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1. September 15

Definition 1.1. The ring of p-adic integers: Zp := lim←−Z/pnZ = {(a1, a2, . . . ) : ai ∈
Z/piZ, ai+1 ≡ ai (mod pi) for all i}
Remark 1. Note that Zp is a abelian group with the operations (a1, a2, . . . )⊕ (b1, b2, . . . ) =
(a1 + b1, a2 + b2, . . . ) and (a1, a2, . . . )⊗ (b1, b2, . . . ) = (a1b1, a2b2, . . . ).

Proposition 1.2. Zp is an integral domain and we have an embedding ψ : Z→ Zp (a ring
homomorphism) such that the image of ψ is dense.

Proof. Suppose that we have a product that vanishes, i.e., there exist (a1, a2, . . . )(b1, b2, . . . ) =
0 in Zp. Then this means that aibi ≡ 0 (mod pi) for all i. Suppose that neither (a1, a2, . . . )
nor (b1, b2, . . . ) is zero. Then there exist i such that ai 6≡ 0 (mod pi) and j such that bj 6≡ 0
(mod pj). Thus we have ai+jbi+j 6≡ 0 (mod pi+j) (by the projective limit definition of Zp, we
know that pi - ai+j and pj - bi+j), so this will give a contradiction and so we get the desired
result.

To construct ψ, notice that for all j ≥ 1, we have ψj : Z→ Z/pjZ. We define

ψ(n) = (ψ1(n), ψ2(n), . . . ) = (n+ pZ, n+ p2Z, n+ p3Z, . . . ).
This is injective since the kernel of ψ is {(0, 0, 0, . . . )}.

For the “dense” part of the proposition, start with (a1 + pZ, a2 + p2Z, . . . ) ∈ Zp with
a1, a2, · · · ∈ Z. Let ni = ai for all i. Then notice that

(a1 + pZ, a2 + p2Z, . . . )− ψ(nk) = (ai + piZ)i − (ak + piZ)i

= (0 + pZ, 0 + p2Z, . . . , 0 + pkZ, ak+1 − ak + pk+1Z, . . . )

So |(ai + piZ)i−ψ(nk)|p ≤ p−k → 0 as k →∞. Therefore {ψ(nk)}∞k=0 isa a Cauchy sequence
whose limit is (ai + piZ)i. Thus ψ(Z) is dense in Zp. Henceforth we shall identify Z with its
image in Zp. �

Remark 2. In this assignment, you will show that Zp is a local ring, with the maximal ideal
pZp = {x ∈ Zp : |x|p < 1}.
Remark 3. If we invert p, we have Zp[1p ] =: Qp, the field of fractions of Zp (also known as the

field of p-adic numbers). In Qp, every element is of the form a
pk

, where k ≥ 0, a ∈ Zp. Note

that the representation of each element is not unique, since one can find a, a′ ∈ Zp so that
pka′ = pja for some j, k ∈ Z. But we can still put the p-adic norm, defined on the p-adic
numbers as follows:

|x|p =

∣∣∣∣ apk
∣∣∣∣
p

=
|a|p
p−k

= pk|a|p.
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Remark 4. Every x ∈ QP can be written uniquely as

x = pau, where u ∈ Zp, |u|p = 1, a ∈ Z.
Then |x|p = p−k for some k. Thus, |p−kx|p = 1, or x = pk(p−kx) = pka ∈ Zp \ pZp.

Proposition 1.3. Let K be a finitely-generated field extension of Q. Then there exists
infinitely many primes p for which we can embed K ↪→ Qp. Moreover, if S ⊆ K \ {0} then
we have infinitely many p for which S ↪→ Zp \ pZp.

Example 1.4. We claim that Q(i) 6↪→ Q3. In fact, Q(i) 6↪→ Qp for all p ≡ 3 (mod 4). To get
started, let’s suppose we have an embedding, i.e.,

i 7→ 3ka, where k ∈ Z, a ∈ Z3 \ 3Zf = Z∗3.
Thus we have i2 = −1 7→ 32ka2, so 1 = | − 1|3 = |32ka2|3 = |32k|3|a2|3 = 3−2k. Hence
k = 0. So i 7→ a ∈ Z3 \ 3Z3, where a = (a1 + 3Z, a2 + 9Z, . . . ) with ai+1 ≡ ai (mod ai). So
−1 = (a21 + 3Z, a22 + 9Z, a23 + 27Z, . . . ), but this is impossible as a21 6≡ −1 (mod 3) for any
a1 ∈ Z, a contradiction.

However, Q(i) ↪→ Q5. Notice that 22 ≡ −1 (mod 5). Thus one can find x2, x3, x4, . . .
such that

i 7→ (2 + 5Z, x2 + 25Z, x3 + 125Z, . . . )
with x2 = 2+5k for some k and x22 ≡ −1 (mod 25). We see that 4+20k+25k2 ≡ 4+20k ≡ −1
(mod 25), so k = 1.

2. September 17

Lemma 2.1 (Hensel’s Lemma). Let p be a prime and let f(x) ∈ Zp[x] be a polynomial,
and suppose that there exists a ∈ Z such that f(a) ≡ 0 (mod p) (that is, f(a) ∈ pZp, or
|f(a)|p < 1), and that f ′(a) 6≡ 0 (mod p). Then there exists b ∈ Zp such that f(b) = 0 and
b ≡ a (mod p).

Example 2.2. Recall that Q(i) ↪→ Q5 and that i 7→ (2 + 5Z, x2 + 25Z, . . . ) ∈ Z5, and let
f(x) = x2 + 1. Since f(2) ≡ 0 (mod 5) and f ′(2) 6≡ 0 (mod 5), we can apply Hensel to find
b ∈ Z5 such that f(b) = 0, b2 + 1 = 0, namely with i 7→ b.

Proof. Strategy: For each k ≥ 1, we will produce a number nk ∈ Z such that f(nk) ≡ 0
(mod pk) (by induction with n1 = a as the base case). Then we will use the fact that Zp is
compact and {nk}k ⊂ Zp is Cauchy and it will converge to some b ∈ Zp.

Suppose we have n1(= a), n2, n3, . . . , nk ∈ Z such that pi | f(ni) for all 1 ≤ i ≤ k, with
ni+1 ≡ ni (mod pi) for all i. We now show how to construct nk+1. We want nk+1 ≡ nk
(mod pk) and pk+1 | f(nk+1). We need to find some x ∈ Z such that pk+1 | f(nk + pkx).
Apply Taylor’s theorem:

f(a+ x) = f(a) + f ′(a)x+
f ′′(a)

2!
x2 + · · ·+ f (d)(a)

d!
xd,

if f is a polynomial of degree d. Hence

f(nk + pkx) = f(nk) + pkxf ′(nk) + p2kx2
f (2)(nk)

2!
+ · · ·+ f (d)(nk)

d!
pdkxd

≡ f(nk) + f ′(nk)p
kx (mod pk+1).
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Thus, it suffices to find x such that f(nk) + pkxf ′(nk) ≡ 0 (mod pk+1). By our inductive
hypothesis, we have f(nk) = pky for y ∈ Zp. Hence pky + pkxf ′(nk) ≡ 0 (mod pk+1),
which holds if and only if y + xf ′(nk) ≡ 0 (mod p). Since nk ≡ nq = 1 (mod p), and
f ′(nk) ≡ f ′(a) 6= 0 (mod p), it follows that x ≡ −[f ′(a)]−1y ∈ Zp (mod p). Thus there exist
(x0, x1, . . . ) such that −[f ′(a)]−1y = (x0+pZ, x1+p2Z, . . . ). Then the choice nk+1 = nk+pkx
works for the next step, and notice that |nk+1−nk|p ≤ p−k, since pk | (nk+1−nk), and |na−
nb| ≤ p−min(a,b), so {nk} is Cauchy and letting b := lim

k→∞
nk ∈ Zp, then f(b) = lim

k→∞
f(nk) = 0,

as required. �

We need two facts to get an embedding:

(1) If f(x1, . . . , xd) ∈ C[x1, . . . , xd] is a non-zero polynomial, then there exists
(a1, a2, . . . , ad) ∈ Zd such that f(a1, . . . , ad) 6= 0.

Proof (sketch). If d = 1, then the claim is immediate: f(x1) has only finitely many
roots, so pick a1 non-root. Now suppose this is true for < d variables. Write
f(x1, . . . , xd) = Qr(x1, . . . , xd−1)x

r
d+Qr−1(x1, x2, . . . , xd−1)x

r−1
d +· · ·+Q0(x1, . . . , xd−1).

By assumption, someQi 6= 0 so there exists (a1, . . . , ad) ∈ Zd−1 so thatQi(a1, . . . , ad−1)
6= 0. Then

f(a1, a2, . . . , ad−1, xd) = Qi(a1, . . . , ad−1)x
i
d +

r∑
j=0
j 6=i

Qj(a1, . . . , ad−1)x
j
d 6= 0.

Thus by the case, there exists ad ∈ Z satisfying the condition. �

(2) If f(x) ∈ Z[x] is non-constant the there are infinitely many primes p such that f(x)
has a root mod p.

Proof. Suppose otherwise. Then there is just a finite set of primes, say {p1, . . . , pk}

for which f(x) has a root mod p. Then if n ∈ Z, we have f(n) = ±
k∏
i=1

pjii . So let

f(0) = ±
k∏
i=1

peii , and N =
k∏
i=1

pei+1
i . Then for m ∈ Z, we have f(Nm) = f(0+Nm) =

f(0) + Nmf ′(0) + (Nm)2 f
′′(0)
2!

+ · · · + (Nm)d f
(d)(0)
d!
≡ f(0) (mod N). In particular,

notice that peii ‖ f(Nm) for all 1 ≤ i ≤ k. So f(Nm) = ±
k∏
i=1

peii for all m ∈ Z.

Hence f(x)2 −
k∏
i=1

p2eii = 0 for all x = N, 2N, 3N, . . . . But since f is non-constant, it

follows that f 2 cannot be constant, which is a contradiction. �

2.1. Strategy for the embedding. Let K be a finitely-generated extension over Q, i.e.,
K = Q(θ1, . . . , θm) ↪→ Qp. Order θ1, . . . , θm so that the first r elements are algebraically
independent over Q, where 0 ≤ r ≤ m. Let L := Q(θ1, . . . , θr) and K = L(α) where α is
algebraic over L.
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3. September 19

Theorem 3.1. IF K is a finitely-generated field extension of Q (i.e., K = Q(a1, a2, . . . , as)),
then there exists an infinite set of primes p such that ψ : K ↪→ Qp. Moreover, if S \K \ {0}
is finite, then we can find infinitely many p for which ψ(S) \ Z∗p = Zp \ pZp.

Proof. Step 1: Write K = Q(t1, t2, . . . , ts)[θ] where t1, t2, . . . , ts are algebraically independent
over Q (i.e., {t1, t2, . . . , ts} is a transcendence basis) and θ is algebraic over Q(t1, t2, . . . , ts).
Note that this is possible by the primitive element theorem. Notice that θ has a minimal
polynomial in Q(t1, t2, . . . , ts)[x]. Namely, the minimal polynomial is

m∑
i=0

fi(t1, t2, . . . , ts)x
i =: F (t1, t2, . . . , ts;x) = F (x).

By clearing denominators, we may assume that each fi(t1, t2, . . . , ts) ∈ Z[t1, t2, . . . , ts].
Suppose that S = {α1, . . . , αr} ∈ K∗. Then

αi =
n−1∑
j=0

ψij(t1, t2, . . . , ts)θ
j.

Now pick D(t1, t2, . . . ts) ∈ Z[t1, t2, . . . ts] \ {0} such that D(t1, . . . , ts)ψij(t1, . . . , ts) ∈
Z[t1, . . . , ts] for all i, j. Notice that F (x), F ′(x) ∈ Q(t1, . . . , ts)[x], and that they have gcd 1
– since F is minimal, F is irreducible also. Hence one can find a(x), b(x) ∈ Q(t1, . . . , ts)[x]
such that a(x)F (x)+ b(x)F ′(x) = 1. Thus there exists H(t1, . . . , ts) ∈ Z[t1, . . . , ts]\{0} such
that H(t1, . . . , ts)a(x), H(t1, . . . , ts)b(x) ∈ Z[t1, tdots, ts][x]. Thus (Ha)F + (Hb)F ′ = H.

Step 2: Consider the polynomial HD ∈ Z[t1, . . . , ts] \ {0}. One can find (a1, a2, ,̇sas) ∈ Zs
such that HD 6= 0 (see Fact (1) in the September 17 lecture).

Step 3: Notice that

F (x) = F (t1, t2, . . . , ts;x) =
m∑
i=0

fi(t1, . . . , ts)x
i.

Consider

F̃ (x) = F (a1, . . . , as;x) =
m∑
i=0

fi(a1, . . . , as)x
i ∈ Z[x].

Then F̃ (x) is non-constant, since fm(a1, . . . , as) 6= 0.
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Step 4: By Fact (2) in the September 17 lecture, there exist infinitely many primes p such

that F̃ (x) ≡ 0 (mod p). Now pick any prime p satisfying the following properties:
(i) F̃ (x) has a root mod p

(ii) p > |fm(a1, . . . , as)H(a1, . . . , as)D(a1, . . . , as)|.
Step 5: We shall show that ψ embeds K ↪→ Qp and S ↪→ Zp. Observe that Q(t1, . . . , ts) ↪→

Qp since Qp has an uncountable transcendence degree, i.e., there exist e1, . . . , es ∈ Qp such
that {e1, . . . , es} algebraically independent over Q.

Now since Qp = Zp[1p ], there exists N > 0 such that pNe,1 , . . . , p
Nes ∈ Zp (which are again

algebraically independent over Q). Thus, without loss of generality assume e1, . . . , es ∈ Zp.
Embed Q(t1, . . . , ts) ↪→ Qp by using the following map: ti 7→ ai + pei.

Step 6: We will find an element in Zp corresponding to θ. Let

F̂ (a1 + pe1, . . . , as + pes;x) =
m∑
i=0

fi((aj + pej)
s
j=1)x

i ∈ Zp[x].

We claim two things;

(1) F̂ (x) has an integer root α mod p.

(2) F̂ ′(α) 6≡ 0 (mod p).

Hensel’s lemma gives θ̂ ∈ Zp so that θ̂ ≡ α (mod p) and F̂ (θ̂) = 0. Then we can embed

K ↪→ Qp via the map ti 7→ ai + pei and θ 7→ θ̂. Note that

K ∼= Q(t1, . . . ts)[x]/(F (x)) ∼= Q(a1 + pei, . . . , as + pes)[x]/(F̂ (x)).

Step 7: We’ve now embeddedK ↪→ Qp. By assumption, D(t1, t2, . . . , ts)αi ∈ Z[t1, . . . , ts; θ]
for all i, so D(a1+pe1, . . . , as+pes)ψ(αi) ∈ Zp for all i. We claim also that D(a1+pe1, . . . , as+
pes) ∈ Z∗p. Recall that the units of Zp are non-zero mod p. Thus D(a1 + pe1, . . . , as + pes) ≡
D(a1, . . . , as) 6≡ 0 (mod p). Thus p > |D(a1, . . . , as)||H(a1, . . . , as)||fm(a1, . . . as)|. So
D(a1 + pe1, . . . , as + pes)ψ(αi) ∈ Zp. Thus ψ(αi) ∈ Zp for all 1 ≤ i ≤ s. So if we use
the set S = {α1, . . . , αs, α

−1
1 , . . . , α−1s }, we have ψ(αi), ψ(α−1i ) ∈ Zp, then ψ(αi)ψ(α−1i ) = 1.

Thus ψ(αi) ∈ Z∗p for all i, as required. �

We now prove Claims (1) and (2) from Step 6.

Proof of Claim (1). We have

F̂ (x) =
m∑
i=0

fi(a1 + pe1, . . . , as + pes)x
i

≡
m∑
i=0

fi(a1, . . . , as)x
i = F̃ (x) (mod p).

So by our choice of p, one can find α ∈ Z so that F̃ (α) ≡ 0 (mod p). �

Proof of Claim (2). Since H(t1, t2, . . . , ts) ∈ (F (x), F ′(x))Z[t1,...,ts;x] so if we plug in ti = αi
and x = α, we have H(a1, . . . , as) ∈ (F̃ (α), F̃ ′(α)) ∈ pZ. But since p > |H(a1, . . . , as)| this
is impossible. �
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4. September 22

Last time, we proved that there are infinitely many primes p with K ↪→ Qp and S ↪→ Z∗p
where K is a finitely-generated field extension of Q and S ⊆ K \ {0} and |S| < ∞. Note
that this gives the SML theorem. Recall that if f : N0 → K satisfies a linear occurrence over
K. Then one can find cij, α1, . . . , αm ∈ K such that

f(n) =
e∑
i=0

n∑
j=1

cijn
iαnj

for all sufficiently large n.
Let K0 ⊆ K be the subfield of K generated by the cij’s and the αj’s. That is,

K0 = Q(cij, α1, . . . , αm)

f.g.

Q

and
S := {cij, αj : 0 ≤ i ≤ e, 1 ≤ j ≤ n} ∈ K∗0 .

