PMATH 945: ARITHMETIC DYNAMICS

HEESUNG YANG

1. SEPTEMBER 15

Definition 1.1. The ring of p-adic integers: Z, := I'LHZ/p”Z = {(a1,as,...) : a; €
Z/p'Z,a; 1 = a; (mod p*) for all i}

Remark 1. Note that Z, is a abelian group with the operations (a1, as,...) @& (b, be,...) =
(a1+b1,a2+bg,...> and (al,ag,...>®(b1,62,...> = (albl,asz,...).

Proposition 1.2. Z, is an integral domain and we have an embedding ¢ : Z — Z, (a ring
homomorphism) such that the image of 1 is dense.

Proof. Suppose that we have a product that vanishes, i.e., there exist (a1, as,...)(b1,b2,...) =
0 in Z,. Then this means that a;b; = 0 (mod p’) for all i. Suppose that neither (ay,as, ... )
nor (b, by, ...) is zero. Then there exist i such that a; Z 0 (mod p’) and j such that b; # 0
(mod p?). Thus we have a;;b;1; Z 0 (mod p"*7) (by the projective limit definition of Z,, we
know that p' { a;4; and p’ { b;1;), so this will give a contradiction and so we get the desired
result.

To construct v, notice that for all j > 1, we have ¢; : Z — Z/p7Z. We define

Y(n) = (Y1(n), Ya(n),...) = (n+pZ,n + p*Z,n+ p°7Z,...).
This is injective since the kernel of ¥ is {(0,0,0,...)}.
For the “dense” part of the proposition, start with (a; + pZ,as + p°Z,...) € Z, with
ai,as, -+ € Z. Let n; = a; for all 7. Then notice that

(a1 +pZ,az + p°Z, . ..) = () = (a; + p'Z); — (ax + P'Z);
= (0+pZ7O+p2Z,...,O+ka,ak+1 — ag —|—pk+1Z,...)

So |(a; +p'Z); — (ng)], < p~® — 0 as k — oo. Therefore {1 (ny)}32, isa a Cauchy sequence
whose limit is (a; + p'Z);. Thus 1(Z) is dense in Z,. Henceforth we shall identify Z with its
image in Z,. O

Remark 2. In this assignment, you will show that Z,, is a local ring, with the maximal ideal
pZ, ={x € Z, : ||, < 1}.

Remark 3. If we invert p, we have Zp[]l?] =: Q,, the field of fractions of Z, (also known as the
field of p-adic numbers). In Q,, every element is of the form z%’ where £ > 0,a € Z,. Note
that the representation of each element is not unique, since one can find a,a’ € Z, so that
pFa’ = pla for some j,k € Z. But we can still put the p-adic norm, defined on the p-adic

numbers as follows: al
a
= _Z = pk|a|p‘

’x|p = —
p

a
ok
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Remark 4. Every x € Qp can be written uniquely as
r = p*u, where u € Z,, |ul, =1,a € Z.
Then |z|, = p~" for some k. Thus, [p~*z|, =1, or z = pF(p~™z) = p*a € Z, \ pZ,.

Proposition 1.3. Let K be a finitely-generated field extension of Q. Then there exists
infinitely many primes p for which we can embed K — Q,. Moreover, if S C K \ {0} then
we have infinitely many p for which S — Z, \ pZ,.

Example 1.4. We claim that Q(i) 4 Q3. In fact, Q(i) 4 Q, for all p =3 (mod 4). To get
started, let’s suppose we have an embedding, i.e.,

i 3ka, where k € Z,a € Z3 \ 3Z; = Zs,.

Thus we have 2 = —1 +— 3%%a% so 1 = | — 1|3 = [3%a?|3 = |3%|3]a?|3
k=0. Soiwr a€ Zs\ 3Zs, where a = (a3 + 3Z,a2 + 9Z,. . .) Wlth R
—1 = (a? + 3Z,d% + 9Z,a% + 27Z, . ..), but this is impossible as a? # —1
ay € 7, a contradiction.

However, Q(i) — Q5. Notice that 22 = —1 (mod 5). Thus one can find zy, 23, 74, . . .
such that

2k Hence

a’). So

=3
a; (mod
(mod 3) for any

11— (2+5Z,Z‘2+25Z,I3+125Z,)

with 2o = 2+5k for some k and 23 = —1 (mod 25). We see that 4+20k+25k? = 4+20k = —
(mod 25), so k = 1.

2. SEPTEMBER 17

Lemma 2.1 (Hensel’s Lemma). Let p be a prime and let f(x) € Zy[z] be a polynomial,
and suppose that there exists a € Z such that f(a) = 0 (mod p) (that is, f(a) € pZ,, or

|f(a)|, < 1), and that f'(a) # 0 (mod p). Then there exists b € Z, such that f(b) = 0 and
= a (mod p).

Ezample 2.2. Recall that Q(i) — Qs and that i — (2 + 5Z,x9 + 257Z,...) € Zs, and let
f(z) =2*+ 1. Since f(2) =0 (mod 5) and f'(2) # 0 (mod 5), we can apply Hensel to find
b € Zs such that f(b) = 0,0? + 1 = 0, namely with i — b.

Proof. Strategy: For each k > 1, we will produce a number n; € Z such that f(ng) =0
(mod p*) (by induction with n; = a as the base case). Then we will use the fact that Z, is
compact and {ny}, C Z, is Cauchy and it will converge to some b € Z,.

