that in
∗
= we changed the starting index of the first sum from n = 0 to n = 1: this is

justified since 1 − qn = 0 when n = 0. In
†
=, we changed the variable of the first sum from

n to n+ 1. Now pulling zq from each of the two sums gives

G1(z; q)−G0(z; q) = zq

 ∞∑
n=0

(−1)n+1z2n+1q
1
2
(n+1)(5n+8)q−n−2

(q; q)n
∞∏

j=n+2

(1− zqj)
+
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)q2n

(q; q)n
∞∏

j=n+2

(1− zqj)


= zq

∞∑
n=0

(−1)n(zq)2nq
1
2
n(5n+3)(1− (zq)q2n+1)

(q; q)n
∞∏

j=n+1

(1− (zq)qj)

= zqG0(zq; q).

Therefore G1(z; q) = G0(z; q) + zqG0(zq; q). The second claim is immediate, since if i = −1,
then

1− zi+1q(2n+1)(i+1) = 1− z0q0 = 0.

As for the third claim, using the similar type of argument (with
∗
= and

†
= each marking the

step where the same operation as described previously is being used), we see that

G0(z; q)−G−1(z; q) =
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)(1− zq2n+1 − qn + qn)

(q; q)n
∞∏

j=n+1

(1− zqj)

=
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)(1− qn + qn(1− zqn+1))

(q; q)n
∞∏

j=n+1

(1− zqj)

∗
=
∞∑
n=1

(−1)nz2nq
1
2
n(5n+3)(1− qn)

(q; q)n
∞∏

j=n+1

(1− zqj)
+
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)qn(1− zqn+1)

(q; q)n
∞∏

j=n+1

(1− zqj)

†
=
∞∑
n=0

(−1)n+1z2n+2q
1
2
(n+1)(5n+8)

(q; q)n
∞∏

j=n+2

(1− zqj)
+
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)qn

(q; q)n
∞∏

j=n+2

(1− zqj)

16



=
∞∑
n=0

(−1)nz2nq
1
2
n(5n+3)+n(1− z2q4n+4)

(q; q)n
∞∏

j=n+1

(1− (zq)qj)

=
∞∑
n=0

(−1)n(zq)2nq
1
2
n(5n+3)−n(1− (zq)2q2(2n+1))

(q; q)n
∞∏

j=n+1

(1− (zq)qj)
= G1(zq; q).

But since G−1(z; q) = 0, it follows that G0(z; q) = G1(zq; q). �

Proof of Rogers-Ramanujan I. Start with the left-hand side. Suppose that (x1, . . . , xk) (as
always, assume x1 ≥ x2 ≥ · · · ≥ xk) is a partition whose difference between two consecutive
parts is at least 2. Since xk ≥ 1, it follows that there is a set of non-negative integers
(y1, . . . , yk) such that (y1, . . . , yk) = (x1− (2k− 1), x2− (2k− 3), . . . , xk−1− 3, xk− 1). Thus,
the problem is reduced into counting the number of partitions that have at most k parts.
The generating function of partitions with at most k parts is precisely 1

(q;q)k
.

But notice that 1 + 3 + 5 + 7 + · · ·+ (2k− 1) = k2, so we need to multiply qk
2

back to add
back the k2 objects we initially removed. Thus we conclude that the left-hand side signifies
the generating function of partitions whose consecutive parts differ by at least 2.

We will now prove that

G1(1; q) = 1 +
∞∑
n=1

qk
2

(q; q)k
.

Suppose that the B(n; q) satisfy

G1(z; q) =
∞∑
n=0

B(n; q)zn.

But thanks to (1) and (3) of Lemma 5.1, we have G1(z; q) = G0(z; q) + zqG0(zq; q) =
G1(zq; q) + zqG1(zq

2; q). Hence it follows that

∞∑
n=0

B(n; q)zn =
∞∑
n=0

B(n; q)qnzn +
∞∑
n=0

B(n; q)q2n+1zn+1,

so comparing the coefficients gives us B(n; q) = B(n; q)qn+B(n−1; q)q2n−1. Also, note that
G1(0; q) = B(0; q) = 1. Repeated applications of this recurrence relation gives us

B(n; q) =
q2n−1

1− qn
B(n− 1; q) =

q2n−1

1− qn
q2n−3

1− qn−1
B(n− 2; q)

=
q2n−1

1− qn
q2n−3

1− qn−1
q2n−5

1− qn−2
B(n− 3; q)

= · · · = q(2n−1)+(2n−3)+···+1

(q; q)n
B(0; q) =

qn
2

(q; q)n
.

Hence, we indeed have, upon letting z = 1,

G1(1; q) = 1 +
∞∑
k=1

qk
2

(q; q)k
.
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On the other hand, notice that (with
††
= marking where n is replaced by −n− 1)

G1(1; q) =
1

(q; q)∞

∞∑
n=0

(−1)nq
1
2
n(5n+1)(1− q4n+2)

=
1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+1) −

∞∑
n=0

(−1)nq
1
2
n(5n+9)+2

)
††
=

1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+1) −

−1∑
n=−∞

(−1)−n−1q
1
2
(−n−1)(−5n+4)+2

)

=
1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+1) +

−1∑
n=−∞

(−1)nq
1
2
n(5n+1)

)

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq
1
2
n(5n+1) =

1

(q; q)∞

∞∑
n=−∞

(q
5
2 )n

2

(−q
1
2 )n.

Applying Theorem 3.4 thus gives us

G1(1; q) =
1

(q; q)∞
((q

5
2 )2; (q

5
2 )2)∞(−(−q

1
2 q

5
2 ); (q

5
2 )2)∞(−(−q−

1
2 q

5
2 ); (q

5
2 )2)∞

=
(q5; q5)∞(q3; q5)∞(q2; q5)∞

(q; q)∞
=

(q5; q5)∞(q3; q5)∞(q2; q5)∞
(q, q2, q3, q4, q5; q5)∞

=
1

(q, q4; q5)∞
,

so, as required,

1 +
∞∑
k=1

qk
2

(q; q)k
= G1(1; q) =

1

(q, q4; q5)∞
=
∞∏
k=0

1

(1− q5k+1)(1− q5k+4)
. �

Proof of Rogers-Ramanujan II. Start with the left-hand side. Suppose that (x1, . . . , xk) (as
always, assume x1 ≥ x2 ≥ · · · ≥ xk) is a partition whose difference between two consecutive
parts is at least 2 and whose smallest part is at least 2. Since xk ≥ 2, it follows that there
is a set of non-negative integers (y1, . . . , yk) such that (y1, . . . , yk) = (x1 − 2k, x2 − (2k −
2), . . . , xk−1−4, xk−2). Thus, the problem is reduced into counting the number of partitions
that have at most k parts. The generating function of partitions with at most k parts is
precisely 1

(q;q)k
.

But notice that 2 + 4 + 6 + 8 + · · · + 2k = 2(1 + 2 + · · · + k) = k(k + 1) = k2 + k, so

we need to multiply qk
2+k back to add back the k2 + k objects we initially removed. Thus

we can conclude that the left-hand side signifies the generating function of partitions whose
consecutive parts differ by at least 2 and whose smallest part is at least 2.

We showed in the proof of Rogers-Ramanujan I that

G1(z; q) = 1 +
∞∑
k=1

qk
2
zk

(q; q)k
.

So upon plugging in z = q, we have

G1(q; q) = 1 +
∞∑
n=1

qk
2+k

(q; q)k
.