By Lech’s embedding theorem, there exists some prime p > 2 such that:
• K0 ↪→ Qp

• S ↪→ Z∗p.
Without loss of generality, assume that K = Qp, cij, αj ∈ Z∗p.

Main trick behind Skolem’s method was

f(n) =
∑

cijn
iαnj .

Imagine we have

f(n) = c1n
2 + c2ne

n + c3c
−n + c4 → F (z) = c1z

2 + c2ze
z + c3e

iπ/2z + c4

such that F (n) = f(n) for all n ≥ 0.

4.1. Infinite series in Qp.

Proposition 4.1.
∑
an is convergent if and only if |an|p → 0 as n→∞.

Definition 4.2. Let f : Zp → Qp. We say that f(z) is p-adic analytic on Zp if there exist
a0, a1, · · · ∈ Qp with |ai|p → 0 as i→∞ such that

f(z) =
∞∑
i=0

aiz
i

for all z ∈ Zp. We say that f(z) = anz
n is p-adic analytic on an open subset U ⊆ Zp if f(z)

converges for all z ∈ U .

Example 4.3. The function

expp(z) =
∑ zn

n!
is not p-adic analytic on Zp, since |(n!)−1|p →∞. But it is analytic on

B(0, p−
1

p−1 ) = {z ∈ Zp : |z|p < p−
1

p−1}.
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Let a ∈ Z \ {0}. Let’s write vp(a) be the unique nonnegative integer k such that pk ‖ a.
Then we have |a|p = p−vp(a). Since

vp(n!) =
∞∑
i=1

⌊
n

pi

⌋
≤

∞∑
i=0

n

pi
≤ n

p− 1
.

Let s be an integer such that ps ≤ n < ps+1. Then
∞∑
i=1

⌊
n

pi

⌋
≥

s∑
i=1

(
n

pi
− 1

)
=

n

p− 1
− p

ps+1
· n

p− 1
− s

≥ n

p− 1
− p

p− 1
− logp n.

If |z|p < p−1/(p−1), then |z|p = p−1/(p−1)−ε. So∣∣∣∣znn!

∣∣∣∣
p

=
(
p−1/(p−1)−ε

)n · p−vp(n)
≤ p−n/(p−1)−nε · p−n/(p−1)+p/(p−1)+logp n = p−nε+p/(p−1)+logp n → 0.

Remark 5. If p > 2, then

expp(pz) =
∞∑
n=0

pnzn

n!

is p-adic analytic on Zp, since if z ∈ Zp then pz ∈ pZp ⊆ B(0, p−1/(p−1)), and since p > 4 we
have |z′|p ≤ 1/p for all z′ ∈ pZp.
Example 4.4. Consider the function

logp(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

This function is analytic on B(0, 1) but not on Zp, since | 1
n
|p 6→ 0. Start with |z|p = p−ε for

some ε > 0. Then we have |zn/n|p = p−εn

|n|p → 0.

Remark 6. For all p > 2,

(1) expp ◦ logp(1 + pz) is p-adic analytic on Zp and is equal to 1 + pz for all z ∈ Zp.

Proof. Let h(z) = expp(logp(1+pz)). Then we have h′(z) = exp′p(logp(1+pz)) p
1+pz

=

h(z) p
1+pz

for all z ∈ Zp. Let g(z) = 1 + pz. Then g′(z) = g(z) p
1+pz

for all z ∈ Zp.
Thus (h/g)′ = 0. Hence h(z) = cg(z) for some c ∈ Zp. �

(2) For n ∈ N0, z ∈ Zp, we have n logp(1 + pz) = logp(1 + pz)n.

Remark 7. If α ∈ Zp, α ≡ 1 (mod p) and p > 2, then there exists a p-adic analytic map
h : Zp → Zp so that h(n) = αn for all n ∈ N0.

Proof. Write α = 1 + pθ with θ ∈ Zp. Let β = logp(1 + pθ) ∈ pZp. Let h(z) = expp(βz),
which is analytic on Zp, since βz ∈ pZp for all z. Now

h(n) = expp(βn) = expp(n logp(1 + pθ))

= expp(logp(1 + pθ)n)

= (1 + pθ)n = αn.
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Suppose that

f(n) =
∑
i,j

cijn
iαnj ,

where cij, αj ∈ Z∗p (note that p - αj). Then there exist αj ∈ Z such that αj ≡ aj (mod p),

so αp−1j ≡ 1 (mod p) (by Fermat’s little theorem). For r = 0, 1, . . . , p− 1, let

fr(n) = f((p− 1)n+ r) =
∑
i,j

cij((p− 1)n+ r)i(αp−1j )n · αrj .

Then if we let Hr(z) =
∑

i,j cij((p−1)z+r)iαrj exp(z logp(α
p−1
j )), then Hr(z) is p-adic analytic

in Zp. �

5. September 24: Skolem-Mahler-Lech and Dirksen’s proof on the
characteristic p case

Theorem 5.1 (Skolem-Mahler-Lech theorem). Let K be a field of characteristic 0 and sup-
pose that f : N0 → K satisfies a linear recurrence on K. Then {n ∈ N0 : f(n) = 0} is a
finite union of arithmetic progression {cn+ d : n ≥ 0}, c ≥ 1, d ≥ 0 along with a finite set.

Proof. Step 1 (Skolem). Let α1, . . . , αm ∈ K and cij ∈ K. Write

f(n) =
∑
i,j

cijn
iαnj

for all sufficiently large n. Without loss of generality, suppose f(n) =
∑
cijn

iαnj for all n ≥ 0.
Step 2 (Lech). Let K0 = Q(cij, αj)/Q. Then K0 ↪→ Qp where p > 2, and the maps satisfies
{cij, αj} \ {0} ↪→ Z∗p. In particular, we may assume that the αj’s are nonzero and so αj ≡ a

(mod p) for p - a, a ∈ Z. By Fermat’s little theorem, we have αp−1j ≡ ap−1 ≡ 1 (mod p).
Step 3. We showd that if γ ≡ 1 (mod p), i.e., γ = 1 + pβ for some β, then there exists

a p-adic analytic function hγ(z) such that h(γ(n) = γn for all n ≥ n0. Then hγ(z) =
expp(z logp(1 + pβ), and logp(1 + pβ) = pβ − (pβ)2/2 + (pβ)3)/3 + · · · = pθ for some θ ∈ Zp.
Hence hγ(z) = expp(pθz). Thus there exists h1, . . . , hm p-adic analytic such that hj(n) =(
αp−1j

)n
for all n ≥ 0.

Step 4. For r ∈ {0, 1, . . . , p− 2}, let

fr(n) := f((p− 1)n+ r) =
∑
i,j

cij((p− 1)n+ r)iα
(p−1)n+r
j

=
∑
i,j

cijα
r
j((p− 1)n+ r)i(αp−1j )n.

Note that cijα
r
j ∈ Zp.

Let Fr(z) :=
∑

i,j cijα
r
j((p− 1)z + r)ihj(z) and Fr(n) = fr(n) for all n ≥ 0. Then Fr(z) is

p-adic analytic. Now we need to use Strassman’s theorem:

Theorem 5.2 (Strassman). Let f(z) =
∑
anz

n be p-adic analytic in Zp. Then if f(z) has
infinitely many zeroes in Zp then f(z) ≡ 0.

Step 5. Since Fr(z) is p-adic analytic, then by Theorem 5.2, either:

(1) {n : Fr(n) = fr(n) = 0} is finite OR
8



(2) Fr(z) ≡ 0⇒ Fr(n) = fr(n) = 0 for all n ≥ 0.

So either {n : f((p− 1)n+ r) = 0} is all of N0 or it is finite. Thus, we have

{n ∈ N0 : f(n) = 0} =

(
p−2⋃
i=0

((p− 1)N0 + i)

)
t

(
p−2⋃
i=0

{n : Fi(n) = 0}

)
.

Thus, the first set of the RHS is the finite union of arithmetic progressions while the second
one is finite, as required. �

Recall that we proved last time:

Claim. For a prime p and z ∈ C,
(1) expp(logp(1 + pz)) = 1 + pz
(2) n logp(1 + pz) = logp(1 + pz)n for all n ∈ N.

Lemma 5.3. Let f(z) =
∑
anz

n be p-adic analytic on Zp. Suppose that f(z) 6= 0. Let N
be the unique non-negative integer such that:

• |aN |p > |an| > p for all n > N
• |aN |p ≥ |ai|p for all i ≤ N .

Then f(z) has at most N zeroes in Zp.

Proof. Let’s divide f(z) by aN :

f(z)

aN
=
∞∑
n=0

an
aN

zn =
∞∑
n=0

bnz
n =: g(z).

Then bN = 1. If n > N and |bn|p < 1 then bn ∈ pZp; and if i ≤ N and |bi|p ≤ 1 = |bN |p then
bi ∈ Zp. So

g(z) ≡ b0 + b1z + · · ·+ bN−1z
N−1 + zN(=: Q(z)) (mod p),

as bn ≡ 0 (mod p) for all n > N . So we will factor g(z) = Q(z)h(z), where Q is a monic
polynomial of degree N and h(z) has no zeroes in Zp.

Claim. For each j ≥ 1, there exist polynomials Qj(z), hj(z) such that

(1) Qj(z) is monic of degree N , and hj(z) ≡ 1 (mod p).
(2) g(z) ≡ Qj(z)hj(z) (mod pj).
(3) For all j ≥ 2, we have

Qj(z) ≡ Qj−1(z) (mod pj−1)

hj(z) ≡ hj−1(z) (mod pj−1).

Proof of Claim. We prove via induction on j. If j = 1, then the verification of the first two
claims is straightforward while the third claim is vacuously true.

Now suppose that the claim hold for j < m for m ≥ 2. We have Qm−1(z) and hm−1(z)
such that g(z) ≡ Qm−1(z)hm−1(z) (mod pm−1). Thus there exists a polynomial H(z) such
that

∑
biz

i = g(z) ≡ Qm−1(z)hm−1(z) − pm−1H(z) (mod pn) with |bi|p → 0. To get the
claim at step N , we need to find polynomials R(z) and T (z) satisfying:

(1’) Qm(z) = Qm−1(z) + pm−1R(z), hm(z) = hm−1(z) + pm−1T (z) (property 3)
(2’) Need degR(z) < N (property 1)
(3’) g(z) ≡ Qm(z)hm(z) = (Qm−1(z) + pm−1R(z)) (hm−1(z) + pm−1T (z)) (mod pm) (prop-

erty 2)
9



Look at (3’):

g(z) ≡ (Qm−1(z) + pm−1R(z))(hm−1(z) + pm−1T (z)) (mod pm)

≡ Qm−1(z)hm−1(z) + pm−1Qm−1(z)T (z) + pm−1R(z)hm−1(z)

+ p2m−2R(z)T (z) (mod pm)

≡ g(z) + pm−1H(z) + pm−1Qm−1(z)T (z) + pm−1R(z)hm−1(z) (mod pm).

Therefore, it follows that

0 ≡ pm−1H(z) + pm−1Qm−1(z)T (z) + pm−1R(z)hm−1(z) (mod pm)

−H(z) ≡ Qm−1(z)T (z) +R(z)hm−1(z) (mod p)

−H(z) ≡ Qm−1(z)T (z) + P (z) (mod p)

−H(z) ≡ Q1(z)T (z) +R(z) (mod p).

So there exists T (z), R(z) with the desired properties. �

Let G(z) =
∑
bnz

n. Then one can find N so that |bN | = 1, |bn|p < 1 for all n > N and
bi ∈ Z for al i ≤ N . We showed that for each j ≥ 1, there exist polynomials Pj(z), hj(z)
such that

(1) G(z) ≡ Pj(z)hj(z)
(2) Pj(z) is monic of degree N , hj(z) ≡ 1 (mod p).
(3) Pj(z) ≡ Pj−1(z) (mod pj−1), hj−1(z) (mod pj−1).

Let P (z) = lim
j→∞

Pj(z) and h(z) = lim
j→∞

hj(z), and we have G = Ph, which holds for mod

pj for all j ≥ 1. Notice now that G(z) = 0 ⇔ P (z) = 0 or h(z) = 0. Notice that h(z)
never vanishes on Zp: since h(z) ≡ 1 (mod p), each hj is h(z) = h0 + h1z + h2z

2 + · · · ≡
1+0z+0z2+ · · · (mod p), and h0 ≡ 1 (mod p), hi ≡ 0 (mod p) for all i > 0. Thus h(a) 6= 0,
whereas P (z) has at most N zeroes. The proof is complete. �

6. September 26: Positive characteristic case

We saw that S-M-L is false when char(K) > 0, e.g. K = Fp(t) with f(n) = (1 + t)n −
tn − 1. f(n) satisfies a linear recurrence relation over K, but we have f(n) = 0 ⇔ n ∈
{1, p, p2, p3, . . . }. Derksin’s version says that in the positive characteristic case, the zero sets
are finite union of arithmetic progressions, finite sets, and p-normal sets. The proof involves
using a finite-state machine.

Definition 6.1. A (deterministic) finite-state automaton is a five-tuple

Γ = (Σ, Q, q0, δ, F ),

where:
• Σ is a finite non-empty set of symbols (input alphabet)
• Q is a finite non-empty set of states
• q0 ∈ Q denotes the initial state
• δ is a transition function δ : Q× Σ→ Q
• F ⊆ Q, possibly empty, is called the final (or accepting) states.

Example 6.2. Let Σ = {a, b}, Q = {q0, q1, q2, q3, q4}. Then the directed graph looks like
10



So we have δ(q3, a) = q4, δ(q2, b) = q2, and so forth, and F = {q0, q1, q2, q3}.
Remark 8. Let Σ∗ be the free monoid on Σ (i.e., it is the collection of finite length strings
on Σ). For example, if Σ = {a, b}, then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . . }. Notice we can
extend the transition function δ to a map

δ : Q× Σ∗ → Q.

So, for instance, δ(q3, abbaba) = q4.

Notice that to a deterministic finite-state automaton (DFA), we can associate a subset
L ⊆ Σ∗ = {w ∈ Σ∗ : δ(q0, w) ∈ F} which is all words w ∈ Σ∗ such that f(q0, w) ∈ F . In our
example, L = Σ∗a ∪ {b}∗ ∪ {word with an odd number of a concatenated with b}. ({b}∗ =
monoid generated by b)

11



Definition 6.3. A language L ⊆ Σ∗ produced from a finite-state automaton is called a
regular language (or rational language).

Remark 9. If Ln = {w ∈ L : (length of w)= n}, then f(n) = |Ln| satisfies a linear recurrence.

Let p ∈ N, p ≥ 2 (think of p as a prime). Henceforth we shall work with the alphabet
Σ = {0, 1, . . . , p − 1}. Notice to w ∈ Σ∗, w = isis−1 · · · i0 we can associate a non-negative
integer [w]p := i0 + i1p+ · · ·+ isp

s, and [ε]p = 0.
If p = 2, then [1101]2 = 1 + 0 · 2 + 1 · 4 + 1 · 8 = 13 ∈ L2 while [001101]2 = 13 /∈ L2. We

shall let Lp ⊆ Σ be the words that do not begin with 0. Then w 7→ [w]p gives a bijection
between Lp and N0 (and note that [ε] 7→ 0). In fact, Lp is a regular language.

7. September 29

Definition 7.1. Let p ≥ 2. We say that a subset S ⊆ N0 is p-automatic if there exists a
deterministic finite-state automaton Γ with input alphabet Σ = {0, 1, . . . , p − 1} such that
S = {[w]p : w ∈ Lp and w is accepted by Γ, i.e. L(q0, w) ∈ F}.

Example 7.2. Show that S = {1, p, p2, . . . } is p-automatic. Consider the following finite-state
automaton:

A word w is accepted if and only if w = 10 · 0; that is, [w]p = pj.

Example 7.3. The Thue-Morse set {j ∈ N0 : binary expansion of j has an even number of 1s}.
Let Σ = {0, 1}. Then S = {0, 3, 5, 6, 9, . . . }. This set is 2-automatic since the following DFA
accepts the elements in the Thue-Morse set:
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Definition 7.4. Let f : N→ ∆ where ∆ is some finite set. We say that f is a p-automatic
map (or sequence) if there exists a DFA Γ = ({0, 1, . . . , p−1}, Q, q0, δ, F ) and a map g : Q→
∆ such that f(n) = g(δ(q0, wn)) where wn is the unique element of 1p such that [wk]p = n,
i.e., wn is the base-p expansion of n.

Example 7.5. Let p = 2 and ∆ = {x1, . . . , x5}. We have g(q0) = x1, g(q1) = x3, g(q2) = x4.

Example 7.6. The Thue-Morse sequence f : N → {−1, 1}. Then f(13) = f([1101]2) 7→ q1,
so output is −1.
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Example 7.7. If S ⊆ N0 is p-automatic, then

χS(n) =

{
1 (n ∈ S)

0 (n /∈ S)

is a p-automatic map.

Theorem 7.8 (Derksen’s First Theorem). Let K be a field of characteristic p > 0 and
suppose that f : N0 → K satisfies a linear occurrence over K. Then {n ∈ N0 : f(n) = 0} is
a p-automatic set.