Suppose we have ni(= a),ns, ns,...,n, € Z such that p’ | f(n;) for all 1 < i < k, with
nit1 = n; (mod p') for all i. We now show how to construct ng ;. We want ng; = ny
(mod p*) and p*! | f(ngs1). We need to find some z € Z such that p** | f(n, + p*x).
Apply Taylor’s theorem:

MQ ”+f(d)(a) d

fla+z) = f(a)+ f'(a)z + TR I
if f is a polynomial of degree d. Hence
(d)
P+ 242) = Flo) + e ) + 0Ly L)

= f(n) + f'(ne)p*z  (mod p**).
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Thus, it suffices to find z such that f(ny) + p*zf'(ny) = 0 (mod p***). By our inductive
hypothesis, we have f(n;) = p*y for y € Z,. Hence p*y + p*zf'(n;) = 0 (mod p*),
which holds if and only if y + zf'(nx) = 0 (mod p). Since ny = n, = 1 (mod p), and
f'(n) = f'(a) # 0 (mod p), it follows that z = —[f"(a)] 'y € Z, (mod p). Thus there exist
(w0, 71, ... ) such that —[f'(a)] 'y = (xo+pZ, x1+p?Z, . ..). Then the choice ny 1 = ny+pra
works for the next step, and notice that |ngy; —ngl, < p=*, since p* | (ng1 —nsx), and |n, —
ny| < p~™n@b) 50 {n,} is Cauchy and letting b := klim ny € Zy,, then f(b) = kh_)m f(ng) =0,

as required. O

We need two facts to get an embedding:

(1) If f(zq,...,2q4) € C[zy,...,24] is a non-zero polynomial, then there exists
(a1, as,...,aq) € Z% such that f(ay,...,aq) # 0.

Proof (sketch). If d = 1, then the claim is immediate: f(z;) has only finitely many
roots, so pick a; non-root. Now suppose this is true for < d variables. Write

@, zq) = Qr(an, o, wa1)T+Qr_1 (21, Ta, ..o, Tao1) 2y +Qo(T1, - ., Ta—1).
By assumption, some Q; # 0 so there exists (ay, . .., aq) € Z9 ! so that Q;(ay, ..., aq_1)
# 0. Then
f(CLl, as, . .. ,ad,1,$d> = Qi<a1, R ,ad,1)$é + ZQj(CLl, Ce ,ad,l)xfl % 0.
5=0
J#i
Thus by the case, there exists ay € Z satisfying the condition. 0

(2) If f(z) € Z|z] is non-constant the there are infinitely many primes p such that f(z)
has a root mod p.

Proof. Suppose otherwise. Then there is just a finite set of primes, say {p1,...,px}
ko

for which f(z) has a root mod p. Then if n € Z, we have f(n) = £ [] p*. So let
i=1

i .

k k
f(0) =+ T]pS, and N = [] p&*". Then for m € Z, we have f(Nm) = f(0+Nm) =
i=1 i=1

f(0) + Nmf'(0) + (Nm)Q% + -4 (Nm)d% = f(0) (mod N). In particular,

k
notice that py* || f(Nm) for all 1 < i < k. So f(Nm) = £ ][] p;* for all m € Z.
i=1

k
Hence f(z)? — [[ p?“ = 0 for all z = N,2N,3N,.... But since f is non-constant, it
i=1

follows that f? cannot be constant, which is a contradiction. 0

2.1. Strategy for the embedding. Let K be a finitely-generated extension over Q, i.e.,
K =Q(by,...,6,) — Q,. Order 6,...,0,, so that the first r elements are algebraically
independent over Q, where 0 < r < m. Let L := Q(6,,...,0,) and K = L(«) where « is

algebraic over L.
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3. SEPTEMBER 19

Theorem 3.1. [F K is a finitely-generated field extension of Q (i.e., K = Q(aq,aq, ..., as)),
then there exists an infinite set of primes p such that 1 : K < Q,. Moreover, if S\ K \ {0}
is finite, then we can find infinitely many p for which ¢¥(S) \ Z; = Zy \ pZ,.

Proof. Step 1: Write K = Q(t1,t,...,ts)[0] where tq, 1o, ..., ts are algebraically independent

over Q (i.e., {t1,ta,...,ts} is a transcendence basis) and 0 is algebraic over Q(t1, o, ..., ts).
Note that this is possible by the primitive element theorem. Notice that # has a minimal
polynomial in Q(¢1,%s,...,ts)[z]. Namely, the minimal polynomial is

> filtita, o t)at = F(tyty,. .t w) = Fla).
=0

By clearing denominators, we may assume that each f;(t1,ts,...,ts) € Z[t1,ta, ..., t4].
Suppose that S = {aq,...,a,} € K*. Then

n—1
Q; = Zwij(tlat% . ,ts)Hj.
7=0

Now pick D(ty,ts,...ts) € Z[t,ta, ... t5] \ {0} such that D(ty,...,t5)¢(t1, ..., ts) €
Zlty, ..., ts] for all 4, j. Notice that F(z), F'(x) € Q(t1,...,ts)[x], and that they have ged 1
— since F' is minimal, F' is irreducible also. Hence one can find a(x),b(z) € Q(t1,...,t)[x]
such that a(z)F(x)+b(x)F'(x) = 1. Thus there exists H(t1,...,ts) € Z[t1,...,ts]\ {0} such
that H(ty,...,ts)a(x), H(ty,. .., ts)b(x) € Z[ty,tdots, ts|[x]. Thus (Ha)F + (Hb)F' = H.
Step 2: Consider the polynomial HD € Z[ty,...,ts]\ {0}. One can find (a1, as, ;sas) € Z°
such that HD # 0 (see Fact (1) in the September 17 lecture).
Step 3: Notice that

F(z)=F(ti,ta,. .. tsx) =Y filtr,... t)a"
=0
Consider .
ﬁ(l‘) = F(&b s ,CLS;.T) = Zfi(ala s 7as)xi € Z[.ﬁlj‘]
i=0
Then F(z) is non-constant, since f,(ay, ..., as) # 0.



Step 4: By Fact (2) in the September 17 lecture, there exist infinitely many primes p such

that F(z) =0 (mod p). Now pick any prime p satisfying the following properties:
(i) F(x) has a root mod p
(ii) p > |fm(a1,...,as)H(ay,...,as)D(ay, ..., a4)l.

Step 5: We shall show that ¢ embeds K < Q, and S — Z,. Observe that Q(¢y,...,ts) —
Q, since @, has an uncountable transcendence degree, i.e., there exist e;,...,e; € Q, such
that {ej,...,es} algebraically independent over Q.

Now since Q, = Zp[l—lj], there exists N > 0 such that p™e,;,...,p"e, € Z, (which are again
algebraically independent over Q). Thus, without loss of generality assume ey, ..., es € Z,.
Embed Q(t4,...,ts) = Q, by using the following map: ¢; — a; + pe;.