18



By Lemma 5.1(3), we have G1(q; q) = G0(1; q). So it follows that (with
††
= marking where n

is replaced by −n− 1)

G0(1; q) =
1

(q; q)∞

∞∑
n=0

(−1)nq
1
2
n(5n+3)(1− q2n+1)

=
1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+3) −

∞∑
n=0

(−1)nq
1
2
n(5n+7)+1

)
††
=

1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+1) −

−1∑
n=−∞

(−1)−n−1q
1
2
(−n−1)(−5n+2)+1

)

=
1

(q; q)∞

(
∞∑
n=0

(−1)nq
1
2
n(5n+3) +

−1∑
n=−∞

(−1)nq
1
2
n(5n+3)

)

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq
1
2
n(5n+3) =

1

(q; q)∞

∞∑
n=−∞

(q
5
2 )n

2

(−q
3
2 )n.

Applying Theorem 3.4 thus gives us

G0(1; q) =
1

(q; q)∞
((q

5
2 )2; (q

5
2 )2)∞(−(−q

3
2 q

5
2 ); (q

5
2 )2)∞(−(−q−

3
2 q

5
2 ); (q

5
2 )2)∞

=
(q5; q5)∞(q4; q5)∞(q; q5)∞

(q; q)∞
=

(q5; q5)∞(q4; q5)∞(q; q5)∞
(q, q2, q3, q4, q5; q5)∞

=
1

(q2, q3; q5)∞
,

so, as required,

1 +
∞∑
k=1

qk
2+k

(q; q)k
= G1(q; q) = G0(1; q) =

1

(q, q2; q3)∞
=
∞∏
k=0

1

(1− q5k+2)(1− q5k+3)
. �

A different proof of Rogers–Ramanujan involving the Ramanujan integral will be given in
the analysis portion of this lecture.

6. Finite fields

6.1. Vector space counting

Definition 6.1. A field F is a commutative ring with identity such that every non-zero ele-
ment has a (unique) multiplicative inverse. In particular, if there are finitely many elements,
then F is said to be a finite field. A finite field with q elements is denoted by Fq.

Example. Let Z/7Z = {0, 1, 2, 3, 4, 5, 6}, and let the addition (resp. multiplication) defined
by addition (resp. multiplication) followed by reducing modulo 7. These two operations
indeed form a commutative ring with unity 1, so we only need to verify if every non-zero
element has a multiplicative inverse. Since gcd(a, 7) = 1 for all non-zero elements in Z/7Z,
it follows that every non-zero element has a multiplicative inverse. This argument holds fro
any prime, so Z/pZ is a field for any p. Such is also an example of a finite field.

Let Vn(q) be an n-dimensional vector space over Fq. Clearly, Vn(q) must have qn vectors
(hence, Vn(q) = Fqn). We are interested in counting the number of k linear independent
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vectors in Vn(q), which is important in counting how many k-dimensional subspaces of Vn(q)
there are.

For the first vector, we can choose any vector except for the zero vector, so we have (qn−1)
options. After that, we can choose any vector except for the vector in the subspace generated
by the initially chosen vector; thus, there are (qn − q) options. There are q2 vectors in the
subspace generated by the two chosen vectors; thus, for the third vector there are (qn − q2)
options to choose from. Continuing on, we have

(qn − 1)(qn − q) · · · (qn − qk−1).
Does this correspond to the number of k-dimensional subspaces of Vn(q)? Certainly not
because we are over-counting the number of k linear independent sets: we are counting any
identical linearly independent subset whose vectors appear in different orders as distinct sets.
To account for this, we need to divide by (qk − 1)(qk − q) · · · (qk − qk−1). Thus, there are

(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

=

[
n
k

]
q

subsets of k linear independent vectors in Vn(q). Therefore, we have proved the following
theorem.

Theorem 6.1. The number of k-dimensional subspaces of Vn(q) is

[
n
k

]
q

.

6.2. Connection to partitions and the finite q-binomial theorem

As an example, consider a 9-dimensional space. Suppose that the row reduced echelon
form of a 3× 9 matrix is as follows. 0 1 ∗ ∗ 0 ∗ 0 ∗ ∗

0 0 0 0 1 ∗ 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗


Since there are three linearly independent columns, it follows that the row vectors from the
original matrix generates a three-dimensional subspace.

Now, suppose that each ∗ is an element of a finite field Fq. We claim that every matrix of
such form corresponds to a partition that fit in a 3× 6 box. Note that the ∗’s form the right
justified Ferrers diagram. Note that any row, in this case, can have up to six entries that
need not be 0 or 1. Thus, the number of a 3× 9 reduced row echolon forms with three 1s is

equal to the number of partitions that fit in a 3× 6 box. Hence, there are

[
9
3

]
q

partitions.

Theorem 6.2. There are[
n

n− k

]
q

[
m
k

]
q

(qk − 1)(qk − q) · · · (qk − qk−1)

m× n matrices of rank k with entries from Fq.

Proof. Consider a linear transformation T : Vn(q)→ Vm(q) such that dim(T (Vn(q))) = k. By
the rank-nullity theorem, the nullity of T must be an (n− k)-dimensional subspace. Indeed,

there are

[
n

n− k

]
q

subspaces for the null space. Similarly, there are

[
m
k

]
q

subspaces for the
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range of T . Finally, note that within the same null space and the same range, there are
(qk − 1)(qk − q) · · · (qk − qk−1) distinct linear transformations. �

Corollary 6.1.

min(m,n)∑
k=0

[
n
k

]
q

[
m
k

]
q

(qk − 1) · · · (qk − qk−1) = qmn.

Proof. Clearly there are qmn m × n matrices. Any m × n matrix can have rank 0 up to
min(m,n). Thus summing up the total number of matrices of each rank gives us the total
number of possible m× n matrices. �

Note that[
m
k

]
q

(qk − 1) · · · (qk − qk−1) = (−1)kqk(k−1)/2
(q; q)m(1− q)(1− q2) · · · (1− qk)

(q; q)k(q; q)m−k

= (−1)kq(
k
2) (q; q)m

(q; q)m−k
= (−1)kq(

k
2)(1− qm) · · · (1− qm−k+1).

This gives us another way of writing Corollary 6.1.

Corollary 6.2. qmn =
n∑
k=0

[
n
k

]
q

(−1)kq(
k
2)(1− qm) · · · (1− qm−k+1).

Now replacing qm with x gives us

Theorem 6.3. xn =
n∑
k=0

[
n
k

]
q

(−1)kq(
k
2)
k−1∏
j=0

(1− xq−j) =
n∑
k=0

[
n
k

]
q

k−1∏
j=0

(x− qj).

Remark. Note that both sides of the above theorem are analytic in x.

We claim that Theorem is the q-binomial theorem. To see why, let’s juxtapose this theorem
with the original q-binomial theorem we proved, namely

(1− x)(1− xq) · · · (1− xqn−1) =
n∑
k=0

[
n
k

]
q

(−1)kq(
k
2)xk.

Expanding the LHS gives us

(1− x)(1− xq) · · · (1− xqn−1) = xn
(

1

x
− 1

)
· · ·
(

1

x
− qn−1

)
.

Now perform the change of variables by letting x := y−1. Then we have

xn
(

1

x
− 1

)
· · ·
(

1

x
− qn−1

)
= y−n

n−1∏
j=0

(y − qj) =
k∑

n=0

[
n
k

]
q

q(
k
2)(−1)ky−kyn.