Remark 10 (Eilenberg’s characterization of automatic maps). Let f : N0 → ∆ and ∆ a finite
sets. THen for each i ≥ 0 and j ∈ {0, 1, . . . , pi − 1}, we can look at the map (subsequence)
fi,j(n) such that fi,j(n) = f(pin + j). We call the set of distinct maps of this form the
p-kernel of f(n).

Example 7.9. Let f(n) be the Thue-Morse sequence (p = 2).
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f(2n) = f([wn]20) = f(n)

f(2n+ 1) = f([wn]21) = −f(n)

f(4n) = f([wn]200) = f(n)

f(2in+ j) = f(n)f(j) ∈ {±1}.

Thus the 2-kernel has size 2.

Example 7.10. Let f(n) be a characteristic function of the set of perfect squares, i.e.,

f(n) =

{
1 if n is a perfect square

0 if n is not.

Then we have

f(n) = 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, . . .

f(2n) = 1, 0, 0, 0, 1, . . .

f(4n+ 1) = 1, 0, 1, . . .

f(8n+ 1) = 1, 1, 0, . . . ,

and all the sequences are distinct.

Example 7.11. Let f : N0 → {0, 1} be the indicator function of p-powers ,i.e.,

f(n) =

{
1 if n = pj, j ≥ 0

0 otherwise
.

If i ≥ 0, j ∈ {0, 1, . . . , pi − 1}, then

f(pin+ j) =


0 (j 6= 0, 1)

χ{0}(n) (j = 1)

f(n) (j = 0)

.

Definition 7.12. A linear recurrence is called simple if

f(n) =
∑
j

cjα
n
j

for sufficiently large n (i.e., there are no higher powers of n appearing).

Remark 11 (Reductions in Derksen’s proof). Recall that if f : N0 → K satisfies a linear
recurrence over K, then f(n) = cijn

iαnj where cij, αj ∈ K for all sufficiently large n. If
15



charK = p > 0, then for r ∈ {0, 1, 2, . . . , p− 1},

f(pn+ r) =
∑
i,j

(pn+ r)iαpn+rj

=
∑
i,j

cijr
iαrj(α

p
j )
n

=
∑
j

(∑
i

cijr
iαrj

)
(αpj )

n

=
∑
j

λjα
pn
j ,

as
∑
cijr

iαrj is a constant in K.
Reduction I: Without loss of generality we may assume that f(n) is simple. The reason

is as follows. Let hr(n) = f(pn + r) for r = 0, 1, . . . , p − 1. Then each hr is simple and if

Sr = {n ∈ N0 : hr(n) = 0} then
p−1⋃
r=0

{pn + r ∈ N0 : f(pn + r) = 0} = {n ∈ N0 : f(n) =

0} =
p−1⋃
r=0

(pSr + r). If we know Derksen’s first theorem for simple linear recurrences, then

each Sr is p-automatic because each hr(n) is simple. From Assignment #2, we will prove

that pSr + r,
p−1⋃
r=0

(pSr + r), and {n : f(n) = 0} is p-automatic.

Remark 12 (Quick aside from Remark 11). Let K be a field of characteristic p > 0. Then
let K〈p〉 := {xp : x ∈ K}. If x, y ∈ K〈p〉, then there exists a, b ∈ K such that x = ap, y = bp.
Thus x + y = ap + bp = (a + b)p and xy = apbp = (ab)p, and if x 6= 0 then x = (a−1)p. So
K〈p〉 ⊆ K is a subfield. If K〈p〉 = K then we say that K is a perfect field. For instance,
any finite field is perfect, and any algebraic closure of a function field over the finite fields
is perfect. For any α ∈ K, the equation xp − α = 0 has a root in K since K is algebraically
closed. Thus α = up for some u ∈ K.)

8. October 01

Recall that Derksen’s main goal in his Invent. Math. 2007 paper was to show the following:
if K is a field of characteristic p > 0 and f : N0 → K satisfies a linear recurrence over K,
then {n ∈ N0 : f(n) = 0} isa p-automatic set. We showed in the last lecture that we can
reduce to a simple linear recurrence, i.e., f(n) = b1λ

n
1 + · · ·+ bmλ

m for all n ≥ 0, βi ∈ K.
LeT K0 = Fp(β1, . . . , βm, λ1, . . . , λm) ⊆ K. Recall that

K
〈p〉
0 := {xp : x ∈ K0},

which is a subfield if K0. In the assignment you show that [K0 : K
〈p〉
0 ] <∞.

Example 8.1. If K0 = Fp(t) then K0
〈p〉 = Fp(tp). If a(t)/b(t) ∈ K0, then a(t)p/b(t)p =

a(tp)/b(tp). So K0 has a K0
〈p〉 basis given by {1, t, t2, . . . , tp−1}.
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If a(t)/b(t) ∈ K0, then

a(t)b(t)p−1

b(t)p
=

c(t)

b(tp)
=

p−1∑
r=0

tr
cr(t

p)

b(tp)
,

where

c(t) =
m∑
i=0

cit
i =

p−1∑
r=0

∑
i≡r (mod p)

cit
i

=

p−1∑
r=0

∑
j

cpj+rt
pj+r

=

p−1∑
r=0

tr

(∑
i

cpj+rt
j

)p

.

So let cr(t) := (
∑
cpg+rtj)

p.

If [K0 : K0
〈p〉] < ∞ and we let e1, . . . , es be a basis for K0 as a K0

〈p〉-vector spaces, then
if a ∈ K0 we have a unique decomposition. Write

a =
s∑
i=1

αiei =
s∑
i=1

γpi ei

where each γi ∈ K is unique and satisfies γpi = αi. To see why they are unique, let γi be
some solution to the equation xp − αi = xp − γpi = (x− γi)p. Thus xp = γi ⇔ x = γi.

We then have projection maps π1, . . . , πs : K → K satisfying

a =
s∑
i=1

πi(a)pei

i.e. πj(a) = γj.

Example 8.2. If K0 = F3(t) and K
〈3〉
0 = F3(t

3), and let {e1, e2, e3} = {1, t, t2}. What are
π1, π2, π3 of (1 + t2)−1? First, start by writing

1

1 + t2
=

(1 + t2)2

1 + t6
=

1 + 2t2 + t4

1 + t6

=
1

1 + t6
· 1 +

t3

1 + t6
· t+

2

1 + t6
· t2.

Thus, we have π1((1 + t2)−1) = (1 + t2)−1, π2((1 + t2)−1) = t(1 + t2)−1, π3((1 + t2)−1) =
2(1 + t2)−1.

Remark 13. Two remarks:

(1) The π are not linear, but we do have π(cpα+ β) = cπi(α) + πi(β) for all α, β, c ∈ K.
Note that we can write α = γp1e1 + · · · + γpses, β = δp1e1 + · · · + δpse

s, so cpα + β =
(cpγp1 + δp1)e1 + · · ·+ (cpγps + δps)es =

∑
(cγi + δi)

pei. So the claim follows.
(2) α ∈ K = 0⇔ π1(α) = · · · = πs(α) = 0. How will this help? Recall that

f(n) =
m∑
i=1

βiλ
n
i .
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What is f(pn+ j) then?

f(pn+ j) =
m∑
i=1

βiλ
pn+j
i = (β1λ

j
1)(λ

p
1)
n + · · ·+ (βmλ

j
m)(λpm)n.

So
πk(f(pn+ j)) = πk(β1λ

j
1)λ

n
1 + · · ·+ πk(βnλ

j
n)λnm.

Lemma 8.3 (Derksen’s technical lemma). Let K0 be a finitely-generated extension on Fp.
Suppose also that V ⊆ K0 is a finite-dimensional Fp-vector space of K0. Then there exists
a finite-dimensional Fp-vector space V ⊆ W ⊆ K0 such that πk(VW ) ⊆ W for all k, where
VW is the Fp-vector space of products spanned by vw where v ∈ V,w ∈ W .

We apply Lemma 8.3 as follows. Take V = Fp-span of all {βiλji : i = 1, . . . ,m, 0 ≤ j ≤
p− 1}. Apply Lemma 8.3 to see that there exists W ⊇ V such that πk(VW ) ⊂ W for all k.

Let S = Wm = W ×W × · · · ×W . Note that S is a finite set because Fp is finite and
W is finite-dimensional over Fp.

For each w = (w1, . . . , wm) ∈ S , let fw(n) = w1λ
n
1+· · ·+wmλnm. Notice b = (β1, β2, . . . , βm ∈

S and f(n) = β1λ
n
1 + · · ·+ βmλ

n
m = fb(n). THen it follows

πk(fw(pn+ j)) = πk(w1λ
j
1λ

pn
1 + · · ·+ wmλ

j
mλ

pn
m )

= πk(w1λ
j
1)λ

n
1 + · · ·+ πk(wmλ

j
m)λnm.

So by Dersken’s lemma there exists w′ = (w′1, w
′
2, . . . , w

′
m) ∈ S so that πk(fw(pn + j)) =

fw′(n). For each (w1, . . . , wm) ∈ S , define

χw(n) =

{
1 (if fw(n) = 0)

0 (if fw(n) 6= 0)
,

i.e., a characteristic sequence of the zero set of fw(n).
In particular, χb(n) is equal to the char sequence of the zero set of f . Let T be the

collection of all finite products of functions of the form χw(n). In fact, since χ2 = χ, we
don’t need repeats, meaning T is a finite set.

Claim. If g(n) ∈ T , then g(pn+ j) ∈ T for j = 0, 1, . . . , p− 1.

Proof (sketch). We will show first how this gives us the result. By induction, if g(pin+j) ∈ T
for i ≥ 0, 0 ≤ j ≤ pi. Thus g(p2n+ j1p+ j2) = g(p(pn+ j1) + j2) = h(pn+ j1) ∈ T for some
h ∈ T . �

Corollary 8.4. If g(n) ∈ T , then the p-kernel of g is finite.

Proof. Note that the p-kernel of g in contained in T and |T | < ∞. g(n) is a p-automatic
map. But χb(n) ∈ T , so χb(n) is p-automatic. The zero set thus is a p-automatic set. �

9. October 3

Remark 14. Suppose that T is in a finite collection of maps h : N0 → ∆ such that for each
j ∈ {0, 1, . . . , p − 1} and for each g(n) ∈ T we have g(pn + j) ∈ T . Thus each g(n) ∈ T
is p-automatic. To prove this, it suffices to show that for all g(n) ∈ T , all i ≥ 1 and all
j ∈ {0, 1, 2, . . . , pi − 1} and g(pin + j) ∈ T , the p-kernel of g is finite. We prove this by
induction on n.
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The case is immediate if i = 1 (base case). Now suppose that it is true for i < d. Then if
a ∈ {0, 1, 2, . . . , pd−1}, we ant to show that g(pdn+a) ∈ T and g ∈ T . Write a = pd−1b+j
with j ∈ {0, 1, . . . , pd−1−1} and b ∈ {0, 1, . . . , p−1}. Thus g(pdn+a) = g(pdn+pd−1b+j) =
g(pd−1(pn + b) + j). By inductive hypothesis, g(pd−1m + j) = h(m) for some h ∈ T . So
g(pd−1(pn+ b) + j) = h(pn+ b) ∈ T by assumption.

Remark 15 (Overview of Derksen’s proof). Without loss of generality, let f(n) = β1λ
n
1 +· · ·+

βmλ
n
m for all n ≥ 0. Let K0 = Fp(β1, . . . , βm, λ1, . . . , λm) ⊆ K with [K0 : K0

〈p〉] = s < ∞
and K0 = K0

〈p〉e1 ⊕ · · · ⊕K0
〈p〉es where e1, . . . , es ∈ K0.

These give “projections” πi : Ki → K0 such that α ∈ K0 7→
s∑
i=1

πi(a)pci. Let V =

spanFp
{λiβiλji : i = 1, 2, . . . ,m, j = 0, 1, . . . , p − 1}. Derksen proved that there exists W so

that V ⊆ W ⊆ K such that dimFp W <∞ and πk(VW ) ⊆ W for all k¿
Let S = {fw(n) : w ∈ Wm} where fw(n) = w1λ

n
1 + · · ·+wmλ

n
m. Since V ⊆ W , note that

f(n) = fb(n) ∈ S . THen we let T be all finite products of

χw(n) =

{
1 if fw(n) = 0

0 otherwise.

Claim. If g ∈ T , then g(pn+ j) ∈ T for j = 0, 1, . . . , p− 1.

Corollary 9.1. If g ∈ T then g(n) is p-automatic. Then if χb(n) is a character sequence f
zero sets of f(n), then χb is p-automatic. Therefore, {n : f(n) = 0} is p-automatic.

Proof of the above claim. If w ∈ Wm, then, for k = 1, 2, . . . , s there exists (w1,k, w2,k, . . . , wn,k) ∈
Wm such that

πk(w1λ
pn+j
1 + · · ·+ wmλ

pn+j
m ) = πk(w1λ

j
1)λ

n
1 + · · ·+ πk(wmλ

j
m)λnm

= w1,kλ
n
1 + · · ·+ wm,kλ

n
m.

Then

χw(pn+ j) = 1⇔ fw(pn+ j) = 0⇔ w1λ
pn+j
1 + · · ·+ wmλ

pn+j
m = 0

⇔ πk(w1λ
pn+j
1 + · · ·+ wmλ

pn+j
m ) = 0 for k = 1, 2, . . . , s

⇔ w1,kλ
n
1 + · · ·+ wm,kλ

n
m = 0 for k = 1, 2, . . . , s

⇔ χw(n) = 1 for k = 1, 2, . . . , s

⇔
s∏
i=1

χw(n) = 1.

Thus χw(pn+ j) =
∏s

k=1 χw(n) ∈ T . The rest follows from the general finite products. �

Example 9.2 (for Lemma 8.3). Let K = F2(t) and K〈p〉 = F2(t
2). Let e1 = 1, e2 = t. If V =

span{1, t−1}, then π1(t
−1) = π1(t/t

2) = π(t)/t = 0 while π2(1/t) = π2(t)/t = 1/t. Let W =
spanF2

{1, t−1, t−2, . . . , t−2m, t, t2, . . . , t2m}. What is WV ? WV = spanF2
{t−2m−1, . . . , t2m}. If

j = 2l, then π1(t
2l = tl(π1(1)) = tp and π2(t

2l) = tlπ2(1) = 0. If j = 2l + 1, then π1(t
j) =

π1(t
2l+1) = tlπ1(t) = 0 while π2(t

j) = π2((t
l)2t) = tlπ2(t) = tl. Thus π1(WV ), π2(WV ) ⊆

{t−n, . . . , tm} ⊆ W .
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Proof of Lemma 8.3. Let {t1, . . . , tr} ⊆ K be a basis for V . We extend this to a generating
set {t1, t2, . . . , tm} ∈ K for K as an extension of Fp. For k = 1, . . . , s, we have

πk(ti) =
Pi,k(t1, . . . , tm)

Q(t1, . . . , tm)
.

for some polynomials Pi,k and Q with Q 6= 0.
Let D = max(degPi,k, degQ). Let

W = spanFp

{(
ti11 · · · timm

Qj

)
: 0 ≤ j ≤ p, i1 + · · ·+ im < 6D, i1, . . . , im ≥ 0.

}
We want to show that πk(Wt1) ⊆ W . So it is sufficient to show that π(

t
i1
1 ...t

im
m

Qj
· ti) ∈ W

where i1 + i2 + · · ·+ im ≤ 6D and j ≤ p. �

10. October 6

Lemma 10.1 (Derksen’s technical lemma). Let V ⊆ K where V is a finite-dimensional
Fp-vector space and K a finitely-generated field extension over Fp, π1, . . . , πs : K → K the

projection maps. Let {e1, . . . , es} be a basis for K/K〈p〉 and write a =
s∑
i=1

πi(a)pei. Then

there exists a finite-dimensional Fp-vector space W such that V ⊆ W ⊆ K and π(WV ) ⊆ W
for all i.

Proof. Let V = spanFp
{x1, . . . , xr}. Extend this to a generating set for K, i.e., extend so

that {x1, x2, . . . , xr, xr+1, . . . , xm}. For k = 1, . . . , s and 0 ≤ i1, . . . , im ≤ p − 1. we have
πk(x

i1
1 · · · ximm ) = Pi1,i2,...,im;k(x1, . . . xm)/Q(x1, . . . , xn). Let D = max(degPi1,...,im;k, Q). Let

W = spanFp

{
xj11 . . . x

jm
m

Ql

: 0 ≤ l ≤ p, j1 + j2 + · · ·+ jn ≤ 6D

}
.