Step 6: We will find an element in Z,, corresponding to 6. Let

F(ay + per, ..., as + pes; ) = Z fil(a; + pej)iy)a’ € Zy[x].
i=0
We claim two things;
(1) F(z) has an integer root o mod p.
(2) F'(@) # 0 (mod p).
Hensel’s lemma gives 6 € Z, so that § = o (mod p) and F(6) = 0. Then we can embed
K — Q, via the map ¢; — a; + pe; and 0 — 0. Note that

K=Q(ty,...t,)[z]/(F(z)) = Q(as + pei, . . ., as + pes)[z]/(F(z)).

Step 7: We've now embedded K — Q,. By assumption, D(t1,ta, ..., ts)a; € Z[ty, ..., 15 0]
for all i, so D(ay+pes, . .., as+pes)Y(c;) € Z, for all i. We claim also that D(a,+pes, ..., as+
pes) € Z;. Recall that the units of Z,, are non-zero mod p. Thus D(a; + pey, . .., a5+ pes) =
D(ay,...,as) # 0 (mod p). Thus p > |D(ay,...,as)||H(as,...,as)||fm(a1,...as)|. So
D(ay + pey, ... ,as + pes)(ou) € Z,. Thus ¢¥(a;) € Z, for all 1 < i < s. So if we use
the set S = {ay,..., a5 a7, ..., a5}, we have ¥(a;), ¥(a; ') € Zp, then ¥(ay)(a; ') = 1.
Thus () € Z; for all 4, as required. O

We now prove Claims (1) and (2) from Step 6.
Proof of Claim (1). We have

F(z) = Z filay +pey, ..., as + pes)a’
i=0

= Zfi(al, .a.)x = F(z)  (mod p).

So by our choice of p, one can find a € Z so that F(a) =0 (mod p). O

Proof of Claim (2). Since H(t1,ty,...,ts) € (F(x), F'())zp,,. 1.2 s0 if we plug in t; = a;
and z = «a, we have H(a,...,as) € (F(«a), F'(«)) € pZ. But since p > |H(ay,...,as)| this
is impossible. 0

5
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4. SEPTEMBER 22

Last time, we proved that there are infinitely many primes p with K — Q, and S — Z;
where K is a finitely-generated field extension of Q and S C K \ {0} and |S| < co. Note
that this gives the SML theorem. Recall that if f : Ny — K satisfies a linear occurrence over
K. Then one can find ¢;;, ay, ..., q, € K such that

e n
fln) =D eyn'aj
i=0 j=1

for all sufficiently large n. o
Let Ky € K be the subfield of K generated by the ¢;;’s and the «;’s. That is,

KO = Q(Ci]ﬁ ag, ... 705m)
f.g.
Q

and
S ={cj,a;:0<i<e 1<j<n}ekj.
By Lech’s embedding theorem, there exists some prime p > 2 such that:
[ J KO — Qp
o S — Z;.
Without loss of generality, assume that K = Q,, ¢;;, a; € Z;,.
Main trick behind Skolem’s method was

f(n) = Z cin'al).
Imagine we have
f(n) = e1n® + cone™ + cs¢ "+ ¢y — F(2) = 122 + cpze® + 3™ 4 ¢4
such that F(n) = f(n) for all n > 0.
4.1. Infinite series in Q,.
Proposition 4.1. > a, is convergent if and only if |a,|, — 0 as n — oo.

Definition 4.2. Let f : Z, — Q,. We say that f(z) is p-adic analytic on Z, if there exist
ap, ay, - -+ € Q, with |a;|, — 0 as i — oo such that

=S e
i=0
for all z € Z,. We say that f(z) = a,2" is p-adic analytic on an open subset U C Z, if f(z)
converges for all z € U.
Example 4.3. The function
zn

o)=Y 5

is not p-adic analytic on Z,, since |(n!)~!|, = co. But it is analytic on

BO,p 7 1) ={z€Zp: |z, <p 7T}
6



Let a € Z\ {0}. Let’s write v,(a) be the unique nonnegative integer k such that p* || a.
Then we have |al, = p~%(@. Since

wy =30 |5 <> B <

7
=1 p

Let s be an integer such that p* < n < p**!. Then

| n > n n D n
; L?lJ ; (p’ ) p—1 p*t p—1
n

p
> __r 4 ‘
“p—1 p—-1 08p 1
If |2], < p~/®=1 then 2], = P

Z_T: = (pr D)
n!

p
< p*n/(pfl)*ns .p*n/(pfl)w/(pfl)ﬂogpn — pfnsﬂ)/(pfl)ﬂogpn 0.

Remark 5. If p > 2, then

AT

0o Pz
exp,(pz) = Y~
n=0 ’

is p-adic analytic on Z,, since if z € Z, then pz € pZ, C B(0,p~%/®~V) and since p > 4 we
have |2'|, < 1/p for all 2’ € pZ,.

Example 4.4. Consider the function

N
log (1+a)=o— 42 2 L.
og,(1+z)=u s t3 71
This function is analytic on B(0,1) but not on Z,, since |X|, 4 0. Start with |z, = p~* for
some € > 0. Then we have [2"/n|, = p|;—|€: — 0.

Remark 6. For all p > 2,
(1) exp,olog,(1 + pz) is p-adic analytic on Z, and is equal to 1 + pz for all z € Z,.

Proof. Let h(z) = exp,(log,(1+pz)). Then we have h'(z) = expj,(log,(1+pz)) 1, =
h(z)1h; for all = € Z,. Let g(2) = 1+ pz. Then ¢'(2) = g(z)f,; for all = € Z,.
Thus (h/g)" = 0. Hence h(z) = cg(z) for some ¢ € Z,. O
(2) For n € Ny, z € Z,, we have nlog,(1 + pz) = log,(1 + pz)".
Remark 7. If o € Z,,oc = 1 (mod p) and p > 2, then there exists a p-adic analytic map
h:Z, — Z, so that h(n) = a" for all n € Ny.