Now multiplying both sides by yn gives us, and then just switching back to x gives us

n−1∏
j=0

(x− qj) =
n∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k
2 )xk.
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Thus in essence, the operation is a change of basis from {1, x, x2, . . . } to {(x; q)n}n∈N∪{0}.
We only showed that such change of basis procedure can be done between the two aforemen-
tioned particular bases. However, we can carry out this operation in general through the
Vandermonde inversion.

Theorem 6.4 (Vandermonde inversion).

bn =
n∑
k=0

[
n
k

]
q

ak

if and only if

an =
n∑
k=0

[
n
k

]
q

(−1)n−kq(
n−k
2 )bk.

Proof. Note that

∞∑
n=0

bn
(q; q)n

tn =
∞∑
n=0

tn
(q; q)n

n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

ak

=
∞∑
k=0

ak
(q; q)k

∞∑
n=k

tn

(q; q)n−k
.

Changing the variable n→ m+ k gives us

∞∑
k=0

ak
(q; q)k

∞∑
n=k

tn

(q; q)n−k
=
∞∑
k=0

akt
k

(q; q)k

∞∑
m=0

tm

(q; q)m
=

1

(t; q)∞

∞∑
k=0

aktk

(q; q)k
.

Thus, by the (infinite) q-binomial theorem,

∞∑
k=0

akt
k

(q; q)k
= (t; q)∞

∞∑
k=0

tkbk
(q; q)k

=
∞∑

k,j=0

(−1)j

(q; q)j
q(

j
2)tj

tkbk
(q; q)k

.

Hence

an
(q; q)n

=
n∑
k=0

(−1)n−kq(
n−k
2 )

(q; q)k(q; q)n−k
bk.

Note that the whole process is reversible, so the reverse direction can be shown similarly. �

7. Rogers–Szegő polynomials and q-Hermite polynomials

Definition 7.1. The Rogers–Szegő polynomial hn(x; q) is given by

hn(x; q) :=
n∑
k=0

[
n
k

]
q

xk

The alternative form called the (continuous) q-Hermite polynomial is

Hn(x |q) :=
n∑
k=0

[
n
k

]
q

ei(n−2k)θ.
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We claim that Hn(x |q) is a polynomial in x = cos θ. By the symmetry of the q-binomial
coefficients, we see that the terms ei(n−2k)θ and ei(n−2(n−k))θ = ei(−n+2k)θ have the same
coefficient. But then note that

ei(n−2k)θ + ei(−n+2k)θ = 2 cos(n− 2k)θ,

so indeed the q-Hermite polynomials are polynomials in cos θ. q-Hermite polynomials will be
covered more in depth in the analysis lecture note, so we will focus more on the Rogers–Szegő
polynomials.

Theorem 7.1. The Rogers–Szegő polynomials satisfy the following linearization formula

hn(x; q)hm(x; q) =

min(m,n)∑
k=0

[
n
k

]
q

[
m
k

]
q

(q; q)kx
khm+n−2k(x; q).

The inverse formula of hn(x; q) is

hm+n(x; q) =

min(m,n)∑
k=0

[
m
k

]
q

[
n
k

]
q

(q; q)kq
(k2)(−x)khm−k(x; q)hn−k(x; q).

The q-Hermite counterpart will be stated and proved in the analysis lecture note.

Proof. We will prove the inverse formula, since the linearization follows from the inverse.
The LHS is the generating function of all subspaces of Vm+n(q) = Vn(q)⊕ Vm(q). If W is a
t-dimensional subspace of Vmn(q), then W ∼= W1 ⊕W2 ⊕W3, where W1 = W ∩ Vn(q) is an
s-dimensional space, W2 = W ∩ Vm(q) is a u-dimensional space, and W3 is a v-dimensional
subspace of Vn(q)/W1 ⊕ Vm(q)/W2 such that W3 ∩ (Vn(q)/W1) = W3 ∩ (Vm(q)/W2) = {0}.
Note we want to have s+ u+ t = v.

Now count how many subspaces there are, for each of Wi. There are

[
n
s

]
q

subspaces

available for W1, and

[
m
u

]
q

subspaces available for W2. As for the last type, it’s equivalent

to computing the number of matrices of dimension (n− s)× (m−u) with rank v, so we have[
n− s

n− s− v

]
q

[
m− u
v

]
q

(qv − 1) · · · (qv − qv−1),

so we have [
m+ n
t

]
q

=
∑

s+u+v=t

[
n
s

]
q

[
m
u

]
q

[
n− s
v

]
q

[
m− u
v

]
q

v−1∏
j=0

(qv − qj).

So the generating function hm+n(x; q) is

hm+n(x; q) =
m+n∑
t=0

[
m+ n
t

]
q

xt

=

min(m,n)∑
v=0

[
n
v

]
q

[
m
v

]
q

(
v−1∏
j=0

(qv − qj)

)
xv

n−v∑
s=0

[
n− v
s

]
q

xs
m−v∑
u=0

[
m− v
u

]
q

xu
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=

min(m,n)∑
v=0

[
n
v

]
q

[
m
v

]
q

v−1∏
j=0

(qv − qj)xvhn−v(x; q)hm−v(x; q),

so the inverse formula follows upon observing that

v−1∏
j=0

qv − qj =
v−1∏
j=0

(−1)qj(1− qv−j) = (−1)vq0+···+(v−1)(q; q)v = (−1)vq(
v
2)(q; q)v. �

7.1. Interlude: Perfect matching

We provide one interesting combinatorial application of the q-Hermite polynomials. Since
the proofs are beyond the scope of this course, we will just state some interesting results.
An interesting reader, for instance, can learn more about the concepts in this section from
Ismail, Stanton, and Viennot [ISV87].

Definition 7.2. Let {S1, . . . , Sk} be a multiset of numbers such that |Si| = ni for all
1 ≤ i ≤ k. Suppose that x ∈ Si and y ∈ Sj with i < j implies x < y, and arrange these real
numbers in a real line. A perfect matching is a pairing (x, α(x)) of the elements of

⋃
Sj such

that:

(1) α(x) /∈ Sj if x ∈ Sj, and
(2) α(x) 6= α(y)⇔ x 6= y.

Then (x, α(x)) is an edge of α. If x < y < α(x), α(y), then we say that the edges
(x, α(x)), (y, α(y)) produce a crossing. Finally, the crossing number, denoted cr(α), is the
number of crossings generated by the edges in α.

We state one property of the Hn’s without stating the proof.

Proposition 7.1.

∫ ∞
−∞

w(x; q)Hm(x | q)Hn(x | q) = 0 if m 6= n, where w is the weight

function defined by

w(x; q) :=

∞∏
n=0

(1− 2(2x2 − 1)qn + q2n)

√
1− x2

.

Theorem 7.2. We have, for an appropriate weight function w(x; q),∫ ∞
−∞

w(x; q)Hn1(x |q) · · ·Hnk(x |q) dx = c(n1, . . . , nk; q).

The constant c(n1, . . . , nk; q) is equal to

c(n1, . . . , nk; q) :=
∑
α

qcr(α),

summed over all the available perfect matchings of n = n1 + · · · + nk numbers partitioned
into n1, . . . , nk elements.

8. Möbius inversion formula

We will first start with the most familiar version of Möbius inversion.
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8.1. Number-theoretic Möbius inversion formula

We first start with a fundamental result that one sees in elementary number theory but
nonetheless important.

Theorem 8.1 (Fundamental theorem of arithmetic). Any n ∈ N has a unique factorization,
i.e., there are primes p1, . . . , pk and α1, . . . , αk ∈ N such that n = pα1

1 . . . pαkk , and such
factorization is unique up to order.