So it remains to show πi(WV ) ⊆ W for all i. It suffices to show, by Fp-linearity, that

πi

(
xj11 · · ·xjmm

Ql
· xs

)
∈ W,

where j1 + · · ·+ jm ≤ 6D and 0 ≤ l ≤ p, 1 ≤ s ≤ m. We have

πi

(
xj11 · · ·xjmm

Ql
· xs

)
= πi

(
xj11 · · ·xjmm Qp−l

Qp
· xs

)
=

1

Q
πi
(
xj11 · · ·xjmm Qp−lxs

)
,

so xj11 · · · xjmm Qp−1xs has degree at most 6D + D(p − l) + 1 ≤ 6D + pD + D = (7 + p)D.
Thus xj11 · · ·xjmm Qp−lxs is an Fp-linear combination of monomials of the form xl11 · · ·xlmm with

l1 + · · · + lm ≤ (7 + p)D. Notice that πi(x
l1
1 · · · xlmm = π(x

pb l1p c
1 · · · x

pb lmp c
m xε11 · · · xεmm ) with
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0 ≤ ε1, ε2, . . . , εm ≤ p− 1. Hence

π(x
pb l1p c
1 · · · x

pb lmp c
m xε11 · · · xεmm ) = x

b l1p c
1 · · ·xb

lm
p c

m πi(x
ε1
1 · · · xεmm )

= x
b l1p c
1 · · ·xb

lm
p c

m
Pε1,...,εm;i(x)

Q(x)

=
(some polynomial of total degree ≤ D + (7+p)D

p
)

Q
.

Since p ≥ 2, D + 7+p
p
D ≤ 2D + 3.5D < 6D. So πi(x

j1
1 · · · xjmm Qp−lxs) =

poly of deg ≤ 6D
Q

,

and

πi

(
xj11 · · ·xjmm

Ql
xs

)
=

1

Q
πi(x

j1
1 · · · xjmm Qp−lxs)

⊆ polynomials of total degree ≤ 6D

Q2
⊆ W. �

10.1. Derksen’s refinement.

Definition 10.2. We will call a set S a p-Derksen set if there exist a prime p ≥ 2 and m ≥ 0
and words w0, w1, . . . , wm, t1, . . . , tn ∈ {0, 1, . . . , p− 1} such that S = {[w0t

i1
1 w1t

i2
2 · · ·

wm−1t
im
m wm]p : i1, . . . , im ≥ 0}.

Example 10.3. {1, p, p2, . . . } = {[10i]p : i ≥ 0}, let m = 1, w0 = 1, t1 = 0, w1 = ε.

A subset S ⊆ N0 is p-normal if S is a finite union of p-Derksen sets.

Theorem 10.4 (Skolem-Mahler-Lech for positive characteristic). Let K be a field of char-
acteristic p > 0 and let f : N0 → K satisfy a linear recurrence over K. Then {n ∈ N0 :
f(n) = 0} is a finite union of arithmetic progressions along with a p-normal set.

Let Γ = (Σ, Q, q0, δ, F ) be a DFA. Given two states q, q′ ∈ Q, we say that q′ is reachable
from q if there exists w ∈ Σ∗ such that f(q, w) = q′. We say that q ∼ q′ (“equivalent”) if q′

is reachable from q and q is reachable from q′.
Given q ∈ Q, we will let [q] denote the equivalence class of q. We say [q] � [q′] if q′ is

reachable from q.

Lemma 10.5 (Derksen’s second lemma). If Γ is an automaton that accepts the zero set of
f(n), then there exists at most one cycle in each equivalence class.

We need the following claim to prove Derksen’s second lemma:

Claim. If Σ = {0, 1, . . . , p−1} and suppose that Γ = (Σ, Q, q, δ, F ) is a DFA that accepts a a
subset S ⊆ N0

∼= {1, 2, . . . , p−1}·{0, 1, . . . , p−1}∗∪{ε}. Suppose also that each equivalence
class in Γ has at most one cycle in it, and all the terminal classes get rejected. Then S is
p-normal.
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11. October 8

Definition 11.1. Recall that p-normal sets are finite unions of sets of the form

{[w0t
i1
1 w1t

i2
2 · · ·wm−1timm wm]p : i1, i2, . . . , im ≥ 0},

and w0, . . . , wm, t0, . . . , tm ∈ {0, 1, . . . , p− 1}∗.

Let Γ = (Σ, Q, q0, δ, F ) be a DFA. We put an equivalence class ∼ on Q: q ∼ q′ if and only
if [q] � [q′].

Definition 11.2. We call a DFA a saguaro if

(1) there exists a unique cycle in all non-maximal equivalence classes with respect to �;
(2) all the states in every maximal class are rejecting.

Example 11.3. Let p = 2. (Enter the relevant diagram)

Claim. If we have a saguaro then the language L ⊆ Σ∗ accepted by it is a finite union of
sets of the form

{w0t
i1
1 w1t

2
i2
. . . wm−1t

im
m : i1, . . . , im ≥ 0}, (1)

where m ≥ 0, w0, w1, . . . , wm, t1, t2, . . . , tm ∈ Σ∗. In particular, if Σ = {0, 1, 2, . . . , p−1} then
we get a p-normal set.

Let q � q′ in Q and let Lq,q′ ⊆ Σ∗ be all paths from q to q′. Then we claim that Lq,q′ is a
finite union of sets of the form (1). Notice that this finishes the proof because L =

⋃
q∈F
Lq0,q.

Proof of the main claim. We prove the main claim by induction on d, where d is the largest
non-negative integer such that there exists a chain [q] = [p0] ≺ [p1] ≺ · · · ≺ [pd] = [q′]. Base
case: d = 0. Note that q, q′ are in the same class, so there exists a unique cycle t based
at q′. Thus t ∈ Σ∗, and there exists a shortest path w0 ∈ Σ∗ such that q → q′. Then
Lq,q′ = {wti : i ≥ 0}.

Now suppose that this holds whenever d < k and consider the case when all maximal
chains from q to q′ have length ≤ k and there exists at least one with length k. So there
exists a unique cycle based at q or [q] = q and there are no cycles in [q]. Also there exist a
finite number of minimal paths from [q] to [u] ([u] an immediate successor of [q]) with [q] ≺ [u]
(Note that there cannot exist [v] so that [q] ≺ [v] ≺ [u] therefore.). So if w(1), w(2), . . . , w(r)

are these minimal paths then every path from q to q′ starts out as tiuiw
(i), where ui is a

minimal path from p to the starting vertex of w(i).
Let p(1), . . . , p(r) be the terminal vertices of w(i). Then [q] ≺ [p(i)]. In particular, all

maximal chains from p(i) to p′ have length < k. So

Lq,q′ =
r∑
i=1

{tjuiw(i)} · Lp(i),q′ ,

and by the inductive hypothesis, we know that Lp(i),q′ is a finite union of things of form (1)

– observe that {tia} · {w1s
j
1w2} = {ti(aw1)s

j
1w2}, which is of the form (1). �
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12. October 10

Definition 12.1. A simple linear recurrence

f(n) =
m∑
i=1

ciλ
n
i (ci 6= 0)

is called degenerate if there exist i 6= j and a ≥ 1 such that λai = λaj (i.e., λi/λj is a root of
unity). If not degenerate, then we say that f(n) is non-degenerate.

Proposition 12.2. If f(n) is a simple linear recurrence then if {n ∈ N0 : f(n) = 0} contains
an infinite arithmetic progression then f(n) is degenerate.

Proof. Suppose that f(an+ r) = 0 for all n, a ≥ 1. Start with 0 = f(an+ r) = (c1λ
2
1)(λ

a
1)
n+

· · ·+ (cmλ
r
m)(λam)n =: y1β

n
1 + · · ·+ ymβ

n
m. So we have

y1β
n
1 + · · ·+ ymβ

n
m = 0, (2)

for all n and y1, . . . , ym all non-zero.

Claim. If (2) holds for all n, then there exist i, j such that i 6= j and βi = βj.

For the above claim, use the Vandermonde matrix:
1 1 · · · 1
β1 β2 · · · βn
...

...
. . .

...
βn−11 βn−12 · · · βn−1m



y1
y2
...
ym

 = 0.

Since the determinant of the Vandermonde matrix must be zero, the claim follows. �

Theorem 12.3 (Derksen). Let f : N0 → K, where charK = 0, be a simple non-degenerate
linear recurrence (f(n) = β1λ

n
1 + · · ·+ βmλ

n
m). Then {n : f(n) = 0} is p-normal.

Proof. So we have f(n) = β1λ
n
1 + · · · + βmλ

n
m, β1, . . . , βn all non-zero, λi all non-zero and

λi/λj is not a root of unity for all i 6= j.
Step 1. Recall that we found a finite-dimensional Fp-vector space W , such that S =
{fw(n) := w1λ

n
1 + · · ·+ wmλ

n
m} has the property that T := all finite products of

χw(n) =

{
1 (fw(n) = 0)

0 otherwise

is finite and if h(n) ∈ T and 0 ≤ j ≥ p− 1, then h(pn+ j) ∈ T .
Step 2. (Compare #2 on Assignment 2)
We make an automaton Γ = (Σ, Q, q0, δ, F ), and take Σ = {0, 1, . . . , p− 1}, Q = T , q0 =

χβ1,...,βm(n) and F = {h ∈ T : h(0) = 1}. If h1, h2 ∈ T and h1(pn + j) = h2(n) then we
draw a labelled edge from h1 to h2 with label j. Then Γ accepts exactly the n ∈ N0 for
which f(n) = 0(⇔ χβ1,...,βm(n) = 1).

More generally, if we change q0 to some other g ∈ T , then Γ will accept the n for which
g(n) = 1.

Step 3. Show that these exists at most one cycle in all non-maximal classes. Suppose
otherwise. Then there exists h ∈ T in this class that has two cycles based on h. Call
the cycles t1 and t2. Let a = length(t1), b = length(t2) and let u1 = tb1, u2 = ta2. So
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length(u1) = length(u2) = ab, where u1, u2 are two paths from h to h of the same length but
distinct paths. We will show that how this gives a contradiction.

First, h ∈ T . So h(n) = χ
w

(1)
1 ,...w

(1)
m

(n) · · ·χ
w

(r)
1 ,...,w

(r)
m

(n). Thus h(n) is the characteristic

sequence of the intersection of the zero sets of

w
(i)
1 λ

m
1 + · · ·+ w(i)

n λ
n
m (all w

(i)
j λ

n
j nondegenerate)

for i = 1, . . . , r. To get a contradiction, we shall suppose that we have a state h ∈ T with
two paths u1, u2 of the same length from h→ h, and that h is the characteristic sequence of
the intersection of zero sets of simple non-degenerate linear recurrences all of length ≤ d (d
being the smallest number with respect to this property). So h(n) = χS(n) where S is an
intersection of zero sets of hi(n) = ci1γ

n
i1 + · · ·+ cidγ

n
id (1 ≤ i ≤ r), γij ∈ {λ1, . . . , λm}.

Let s be the length of u1 (hence the length of u2 also). Let j1 = [u1]p < ps and j2 =
[u2]p < ps. (Example: if u1 = 031, u2 = 151 and p > 5, then [u1]p = 3p + 1 < p3 and
[u2]p = 1 + 5p+ p2 < p3.) So we have

h(n) = h(psn+ j1) = h(psn+ j2) (∀n ≥ 0)

Thus h(n) = 1 if and only if
ci1γ

n
i1 + · · ·+ cidγ

n
id = 0

for all 1 ≤ i ≤ r, which is also equivalent to saying

ci1γ
psn+jk
i1 + · · ·+ cidγ

psn+jk
id = 0,

where 1 ≤ i ≤ r, k = 1, 2. [lecture stopped] �

13. October 15

Recall that our goal is to prove the following theorem:

Theorem 13.1. If f(n) = β1λ
n
1 + · · · + βmλ

n
m is a simple non-degenerate linear recurrence

over K with char(K) = p > 0 then (by Derksen) {n ∈ N0 : f(n) = 0} is p-normal, which is
a finite union of {c0 + c1p

s1j1 + · · ·+ cmp
s1j1+···+smjm : j1, . . . , jm ≥ 0}.

Let Γ = (Σ, Q, q0, δ, F ) be an automaton. Let Q be the functions in τ , i.e., products of
characteristic functions of zero sets of w1λ

n
1 + · · ·+ wmλ

n
m, (w1, w2, . . . , wm) ∈ Wm. Let, for

g, h ∈ τ ,

g h
i

where g(pn + i) = h(n). Define F = {g ∈ τ : g(0) = 1}, and q0 = χS, where S is the zero
set of f .

If h ∈ τ is not in a maximal equivalence class, then we cannot have

h

u1

u2

Once we get this, we are done. To see why, start with the fact that we get ≤ 1 cycle in each
non-maximal class, and we claim the states in mammal classes cannot accept
⇒ Γ is a saguaro
⇒ γ accepts a p-normal set (because Γ accepts the zero set of f)
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⇒ the zero set of f is p-normal.
As for what happens in a maximal class, Derksen showed that if h 6= χφ then we get at most
1 cycle. In the proof, we argued that if there exist at least two cycles based at h and h 6= χφ,

then let w1 = u
l(u2)
1 and w2 = u

l(u1)
2 . Let s = l(w1) = l(w2), and j1 = [w1]p, j2 = [w2]p < ps.

Then h(psn + j1) = h(psn + j2) = h(n). Now by assumption, let h 6= χφ. So h(n) is the
characteristic sequence of an intersection of zero sets of non-degnerate linear recurrences
h(n) = χS(n), where

S =
r⋂
i=1

{n : w
(i)
1 λ

n
1 + · · ·+ w(i)

m λ
n
m = 0}.

Remark 16. If λ1, . . . , λd ∈ K \ {0}, then λi/λj is not a root of unity for i 6= j. Then if
(a1, . . . , ad) ∈ Kd and (b1, . . . , bd) ∈ Kd are linearly independent over K, then {n : a1λ

n
1 +

· · ·+ adλ
n
d = 0&b1λ

n
1 + · · ·+ bdλ

n
d = 0}, which is the intersection of zero sets of simple linear

recurrences of length < d.

Proof. Without loss of generality, suppose a1b2 − a2b1 6= 0. Start off with

a1λ
n
1 + · · ·+ adλ

n
d = 0 (3)

b1λ
n
1 + · · ·+ bdλ

n
d = 0. (4)

Then we have

(b1a2 − a1b2)λn2 + · · ·+ (b1ad − a1bd)λnd = 0 (5)

(b2a1 − a2b1)λn1 + · · ·+ (b2ad − a2bd)λnd = 0. (6)

(Note (5) = b1(3)− a1(4), (6) = b2(3)− a1(4)). Then both (3) and (4) = 0 iff (5) and (6)= 0
because a1b2 − b1a2 6= 0.

So if h(n) is the hcaracteristirc sequence of the intersection of zero sets of

gi(n) =
d∑
j=1

cijγ
n
ij, 1 ≤ i ≤ r

So h(psn + j1) = h(psn + j2) = 0 ⇔ h(n) = 1 ⇔ g1(n) = · · · = gr(n) = 0, and this is
equivalent to saying g1(p

sn+j1) = · · · = gr(p
sn+j1) = g2(p

sn+j2) = · · · = gr(p
sn+j2) = 0.

Then for g1(n), which is of length ≤ d and non-denegrate,

g1(p
sn+ j1) =

d∑
j=1

cijγ
j1
ij

(
γp

s

ij

)n
,

and

g1(p
sn+ j2) =

d∑
j=1

cijγ
j2
ij (γp

s

ij )n.

Define cijλ
j1
ij = aj, cijγ

j2
ij = bj. Then for

c1γ
j1
1 (γp

s

1 )n + · · ·+ (cdγ
j1
d )(γp

s

1 )n

c1γ
j2
1 (γp

s

2 )n + · · ·+ (cdγ
j2
d )(γp

s

2 )n,
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Suppose without loss of generality that c1, c2 6= 0:

(c1γ
j1
1 )(c2γ

j2
2 )− (c2γ

j1
2 )(c1γ

j2
1 ) = c1c2γ

j1
1 γ

j1
2 (γj2−j12 − γj2−j11 ). (7)

So the intersection of zero sets of g1(p
sn+ j1), . . . , gr(p

sn+ j1), g1(p
sn+ j2), . . . , gr(p

sn+ j2)
is an intersection of zero sets of simple non-degenerate linear recurrence of length < d. Thus
the result follows by induction. �

Corollary 13.2. If h 6= χθ, it is impossible to get

h

u1

u2

.

Thus we get Derksen’s theorem.

Corollary 13.3 (Derksen). Let f : N0 → K satisfy a linear recurrence over K, with
char(K) = p > 0. Then {n ∈ N0 : f(n) = 0} is a finite union of arithmetic progressions
along with a p-normal set.

Proof. Step 1. Let

f(n) =
∑
i,j

cijn
iαnj for all sufficiently large n.

Without loss of generality, we may assume that

f(n) =
∑
i,j

cijn
iαnj for all n ≥ 0.

Step 2. For r = 0, 1, . . . , p− 1, let

fi(n) = f(pn+ r) =
∑
i,j

cijr
iαrj(α

p
j )
n.

If Sr is the zero set of fr then the zero set of f is the union of pSr + r. Therefore it’s enough
to consider simple linear recurrences.