Proof. Write a = 1+ pf with 0 € Z,. Let 8 = log,(1 + pf)) € pZ,. Let h(z) = exp,(B2),
which is analytic on Z,, since Sz € pZ, for all z. Now
h(n) = exp,(8n) = exp,(nlog,(1 + pf))
= exp,(log, (1 + p?)")
=(14+po)" =a".
7



Suppose that
f(n) = Z cijn'al,
1,J
where ¢;;, a; € Z; (note that p { a;). Then there exist a; € Z such that a; = a; (mod p),
SO oz?_l =1 (mod p) (by Fermat’s little theorem). For r =0,1,...,p — 1, let

fr(n) = f((p—Dn+r) = Z% p—1)n+r)i ("ol

Then if we let H,(2) = >, ; cij((p—l)z—i—r)laj exp(z logp(aj_l)), then H,(z) is p-adic analytic
in Zi. O

5. SEPTEMBER 24: SKOLEM-MAHLER-LECH AND DIRKSEN’S PROOF ON THE
CHARACTERISTIC p CASE

Theorem 5.1 (Skolem-Mahler-Lech theorem). Let K be a field of characteristic 0 and sup-
pose that f : Ny — K satisfies a linear recurrence on K. Then {n € Ny : f(n) = 0} is a
finite union of arithmetic progression {cn+d:n > 0},¢>1,d > 0 along with a finite set.

Proof. Step 1 (Skolem). Let o, ..., a, € K and ¢;; € K. Write
n) = Z CijniOd?
(2]

for all sufficiently large n. Without loss of generality, suppose f(n) = > cijnia? for allmn > 0.
Step 2 (Lech). Let Ky = Q(c;j, aj)/Q. Then Ky — Q, where p > 2, and the maps satisfies
{cij, a3 \ {0} < Z;. In particular, we may assume that the a;’s are nonzero and so a; = a
(mod p) for p{a,a € Z. By Fermat’s little theorem, we have ogf_l =a’ ' =1 (mod p).
Step 3. We showd that if v = 1 (mod p), i.e., v = 1 + pB for some 3, then there exists
a p-adic analytic function h.,(z) such that h(y(n) = ~" for all n > ng. Then h,(z) =

exp, (= 10g,(1+ pB), and log, (1 +pB) = pf — (pB)?/2+ (pB)*)/3 -+ = pt for some 0 € Z,.
Hence h,(z) = exp,(pfz). Thus there exists hi, ..., h, p-adic analytic such that h;j(n) =

(ozf_l)n for all n > 0.
Step 4. For r € {0,1,...,p— 2}, let

fr(n) = f((p—Dn+r)= Z% p— D+ )i m
—Z% — D+ ) (el

Note that CijQ; € Ly

Let F(2) := >, cijali((p— 1)z +7)'hj(2) and F.(n) = f,.(n) for all n > 0. Then F,(2) is
p-adic analytic. Now we need to use Strassman’s theorem:
Theorem 5.2 (Strassman). Let f(z) = > a,2" be p-adic analytic in Z,. Then if f(z) has
infinitely many zeroes in Z, then f(z) = 0.

Step 5. Since F,.(z) is p-adic analytic, then by Theorem , either:

(1) {n: F.(n) = f-(n) = 0} is finite OR .



(2) Fr(2) =0= F.(n) = fr(n) =0 for all n > 0.
So either {n: f((p — 1)n +r) = 0} is all of Ny or it is finite. Thus, we have

fneNy: fn) =0} = (L]((p— 1>No+z'>> 0 <O{n Fi(n) = 0}> .

i=0 i=0
Thus, the first set of the RHS is the finite union of arithmetic progressions while the second
one is finite, as required. 0J

Recall that we proved last time:

Claim. For a prime p and z € C,
(1) exp,(log,(1+pz)) =1 + pz
(2) nlog,(1+ pz) =log,(1+ pz)" for all n € N.
Lemma 5.3. Let f(z) = ) a,2" be p-adic analytic on Z,. Suppose that f(z) # 0. Let N
be the unique non-negative integer such that:
o lan|, > |a,| > p for alln > N
o lan|, > |a;|, for alli < N.
Then f(z) has at most N zeroes in Z,.

Proof. Let’s divide f(z) by ay:

) _ 5 oo S b = gl2).
n=0 N n=0

an

Then by = 1. If n > N and |b,|, < 1 then b, € pZ,; and if i < N and |b;|, <1 = |by|, then
b; € Zp. So

9(2)=bo+biz+ -+ by 12N+ 2N (=Q(2)) (mod p),
as b, = 0 (mod p) for all n > N. So we will factor g(z) = Q(2)h(z), where @ is a monic
polynomial of degree N and h(z) has no zeroes in Z,.

Claim. For each j > 1, there exist polynomials Q;(z), h;(z) such that
(1) Q;(#) is monic of degree N, and h;(z) =1 (mod p).

(2) 9(2) = Q;(2)h;(2) (mod p).
(3) For all j > 2, we have

Qi(2) = Qj1(2)  (mod /™)
hi(z) = h;_1(z) (mod p’~).

Proof of Claim. We prove via induction on j. If j = 1, then the verification of the first two
claims is straightforward while the third claim is vacuously true.

Now suppose that the claim hold for j < m for m > 2. We have Q,,—1(2) and h,,_1(2)
such that ¢(z) = Qm_1(2)hm_1(2) (mod p™~'). Thus there exists a polynomial H(z) such
that > b;i2" = g(2) = Qum_1(2)hm_1(2) — P H(2) (mod p") with |b;|, — 0. To get the
claim at step N , we need to find polynomials R(z) and T'(z) satisfying:

(1) Qm(2) = Qum-1(2) + p" ' R(2), hun(2) = hm-1(2) +p™ ' T'(2) (property 3)

(2’) Need deg R(z) < N (property 1)

(3) 9(2) = Qu(2)om(2) = (@mr(2) + P R(2)) (hna(2) + p"1T(2)) (mod p™) (prop-

erty 2)
9



Look at (3’):
9(2) = (Qu-1(2) + " R(2)) (hin-1(2) + p™'T(2))  (mod p™)
= Qum-1(2)hm1(2) + " Q1 (2)T(2) + p" ' R(2)hyn1(2)
+p"" P R(2)T(2)  (mod p™)
=g(2) + " HH(2) + 0" Qo (2)T(2) + " R(2)hna(2)  (mod p™).
Therefore, it follows that

=p" T H(2) + p" Q1 (2)T(2) + p" ' R(2)hyn—1(2)  (mod p™)
—H(z) = Qu1(2)T(2) + RB(2)hm-(2)  (mod p)
—H(z) = Qm-1(2)T(2) + P(z)  (mod p)
—H(z) = Qi(2)T(2) + R(z) (mod p).
So there exists T'(z), R(z) with the desired properties. O