Definition 8.1. We say any function f : N→ C is an arithmetical function (or an arithmetic
function). Particularly,

(1) if f(a + b) = f(a) + f(b) for all gcd(a, b) = 1, then f is said to be additive. If the
coprime condition can be removed, then f is said to be completely additive.

(2) if f(ab) = f(a)f(b) for all gcd(a, b) = 1 and is not identically zero, then f is said
to be multiplicative. If the coprime condition can be removed, then f is said to be
completely multiplicative.

Definition 8.2. The Möbius function µ : N→ Z is an arithmetical function defined by

µ(n) =

{
(−1)k if n is squarefree with k prime factors;

0 otherwise.

Definition 8.3. The Riemann zeta function ζ(s) is defined as

ζ(s) :=
∞∑
n=1

1

ns
,

for all Re(s) > 1.

Theorem 8.2.
∞∑
n=1

1

ns
=

[
∞∏
j=1

(
1− 1

psj

)]−1
.

Proof. We are essentially performing the Eratosthenes sieve here. Since

1

2s
ζ(s) =

1

2s
+

1

4s
+ · · · ,

it follows that (
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+ · · ·

Continuing this operation for 3, 5, 7, and so forth, we have

∞∏
j=1

(
1− 1

psj

)
ζ(s) = 1, so ζ(s) =

[
∞∏
j=1

(
1− 1

psj

)]−1
.

Finally, notice that the infinite product converges if and only if Re(s) > 1, so the claim
follows. �

Lemma 8.1.
∏

(1 + an) converges if and only if
∑
|an| converges.

Therefore,
∏

(1 − p−sj ) converges if and only if
∑
p−sj converges, and this happens if and

only if Re(s) > 1.
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Definition 8.4. A Dirichlet series is a series of the form
∞∑
n=1

an
ns

where an, s ∈ C.

Theorem 8.3. The Dirichlet series of µ(n) is
∞∑
n=1

µ(n)

ns
=
∞∏
j=1

(
1− 1

psj

)
=

1

ζ(s)
.

Therefore,

ζ(s)
∞∑
n=1

µ(n)

ns
= 1.

Proof. Notice that

1 =

(
∞∑
m=1

1

ms

)(
∞∑
n=1

µ(n)

ns

)
=

∞∑
m,n=1

µ(n)

msns
=
∞∑
n=1

µ(n)

(mn)s
=

∞∑
N=1

1

N s

∑
n|N

µ(n),

upon letting mn =: N . Therefore, we see that∑
n|N

µ(N) = δN,1,

so the theorem follows. �

Theorem 8.4 (Möbius inversion formula). Let f and g be arithmetical functions. Then

f(n) =
∑
d|n

g(d)⇔ g(n) =
∑
d|n

f(d)µ
(n
d

)
.

Proof. Suppose that

f(n) =
∑
d|n

g(d).

Then ∑
d|n

f(d)µ
(n
d

)
=
∑
d|n

µ
(n
d

)∑
d1|d

g(d1) =
∑
dk=n

µ(k)
∑
d1d2=d

g(d1)

=
∑
dk=n

∑
d1d2=d

µ(k)g(d1) =
∑

d1d2k=n

µ(k)g(d1)

=
∑

d1d2k=n

g(d1)
∑
k| n
d1

µ(k).

But recall that
∑
k|m

µ(k) = 0 if and only if m = 1. Thus the second sum vanishes if and only

if n 6= d1. Therefore ∑
d|n

f(d)µ
(n
d

)
= g(n). �
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8.2. Partially ordered sets and incidence algebra

Definition 8.5. A set (S,≤) is a partially ordered set (or poset) if ≤ is

(1) reflexive (a ≤ a fo all a ∈ S),
(2) anti-symmetric (a ≤ b and b ≤ a implies a = b for all a, b ∈ S), and
(3) transitive (a ≤ b and b ≤ c imply a ≤ c for all a, b, c ∈ S).

Definition 8.6. We say a, b ∈ S are comparable if a ≤ b or b ≤ a. In this case, we will
denote a ∨ b the larger of the two, and a ∧ b the smaller of the two.

Definition 8.7. If (S,≤) is a partially ordered set such that every two elements has a unique
supremum and a unique infimum is said to be a lattice.

Definition 8.8. We denote [x, y] := {z : x ≤ z ≤ y} ⊆ S. If [x, y] is finite, then S is said to
be locally finite.

We will assume throughout this course that partially ordered sets are locally finite.

Definition 8.9. For any P and Q two partially ordered sets, we shall denote Hom(P,Q)
the set of all monotone function f : P → Q, i.e., x ≤ y ⇒ f(x) ≤ f(y).

Definition 8.10. Let P be a partially ordered set. The incidence algebra of P – denoted
ia(P ) – is the set of functions mapping an interval to a field, i.e., for any x, y ∈ P such that
x ≤ y, there is k ∈ K such that f(x, y) = f([x, y]) = k, where K is some field. For any
x 6≤ y, we define f(x, y) = 0.

For ia(P ), scalar multiplication and addition are defined as usual pointwise scalar multi-
plication and addition, as usual. Multiplication ∗ is defined by the following convolution for
any x ≤ y:

(f ∗ g)(x, y) :=
∑
x≤z≤y

f(x, z)g(z, y).

This naturally leads to define the multiplicative identity element of the incidence algebra.

Definition 8.11. The multiplicative identity element of an incidence algebra (i.e., δ ∗ f =
f ∗ δ = f for all f ∈ ia(P )) is called the (Kronecker) δ function which is defined by

δ(x, y) :=

{
1 (x = y)

0 (x 6= y).

To see why δ is the multiplicative identity, note that

(f ◦ δ)(x, y) =
∑
x≤z≤y

f(x, z)δ(z, y) = f(x, y)δ(y, y) +
∑
x≤z<y

f(x, z)δ(z, y)

= f(x, y) +
∑
x≤z<y

f(x, z) · 0 = f(x, y).

Definition 8.12. The ζ function of an incidence algebra (distinct from the Riemann zeta
function) is defined by

ζ(x, y) :=

{
1 (x ≤ y)

0 (x 6≤ y).
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In fact, the multiplication as defined in ia(P ) gives rise to an algebra over a field, which
justifies the naming incidence algebra. Since the verification of the necessary axioms is
straightforward, we will recall the definition of algebra, state this claim formally, and omit
the proof.

Definition 8.13. Let K be a field. Then A is an algebra over K (or K-algebra) if A is a
vector space with the multiplication operation satisfying bilinearity, i.e., for all x, y, z ∈ A
and scalars a, b ∈ K,

(1) (x+ y) · z = x · z + y · z
(2) x · (y + z) = x · y + x · z
(3) (ax) · (by) = (ab)(x · y).

Theorem 8.5. For a partially ordered set P and a field K, ia(P ) is a K-algebra.

Also, before defining the Möbius function for incidence algebras, we are required to ascer-
tain the existence of an inverse.

Proposition 8.1. Let f ∈ ia(P ) for a locally finite poset P , and ∗ be the convolution
operation.

(1) ∗ is associative.
(2) ∗ is both left- and right-distributive (with respect to scalar multiplication and addi-

tion).
(3) f has an inverse if and only if f(x, x) 6= 0 for any x ∈ P .

Proof. (1) We have

(f ∗ g) ∗ h(x, y) =
∑
x≤z≤y

(f ∗ g)(x, z)h(z, y) =
∑
x≤z≤y

∑
x≤w≤z

f(x,w)g(w, z)h(z, y)

=
∑

x≤w≤y

f(x,w)
∑
w≤z≤y

g(w, z)h(z, y) =
∑

x≤w≤y

f(x,w)(g ∗ h)(w, y) = f ∗ (g ∗ h).