Step 3. If f(n) is simple and non-generate we are done. Otherwise, consider all i 6= j such

that there exists aij > 0 with λ
aij
i = λ

aij
j , where f(n) =

m∑
i=1

ciλ
n
i . Then let A = lcm(aij). For

t ∈ {0, 1, . . . , A− 1}, let ft(n) := f(An+ t), which is non-degenerate or identically zero. To
see why, suppose λa121 = λa122 , so A = a12 So we have

m∑
i=1

ciλ
An+t
i =

m∑
i=1

(ciλ
t
i)(λ

A
i )n

= (c1λ
t
1 + c2λ

t
2)(λ

A
1 )n + (c3λ

t
3)(λ

A
3 )n + · · ·+ cm(λAm)n.

So either f(n) ≡ 0⇔ f(An+ t) ≡ 0. Thus {n : ft(n) = 0} is p-normal. So

f(n) =

A1∑
t=0

(A · (zero set of ft(n)) + t).

Note that each one is either p-normal of an arithmetic progression. �
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14. October 17

Definition 14.1. We define πs(x) to be the counting function, i.e.,

πs(x) := #{n ∈ N0 ∩ S : n ≤ x}.

Definition 14.2. We call f̄(S) the upper density of S and f(S) the lower density of S
where:

δ̄(S) = lim sup
x→∞

πS(x)

x

δ(S) = lim inf
x→∞

πS(x)

x
.

Moreover, if

δ̄(S) = δ(S) = lim
x→∞

πS(x)

x
,

then we call this the density of S.

Example 14.3. If S = {1, 4, 9, 16, ...} then πS(x) ∼
√
x, so δ(S) = 0.

Example 14.4. If S = {1, p, p2, . . . }, then πS(x) ∼ logp(x). Thus δ(S) = 0. In fact, if S is
p-normal, then we have δ(S) = 0.

Example 14.5. Let S = {n ∈ N0 : binary expansion of n has an even number of 1’s}. Then
πS(x) ∼ x/2, and πS(2n − 1) = 2n−1. Thus δ(S) = 1/2.

Example 14.6. However, it is entirely possible to have

δ̄(S) = 1

δ(S) = 0.

Consider the following indicator function:

χS(n) =

{
1 if there exists j such that (2j)! ≤ n < (2j + 1)!

0 if there exists j such that (2j + 1)! ≤ n < (2j + 2)!.

Since πS((2j + 1)!) ≥ (2j + 1)!− (2j)!, we have

πS((2j + 1)!)

(2j + 1)!
≥ 1− 1

2j+1
→ 1.

On the other hand, note

πS((2j)!) ≤ 1 + (2j − 1)!− 1 = (2j − 1)!,

so
πS((2j)!)

(2j)!
≤ 1

2j − 1
→ 0.

Conjecture (Erdős-Turan (1936)). If S ⊂ N and f̄(S) > 0, then if k ∈ N there exist
a, b ∈ N0 with a ≥ 1 such that b, b + a, b + 2a, . . . , b + (k − 1)a ∈ S (k-term arithmetic
progression).

Theorem 14.7 (Roth (1953)). Erdős-Turan is true for k = 3.

Theorem 14.8 (Szemerédi (1975)). Erdős-Turan is true.
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Furstenberg (1977) and Gowers (2001) gave proofs independently.

Theorem 14.9 (Bézivin (1987)). Let K be a field and let f : N0 → K satisfy a linear
recurrence over K. Then if S := {n ∈ N0 : f(n) = 0} and has δ̄(S) > 0, then S contains an
infinitely many arithmetic progression.

Proof of Bézivin’s result. Start with the fact that

f(n) =

j∑
i=1

pi(n)λni

for all sufficiently large n. Suppose that pi(n) are polynomials in n such that pi(x) ∈ K[x],
and λi ∈ K. Let Dj denote the degree of pj(x). The main claim is as follows:

Claim. If f(n) =
d∑
i=1

pi(n)λni is zero on an arithmetic progression of length ≥ D1 +D2 + · · ·+

Dd + d+ 1, then it is zero on the whole infinite arithmetic progression.

Proof of the main claim. We prove by induction on M := D1 +D2 + · · ·+Dd + d. If M = 1,
it is trivial. Now assume this is true whenever M < k, and consider the case when M = k.
By assumption, there exist b and a ≥ 1 so that f(b) = f(b+ a) = · · · = f(b+ ka) = 0. Now
we need to show that f(b+ na) = 0 for all n ≥ 0. Let

f(b+ an) =
d∑
i=1

pi(b+ an)λb+ani

=
d∑
i=1

[pi(b+ an)λbi ]︸ ︷︷ ︸
=:qi(n)

(λai )
n︸ ︷︷ ︸

=:βi

.

Then we have q1(n)βn1 + · · ·+ qd(n)βnd = 0 for n = 0, 1, . . . , k. Define

q1(n)βn1 + · · ·+ qd(n)βnd = 0 (n = 0, . . . , k) (8)

q1(n+ 1)βn+1
1 + · · ·+ qd(n+ 1)βn+1

d = 0 (n = 0, . . . , k − 1). (9)

Now compute (8)× β1 − (9):

[[q1(n)− q1(n+ 1)]β1]β
n
1 + [q2(n)β1 − q2(n+ 1)β2]β

n
2 + · · ·+ [qd(n)β1 − qd(n+ 1)βd]β

n
d = 0

for n = 0, . . . , k − 1. Let
D′i = deg(qi(n)β1 − qi(n+ 1)βi).

Then D′i ≤ Di, and let d′ = length of equation, d′ ≤ d. If D1 = 0 then d goes down (no first
term) and d′ < d. In other words,

D′1 + · · ·+D′d + d′ < D1 + · · ·+Dd + d.

It vanishes on an arithmetic progression of length k ≥ D′1 + D′2 + · · · + D′d + d + 1. So by
inductive hypothesis it vanishes on the entire progression. �

At this we are really done. Note that we just showed that q1(n)βn1 + · · ·+ qd(n)βnd = 0 for
all n ≥ 0. If not, there exists smallest m so that q1(m+1)βm+1

1 +· · ·+qd(m+1)βm+1
d 6= 0. By

minimality q1(m)βm1 + · · ·+qd(m)+βmd = 0. We just showed that β1(q1(m)βm1 + · · ·+qd(m)+
βmd )−(q1(m+1)βm+1

1 +· · ·+qd(m+1)βm+1
d ) = 0. Thus q1(m+1)βm+1

1 +· · ·+qd(m+1)βm+1
d = 0,

but this is a contradiction. �
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Definition 14.10. A map f : N0 → C is called a holonomic (or p-recursive) sequence if
there exists d ≥ 1 and polynomials P0(x), . . . , Pd(x) ∈ C[x] not all zero such that

P0(n)f(n) + P1(n)f(n− 1) + Pd(n)f(n− d) = 0,

for sufficiently large n.

15. October 20

If we let

F (x) =
∑
n≥0

f(n)xn ∈ C[[x]],

then we have

Theorem 15.1. f : N0 → C is holonomic (or p-resursive) if and only if F (x) satisfies a
differential equation of the form

e∑
j=0

qj(x)F (j)(x) = P (x), (10)

where q0, q1, . . . , qe, P ∈ C[x].

For instance, if aF + bF ′ = P , then aF ′ + a′F + b′F ′ + bF ′′ = P ′. Then we have
(aF + bF ′)− P ′ − (aF ′ + a′F + b′F ′ + bF ′′)P = 0.

Rubel (1972) asked whether SML holds for f : N0 → C, where f is holonomic. Bézivin
(1981) proved a weaker variant for F (x) =

∑
f(n)xn satisfying (10) with q0qe 6= 0, and q0, qe

not zero at x = 0. Methfessel (2000) removed the restrictions on q0, qe.

Theorem 15.2. Let F (x) =
∑
f(n)xn satisfying (10). Then {n ∈ N0 : f(n) = 0} is a finite

union of arithmetic progressions along with a set of S of density zero, i.e., δ(S) = 0.

Around 1994, Dénid began looking at a “dynamical” version of SML.

Theorem 15.3 (Multidimensional Skolem-Mahler-Lech). Let charK = 0, and T : Kn →
Kn a linear transformation. Suppose also that v ∈ Kn,W = {x : wTx = 0} ⊂ Kn. If
[T ] = A, Then {n ∈ N0 : T n(v) ∈ W} = {n ∈ N0 : Anv ∈ W} = {n ∈ N0 : wTAnv = 0} is a
finite union of arithmetic progressions along with a finite set.

Dénis asked more generally whether this was true for φ : X → X, where X = Kn

is a quasi-projective variety and φ : X → X is a morphism from Kn to Kn such that
(α1, . . . , αn)→ (P1(α1, . . . , αn), . . . , Pn(α1 . . . , αn)). If Y ⊆ X is Zariski-closed (Y subspace
of Kn) and x ∈ X, then:

Question 1. Is it true that {n ∈ N0 : φn(x) ∈ Y } is a finite union of arithmetic progressions
along with a finite set? Assume charK = 0.

Question 2. If charK need not be zero, can we get the result when we replace finite set by
a set of zero density?

Dénid proved Question 1 for X = Pn and φ ∈ Aut(Pn).
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Proof of Theorem 15.1. (⇒) There exist d, P0, ,̇sPd ∈ C[x] not all zero so that

P0(n)f(n) + · · ·+ Pd(n)f(n− d) = 0

for sufficiently large n. So one can write

R∑
i=0

d∑
j=0

cijn
if(n− j) = 0

for all sufficiently large n. Notice that we can also write this as∑
i,j

bij(n− j)(i)f(n− j)

for some constants bij where X(i) = X(X − 1) · · · (X − i + 1) and X(0) = 1. (See Example
following this proof for an example.)

Given

G(x) =
∑
n≥0

g(n)xn,

we will write [xN ]G(x) = g(N). Then what is [xn]xi+jF (j)(x)? For sufficiently large n:

j = 0 : [xn]xiF (x) = [xn−i]F (x) = f(n− 1)

j = 1 : [xn]xi+1F ′(x) = [xn−i]xF ′(x) = (n− i)f(n− i)

F ′(x) =
∑
j

jf(j)xj−1

xF ′(x) =
∑
j

jf(j)xj.

j = 2 : [xn]xi+2F”(x) = (n− i)(n− i− 1)f(n− i)

So we have ∑
bij(n− j)(i)f(n− j) =

∑
bij[x

i]xi+jF (i)(x) = 0.

So

[xn]

(∑
i,j

bijX
i+jF (i)(x)

)
= 0,

for all sufficiently large n. So ∑
i,j

bijx
i+jF (i)(x) = P (x)

for some polynomial P . Grouping the terms gives∑
i

qi(x)F (i)(x) = P (x),

where qi(x) =
∑
j

bijx
i+j.

(⇐) This process follows easily, since the argument done in (⇒) is reversible. �
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Example 15.4. Let n2f(n) + (2n− 3)f(n− 1) = 0 for all sufficiently large n. Then one can
rewrite the given relation of the form

(n(2) + n(1))f(n) + 2((n− 1)(1) + (n− 1)(0))f(n− 1)− 3(n− 1)(0)f(n− 1) = 0,

so we have

n(2)f(n) + n(1)f(n) + 2(n− 1)(1)f(n− 1)− (n− 1)(0)f(n− 1) = 0.

Definition 15.5. A topological space X is Noetherian if it satisfies the descending chain
condition on closed subsets, i.e., if C1 ⊇ C2 ⊇ · · ·Cf ⊇ . . . with Ci closed there exists n so
that Cn = Cn+1 = Cn+2 = · · · .

Let X be a Noetherian topological space, φ : X → X continuous, and Y a closed subset
of X, and x ∈ X. We will show that {n ∈ N0 : φn(x) ∈ Y } is a finite union of arithmetic
progression along with a set of S with f(S) = 0, from which we can answer affirmative to
Dénis’ second question and prove the Bézivin-Methfessel result.

Remark 17. If X is a Noetherian topological space and S is a non-empty collection of closed
subsets of X, then S has a minimal element, with respect to ⊇. Take C1 ∈ S. If C1 is
minimal, then we are done. Otherwise, there exists C2 ∈ S so that C2 ( C1. If C2 is
minimal, we are done. Otherwise, search for C3 so that C3 ( C2. Since X is Noetherian, we
cannot have an infinite chain. Thus there exists n such that Cn is minimal.

16. October 22

Theorem 16.1. Let X be a Noetherian topological space, and let f : X → X be continuous.
Let Y ⊆ X be closed and let x ∈ X. Then {n ∈ N0 : fn(x) ∈ Y } is a finite union of
arithmetic progressions along with a set S of density zero.

Lemma 16.2 (Combinatorial lemma). Let S ⊆ N0 be a subset with δ(S) > 0. Then there
exists a ∈ N with a ≥ 1 such that

T := {i ∈ N0 : i, i+ a ∈ S}

has δ(T ) > 0.

Proof. Let S ⊆ N0 have positive upper density. We shall show that we can take a ∈
⌈

3
δ(S)

⌉
.

Choose N :=
⌈

3
δ(S)

⌉
. Let S0 := {i ≥ 0 : |{iN, . . . , (i+ 1)N − 1} ∩ S| ≤ 1} and S1 := {i ≥ 0 :

|{iN, . . . , (i+ 1)N − 1} ∩ S| ≥ 2}. Then S0 ∪ S1 = N0. Then let’s estimate:

πS(mN − 1) = #{i ≤ nN − 1 : i ∈ S} =
m−1∑
j=0

|{jN, jN + 1, . . . , (j + 1)N − 1} ∩ S|

=
m−1∑
j=0
j∈S0

|{jN, . . . , (j + 1)N − 1} ∩ S|+
m−1∑
j=0
j∈S1

|{jN, . . . , (j + 1)N − 1} ∩ S|

≤ πS0(m− 1) +NπS1(m− 1).
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So we have πS(mN − 1) ≤ πS0(m− 1) + NπS1(m− 1). We claim that the upper density of
S1 must be positive. If not, then the upper density of S1 will be zero. Since

πS(mN − 1)

mN − 1
≤ πS0(m− 1)

mN − 1
+
NπS1(m− 1)

mN − 1
≤ m

mN − 1
+
NπS1(m− 1)

mN − 1
,

and
NπS1

(m−1)
mN−1 → 0 as m → ∞ (since πS−1(m − 1) = o(m) and mN − 1 grows faster than

the numerator), it follows that for any sufficiently large m, we have

πS(mN − 1)

mN − 1
≤ 2

N
<

3

4
δ(S),

due to our choice of N . By assumption, there exists {xn} ∈ N so that, as xn →∞, we have

πS(xn)

xn
→ δ(S).

Note that for x ∈ N, there exists a unique j so that jN − 1 < x ≤ (j + 1)N − 1. So
πS(jN − 1) ≤ πS(x) ≤ πS((j + 1)N − 1), and we also have

πS(jN − 1)

(j + 1)N − 1
≤ πS(x)

x
≤ πS((j + 1)N − 1

jN − 1
.

Thus
πS(x)

x
≤ πS((j + 1)N − 1)

(j + 1)N − 1
· (j + 1)N − 1

jN − 1
<

3

4
δ(S) · 12

11
< δ(S),

or

lim sup
x→∞

πS(x)

x
= δ(S) ≤ 36

44
δ(S),

but this is a contradiction, since δ(S) > 0. Hence δ(S1) > 0, as required. S ofor each
i ∈ N0, there exist y, z ∈ {iN, . . . , (i + 1)N − 1} ∩ S, y < z and 1 ≤ z − y < N . For
a ∈ {1, 2, . . . , N − 1}, let

Ta = {i ∈ S1 : there exists y, y + a = z ∈ {iN, . . . , (i+ 1)N − 1} ∩ S}.

Then we have S1 = T1 ∪ T2 ∪ · · · ∪ TN−1. Notice that

0 < δ(S1) ≤
N−1∑
j=1

δ(Tj).

So there exists a ∈ {1, 2, . . . , N − 1} so that δ(Ta) > 0. Let T = {j ∈ N0 : j, j + a ∈ S}.
Then we claim that δ(T ) > 0. Notice that πT (mN − 1) ≥ πTa(m− 1). To see why, we begin
by noting that i ∈ Ta implies that there exists y ∈ {iN − 1, . . . , (i+ 1)N − 1}∩T ; therefore,
it follows

πT (mN − 1)

mN − 1
≥ πT (m− 1)

mN − 1
≥ πTa(m− 1)

m− 1
· 1

2N

for all sufficiently large m, hence δ(T ) ≥ 1
2N
δ(Ta) > 0, as required. �

Proposition 16.3. Let X be a Noetherian topological space, f : X → X continuous, Y ⊆ X
closed, x ∈ X. Then if S := {n ∈ N0 : fn(x) ∈ Y } has positive upper density, then S
contains an infinite arithmetic progression aN + b.
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Proof. Suppose not, and let S be the collection of closed subsets Z ⊆ X for which there
exist a continuous map gZ : X → X and a point xz such that {n ∈ N0 : gn(x) ∈ Z} has
a positive upper density but does not contain an arithmetic progression. By assumption,
S 6= ∅. So there exist a minimal element Z0 ∈ S and g : X → X and x ∈ X such that
{n : gn(x) ∈ Z0} =: S0 has positive upper density but does not contain an arithmetic
progression. Then δ(S0) > 0. By the combinatorial lemma, there exists a ≥ 1 so that

T0 := {i ∈ N0 : i, i+ a ∈ S0}
has positive upper density. Thus, i ∈ T0 ⇔ i, i + a ∈ S0 ⇔ gi(x), gi+a(x) ∈ Z0 ⇔
gi(x), ga(gi(x)) ∈ Z0. Let Y0 := {z ∈ Z0 : ga(z) ∈ Z0}. Then Y0 is closed since both
g−a(Z0) and Z0 are closed, and Y0 = g−a(Z0) ∩ Z0. Two possible cases:

Case I: Y0 ( Z0

Notice that gi(x) ∈ Y0 ⇔ i ∈ T0, and δ(T0) > 0. By minimality of Z0, Y0 /∈ S. So T0
contains an arithmetic progression but T0 ⊆ S0.