Let G(z) = > b,2". Then one can find N so that |by| =1, |b,|, < 1 for all n > N and
b; € Z for al i < N. We showed that for each j > 1, there exist polynomials P;(2), h;(z)
such that

(1) G(Z) = Pi(2)h;(2)
(2) Pj(z) is monic of degree N, h;(z) =1 (mod p).
(3) P(2) = Pya() (mod p/),hyi(2) (mod pi=).
Let P(z) = jlililoﬂ( z) and h(z) = jggo h;(z), and we have G = Ph, which holds for mod

p? for all j > 1. Notice now that G(z) = 0 & P(z) = 0 or h(z) = 0. Notice that h(z)
never vanishes on Z,: since h(z) = 1 (mod p), each h; is h(z) = ho + hiz + hgz? + -+ =
1+02+022+--- (mod p), and hg =1 (mod p), h; =0 (mod p) for all i > 0. Thus h(a) # 0,
whereas P(z) has at most N zeroes. The proof is complete. U

6. SEPTEMBER 26: POSITIVE CHARACTERISTIC CASE

We saw that S-M-L is false when char(K) > 0, e.g. K = F,(t) with f(n) = (1 4+¢)" —
t"™ — 1. f(n) satisfies a linear recurrence relation over K, but we have f(n) = 0 < n €
{1,p,p? p3,...}. Derksin’s version says that in the positive characteristic case, the zero sets
are finite union of arithmetic progressions, finite sets, and p-normal sets. The proof involves
using a finite-state machine.

Definition 6.1. A (deterministic) finite-state automaton is a five-tuple

I'= (ZaQ7QO75)F)7

where:
e Y is a finite non-empty set of symbols (input alphabet)
e () is a finite non-empty set of states
® gy € (Q denotes the initial state
e 0 is a transition function § : QQ X ¥ — Q)
e [ C @, possibly empty, is called the final (or accepting) states.

Ezample 6.2. Let ¥ = {a,b},Q = {q, @1, @2, g3, 4 }. Then the directed graph looks like
10



So we have 0(gs3,a) = q4,9(q2,b) = ¢, and so forth, and F' = {qo, ¢1, g2, ¢3}

Remark 8. Let ¥* be the free monoid on ¥ (i.e., it is the collection of finite length strings
on Y). For example, if ¥ = {a,b}, then ¥* = {¢,a, b, aa, ab, ba, bb, aaa, ... }. Notice we can
extend the transition function 6 to a map

50 %Y Q.

So, for instance, 0(gs, abbaba) = qy.

Notice that to a deterministic finite-state automaton (DFA), we can associate a subset
LCY ={w e X*:0(q,w) € F} which is all words w € X* such that f(gy,w) € F. In our
example, £ = ¥*a U {b}* U {word with an odd number of a concatenated with b}. ({b}* =
monoid generated by b)




Definition 6.3. A language £ C ¥* produced from a finite-state automaton is called a
reqular language (or rational language).

Remark 9. If £,, = {w € L : (length of w)= n}, then f(n) = |L£,| satisfies a linear recurrence.

Let p € N,p > 2 (think of p as a prime). Henceforth we shall work with the alphabet
¥ =4{0,1,...,p — 1}. Notice to w € X*,w = igis_1 - --ip We can associate a non-negative
integer [w], :=ig + i1p + - - - + isp®, and [¢], = 0.

If p=2, then [1101]s =14+0-2+1-441-8 =13 € L, while [001101], = 13 ¢ L,. We
shall let £, C ¥ be the words that do not begin with 0. Then w — [w], gives a bijection
between £, and Ny (and note that [¢] — 0). In fact, £, is a regular language.

7. SEPTEMBER 29

Definition 7.1. Let p > 2. We say that a subset S C Ny is p-automatic if there exists a
deterministic finite-state automaton I' with input alphabet ¥ = {0,1,...,p — 1} such that
S ={[w], : w € L, and w is accepted by I', i.e. L(go,w) € F'}.

Example 7.2. Show that S = {1, p, p?, ...} is p-automatic. Consider the following finite-state
automaton:

A word w is accepted if and only if w = 10 - 0; that is, [w], = p’.

Ezxample 7.3. The Thue-Morse set {j € Ny : binary expansion of j has an even number of 1s}.
Let ¥ = {0,1}. Then S ={0,3,5,6,9,...}. This set is 2-automatic since the following DFA

accepts the elements in the Thue-Morse set:
12



Definition 7.4. Let f : N — A where A is some finite set. We say that f is a p-automatic
map (or sequence) if there exists a DFAT = ({0,1,...,p—1},Q, g0, 0, F') and amap g : Q —
A such that f(n) = g(d(qo, w,)) where w,, is the unique element of 1, such that [wy], = n,
i.e., w, is the base-p expansion of n.

Ezample 7.5. Let p =2 and A = {z1,...,x5}. We have g(q0) = x1,9(q1) = 3, 9(q2) = 4.

Ezxample 7.6. The Thue-Morse sequence f : N — {—1,1}. Then f(13) = f([1101]2) — ¢i,
so output is —1.




Example 7.7. If S C Ny is p-automatic, then

is a p-automatic map.

Theorem 7.8 (Derksen’s First Theorem). Let K be a field of characteristic p > 0 and
suppose that f : Ng — K satisfies a linear occurrence over K. Then {n € Ny : f(n) = 0} is
a p-automatic set.

Remark 10 (Eilenberg’s characterization of automatic maps). Let f : Ng — A and A a finite
sets. THen for each ¢ > 0 and j € {0,1,...,p" — 1}, we can look at the map (subsequence)
fij(n) such that f;;(n) = f(p'n+ j). We call the set of distinct maps of this form the

p-kernel of f(n).
Ezxample 7.9. Let f(n) be the Thue-Morse sequence (p = 2).




Thus the 2-kernel has size 2.

Ezample 7.10. Let f(n) be a characteristic function of the set of perfect squares, i.e.,

1 if n is a perfect square
f(n) = o
0 if n is not.

Then we have

f(n)=1,1,0,0,1,0,0,0,0,1,...
f(2n) =1,0,0,0,1,...
f(An+1)=1,0,1,...
f(Bn+1)=1,1,0,...,

and all the sequences are distinct.