(2) Since right-distributivity can be proved similarly, we will only cover the left-distributivity,
where a ∈ K.

[f ∗ (g + h)](x, y) =
∑
x≤z≤y

f(x, z)[(g + h)(z, y)] =
∑
x≤z≤y

f(x, z)[g(z, y) + h(z, y)]

=
∑
x≤z≤y

f(x, z)g(z, y) +
∑
x≤z≤y

f(x, z)h(z, y) = f ∗ g + f ∗ h.

[f ∗ (ag)](x, y) =
∑
x≤z≤y

f(x, z)[(ag)(z, y)] =
∑
x≤z≤y

f(x, z)ag(z, y)

=
∑
x≤z≤y

a(f(x, z)g(z, y)) = a
∑
x≤z≤y

f(x, z)g(z, y) = a(f ∗ g).

(3) First we will assume that f has a left inverse f−1L and a right inverse f−1R , and show
that they must be equal, which justifies calling such function the “inverse” of f . We have
f−1L ◦ f = δ and f ∗ f−1R = δ, so

f−1L = f−1L ∗ δ = f−1L ∗ (f ∗ f−1R ) = (f−1L ∗ f) ∗ f−1R = f−1R ,
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from which it follows f−1L = f−1R =: f−1. Thus it suffices to ascertain the existence of f−1L
and f−1R . Again, since proving the existence of f−1L works similarly with that of the right
counterpart, we will only prove the existence of f−1R here. Note that f−1R must satisfy∑

x≤z≤y

f(x, z)f−1R (z, y) = δ(x, y). (8.1)

If x = y, then we must have f(x, x)f−1R (x, x) = 1. Therefore f−1R (x, x) = (f(x, x))−1 is well-
defined if and only if f(x, x) 6= 0 for any x ∈ P . Using the fact that f−1R (x, x) = 1/f(x, x)
and (8.1), we can recursively define f−1R (x, y) where [x, y] contains more than one element.

Suppose that one defined the values of f−1R (x, y) where [x, y] contains at most n elements.
Now if [x, y] has cardinality n+ 1, we have by (8.1) that

f(x, x)f−1R (x, y) +
∑
x<z≤y

f(x, z)f−1R (z, y) = 0.

Note that f−1R (z, y) is defined since [z, y] has at most n elements for any x < z ≤ y, thereby
completing the proof. �

Now that we established that any function with f(x, x) 6= 0 has an inverse, we are now
certain that the Möbius function, as defined below, exists for any incidence algebra.

Definition 8.14. The Möbius function of an incidence algebra is the inverse of ζ, i.e.,
µ ∗ ζ = δ.

Remark. One can also consider the incidence algebra over the product of two posets P and
Q (i.e., P × Q), with partial order defined by (p, q) ≤ (p′, q′) if and only if p ≤P p′ and
q ≤Q q′. In this case, if f is in the incidence algebra of P × Q (suppose f : P × Q → R),
then we must have f((p, q), (p′, q′)) = 0 provided either p 6≤P p′ or q 6≤Q q′.

Remark. Since µ(x, y) is the inverse of ζ, it follows that we must have∑
x≤z≤y

µ(x, z) =
∑
x≤z≤y

µ(z, y) = 0,

provided x 6= y. Thus it follows that

µ(x, y) = −
∑
x≤z<y

µ(x, z).

Furthermore µ(x, x) = 1. Thus from the following conditions, we may derive the value of µ
inductively.

8.3. Möbius inversion formula for partially ordered sets

The goal of this section is to formally state the Möbius inversion formula in the most
general settings possible (i.e., for all partially ordered sets) and prove the formula.

Theorem 8.6 (Möbius inversion formula for posets). Let P be a locally finite poset, and µ
the Möbius function for ia(P ), a K-algebra. Suppose that f and g are functions from P to
K, and that P has a unique minimum element. Then

g(y) =
∑
x≤y

f(x) if and only if f(y) =
∑
x≤y

g(x)µ(x, y).
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If P has a unique maximum element, then we also have

g(y) =
∑
x≥y

f(x) if and only if f(y) =
∑
x≥y

µ(y, x)g(x).

Proof. Since the second part can be proved similarly, we will only prove the first part.
Since P is locally finite, all sums that appear in the theorem are finite. So for any y, we

have ∑
x≤y

g(x)µ(x, y) =
∑
x≤y

(∑
z≤x

f(z)

)
µ(x, y) =

∑
z≤y

∑
z≤x≤y

f(z)µ(x, y)

=
∑
z≤y

f(z)
∑
z≤x≤y

µ(x, y) =
∑
z≤y

f(z)δ(z, x) = f(y).

The reverse direction can be shown similarly.∑
x≤y

f(x) =
∑
x≤y

f(x)ζ(x, y) =
∑
x≤y

(∑
z≤x

g(z)µ(z, x)

)
ζ(x, y)

=
∑
z≤y

g(z)
∑
z≤x≤y

µ(z, x)ζ(x, y) =
∑
z≤y

g(z)δ(z, y) = g(y). �

Therefore, one can prove the number-theoretic Möbius inversion formula by defining P = N
and letting ≤ be the divisibility relation. We shall introduce the q-analogue of the Möbius
inversion formula in the next section.

9. Möbius functions in special settings

9.1. Möbius function for boolean algebras

Definition 9.1. A boolean algebra is a six-tuple (A,∨,∧,¬, 0, 1) where:

(1) 0 is the “least” element,
(2) 1 is the “greatest” element,
(3) ¬ denotes the “not” operation,
(4) ∧ is the“and” operation, and item ∨ is the “or” operation,

such that ∨ and ∧ satisfy following conditions, for any a, b, c ∈ A:

(1) (associativity) (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c)
(2) (commutativity) a ∧ b = b ∧ a, a ∨ b = b ∨ a
(3) (absorption) a ∧ (a ∨ b) = a ∨ (a ∧ b) = a
(4) (identity) a ∨ 0 = a, a ∧ 0 = a
(5) (complement) a ∨ ¬a = 1, a ∧ ¬a = 0
(6) (distributivity) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Therefore, it follows that the set of all subsets of a set form a boolean algebra, where 0 is
the empty set, 1 the entire set, ∨ = ∪, ∧ = ∩, and ¬ the complement operation.

Now let’s calculate the Möbius function for boolean algebra. In fact, we claim that
µ(X, Y ) = (−1)|Y |−|X|, with the ≤ being the inclusion relation. Note that µ(X,X) = 1
for any X. Thus, if |Y | = 1 + |X|, we have

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −µ(X,X) = −1.
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If |Y | = 2 + |X|, then

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −1− (−2) = 1.

If |Y | = 3 + |X|, then

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −
[
1 +

(
3

1

)
(−1) +

(
3

2

)
(1)

]
= −(1− 3 + 3) = −1.

For the sake of induction, suppose that µ(X, Y ) = (−1)j for all 0 ≤ j ≤ n− 1. Note that if
|Y | = n + |X| and X ≤ Z < Y , then |Z| = j + |X| where 0 ≤ j ≤ n− 1, and there are

(
n
j

)
possible subsets of Y . Thus we have, by the inductive hypothesis,

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −
n−1∑
k=0

(
n

k

)
(−1)k.

But then recall that

(1 + x)n =
n∑
k=0

(
n

k

)
xk,

so letting x = −1 gives that
n∑
k=0

(
n

k

)
(−1)k = 0.