Case II: Y0 = Z0

Note that Y0 = Z0 ⇔ g−a(Z0) ⊇ Z0 ⇔ ga(Z0) ⊆ Z0. This implies that S0 contains an
infinite arithmetic progression: note that if i ∈ S0 then i+ a ∈ S0. �

Theorem 16.4. If X is a Noetherian topological space, Y ⊆ X closed, f : X → X continu-
ous and x ∈ X, then {n ∈ N0 : fn(x) ∈ Y } is a finite union of arithmetic progression along
with a set of zero density.

Proof. Suppose otherwise. Let S be the collection of closed subsets Z ⊆ X for which
g = gZ : X → X, x = xz ∈ X such that the conclusion doesn’t hold. By assumption, S 6= ∅.
Let Z0 ∈ S be minimal and let g : X → X continuous and x ∈ X be such that

S0 := {n ∈ N0 : gn(x) ∈ Z0}
is not a finite union of arithmetic progressions along with a set of density zero. If δ(S0) = 0,
then we are done. So we may assume that δ(S0) > 0. So by the proposition, there exist
a ≥ 1, b ≥ 0 such that S0 ⊇ aN + b. Thus we have gan+b(x) ∈ Z0 for all n ≥ 0. Now let

Y0 = {gb(x), gb+a(x), . . . , } ⊆ Z0.

Consider i ∈ {0, 1, . . . , a−1}, and suppose b ∈ {0, 1, . . . , a−1}. Consider {n : gan+i(x) ∈ Z0}.
When i = b, then this is all of N0 and in fact we are always in Y0 ⊆ Z0. In general, if i 6= b,
then gan+i(x) ∈ Z0. We also know that gan+a+b(x) ∈ Z, where a + b > i, a + b − i =
k, 1 ≤ k ≤ 2a − 1. So if gan+i(x) ∈ Z then gan+i(x) ∈ Z and gan+i+k(x) ∈ Z. Thus
gan+i(x) ∈ Z ∩ g−k(Z). Two cases:

Case I: Z ∩ g−k(Z) = Z
In this case, we have gk(Z) ⊆ Z, so gi(x) ∈ Z hence gi+k(x) ∈ Z. Thus {n : gn(x) ∈ Z}

is a finite union of arithmetic progressions.
Case II: Y0 = Z0 ∩ g−k(Z0) ( Z0

Y0 is closed, so Y0 /∈ S by minimality of Z0. So {n : gan+i(x) ∈ Z0} = {n : gan+i(x) ∈ Y0}.
By minimality of Z0, {m : gm(x) ∈ Y0} is a finite union of arithmetic progressions along
with a set of density zero. So for i ∈ {0, . . . , a− 1}, the set of {n : gan+i(X) ∈ Z0} is a finite
union of arithmetic progressions along with a set of density 0. Thus

{n : gn(x) ∈ Z0} =
a−1⋃
i=0

{n ∈ N0 : gan+i(x) ∈ Z0}.
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Since a finite union of a finite union of arithmetic progressions is a finite union of arithmetic
progressions and is a finite union of sets of density 0 is density 0, we get a contradiction. �

17. October 27: Beginning of Phase IV – algebraic geometry?

Note: Proof of the combinatorial lemma done on 27 October is written under the last
lecture’s section. See the proof of Lemma 16.2.

Definition 17.1. Let K be a field, and K the algebraic closure of K. Write

An = {(x1, . . . , xn) : x1, . . . , xn ∈ K}
Pn = (An+1 \ {(0, 0, . . . , 0)})/ ∼ .

Denote [x0, . . . , xn] the equivalence class of (x0, . . . , xn) ∈ Pn. Then V ⊆ An is called an
affine subvariety of An if there exists S ⊆ K[x1, . . . , xn] such that V = {(a1, . . . , an) ∈ An :
f(a1, . . . , an) = 0 for all f ∈ S}.

Example 17.2. If n = 2, and V = x-axis∩ y-axis is an affine subvariety, since f(x, y) = 0 for
all points in V .

If T ⊆ An, then we can associate an ideal I(T ) ⊆ K[x1, . . . , xn], where

I(T ) := {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ T}.

Similarly, given an ideal J ⊆ K[x1, . . . , xn] we can associate an affine subvariety Z(J) ⊆ An,
where

Z(J) = {(a1, . . . , an) ∈ An : f(a1, . . . , an) = 0 for all f ∈ J}.
Note that there is a bijection between Z(J) and J , i.e., between

An K[x1, . . . , xn]
Y (subvarieties) I(Y ) (radical ideals)

Z(J) J

there is a inclusion-reversing bijection Y1 ⊆ Y2 ⇔ I(Y1) ⊇ I(Y2).

Definition 17.3. The Zariski topology on An is the topology in which the affine subvarieties
are the closed subsets. If Y1, Y2 are affine subvarieties such that Y1 = Z(J1), Y2 = Z(J2), Y1∪
Y2 = Z(J1J2), Yα = Z(Jα)⇒

⋂
Yα = Z(

∑
Jα).

18. October 29

Definition 18.1. A projective subvariety V ⊆ Pn is a subset given by the set of points [x0 :
x1 : · · · : xn] ∈ Pn that vanish on some set S ⊆ k[x0, x1, . . . , xn] consisting of homogeneous
polynomials.

Remark 18. Note that we need the polynomials to be homogeneous so that the solutions are
well-defined. For instance, the solution to x20 − x1 is [a2 : a] = [a : 1], but [1 : 1] = [2 : 2],
and [2 : 2] is not a solution.

Definition 18.2. Zariski topology on Pn is given by the topology where the closed subsets
are precisely the projective subvarieties of Pn.

34



We have

Pn =
n⋃
i=0

An
i ,

where
An
i := {[x0 : x1 : · · · : xn] ∈ Pn : xi 6= 0},

and that Pn \ V (xi = 0) = An
i
∼= An via the map [x0 : x1 : · · · : xn] 7→ (x0/xi, . . . , xi−1/xi,

xi+1/xi, . . . , xn/xi) ∈ An. Also, An
i is open in Pn.

Definition 18.3. A quasi-projective variety is an open subset U ⊆ V ⊆ Pn of a projective
subvariety V of Pn for some n. A quasi-projective variety X is called irreducible if X cannot
be written as X = X1 ∪X2 with X1, X2 ( X closed.

Thus, U gets a topology from the topology on Pn and we call this the Zariski topology on
U .

Definition 18.4. If X is an irreducible quasi-projective variety, and we have f(x) = [a0 :
a1 : · · · : an], we say that a map f : X → A1 is regular at x ∈ X if for any X ⊆ Y ⊆ Pn
with X open and Y closed, there exists P,Q ∈ K[x0, x1, . . . , xn] homogeneous polynomials
of the same degree such that Q(a0, a1, · · · , an) 6= 0 and there exists an open neighbourhood
x ∈ U ⊆ X such that Q|U 6= 0 and f = P/Q on U . In particular, f = P/Q on U and so
it holds on an open dense set of X. Note that if Y = X \ U , then X = U ∪ Y . Since Y is
proper, we have U = X.

If f is regular at all x ∈ X, then we say f is regular.

Definition 18.5. Let OX denote the collection of regular functions on X. Then OX is a
ring. WHen X is affine, we call OX the (affine) coordinate ring of X.

Example 18.6. Suppose K = K = C. Clearly A1 ⊆ P1. f : A1 → A1 is regular at [1 : a] if

f([1 : y]) =
P [1 : y]

Q[1 : y]
,

with P,Q homogeneous of same degree and Q([1 : a]) 6= 0. In other words, for all a =
[1 : a] ∈ A1, there is some rational function φa(t) ∈ C(t). Then f(x) = φa(x) for x in an
open neighbourhood of Ua. Notice properly closed sets in A1 are finite. So if a, b ∈ A1 and
φa(x) = φb(x) on Ua ∩ Ub, then φa ≡ φb. So we have f ≡ φ. But f(x) is regular, so it
can have no pole. Thus, f(x) = P (x) for some polynomial P . It follows that OA1

∼= C[x].
Similarly, we get that OA2

∼= C[x, y] and OP1 = C.

Definition 18.7. If X is an irreducible quasi-projective variety and Y ⊆ X closed, then we
define the local ring of X along Y OX,Y such that OX,Y is the collection of paris (U, f) where
U ⊂ X open and U ∩ Y 6= ∅ and f ∈ OU with f : U → A1 regular modulo the equivalence
(U, f) ∼ (V, g) if f ≡ g on U ∩ V . Addition and multiplication are defined as follows:

[(U, f)] · [(V, g)] = [(U ∩ V, fg)]

[(U, f)] + [(V, g)] = [(U ∩ V, f + g)].

Remark 19. Note that OX,Y is a local ring, i.e., it has a unique maximal ideal. Write [(U, f)]
for the class of (U, f). Then

mX,Y := {[(U, f)] : f ≡ 0 on U ∩ Y }
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is the unique maximal ideal of OX,Y . To see why, start with [(U, f)] /∈ mX,Y . Thus f 6≡ 0 on
U ∩ Y . Let V = {x ∈ U : f(x) 6= 0} ⊆ U open. Then 1

f
is regular on V , and[(

V,
1

f

)]
· [(U, f)] =

[(
V ∩ U, f · 1

f

)]
= [(V, 1)].

Thus OX,Y \mX,Y = O∗X,Y .

Remark 20. If Y = {x}, then OX,Y = OX,x is a local ring at x. If Y = X, then we have
mX,X = (0) so OX,X is a field. This prompts us to introduce the following definition.

Definition 18.8. We call OX,X the field of rational functions on X. We denote OX,X by
K(X).

19. Happy Halloween!

Definition 19.1. Let X, Y be quasi-projective irreducible varieties and X ⊆ Pn, Y ⊆ Pm,
and f : X → Y with x ∈ X and f(x) ∈ Y . We say that f is regular at x if f(x) ∈ Pm =
m⋃
i=0

Am
i , then there exists i so that f(x) ∈ Am

i .

Remark 21. So regularity at x ∈ X means that there exists x ∈ U ⊆ X an open neighbour-
hood of x such that f(U) ⊆ Am

i . So f |U : U → Am
i . We just want that each projection

f |U : U //

##

Am

πj
��

A1

(where j = 1, 2, . . . ,m).

Definition 19.2. f : X → Y is called a morphism if it is regular at all x ∈ X. f is called
an isomorphism if there exists a morphism g : Y → X such that f ◦ g = idY , g ◦ f = idX . If
Y = X, then we call f an endomorphism, and if f : X → X is an isomorphism then f is an
automorphism.

Remark 22. The collection of automorphisms of X is a group under composition. It is
denoted by Aut(X).

Example 19.3. Aut(PnC) = PGLn+1(C) = GLn+1(C)/Z

Example 19.4. Aut(A2
C) has two automorphisms: linear and triangular

(x, y) 7→ (αx+ βy + c1, γx+ δy + c2) (αδ − βγ 6= 0) (linear)

(x, y) 7→ (x, y + p(x)) (p(x) polynomial; triangular)

Definition 19.5. A map φ : X 99K Y is rational if there exists an open subset U ⊆ X so
that φ|U : U → Y is a morphism. However, φ need not be defined for all x ∈ X.

Remark 23. If f : X 99K Y is rational and the image of f is dense (dominant), then f
induces a map

f ∗ : K(Y ) = OY,Y → K(X) = OX,X
such that f ∗(φ) = φ ◦ f . Thus, if f : X → Y is a morphism and f(x) = y then

f ∗ : OY,y → OX,x.
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Counterexample. Let X = Y = A1, and f : A1 → A1 b x 7→ p(x). Note that we have
OA1
∼= C[x], and that closed sets of A1 is the union of finite sets of points and A1. Then

f(x) =


x (x /∈ {0, 1})
1 (x = 0)

0 (x = 1)

is continuous but f(x) is not a polynomial in x.

Corollary 19.6 (Dénis’ conjecture). Let X be an irreducible quasi-projective variety, and
let φ : X → X be an endomorphism, let x ∈ X and let Y ⊆ X be closed. Then {n ∈ N0 :
φn(x) ∈ Y } is a finite union of arithmetic progressions along with a set of density zero.

Proof. Since X is Noetherian (why?), φ continuous and Y is closed, it follows from Theorem
16.1. �

Corollary 19.7 (Bézivin-Methfessel theorem). Let F (x) :=
∑
f(n)xn ∈ C[[x]] and suppose

that F (x) satisfies a non-trivial differential equation of the form
m∑
i=0

pi(x)F (i)(x) = Q(x),

where Pi, Q ∈ C[x]. Then {n ∈ N0 : f(n) = 0} is a finite union of arithmetic progressions
along with a set of density zero.

Proof. Note that there exists r ≥ 1 and polynomials h0(x), . . . , hr(x) such that

h0(n)f(n) + h1(n)f(n− 1) + · · ·+ hr(n)f(n− r) = 0

for all sufficiently large n with h0(x) 6≡ 0. So for all sufficiently large n, we have h0(n) 6= 0,
hence

f(n) = φ1(n)f(n− 1) + · · ·+ φr(n)f(n− r),
where

φi(x) := −hi(x)

h0(x)
.

Consider the map

ϕ := ((f(n− 1), f(n− 2) . . . , f(n− r), n) ∈ Ar+1
C 7→ (f(n), f(n− 1), . . . , f(n− r+ 1), n+ 1)

Consider
ϕ : Ar+1 99K Ar+1,

with
(t1, . . . , tr, x) 7→ (φ1(x)t1 + · · ·+ φr(x)tr, t1, . . . , tr−1, x+ 1).

Then ϕ is regular at all points where h0(x) 6= 0 (i.e., in an open set Ar× (A1 \V (h0) = 0) =:
U).

Let
V = {(t1, t2, . . . , tr, x) ∈ Ar+1 : φn(t1, t2, . . . , tr, x) ∈ U ∀n ≥ 0}.

Then V ⊆ Ar+1 is a Noetherian topological space with the subspace topology. Notice
also that ϕ(V ) ⊆ V is continuous. Note also that There exists n0 so that α = (f(n0 −
1), . . . , f(n0 − r), n0) ∈ V . Then

ϕn(α) = ϕn(f(n0 − 1), . . . , f(n0 − r), n0) = (f(n0 + n− 1), . . . , f(n0 + n− r), n0 + r),
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and that ϕn(α) ∈ Y ⇔ f(n0 +n−1) = 0. By the theorem for Noetherian topological spaces,
{n ∈ N0 : ϕn(α) ∈ Y } = {n ∈ N0 : f(n + n0 − 1) = 0} is a finite union of arithmetic
progressions along with a set of density zero. Hence {n ∈ N0 : f(n) = 0} is a finite union of
arithmetic progressions along with a set of density zero. �

20. November 3: Beginning of Phase IV

20.1. p-adic functions.

Remark 24. When doing p-adic analysis, it is often better to use
(
z
0

)
,
(
z
1

)
,
(
z
2

)
, . . . ,

(
z
n

)
, · · ·

as a basis for polynomials. Mahler was the first one to notice this. This basis is useful in
proving the following lemma.

Lemma 20.1 (Pólya-Szego lemma). Let

f(x) =
d∑
i=0

aix
i ∈ Q[x],

and suffuse that f(n) ∈ Z for all n ∈ Z. Then d!ai ∈ Z for all i.

Proof. We use {
(
x
0

)
, . . . ,

(
x
d

)
} as a Q-basis for the polynomials in Q[x] of degree ≤ d. Then

there exist b0, . . . , bd ∈ Q such that f(x) =
d∑
i=0

bi
(
x
i

)
.

Claim. If f(n) ∈ Z for all n, then bi ∈ Z for all i.

Proof of Claim. Notice that

f(0) = b0 ∈ Z
f(1) = b0 + b1 ∈ Z
f(2) = b0 + 2b1 + b2 ∈ Z⇒ b2 ∈ Z

...

By induction, we have bi ∈ Z for all i = 0, 1, . . . , d. �

Observe that

f(x) = b0 + b1

(
x

1

)
+ · · ·+ bd

(
x

d

)
,

and that i!
(
x
i

)
∈ Z[x]. So

d!f(x) =
d∑
i=0

bid!