Example 7.11. Let f: Ny — {0, 1} be the indicator function of p-powers ,i.e.,

f(n) =

0 otherwise

{1 ifn=pl,j>0

Ifi>0,5€{0,1,...,p" — 1}, then

A 0 (j#0,1)
fi'n+j) =9 xq(n) (=1
f(n) (j=0)

Definition 7.12. A linear recurrence is called simple if
=2 o0j
J

for sufficiently large n (i.e., there are no higher powers of n appearing).

Remark 11 (Reductions in Derksen’s proof) Recall that if f : Ny — K satisfies a linear

recurrence over K, then f(n) = ¢;n‘a where ¢;j,«; € K for all sufficiently large n. If
15



char K = p > 0, then for r € {0,1,2,...,p — 1},

flon+r) = (pn+r)af™
2]
.3

- Z (Z cijria§) (af)"
; i

= Z )\jOé?n,
J

as >y, cijriag is a constant in K.
Reduction I: Without loss of generality we may assume that f(n) is simple. The reason
is as follows. Let h,.(n) = f(pn +r) for r = 0,1,...,p — 1. Then each h, is simple and if

S, = {n € Ny : h.(n) = 0} then pol{pn+7’ eNy: f(pn+r)=0={neNy: f(n) =
r=0

p—1
0} = U @S, + 7). If we know Derksen’s first theorem for simple linear recurrences, then
r=0
each S, is p-automatic because each h,(n) is simple. From Assignment #2, we will prove
p—1
that pS, +r, | (pS, + 1), and {n : f(n) = 0} is p-automatic.
r=0
Remark 12 (Quick aside from Remark . Let K be a field of characteristic p > 0. Then
let K :={aP: 2 c K}. If 2,y € K™ then there exists a,b € K such that z = a?,y = .
Thus z +y = a? + P = (a + b)? and zy = b = (ab)?, and if x # 0 then x = (a~')P. So
K® C K is a subfield. If K = K then we say that K is a perfect field. For instance,
any finite field is perfect, and any algebraic closure of a function field over the finite fields
is perfect. For any a € K, the equation 27 — a = 0 has a root in K since K is algebraically
closed. Thus a = u? for some u € K.)

8. OCTOBER 01

Recall that Derksen’s main goal in his Invent. Math. 2007 paper was to show the following:
if K is a field of characteristic p > 0 and f : Ny — K satisfies a linear recurrence over K,
then {n € Ny : f(n) = 0} isa p-automatic set. We showed in the last lecture that we can
reduce to a simple linear recurrence, i.e., f(n) = byA\? + -+ + b, A" foralln > 0,3; € K.

LeT Ko =F,(B1, .-, By M1y - - -, Am) € K. Recall that
KPP = {a? z € Ky},
which is a subfield if K. In the assignment you show that [Kj : Kép >] < 00.
Ezample 8.1. If Ky = F,(t) then K" = F,(t?). If a(t)/b(t) € Ky, then a(t)?/b(t)P =

a(t?) /b(t?). So Ky has a Ko basis given by {1,¢,12,...,t*"'}.
16



If a(t)/b(t) € Ko, then

a(bt _ elt) _ pitrcrofp)
b(t) b(tr) = b(tP)
where
m p—1
c(t) = Zciti = Z it
=0 r=0i=r (mod p)
p—1

I
9]
3,
_l’_
3
~
8
_l’_
=

So let ¢, (t) :== (D cpgirts)P-
If [K, : K0<p>] < oo and we let ey, ..., e be a basis for K, as a Ko'P'-vector spaces, then
if a € Ky we have a unique decomposition. Write

S S
_ § : _ p
a = o€, = E Vi €i
i=1 i=1

where each v; € K is unique and satisfies 77 = a;. To see why they are unique, let v; be
some solution to the equation 2 — o = 2¥ — ¥ = (x — ;). Thus 2 = v, & = ;.
We then have projection maps my, ..., 7, : K — K satisfying

S
a= Z mi(a)Pe;
i=1

ie. mj(a) = ;.

Ezample 8.2. If Ky = Fy(t) and K = F5(t3), and let {ey,e0,e3} = {1,¢,¢>}. What are
1, T, w3 of (14 ¢?)717 First, start by writing

1 (14)? 1+204t!
1+ 1+t 1416
1 t3 2
160 T1xe iy

Thus, we have m((1 +t?)7') = (1 + )L m((1 +)™Y) = t(1 + )L m((1 + )71 =
2(1 +¢2)~L.
Remark 13. Two remarks:
(1) The 7 are not linear, but we do have n(cPa + ) = cm;(a) + m;(B) for all o, 5,¢c € K.
Note that we can write & = /ey + -+ +Pes, B = 0fe; + -+ + 0Pe®, so Pa+ f =
(PP +60)er + -+« + (P42 + 6P)es = > (e + 0;)Pe;. So the claim follows.
(2) ae K=0%< m(a)="---=ms(a) =0. How will this help? Recall that

f(n) =) BAL.
i=1

17



What is f(pn + j) then?

Flpn +9) Zmp"ﬂ— BN 4 -+ (B ) (A"

So
T(F(pn + 7)) = TR(BIN)ANT + - - - + T (B M)A

Lemma 8.3 (Derksen’s technical lemma). Let Ky be a finitely-generated extension on F,.
Suppose also that V' C Ky is a finite-dimensional F,-vector space of Ky. Then there exists
a finite-dimensional IF,-vector space V-C W C Ky such that m,(VW) C W for all k, where

VW s the F,-vector space of products spanned by vw where v € V,w € W.

We apply Lemma as follows. Take V' = IF,-span of all {@-)\g i=1,....m0< 5 <
p — 1}. Apply Lemma [8.3| to see that there exists W D V such that 7 (VW) C W for all k.
Let & =W™ =W x W x --- x W. Note that . is a finite set because F), is finite and
W is finite-dimensional over [F,,.
For each w = (wy,...,wy,) € &, let f,(n) = wi AP+ - +w, A% . Noticeb = (f1, B2, ..., Bm €
S and f(n) = AT + -+ + B AL, = fo(n). THen it follows

7k (fw(pn + ) = T 1){)&;" 4+t wm)\%@)\%>
= MW X)NE A+ -+ 4 T (WA, A

So by Dersken’s lemma there exists w' = (w],w),...,w! ) € & so that m(fu(pn + 7)) =
fuw(n). For each (w1, ..., w,) € ., define

1 G Sl = 0)
Xw(”)‘{o GF Fuln) 7 0)

i.e., a characteristic sequence of the zero set of f,(n).