Hence, it follows that

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −
n−1∑
k=0

(
n

k

)
(−1)k = (−1)n,

completing the inductive step. Thus, as we will see in the proof of the next theorem, the
inclusion-exclusion principle is a special case of Möbius inversion.

Theorem 9.1 (Inclusion-Exclusion principle). If A1, . . . , An ⊆ U with |U | <∞, then∣∣∣∣∣
n⋂
j=1

Acj

∣∣∣∣∣ = |U |+
n∑
k=1

(−1)k
∑

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik |.

Proof. Let Pi denote the property that x ∈ Ai. Thus, x satisfies the property Pi if and only
if x ∈ Ai. Let Bn be the Boolean lattice on {1, 2, . . . , n}. Then consider E : Bn → C be the
function defined by

E(I) := |{x ∈ X : x satisfies Pi for all i ∈ I and no others}|.

Similarly, let L : Bn → C be the function defined by

L(I) := |{x ∈ X : x satisfies Pi for all i ∈ I}|.
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Thus, unlike E(I), L(I) counts the number of elements that satisfy at least properties Pi for
all i ∈ I (and possibly others). For any I ⊆ {1, 2, . . . , n}, therefore, we see that

L(I) =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
∑

I⊆J⊆{1,2,...n}

E(J).

Hence the Möbius inversion formula gives us

E(I) =
∑

I⊆J⊆{1,2,...,n}

µ(I, J)L(J) =
∑

I⊆J⊆{1,...,n}

(−1)|J |−|I|L(J).

But then we want the size of the set
n⋂
j=1

Acj, so we want to compute the number of elements

in U that are not in any of A1, . . . , An, i.e., does not satisfy properties Pi for any i ∈
{1, 2, . . . , n}. Thus letting I = ∅ yields

E(∅) =
∑

J⊆{1,2,...,n}

(−1)|J |L(J) = |U |+
n∑
k=1

(−1)k
∑

I⊆{1,...,n}
|I|=k

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ ,
which is indeed the inclusion-exclusion principle we were looking for. �

9.2. Möbius function for the subspaces and the q-Möbius inversion formula

In this case, we say X ≤ Y if X is a subspace of Y , where X and Y are Fq-vector spaces. If
dimY = dimX, then clearly X = Y . Thus µ(X, Y ) = 1. Suppose that dimY = dimX + 1.
Then we have

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −1 = q(
1
2)(−1)1,

since Z can only be X in this case. If k := dimY − dimX is equal to 2, then

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −

(
1−

[
2
1

]
q

)
= −(1− (1 + q)) = q = q(

2
2)(−1)2.

If k = 3, then

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −

(
1 +

[
3
1

]
q

(−1) +

[
3
2

]
q

q

)
= −[1− (1 + q + q2) + q(1 + q + q2)] = −q3 = q(

3
2)(−1)3.

Again, for the sake of induction, assume that that, for all k ≤ n− 1, we have

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = q(
k
2)(−1)k.

If k = n, then

µ(X, Y ) = −
∑

X≤Z<Y

µ(X,Z) = −

(
n−1∑
k=0

[
n
k

]
q

q(
k
2)(−1)k

)
.
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But by Theorem 3.1, we have

0 = (1; q)n =
n∑
k=0

[
n
k

]
q

q(
k
2)(−1)k,

so it follows that

µ(X, Y ) = −
[
n
n

]
q

q(
n
2)(−1)n = q(

n
2)(−1)n,

as required. Now that we completely characterized the Möbius function for all subspaces of
Vn(q), we are ready to prove the q-Möbius inversion formula.

Proposition 9.1. The set of all subspaces of a vector space V forms a bounded lattice, where
the partial ordering is defined as inclusion.

Proof. The set of all subspaces of a vector space V has a unique minimum element ∅ and a
unique maximum elements V . Thus it only remains to prove that the set of all spaces forms
a lattice.

Let W1 and W2 be two subspaces of V . Then clearly, W1,W2 ≤ W1 + W2, making it an
upper bound of W1 and W2. Now suppose that W is another upper bound of W1 and W2.
Suppose that v ∈ W1+W2. Then there exist v1 ∈ W1 and v2 ∈ W2 such that v = v1+v2. But
since W is a supremum of W1 and W2, it follows that v1 ∈ W and v2 ∈ W . Hence v1+v2 ∈ W .
Therefore, if W were another upper bound, then necessarily W1 +W2 ⊆ W . Hence W1 +W2

is the unique least upper bound of W1 and W2, making it the unique supremum of W1 and
W2.

Now in a similar manner, we can prove that W1∩W2 is the unique infimum of W1 and W2.
Clearly, since W1 ∩W2 ⊆ W1 and W2, it follows W1 ∩W2 is a lower bound of W1 and W2.
Suppose that W ′ is another lower bound of W1 and W2. For any w ∈ W , we have w ∈ W1

and w ∈ W2, so w ∈ W1 ∩W2. This proves that W ⊆ W1 ∩W2, so W1 ∩W2 is the greatest
lower bound of W1 and W2 as required. �

Theorem 9.2 (q-Möbius inversion formula). The following two are equivalent.

(1) g(n) =
n∑
k=0

[
n
k

]
q

f(k)

(2) f(n) =
n∑
k=0

[
n
k

]
q

q(
k
2)(−1)kg(n− k).

Proof. Let Ln(q) be the set of all subspaces of Vn(q), which we know is a bounded lattice by
Proposition 9.1. Let N≤(W ) : Ln(q)→ C and N=(U) : Ln(q)→ C be functions defined by

N≤(W ) =
∑
U⊆W

N=(U).

Then by Theorem 8.6, we have

N=(W ) =
∑
U⊆W

µ(U,W )N≤(U).
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Now letting N≤(W ) := g(dim(W )) and N=(W ) := f(dim(W )) gives us

f(n) = N=(Vn(q)) =
∑

U⊆Vn(q)

µ(U, Vn(q))N≤(U) =
n∑
k=0

∑
Uk⊆Vn(q)

dim(Uk)=n−k

µ(Uk, Vn(q))N≤(Uk)

=
n∑
k=0

∑
Uk⊆Vn(q)

dim(Uk)=n−k

q(
k
2)(−1)kg(n− k) =

n∑
k=0

[
n

n− k

]
q

q(
k
2)(−1)kg(n− k)

=
n∑
k=0

[
n
k

]
q

q(
k
2)(−1)kg(n− k),

by Theorem 6.1 and the symmetric nature of q-binomial coefficients. �

9.3. Möbius function in number theory, revisited

For N, it is straightforward to verify that the divisibility relation gives N a poset structure.
On top of this, if we let ∧ denote the gcd operation and ∨ the lcm operation, with the min-
imum element 1, we see that (N,≤,∨,∧, 0) confers a lattice structure on N. This structure
comes in handy, since the following theorem provides an easy way of computing the Möbius
function for number theory from the poset counterpart. We will abuse the notation, and
denote µ(n) the classical Möbius function, and µ(x, y) the poset Möbius function.

Theorem 9.3 (Weisner’s theorem). Let µ be the Möbius function for a finite lattice (L,∨,∧,
0L, 1L), and let a ∈ L such that a > 0L. Then we have∑

x∨a=1L

µ(0L, x) = 0.