(
x

i

)
∈ Z[x],

so the result follows. �

20.2. Mahler series.

Definition 20.2. We say that a series

f(z) =
∞∑
i=0

ai

(
z

i

)
with ai ∈ Qp and |ai|p → 0 as i→∞ is a Mahler series.
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Remark 25. Mahler series always converges on Zp and is continuous. To see why, consider
the following claim:

Claim. If z ∈ Zp and i ≥ 0, then
(
z
i

)
∈ Zp.

Proof. Consider the map g : Zp → Qp defined as g(z) :=
(
z
i

)
. Notice that if n ∈ Z, then

g(n) = n(n−1)···(n−i+1)
i!

∈ Z. Thus g|Z : Z → Zp. Since g is continuous, g−1(Zp) is closed, as
Zp = {x ∈ Qp : |x|p ≤ 1} is closed. And it contains Z, which is dense in Zp. It follows that
g−1(Zp) = Zp) and so g : Zp → Zp. Observe then if

f(z) =
∞∑
i=0

ai

(
z

i

)
, |ai|p → 0

and we define

fn(z) :=
n∑
i=0

ai

(
z

i

)
,

which is continuous, then for z ∈ Zp, we have

|f(z)− fn(z)| =

∣∣∣∣∣
∞∑

i=n+1

ai

(
z

i

)∣∣∣∣∣ ≤ max
i>n
|ai|p → 0

as n→∞. So f(z) is continuous since fn → f uniformly, and each fn is continuous. �

Strikingly, the converse holds also:

Theorem 20.3 (Mahler). If f : Zp → Qp is continuous, then there exist ai ∈ Qp with i ≥ 0
with |ai|p → 0 such that

f(z) =
∞∑
i=0

ai

(
z

i

)
.

Definition 20.4. Let Cp be all the continuous maps f : Zp → Qp. Then the forward
difference operator on continuous functions ∆ : Cp → Cp is defined as ∆(f(z)) = f(z + 1)−
f(z).

Suppose that

f(z) =
∞∑
i=0

ai

(
z

i

)
is a Mahler series. What is ∆f(z)? ∆(f(z)) = f(z + 1)− f(z) = 0 + a1

(
z
0

)
+ a2

(
z
1

)
+ · · · . In

particular,

∆Nf(z) = aN + aN+1

(
z

1

)
+ aN+2

(
z

2

)
+ · · · .
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Thus, we observe that ∆nf(z)|z=0 = an. It will be useful to have another expression for
∆jf(z):

∆0f(z) = f(z)

∆1f(z) = f(z + 1)− f(z)

∆2f(z) = f(z + 2)− 2f(z + 1) + f(z)

...

∆jf(z) =

j∑
i=0

(−1)j−i
(
j

i

)
f(z + i)

...

Lemma 20.5. If k ≥ d, then

∆kzd =

{
d! if k = d

0 if k > d
.

Proof (sketch). We prove by induction. If d = 1, then ∆z = 1 = 1! and ∆2z = 1− 1 = 0. If
true for d < m, then

∆mzm = ∆m−1(∆zm) = ∆m−1((z + 1)m − zm) = ∆m−1(mzm−1 + lower degree terms)

= m∆m−1zm−1 + ∆m−1(polynomial of degree ≤ m− 2)︸ ︷︷ ︸
=0

= m!. �

The following is one application of forward differential operators:

Theorem 20.6 (Fermat’s little theorem). For any a ∈ N0, a
p ≡ a (mod p) for all primes

p.

Proof (Euler). If a = 0, then the claim is immediate. If the identity holds for a = 0, 1, . . . ,m,
then

(m+ 1)p = mp +

(
p−1∑
i=1

(
p

i

)
mp−i

)
+ 1 ≡ mp + 1 (mod p)

≡ m+ 1 (mod p),

by the inductive hypothesis. �
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Theorem 20.7 (Wilson’s theorem). p is a prime if and only if (p− 1)! ≡ −1 (mod p).

Proof (Euler). Notice that

(p− 1)! = ∆p−1zp−1 =

p−1∑
i=0

(
p− 1

i

)
(−1)p−1−i(z + i)p−1,

which is constant for all z ∈ Z. In particular, this holds when z = 0:

(p− 1)! =

p−1∑
i=0

(
p− 1

i

)
(−1)p−1−iip−1

=

p−1∑
i=1

(
p− 1

i

)
(−1)p−1−iip−1

≡
p−1∑
i=1

(−1)p−1−i (mod p) (By Fermat’s little theorem)

≡
p−1∑
i=0

(
p− 1

i

)
(−1)p−1−i︸ ︷︷ ︸

(1−1)p−1

−
(
p− 1

0

)
(−1)p−1 (mod p)

≡ −
(
p− 1

0

)
(−1)p−1 ≡ −1 (mod p),

as required. �

21. November 5

Let

f(z) =
∞∑
n=0

an

(
z

n

)
,

with an ∈ Qp, |an|p → 0. Then f : Zp → Qp is continuous.

Theorem 21.1. If f : Zp → Qp is continuous then there exists an ∈ Qp with |an|p → 0 such
that f(z) =

∑
n

an
(
z
n

)
for all z ∈ Zp.

Lemma 21.2 (“Modulo”1 lemma). Let f : Zp → Qp be continuous. Then

|(∆n(f))(0)|p =

∣∣∣∣∣
n∑
j=0

(
n

j

)
f(j)(−1)n−j

∣∣∣∣∣
p

→ 0 as n→∞.

Proof of Theorem 21.1 (“modulo”/assuming the lemma). Let an = ∆n(f)(0) and let

g(z) =
∞∑
i=0

ai

(
z

i

)
.

1Professor Bell couldn’t think of any other way to express ”assuming the lemma” so he used modulo
instead, which is arguably awkward. We settled with “assuming the lemma” or “modulo the proof of the
lemma”, but this whole incident was amusing enough to warrant a mention here!
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Then the above series is a Mahler series because |ai|p → 0 as i→∞. Then

∆n(g(z)) =
∞∑
i=0

ai+n

(
z

i

)
.

Thus ∆n(g)(0) = an = ∆n(f)(0).

Claim. g(j) = f(j) for all j ∈ N0.

Proof of Claim. g(0) = a0 = ∆0(f)(0) = f(0). Thus the claim holds for j = 0. Assume now
that g(j) = f(j) for all 0 ≤ j ≤ n− 1. Then

n∑
j=0

(
n

j

)
g(j)(−1)n−j = ∆n(g)(0) = ∆n(f)(0) =

n∑
j=0

(
n

j

)
f(j)(−1)n−j.

By inductive hypothesis,

n∑
j=0

(
n

j

)
f(j)(−1)n−j =

n−1∑
j=0

(
n

j

)
g(j)(−1)n−j

(
n

n

)
f(n)

=
n∑
j=0

(
n

j

)
g(j)(−1)n−j + f(n)− g(n).

Therefore f(n) = g(n), as required. �

By assumption, f, g : Zp → Qp are continuous. Let h := f − g is continuous and is zero

on all N0, so it is zero on N0 = Zp. Thus h ≡ 0 so f = g, as desired. �

Proof of the “modulo” lemma (Lemma 21.2). Since Zp is compact and f continuous, there
exists a maximum, say, M := max

z∈Zp

|f(z)|.

Claim. For all d ≥ 0, there exists Nd ∈ N such that

|∆nf(z)| ≤ M

pd
for all z ∈ Zp

whenever n ≥ Nd.

Proof of the claim. . If d = 0, take N0 = 0, since

|∆nf(z)|p =

∣∣∣∣∣
n∑
j=0

(
n

j

)
(−1)n−jf(z + j)

∣∣∣∣∣
≤ max

0≤j≤n

∣∣∣∣(nj
)∣∣∣∣

p︸ ︷︷ ︸
∈Z,≤1

|f(z + j)|p︸ ︷︷ ︸
≤M

≤M.

Just for fun, let’s take a look at the d = 1 case. We need a right N1 ∈ N so that |∆nf(z)|p ≤
M/p for all n ≥ N1, z ∈ Zp. Since f is continuous, we have that, for m ≥ 1, such that
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|f(z+pm)−f(z)|p < Mp−1 for all z ∈ Zp. This is uniformly continuous, since any continuous
function over a compact space is necessarily uniformly continuous. Let

g(z) = ∆pnf(z) =

pm∑
j=0

(
pm

j

)
(−1)p

m−jf(z + j)

= f(z + pm) + (−1)p
m

f(z) +

pm−1∑
j=1

(
pm

j

)
(−1)p

m−jf(z + j).

So

|g(z)|p ≤ max

(
|f(z + pm) + (−1)p

m

f(z)|p,

{∣∣∣∣(pmj
)∣∣∣∣

p

|f(z + j)|p : j = 1, 2, . . . , pm − 1

})

≤ max

{
M

p
, . . . ,

M

p

}
=
M

p
.

By the argument we did in the d = 0 case, we have

|∆n(g(z))|p = |∆n+pm(f(z))|p ≤
M

p

for all n ≥ 0, z ∈ Zp So we can take N1 = pm for d = 1.
Now, in general, if we have produced an Nd for some d, we may let h(z) = ∆Ndf(z). Then
|h(z)|p ≤ M/pd for all z ∈ Zp. So now we can do d = 1 case on h(z): we know there exists
N ′1 ∈ N such that

|∆nh(z)|p ≤
M/pd

p
=

M

pd+1

for all z ∈ Zp, N ≥ N ′1. But ∆nh = ∆n+Ndf , so

|∆nf(z)|p <
M

pd+1
for all n ≥ Nd +N ′1 =: Nd+1.

The result follows by induction. �

Now that we proved the claim, the lemma follows also. �

Remark 26. Quick aside remark on Ruzsa’s conjecture:

Conjecture (Ruzsa’s conjecture). Let f : Z→ Z have the property that for every prime p and
every n ∈ Z, we have f(n + p) ≡ f(n) (mod p). Suppose also that there exists α ∈ (0, 1)
such that

|f(n)| < exp(α|n|)
for all sufficiently large n. Then f(n) is a polynomial in n.

Ruzsa proved this for all |f(n)| < C(e − 1)|n| for all sufficiently large n. This proof uses
the forward differential operator. First, observe that if n ≥ p then p | ∆nf(0), since

∆pf(n) =

p∑
j=0

(
p

j

)
(−1)p−jf(n+ p) ≡ f(n+ p)− f(n) ≡ 0 (mod p).
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So for all m ≥ p, ∆mf(n) ≡ 0 (mod p). If n ≥ p, then p | ∆nf(0), and in particular,∏
p≤n

p | ∆nf(0)

for all n ≥ 2. But

|∆nf(0)| =

∣∣∣∣∣
n∑
j=0

(
n

j

)
(−1)n−jf(j)

∣∣∣∣∣
≤

n∑
j=0

(
n

j

)
|f(j)| ≤

n∑
j=0

(
n

j

)
C(e− 1)(1−ε)j

≤ C(1 + (e− 1)1−ε)n < e(1−
ε
2)

n

for all sufficiently large n. Since

log

(∏
p≤n

p

)
∼ n as n→∞

(the prime number theorem), and since log(|∆nf(0)|+ 1) < (1− ε
2
)n for all sufficiently large

n, it follows (think about it!) ∆nf(0) = 0 for all sufficiently large n. Therefore (think about
it no. 2!), f(n) is a polynomial.

The following result by Umberto Zannier is the best result so far:

Theorem 21.3 (Zannier). Ruzsa’s conjecture holds for all |f(n)| < 2.117|n| for all sufficiently
large |n|.

22. November 7

Recall that we proved the following last class:
• Every continuous f : Zp → Qp is a Mahler series.
• Not every continuous function f : Zp → Qp is analytic.

We would like a criterion that tells us when a Mahler series is analytic.

Proposition 22.1. Suppose that

F (z) =
∑
n≥0

an

(
z

n

)
satisfies |an

n!
|p → 0 as n→∞. Then F (z) is p-adic analytic.

Proof. Let

Fn(z) =
n∑
j=0

aj

(
z

j

)
=

n∑
j=0

cj,nzj (cj,n) ∈ Qp)

= cj,nz
j where cj,n = 0 for all j > n.

So we have

Fn+1(z)− Fn(z) = an+1

(
z

n+ 1

)
=

an+1

(n+ 1)!
(z(z − 1)(z − 2) · · · (z − n))︸ ︷︷ ︸

∈Z[z]

.
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Observe also that | an+1

(n+1)!
|p → 0. This is also equal to

∞∑
j=0

cj,n+1z
j −

∞∑
j=0

cj,nz
j =

∞∑
j=0

(cj,n+1 − cj,n)zj

⇒ |cj,n+1 − cj,n| ≤
∣∣∣∣ an+1

(n+ 1)!

∣∣∣∣
p

for all n, j

Since ∣∣∣∣ an+1

(n+ 1)!

∣∣∣∣
p

→ 0,

we have that for fixed j, {cj,n}n≥0 is a Cauchy sequence. By completeness, one can find
bj ∈ Qp such that cj,n → bj as n → ∞. Also, given ε > 0, there exists N such that
|cj,n − bj|p < ε for all n ≥ N, j ≥ 0.

Let G(z) :=
∑
bjz

j. Two claims, which will finish the proof of this proposition:

Claim. G(z) is p-adic analytic, i.e., |bj|p → 0. Moreover, G(z) = F (z).

Proof of the claim. For the first claim, we start with arbitrary ε > 0. Then there exists
N = N(ε) such that

|cj,n − bj| <
ε

2
for all n ≥ N,  ≥ 0.

In particular, if j > N , we take n = N so that

|cj,N − bj|p <
ε

2
⇒ |bj|p <

ε

2
for all j > N.

Thus |bj|p → 0, as required.
As for the second part, since F (z) is continuous and |an|p → 0, we know that Fn(z)→ F (z)

uniformly on Zp. Also,

G(z)− Fn(z) =
∞∑
j=0

(bj − cj,n)zj,

and cj,n → bj uniformly, so Fn(z)→ G(z) uniformly. Thus G ≡ F , as desired. �

Thus, the claim follows. �

Remark 27 (On Poonen’s interpolation theorem). Consider the map f : Zdp → Zdp and

α := (α1(0), . . . , αd(0)) ∈ Zdp such that fn(α) = (α1(n), . . . , αd(n)) ∈ Zdp. Then Poonen’s
interpolation theorem states that under certain conditions (to be clarified later) there exist
g1, g2, . . . , gd : Zp → Zp all of which are p-adic analytic such that αi(n) = gi(n) for all n ∈ N0.

Definition 22.2. Let p be prime. We define the Tate algebra

Zp〈x1, x2, . . . , xd〉 ⊆ Zp[[x1, x2, . . . , xd]]

as the set of convergent power series on Zdp, i.e.,

Zp〈x1, . . . , xd〉 =

{ ∑
i1,...,id≥0

ci1,...,idx
i1
1 · · · x

id
d : ci1,...,id ∈ Zp ∀i1, . . . , id, |ci1,...,id |p → 0 as

d∑
i=1

ci →∞

}
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Theorem 22.3 (Poonen’s interpolation theorem (2013)). Let p ≥ 3. If f1, . . . , fd ∈ Zp〈x1, . . . , xd〉
satisfy

fi(x1, . . . , xd) ≡ xi (mod p),

or equivalently,

fi(x1, . . . , xd) =
∑

cj1,...,jdx
j1
1 . . . x

jd
d

where

cj1,...,jd ∈

{
pZp (j1, . . . , ji−1, ji, ji1 , . . . , jd) 6= (0, . . . , 0, 1, 0, . . . , 0)

1 + pZp otherwise
.

Then we can make a map F : Zdp → Zdp defined by (α1, . . . , αd) 7→ (f1(α1, . . . , αd), . . . , fd(α1, . . . , αd)).

If (β1, . . . , βd) ∈ Zdp, thenthere exists p-adic analytic maps g1, g2, . . . , gd such that

(g1(n), . . . , gn(d)) = F n(β1, . . . , βd).

Proof. Let R = Zp〈x1, . . . , xd〉. We shall construct a map ∆ : Rd → Rd by ∆(h1, . . . , hd) =
(h1 ◦ F, . . . , hd ◦ F )− (h1, h2, . . . , hd).

Claim. ∆ : Rd → (pR)d.

Proof. Note that

∆(h1, . . . , hl) = (h1(f1, . . . , fd), . . . , hd(f1, . . . , fd))− (h1, . . . , hd)

= (h1(x1 + pg1, · · · , xd + pgd), . . . , hd(x1 + pg1, . . . , xd + pgd)) (11)

− (h1(x1, . . . xd), . . . , hd(x1, . . . , xd)).

Since hi(x1 + pg1, . . . , xd + pgd) − hi(x1, . . . , xd) ≡ 0 (mod p) for all i, we have (11) ≡ 0
(mod (pR)d).

In general, we see that ∆m : Rd → (pmR)d, since we can pull out powers of p as we
continuously apply ∆. �

Poonen’s trick goes as follows: let

G(z) :=
∞∑
j=0

∆j (x1, . . . , xd)︸ ︷︷ ︸
∈(pjR)d

(
z

j

)

=
∞∑
j=0

(θ1j(x1, . . . , xd), . . . , θdj(x1, . . . , xd))

(
z

j

)
,

where (θ1j, . . . , θdj) = ∆j(x1, . . . , xd) ∈ (pjR)d. Note that G depends on x1, . . . , xd and z. So
we will write G(z) = G(x1, . . . , xd; z). And let (β1, . . . , βd) ∈ Zdp, and consider

G(β1, . . . , βd; z) =
∞∑
j=0

(θ1j(β1, . . . , βd), . . . , θdj(β1, . . . , βd))︸ ︷︷ ︸
∈(pjZp)d

(
z

j

)
.