In particular, y,(n) is equal to the char sequence of the zero set of f. Let .7 be the
collection of all finite products of functions of the form y,(n). In fact, since xy* = x, we
don’t need repeats, meaning .7 is a finite set.

Claim. If g(n) € 7, then g(pn + j) € F for j =0,1,...,p— 1.

Proof (sketch). We will show first how this gives us the result. By induction, if g(p'n+j) e T
fori > 0,0 < j <p'. Thus g(p*n+jip+j2) = g(p(pn+ j1) + j2) = h(pn+j1) € Z for some
heJ. O

Corollary 8.4. If g(n) € .7, then the p-kernel of g is finite.

(w
(w

Proof. Note that the p-kernel of g in contained in .7 and |.7] < oco. g(n) is a p-automatic
map. But y,(n) € 7, so xp(n) is p-automatic. The zero set thus is a p-automatic set. [

9. OCTOBER 3

Remark 14. Suppose that .7 is in a finite collection of maps h : Ny — A such that for each
j€40,1,...,p— 1} and for each g(n) € . we have g(pn + j) € 7. Thus each g(n) € T
is p-automatic. To prove this, it suffices to show that for all g(n) € 7, all i > 1 and all
j€{0,1,2,....p" — 1} and g(p'n + j) € 7, the p-kernel of g is finite. We prove this by
induction on n.

18



The case is immediate if i = 1 (base case). Now suppose that it is true for ¢ < d. Then if
a€{0,1,2,...,p—1}, we ant to show that g(p?n+a) € 7 and g € 7. Write a = p?~1b+j
with j € {0,1,...,p" =1} and b€ {0,1,...,p—1}. Thus g(pin+a) = g(pin+p?to+j) =
g(p®~t(pn + b) + j). By inductive hypothesis, g(p?~tm + j) = h(m) for some h € 7. So
g(p¥t(pn +b) + j) = h(pn + b) € 7 by assumption.

Remark 15 (Overview of Derksen’s proof). Without loss of generality, let f(n) = Si AT+ -+

BmA? for all m > 0. Let Ko = Fp(B1,. .., By Aty -, Am) € K with [Ky @ K] = 5 < o0
and Ky = Ko%Pe, & - @ Ky'Pe, where ey, ..., e5 € K.

These give “projections” m; : K; — Ky such that a € Ky — > m(a)P¢;. Let V =
i=1
span]Fp{)\iBi)\g ci=1,2,...,m,7=0,1,...,p— 1}. Derksen proved that there exists W so
that V' C W C K such that dimg, W < oo and 7 (VW) C W for all k;
Let . = {fu(n) : w € W™} where f,(n) = wi A} + -+ -+ w, Al Since V. C W, note that
f(n) = fy(n) € .. THen we let .7 be all finite products of

o) = {1 if f,(n) =0

0 otherwise.
Claim. If g € 7, then g(pn+j) € F for j =0,1,...,p— 1.

Corollary 9.1. If g € T then g(n) is p-automatic. Then if xy(n) is a character sequence f
zero sets of f(n), then xp is p-automatic. Therefore, {n : f(n) = 0} is p-automatic.

Proof of the above claim. If w € W™, then, for k = 1,2,..., s there exists (wy , Wag, ..., Wn) €
W™ such that
TR AT o w N = (w0 M)AT 4 - (w0 M)A,
= Wi pA] + A Wi g A,
Then
Xo(pn+7) =1 fo(pn+7) =0 w X" 4+ w X =0
& (W X" 4w WY =0 for k=1,2,...,5
S W pA] + o F WA, =0for k=1,2,...,s
& xw(n)=1fork=1,2,...,s

& wa(n) = 1.

Thus xw(pn + j) = [[1; Xw(n) € 7. The rest follows from the general finite products. O

Ezample 9.2 (for Lemma . Let K = Fy(t) and K =Fy(#?). Let ) = l,eg =t. If V =
span{l,t~'}, then m(t7!) = m(¢/t?) = 7(t)/t = 0 while mo(1/t) = ma(t)/t = 1/t. Let W =
spang, {1,¢71,¢72, ... 72 ¢, 2, 7"} What is WV? WV = spang, {t72™71, ... t*™}. If
j = 21, then 7 (t* = t(71(1)) = t* and m(t¥) = t'my(1) = 0. If j = 21 + 1, then 7, (#) =
(7)) = tim(t) = 0 while mo () = mao((#)%t) = t'my(t) = t\. Thus m(WV), m(WV) C
{t7", ...t} CW.
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Proof of Lemma[8.3. Let {t1,...,t,} C K be a basis for V. We extend this to a generating

set {t1,t2,...,tm} € K for K as an extension of F,. For k =1,...,s, we have
Pty ... tm
multy) = Ll )
Qty, ... tm)

for some polynomials P; ; and ) with @ # 0.
Let D = max(deg P, ., deg Q). Let

i1 fim
W:spaan{<1Q—jm) :OgjSp,i1+-~-+im<6D,i1,...,im20.}

J

where 71 + 19 + -+ -+ 4,, < 6D and j < p. O

We want to show that m(Wt;) € W. So it is sufficient to show that W(%—tm b)) e W

10. OCTOBER 6

Lemma 10.1 (Derksen’s technical lemma). Let V' C K where V is a finite-dimensional
F,-vector space and K a finitely-generated field extension over Fp, m,..., 7y : K — K the

projection maps. Let {e1,... e} be a basis for K/K® and write a = Y m;(a)Pe;. Then
i=1

there ezists a finite-dimensional F,-vector space W such that VC W C K and n(WV) C W

for all v.

Proof. Let V = spaan{xl, ..., 2, }. Extend this to a generating set for K, i.e., extend so

that.{xl,ajg,...,xr,xrﬂ,...,xm}. For k=1,...,sand 0 < iy,...,4,, < p— 1. we have
mp(al o xim) = Py ook, o) /Q(2, . xy). Let D = max(deg Py, i, Q). Let
L pim , , ‘
W = spang, 0 i 0<I<pjitjet-+jn<6D,.
!