Proof. Recall that ∑
c≤z≤d

µ(c, z) =
∑
c≤z≤d

µ(z, d) = 0,

as long as c 6= d. Therefore, letting c = x ∨ a and d = 1L gives us∑
x∨a=1L

µ(0L, x) =
∑
x∈L

µ(0L, x)

( ∑
x∨a≤z≤1L

µ(z, 1L)

)
=
∑
x∈L

∑
a≤z≤1L

ζ(x, z)µ(0L, x)µ(z, 1L)

=
∑

a≤z≤1L

∑
x∈L

ζ(x, z)µ(0L, x)µ(z, 1L) =
∑

a≤z≤1L

µ(z, 1L)

(∑
x∈L

ζ(x, z)µ(0L, x)

)
=

∑
a≤z≤1L

µ(z, 1L)
∑

0L≤x≤z

µ(0L, x)︸ ︷︷ ︸
(∗)

.

Note that (∗) is 0 as long as z 6= 0L. But since 0L < a ≤ z, it follows that (∗) is indeed 0.
The theorem follows. �

We will also introduce a notation used often in number theory that will come in handy.

Definition 9.2. We denote that d‖n if d is a unitary divisor of n, i.e., d |n and gcd(d, n/d) =
1.
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Theorem 9.4. µ(a, b) = µ(1, b/a) for all a, b ∈ N, and µ(1, n) = n. Therefore, µ(a, b) =
µ(b/a) for all a, b ∈ N.

Proof. For the first part, it suffices to show that µ(a, an) = µ(1, n) for all a, n ∈ N. If
n = 1, then µ(a, a) = 1 = µ(1, 1), so the claim holds. Suppose that the claim holds for all
1 ≤ d < n. Then we see that

µ(a, an) = −
∑
a|x|an
x<an

µ(a, x) = −
∑
ad|an
d<n

µ(a, ad),

but by the inductive hypothesis, we have µ(a, ad) = µ(1, d). Therefore

µ(a, an) = −
∑
ad|an
d<n

µ(1, d) = −
∑
d|n
d<n

µ(1, d) = µ(1, n).

We will also prove that µ(1, n) = µ(n) by induction. Clearly, if n = 1, then µ(1, 1) = 1 =
µ(1). Let b > 1, and pick a prime p so that p |b. Then the divisors of b forms a finite lattice
with respect to divisibility, so we can apply Theorem 9.3 here. It follows that∑

lcm(d,p)=b

µ(1, d) = 0, so µ(1, b) = −
∑

lcm(d,p)=b
d6=b

µ(1, d).

If p2 | b, then there is no d such that lcm(d, p) = b, so this produces the empty sum. If
p ‖ b, then the only possible d is d = b/p. Therefore, by the inductive hypothesis, we have
µ(1, b) = −µ(1, b/p) = −µ(b/p) = µ(b) as required. �

9.4. Convolution in number theory: Dirichlet convolution2

In this section, we will discuss convolution under number-theoretic setting, and along
the way, provide an alternative proof of the classical Möbius inversion formula using the
Dirichlet series (even though it is an overkill). This involves using the incidence algebra
structure of N coming from the divisibility partial order (more specifically, we are only
interested in functions of the form f(1, n) where f ∈ ia(N)). The convolution defined in
this context, called the Dirichlet convolution, enjoys special properties that may not hold in
general posets (for instance, commutativity). First, we will define the Dirichet convolution,
and then proceed to define the δ function and the ζ function under this setting.

Definition 9.3. Suppose f and g are arithmetical functions. Then the Dirichlet convolution
of f and g is

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

Observe that the Dirichlet convolution is a special case of the convolution for incidence
algebras, but with the interval [1, n]. It is straightforward to verify that the δ function is

2I added in this section myself to tie the ideas from incidence algebras back to the more familiar number-
theoretic settings, and to demonstrate how the theorem on the Dirichlet series for the convolution of two
arithmetical functions was used to prove Theorem 8.3. If one is only interested in the contents formally
covered in the summer school course, then one need not read this section.
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precisely δ(n) = δn,1, since

(f ∗ δ)(n) =
∑
d|n

f(d)δn/d,1 = f(n)δ1,1 = f(n).

The ζ function (but we will use ζ ′ instead to avoid the confusion between the Riemann zeta
function) must satisfy

(µ ∗ ζ ′)(n) = δn,1.

But recall that ∑
d|n

µ(d) = δn,1 = δ(n),

so ζ ′(n) ≡ 1 for all n. Therefore, we will from now on write 1(n) instead to denote the
function that is always 1.

Theorem 9.5. Let M be the set of multiplicative arithmetical functions equipped with the
convolution operation ∗. Then M forms an abelian group.

Proof. Let f, g ∈M . Associativity of convolutions is already proved. Note that 1(n), δ(n) ∈
M , so M is non-empty. Thus it suffices to prove that there is h ∈ M such that f ∗ h = δ,
that f ∗ g ∈M , and that f ∗ g = g ∗ f . Let gcd(m,n) = 1. Suppose that for d |mn, we write
s := gcd(d,m) and t := gcd(d, n). Observe that d = st since gcd(m,n) = 1. On the other
hand, if s |m and t |n, then d = st |mn. So clearly s = gcd(d,m) and t = gcd(d, n). This
implies that there is a one-to-one correspondence between the set of divisors of mn and the
set of pairs (s, t) of divisors of m and n respectively. It follows that

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑
s|m

∑
t|n

f(st)g
(mn
st

)
=
∑
s|m

f(s)g
(m
s

)∑
t|n

f(t)g
(n
t

)
= [(f ∗ g)(m)][(f ∗ g)(n)].

We may assume that f(1) 6= 0. Otherwise, we will have f(n) = f(1)f(n) = 0 for all n,
which contradicts the fact that f cannot be identically zero. In fact, since f(n) = f(n · 1) =
f(n)f(1), it follows that f(1) = 1 for all f ∈ M . Therefore by Proposition 8.1(3), there
exists some arithmetical function f−∗ such that f ∗ f−∗ = f−∗ ∗ f = δ. Suppose that h ∈M
such that h = f−∗ for all prime powers. Since h is multiplicative, h is completely determined
by how h behaves across prime powers. But then f ∗ h is multiplicative, as we just showed,
so

(f ∗ h)(pa) = (f ∗ f−∗)(pa) = u(pa),

since all the factors of pa are prime powers anyway. This proves that h ≡ f−∗ everywhere,
so h is indeed the inverse we are looking for. It is straightforward to verify commutativity:
indeed,

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
ba=n

g(a)f(b) = (g ∗ f)(n). �

Corollary 9.1. µ(n) is multiplicative.

Proof. µ(n) is the convolution inverse of 1(n). �
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Theorem 9.6. Let f and g be arithmetical functions, and that both
∑
f(n)n−s and

∑
g(n)n−s

are absolutely convergent for Re s > σ. Then the Dirichlet series for f ∗ g is

∞∑
n=0

(f ∗ g)(n)

ns
=

(
∞∑
m=0

f(m)

ms

)(
∞∑
t=0

g(t)

ts

)
for all Re s > σ. Thus the Dirichlet series for f ∗ g is absolutely convergent for all Re s > σ
as well.

Proof. Note that we are free to rearrange the terms since both f(m)m−s and g(t)t−s are
absolutely convergent.(

∞∑
m=1

f(m)m−s

)(
∞∑
t=1

g(t)t−s

)
=

∞∑
m=1

∞∑
k=1

f(m)g(t)(mt)−s

=
∞∑
n=1

(∑
mt=n

f(m)g(t)

)
(mt)−s =

∞∑
n=1

(f ∗ g)(n)n−s.