Now define

gi(z) :=
∞∑
j=0

θij(β1, . . . , βd)

(
z

j

)
.

Then (g1(z), . . . , gd(z)) = G(β1, . . . , βd; z). We remain to prove these claims (proving them
next class):
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• gi(z)’s are p-adic analytic
• (g1(n), . . . , gd(n)) = F n(β1, . . . , βd) for all n ≥ 0.

To be continued next Monday... �

23. November 10

Starting from where we left off:

Claim. We are done once we prove the following two claims:
• gi(z)’s are p-adic analytic
• (g1(n), . . . , gd(n)) = F n(β1, . . . , βd) for all n ≥ 0.

Proof. Recall that

gi(z) =
∞∑
n=0

θin

(
z

n

)
and by our criterion, it is enough to show that∣∣∣∣θinn!

∣∣∣∣
p

→ 0

as n→∞. Note that θin ∈ pnZp, so |θin|p ≤ p−n. Since

|n!|p = p
−bnpc−

⌊
n
p2

⌋
−···

= p−
n

p−1
+O(logp n),

it follows that ∣∣∣∣θinn!

∣∣∣∣
p

= p−n+
n

p−1
+O(logp n) → 0

as n→∞ (and note that we assume p ≥ 3).
So this proves the first claim. For the second one, since we have

G(x1, x2, . . . , xd; z) =
∞∑
j=0

∆j(x1, . . . , xd)

(
z

j

)
,

so when z = n,

G(x1, x2, . . . , xd;n) =
n∑
j=0

∆j(x1, . . . , xd)

(
n

j

)
.

Let I : Rd → Rd be the identity operator. Then we have

G(x1, x2, . . . , xd;n) =
n∑
j=0

∆j(x1, . . . , xd)

(
n

j

)
= (I + ∆)n(x1, . . . , xd).

Since ∆(h1, . . . , hd) = (h1 ◦ F, . . . , hd ◦ F ) − (h1, h2, . . . , hd), we have (I + ∆(h1, . . . , hd) =
(h1 ◦ F, . . . , hd ◦ F ). Therefore, by induction,

(I + ∆)n(x1, . . . , xd)|(x1,...,xd)=(β1,...,βd) = (x1 ◦ F n, . . . , xd ◦ F n)(β1, . . . , βd) = F n(β1, . . . , βd),

as required. �
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We claim that this gives SML. To see why, let’s start with f : N0 → K (assume charK =
0). This satisfies a linear recurrence overK. Then we know there exist w, v ∈ Kd, A ∈ Md(K)
such that f(n) = wTAnv for all sufficiently large n. However, what is not as well-known is
the fact that we can assume that A is invertible.

Why we can assume A to be invertible (sketch). Suppose n ≥ 0 and vn = Anv ∈ Kd. Let
Wn = spanK{vn, vn+1, . . . }. Since Kd ⊃ W1 ⊃ W2 ⊃ · · · , so there exists m so that W :=
Wm = Wm+1 = · · · by the Noetherian property.

Remark 28. First, we have A(W ) ⊆ W , and A|W : W → W is surjective. In particular, A|W
is invertible.

Suppose x := vm ∈ W and B := A|W . Then Bnx = Anvm = vm+n ∈ W . Now wTAnv =
wTvn = f(n) for all sufficiently large n. Consider g : W → K such that g(y) = wTy. Then
there exists z ∈ W such that wTAnvm = zTBnx. Let uT = zTB−m, which is well-defined
since B is invertible. Then uTBnx = zTB−mBnx = zTBn−mx = f(n) for all sufficiently
large n, as required. �

Now we are ready to apply Poonen’s interpolation theorem (Theorem 22.3) to prove SML.

Proof of SML with PIT. Let f : N0 → K satisfy a linear recurrence over K. Then there
exists d ≥ 1 so that w, v ∈ Kd, A ∈ GLd(K) such that f(n) = wTAnv for all sufficientl
ylarge n. Write

w =

 b1
...
bd

 , v =

 c1
...
cd

 ,
with ∆ := det(A) ∈ K.

Step 1. Let K0 := Q(b1, . . . , bd, c1, . . . , cd, aij), a finitely-generated extension of Q. By
Lech’s embedding theorem, there exists p ≥ 3 such thatK0 ↪→ Qp such that b1, . . . , bd, c1, . . . , cd,
aij,∆,∆

−1 are sent to Zp.
Step 2. We now regard v, w ∈ Zdp and A ∈ GLd(Zp) because ∆ ∈ Z∗p). So we think of

A : Zdp → Zdp, as a linear and invertible map.
Step 3. Notice that if we reduce mod p, we get

A : Fdp → Fdp.

We still have linearity – but we also have invertibility because ∆ ∈ Z∗p. Thus A ∈ GLd(Fp).
Since |GLd(Fp)| < ∞, there exists N ≥ 1 so that A

N
= I ∈ GLd(Fp). Hence AN ≡ I

(mod p), so AN(x1, . . . , xd) ≡ (x1, . . . , xd) (mod p). So if we let f1, f2, . . . , fd be linear
forms in x1, . . . , xd such that AN(x1, . . . , xd) := (f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)). Then
fi(x1, . . . , xd) ≡ xi (mod p) Thus we can let AN = F in Theorem 22.3.

Step 4. Let i ∈ {0, 1, . . . , N − 1}. Let β1
...
βd

 = Aiv = Ai

 c1
...
cd

 ∈ Zdp.
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Then

ANn+i(v) = ANnAiv = (AN)n

 β1
...
βd

 = F n(β1, . . . , βd).

By Theorem 22.3, there exist g1, . . . , gd : Zp → Zp analytic so that F n(β1, . . . , βd) =
(g1(n), . . . , gd(n)). So

f(Nn+ i) = wTANn+iv = wTF n(β1 . . . , βd) =
[
b1 · · · bd

]  β1
...
βd

 =
d∑
i=1

bigi(n).

Step 5. Let

h(z) =
d∑
i=1

bigi(z).

Notice that for all sufficiently large n, we have h(n) = 0⇔ f(Nn+ i) = 0. By Strassman’s
theorem, either h(z) ≡ 0 or it has finitely many zeros in Zp. Thus, we can conclude that
either f(Nn + i) = 0 for all sufficiently large n or there can only exist finitely many n for
which f(Nn+ i) = 0. SML now follows. �

24. Dynamical Mordell-Lang Conjecture

Definition 24.1. Let X be a quasi-projective variety over C. We will say that X is an
algebraic group if X is a group such that M : X × X → X defined as (x, y) 7→ xy and
i : X → X defined as x 7→ x−1 are morphisms.

Example 24.2. C∗ = A1 \ {0} is an algebraic group. And note that

A1 \ {0} ∼= V (xy − 1 = 0) ⊆ A2
C,

and such group is called an affine algebraic group. More generally, (C∗)n is an affine algebraic
group.

Example 24.3 (Elliptic curves). Elliptic curves are projective algebraic groups, and in par-
ticular are examples of abelian varieties

Definition 24.4. An abelian variety A is a projective, connected algebraic group. To put it
another way, abelian varieties are complete connected algebraic groups. Note that X closed
implies that π : X × Y → Y is a closed map for all varieties Y .

Example 24.5. GLn(C) ⊆ An2 \ V (∆ = 0), where

∆(x11, . . . , xnn) =
∑
σ∈Sn

sgn(σ)x1σ(1)x2σ(2) · · ·xnσ(n).

Then GLn(C) is an affine algebraic group, and GLn(C) ∼= V (∆t = 1) ⊆ An2 × A1.

Fact 1 (Important fact). Any affine algebraic group is linear, i.e., isomorphic to a Zariski-
closed subgroup of some GLn(C).

Fact 2. If G is an algebraic group and N is a normal and closed subgroup of G, then G/N
can be given the structure of an algebraic group.
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Example 24.6. Let G = GLn(C), and let

Z =



a

a
. . .

a

 : a ∈ C∗

 ∼= C∗.

Then G/Z = PGLn(C).

Theorem 24.7 (Chevalley’s structure theorem). Let G be a connected algebraic group over
C. Then there exists a unique normal (or characteristic) closed affine algebraic subgroup N
such that G/N is an abelian variety, i.e., the sequence

1→ N → G→ A→ 0

(N affine, hence linear; and A abelian variety, hence an abelian group under addition) is
exact.

Definition 24.8. G is a semi-abelian variety if

0→ (C∗)n → G→ A→ 0

is an exact sequence. We remark also that G is an abelian group, and that (C∗)n is an affine
algebraic variety.

Definition 24.9. The collection of constructible sets of subsets of Y denote the smallest
collection of subsets of Y containing open sets closed under finite unions and complements.

Theorem 24.10. If X and Y are quasi-projective varieties and f : X → Y is a morphism,
then f(X) is constructible.

24.1. Group actions.

Remark 29. IfG is an algebraic group andX is a quasi-projective variety, then f : G×X → X
defined as f(g, x) = g · x is a group action if f is a a morphism and eG · x = x for all x, and
we have (gh)x = g(hx) for all g, h ∈ G, x ∈ X.

24.2. On Mordell-Lang conjecture.

Theorem 24.11 (Vojta-Faltings-Hrushovski-Buium-Voloch, et al.). Let G be a semi-abelian
variety over C, and let Γ ≤ G be a finitely-generated (abelian)subgroup and let Y ⊆ G be
Zariski-closed. Then

Y ∩ Γ =
r⋃
i=1

(yi +Ni),

and there exists r ≥ 0 such that N1, . . . , Nr ⊆ Γ and yi +Ni’s are cosets of Ni.

Proof. Beyond the scope of this course. �

Corollary 24.12. Let X be an irreducible, smooth projective curve defined over a number
field F (finite-degree extension over Q). Then if K is a finite-degree extension over F and
the genus of X is at least 2, then #X(K) is finite, where X(K) = Pn(K) ∩ X. Note that
there is an inclusion map X ↪→ Pnc (⊇ Pn(K) = {[a0 : · · · an] : a0, . . . , an ∈ K}).

Definition 24.13. Let X be an irreducible projective surge. Then a point x ∈ X is smooth
if OX,x is a principal ideal domain (PID). If every x ∈ X is smooth, then X is smooth.
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In general, ifX is irreducible with dimension d and x ∈ X is smooth, then dimkMX,x/M2
X,x =

d, where k = OX,x/MX,x.

Definition 24.14. Let X be an irreducible smooth curve over C. A divisor on X is a formal
(finite) Z-linear combination of points of X

Div(X) =

{∑
p∈X

np[p] : np ∈ Z, np = 0 for all but finitely many p

}
.

If f ∈ C(X) = OX,X then we can talk about zeroes and poles of f . If x ∈ X then we can
view C(X) = Frac(OX,x) (OX,x is a PID), soMX,x = (πx). Then we can write f = πsu with
s ∈ Z, u ∈ O∗X,x.

Definition 24.15. If s > 0, then we say f has a zero of order s at x. If s < 0, then we say
f has a pole of order −s at x, and from now on define vx(f) = s.

25. November 14: pre-Dynamical Mordell-Lang

Let X be an irreducible smooth projective curve. Recall that we defined Div(X) to be the
set of all (formal) Z-linear combinations of [P ], where P ∈ X. If f ∈ C(X)∗ = Frac(OX,x)
(note that OX,x ⊇MX,x = (π), and f = πsu with u ∈ O∗X,x, define vx(f) = s. Then

vx(fg) = vx(f) + vx(g). (12)

Define
div(f) :=

∑
P∈X

vp(f)[P ],

which is a finite sum. By (12) we have div(fg) = div(f) + div(g) and div(1/f) = − div(f).
In particular, div : C(X)∗ → Div(X).

Definition 25.1. Cl(X) := Div(X)/ div(C(X)∗).

Example 25.2. Cl(P1) ∼= Z via an isomorphism
∑
np[p] 7→

∑
np.

Example 25.3. For curves, we have a surjective map deg : Cl(X) → Z, and we define
ker(deg) =: Cl0(X). Then the following sequence is a short exact sequence:

0→ Cl0(X)→ Cl(X)→ Z→ 0.

Proposition 25.4. Cl0(X) is an abelian variety of dimension g, where g is a genus of X.

The inclusion map X ↪→ Pn is defined over a number field K. If Q ∈ X(L), where L is
an infinite-degree extension over K. Then the map X → Cl0(X) defined by P 7→ [P ]− [Q]︸ ︷︷ ︸

deg 0

induces(?) an inclusion map X(L) ↪→ Cl0(X)(L).

Theorem 25.5 (Mordell-Weil-Lang-Néron theorem). Let A be an abelian variety (defined
over K, some finitely-generated extension of Q). Let L be a finitely-generated extension of
k. Then A(L) form a finitely-generated abelian group.

Theorem 25.6 (Faltings’ theorem). X is irreducible smooth projective curve of genus ≥ 2.
Then #X(K) <∞, where K is a finitely-generated extension over Q.
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Proof. There is an inclusion map from X to A, and pick a K-finitely-generated extension L
so that X has an L-point. Then X(L) ↪→ A(L) is an inclusion map also, and A(L) is an
abelian group. If i : X → A then Y := i(X) ⊆ A, and let Γ = A(L). Then by Mordell-Lang,
we have

X(L) ⊆ Γ ∩ Y =
r⋃
i=1

(zi +Ni),

so it is enough to show that all Ni’s are finite.
Suppose that some |Ni| = ∞. Without loss of generality, let |N1| = ∞. Then since

z1 + N1 ⊆ Γ ∩ Y it follows that Y ⊇ z1 + N1. Then we have X ∼= Y ∼= Y − z1 ⊇ N1.
If Z := Y − z1 ∼= X then Z ⊇ N1, hence Z ⊇ N1, and N1 is contained in A. If E is a
connected component of identity of N1, then Z ⊇ E. Then we have an inclusion map from
ι : E ↪→ Z ∼= X, where E is an irreducible elliptic curve of genus 1 and X is an irreducible
smooth curve of genus g ≥ 2. This is a contradiction, by Riemann-Hurwitz (whatever that
theorem is...). �

26. November 14: Dynamical Mordell-Lang

Suppose that X is an abelian variety over C, and let

Γ = 〈g±11 , g±12 , . . . , g±1r 〉 ⊆ X,

with Y ⊆ X closed. Then by Mordell-Lang, we have Γ ∩ Y =
r⋃
i=1

(zi +Ni).

Remark 30. Each g ∈ X gives a translation automorphism

τg : X → X

with τg(x) = g + x. Note that τ(−g) ◦ τg(x) = −g + g + x = x. Notice that Γ corresponds to
an abelian subgroup

H = 〈τ±1g1
, . . . , τ±1gr 〉 ⊆ Aut(X).

Definition 26.1. Given a quasi-projective variety X, with H ≤ Aut(X) and x ∈ X, we
define the orbit of x under H

Hx := {ϕ(x) : ϕ ∈ H} ⊆ X.

If we go back to the abelian variety case X with x = Ox and H = 〈τg1 , . . . , τgr〉, we have

H · x = {τ i1g1 ◦ · · · ◦ τ
ir
gr (O) : i1, . . . , ir ∈ Z}

= {i1g1 + · · ·+ irgr : i1, . . . , ir ∈ Z} = Γ.

Therefore,
r⋃
i=1

τziÑix =
x⋃
i=1

(zi +Ni) = Γ ∩ Y = (H · x) ∩ Y,

where Ñi = 〈τh : h ∈ Ni〉 ⊆ H.
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Conjecture (Dynamical Mordell-Lang: the first attempt). Let X be an irreducible complex
quasi-projective variety, and let H ⊆ Aut(X) be a finitely-generated abelian subgroup with
x ∈ X and Y ⊆ X closed. Then

Hx ∩ Y =
r∑
i=1

τiNix

with Ni ≤ H and τi ∈ H.

Unfortunately, this conjecture is false!

Example 26.2. Let X = A2 and σ(x, y) = (x+1, y) and τ(x, y) = (x, 2y). Then Z2 ∼= 〈σ, τ〉 ⊆
Aut(A2). If we let x = (0, 1) and H = 〈σ, τ〉 with Y = ∆ = V (y = x) ⊆ A2, then the orbit

Hx = {(a, 2b) : a, b ∈ Z},
so

Hx ∩ Y = {(2b, 2b) : b ≥ 0}.
In particular,

Hx ∩ Y = {σ2bτ b(x) : b ≥ 0},
which is an infinite set. If it contains some µNx with N ≤ H ∼= Z2 and N ⊇ 〈σcτ d〉 and
µ = σeτ f . So if it contains µNx with N infinite, then there exist c, d, e, f with (c, d) 6= (0, 0)
such that it contains

(σe+cnτ f+dn)(x) = ((e+ cn, 2f+dn) : n ≥ 0),

and these cannot all be on Y .
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