As for absolute convergence, note that

∞∑
n=1

|(f ∗ g)(n)n−s| ≤
∞∑
n=1

(∑
mt=n

|f(m)| · |g(t)|

)
|n|−s

≤

(
∞∑
m=1

|f(m)m−s|

)(
∞∑
t=1

|g(t)t−s|

)
<∞

since
∑
f(m)m−s and

∑
g(t)t−s are both absolutely convergent. �

Therefore, Theorem 9.6 provides one possible method to compute the Dirichlet series of
an arithmetical function.

Corollary 9.2.
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
.

Proof. Recall that µ ∗ 1 = δ, so we have(
∞∑
n=1

µ(n)

ns

)(
∞∑
m=1

1

ms

)
=
∞∑
k=1

δ(k)

ks
= 1. �

We also need the following result regarding the Dirichlet series.

Theorem 9.7. If both
∑
f(n)n−s and

∑
g(n)n−s are absolutely convergent for all s with

sufficiently large real parts, and
∑
f(n)n−s =

∑
g(n)n−s, then we have f(n) = g(n) for all

n ∈ N.

Now we are ready to provide another proof of Möbius inversion formula.

Proof of Theorem 8.4. Note that

g(n) =
∑
d|n

f(d)
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is equivalent to saying that g = f ∗ 1. Therefore it follows that, by Theorem 9.6,
∞∑
n=1

g(n)

ns
=

(
∞∑
m=1

f(m)

ms

)
ζ(s).

Divide both sides by ζ(s) to get

∞∑
m=1

f(m)

ms
= ζ(s)−1

(
∞∑
n=1

g(n)

ns

)
=

(
∞∑
t=1

µ(t)

ts

)(
∞∑
n=1

g(n)

ns

)
,

for all s whose real part is sufficiently large, so f = µ ∗ g by Theorem 9.7. The reverse
direction can be proved similarly, since we can just reverse our reasoning. �

We will finish the section with some classical results from elementary number theory
involving convolution.

Theorem 9.8. Let ϕ(n) := |{1 ≤ a ≤ n : gcd(a, n) = 1}|, i.e., Euler’s totient function, and
N(n) := n. Then the following are true:

(1) ϕ ∗ 1 = N ;
(2) µ ∗N = ϕ;
(3) µ

N
∗ 1 = ϕ

N
; and

(4) ϕ is multiplicative.

Proof. (1) We will group integers 1 ≤ m ≤ n based on gcd(m,n) = d. The number of integers
m between 1 and n such that gcd(m,n) = d is precisely equivalent to finding the number
of m′ := m/d so that gcd(m′, n/d) = 1. There are precisely ϕ(n/d) integers satisfying such
condition. Since every integer must belong to one of the subdivided groups, it follows that∑

d|n

ϕ(n/d) =
∑
d|n

ϕ(d) = n,

as required. (2) follows upon applying Möbius inversion. (3) follows immediately by dividing
both sides of (2) by n. (4) also is immediate since ϕ is the Dirichlet convolution of two
multiplicative functions. �

Corollary 9.3.
∞∑
n=1

ϕ(n)

ns
=
ζ(s− 1)

ζ(s)
for all Re s > 2.

Theorem 9.9. Let Λ(n) be the von Mangoldt function, i.e.,

Λ(n) =

{
log p if n = pk for some k ≥ 1

0 otherwise.

Then Λ ∗ 1 = log. Since
∞∑
n=1

log n

ns
= −ζ ′(s),

it follows that, for all Re s > 1,
∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.
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Proof. Let n = pe11 · · · perr . Then

(Λ ∗ 1)(n) =
∑
d|n

d prime power

Λ(d) =
r∑
j=1

ej log(pj) =
r∑
j=1

log(p
ej
j ) = log

(
r∏
j=1

p
ej
j

)
= log(n).

That the Dirichlet series for log n is −ζ ′(s) follows from the term-by-term differentiation,
which we can do since ζ(s) converges absolutely and uniformly for any s with Re s > 1.
Observe that the derivative of n−s is −n−s log(n), so we have

−ζ ′(s) =
∞∑
n=1

log n

ns
.

The last claim follows from Theorem 9.6. Indeed, observe that(
∞∑
n=1

Λ(n)

ns

)
ζ(s) =

(
∞∑
n=1

log(n)

ns

)
= −ζ ′(s),

so dividing both sides by ζ(s) gives the result. �

Proposition 9.2. Let λ(n) be the Liouville function, which counts the number of prime
factors of n, counting multiplicity. Then

(1) λ ∗ 1 is the indicator function for squares, and
(2) µ2 ∗ λ = |µ| ∗ λ = δ.

Proof. Both λ and 1 are multiplicative, so λ∗1 is multiplicative as well. That said, it suffices
to show it for prime powers. We divide into two cases: when n = p2k and when n = p2k+1

(k ∈ Z≥0), where p is a prime. If n = p2k, then we have

2k∑
i=0

λ(pi) = (−1)0 + (−1)1 + (−1)2 + · · ·+ (−1)2k−1 + (−1)2k

= ((−1)0 + (−1)1) + · · ·+ ((−1)2k−2 + (−1)2k−1) + (−1)2k

= (1− 1) + (1− 1) + · · ·+ (1− 1) + 1 = 1.

On the other hand, if n = p2k+1, then we have

2k+1∑
i=0

λ(pi) = (−1)0 + (−1)1 + (−1)2 + · · ·+ (−1)2k−1 + (−1)2k + (−1)2k+1

= ((−1)0 + (−1)1 + · · ·+ (−1)2k−1 + (−1)2k) + (−1)2k+1 = 1− 1 = 0.

Therefore if n is not a square (i.e., the prime factorization of n contains an odd exponent),
then (λ∗1)(n) = 0; if every exponent in the prime factorization of n is even, then (λ∗1)(n) =
1, as required.

For the second part, we first start by observing that µ2 is multiplicative, and that µ2 ≡ |µ|.
For any (m,n) = 1, if at least one of m and n is not square-free then the claim is immediate,
since µ2(mn) = 0, and at least one of µ2(m) and µ2(n) must be 0. For any square-free
number k, the value of µ2(k) is always 1; thus, for any co-prime square-free numbers, we
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have µ2(mn) = 1 = µ2(m)µ2(n). Hence µ2 ∗ λ is multiplicative. So we only need to show
that the claim holds for prime powers, and for 1. For n := pk, we have

(µ2 ∗ λ)(pk) =
k∑
i=0

µ2(pi)λ(pk−i) = µ2(1)λ(pk) + µ2(p)λ(pk−1)

= (−1)k + (−1)k−1 = 0.

On the other hand, if n = 1, then (µ2 ∗ λ)(1) = µ2(1)λ(1) = 1 · (−1)0 = 1. Thus, (µ2 ∗ λ)(n)
is 1 for n = 1, and 0 for any other natural numbers, as required. �

Theorem 9.10. We have
∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)
and

∞∑
n=1

µ2(n)

ns
=
∞∑
n=1

|µ(n)|
ns

=
ζ(s)

ζ(2s)

for all Re s > 1.

Proof. Both are immediate from Proposition 9.2 and Theorem 9.6. Indeed, we have(
∞∑
n=1

λ(n)

ns

)
ζ(s) =

1

1s
+

1

4s
+

1

9s
+ · · · =

∞∑
n=1

1

n2s
= ζ(2s),

so dividing both sides by ζ(s) gives the result. As for the second claim, note that, by the
previous result, (

∞∑
n=1

µ2(n)

ns

)(
∞∑
t=1

λ(t)

ts

)
=

(
∞∑
n=1

µ2(n)

ns

)
ζ(2s)

ζ(s)
= 1,

so multiplying both sides by ζ(s)/ζ(2s) gives us the desired result. �
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