So it remains to show m;(WV) C W for all i. It suffices to show, by F,-linearity, that

Ji Im
a’/’ .. -a’/‘
T (—1 o] UC ~x5> e W,

where j1 + -+ J,, < 6D and 0 < < p,1 < s <m. We have

JU . pedm Ji . ijp—l 1 . .
s a a a -
T (% : xs) = T ( ! Q;ﬂ : xs) = éﬂ-i (lel e x%nQp lxs) )

so a1+ alm QP a, has degree at most 6D + D(p — 1) + 1 < 6D + pD + D = (7 + p)D.
Thus x7' - - - 2Im QP 'z, is an F-linear combination of monomials of the form gt abm with

h lm
li + -+ Ly < (T4 p)D. Notice that m;(zl ---zlm = 7r(avzl)t‘“J 31:51L P Jw? -- - xfm) with

m m
20




5], L]

m(2y ") = @ s (gt )
) P @
1 Q)
(some polynomial of total degree < D + —(”;’)D )
- Q

Since p > 2, D + %D < 2D +3.5D < 6D. So m(z] - ximQPlx,) = poly of dQeg = 6D,

and

jl o e jm 1 .
x x SN
e (1—1”1%) = —mi(z] - 2dm QP )

] <
c polynomials of Z;tal degree < 6D W .

10.1. Derksen’s refinement.

Definition 10.2. We will call a set S a p-Derksen set if there exist a prime p > 2 and m > 0
and words wo, Wi, ..., Wy, 1, ...,y € {0,1,...,p — 1} such that S = {{weti w3 - --
W1 T Wi |p 2 41, - oo G > 0}

Ezample 10.3. {1,p,p? ...} = {[10"], : i > 0}, let m = 1,wo = 1,¢; = 0,w; = ¢.
A subset S C Nj is p-normal if S is a finite union of p-Derksen sets.

Theorem 10.4 (Skolem-Mahler-Lech for positive characteristic). Let K be a field of char-
acteristic p > 0 and let f : Ng — K satisfy a linear recurrence over K. Then {n € Ny :
fin) = 0} is a finite union of arithmetic progressions along with a p-normal set.

Let I' = (X,Q, g, 0, F) be a DFA. Given two states ¢,¢ € @, we say that ¢’ is reachable
from ¢ if there exists w € X* such that f(q,w) = ¢’. We say that ¢ ~ ¢ (“equivalent”) if ¢
is reachable from ¢ and ¢ is reachable from ¢'.

Given ¢ € @, we will let [g] denote the equivalence class of q. We say [q] < [¢/] if ¢ is
reachable from gq.

Lemma 10.5 (Derksen’s second lemma). If " is an automaton that accepts the zero set of
f(n), then there ezists at most one cycle in each equivalence class.

We need the following claim to prove Derksen’s second lemma:

Claim. If ¥ ={0,1,...,p—1} and suppose that I' = (2, @, ¢, J, F') is a DFA that accepts a a
subset S C Ng = {1,2,...,p—1}-{0,1,...,p—1}*U{e}. Suppose also that each equivalence
class in I' has at most one cycle in it, and all the terminal classes get rejected. Then S is
p-normal.
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11. OCTOBER &

Definition 11.1. Recall that p-normal sets are finite unions of sets of the form
{[ZUOtillwltZ; e wm,ltfg‘wm]p : il, ig, Ce ,im Z O},
and wg, ..., Wy, to, .- tm €{0,1,...,p— 1},

Let I' = (3, Q, qo, 9, F) be a DFA. We put an equivalence class ~ on @Q: ¢ ~ ¢’ if and only
if [q] < [q]

Definition 11.2. We call a DFA a saguaro if

(1) there exists a unique cycle in all non-maximal equivalence classes with respect to =<;
(2) all the states in every maximal class are rejecting.

Ezample 11.3. Let p = 2. (Enter the relevant diagram)

Claim. If we have a saguaro then the language £ C ¥* accepted by it is a finite union of
sets of the form

{wot?wlti .. wm_lti}j : le, .. 7im Z O}, (]_)

where m > 0, wg, wy, ..., Wy, t1,t2, ..., t, € X*. In particular, if ¥ = {0,1,2,...,p—1} then
we get a p-normal set.

Let ¢ < ¢ in @ and let £, , C X* be all paths from ¢ to ¢’. Then we claim that £, is a

finite union of sets of the form ([I)). Notice that this finishes the proof because £ = |J Ly, 4.
qeEF

Proof of the main claim. We prove the main claim by induction on d, where d is the largest
non-negative integer such that there exists a chain [q] = [po] < [p1] < -+ < [pa] = [¢']. Base
case: d = 0. Note that ¢,¢" are in the same class, so there exists a unique cycle ¢ based
at ¢’. Thus t € X* and there exists a shortest path wy € ¥* such that ¢ — ¢. Then
L,y ={wt :i>0}.

Now suppose that this holds whenever d < k and consider the case when all maximal
chains from ¢ to ¢’ have length < k and there exists at least one with length k. So there
exists a unique cycle based at ¢ or [q] = ¢ and there are no cycles in [g]. Also there exist a
finite number of minimal paths from [¢] to [u] ([u] an immediate successor of [¢q]) with [¢] < [u]
(Note that there cannot exist [v] so that [q] < [v] < [u] therefore.). So if w® w® . . . w)
are these minimal paths then every path from ¢ to ¢ starts out as t'u;w®, where u; is a
minimal path from p to the starting vertex of w(®.

Let p, ..., p") be the terminal vertices of w®. Then [q] < [p®™]. In particular, all
maximal chains from p® to p’ have length < k. So

'Cq,q’ == Z{tjuzw(’)} . ﬁp(i)7q/,
=1

and by the inductive hypothesis, we know that £, , is a finite union of things of form
— observe that {t'a} - {wisjws} = {t'(aw;)s]ws}, which is of the form (T]). O
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12. OCTOBER 10

Definition 12.1. A simple linear recurrence
f(n) =Y e (i #0)
i=1
is called degenerate if there exist i # j and @ > 1 such that A} = A} (i.e., A;/); is a root of

unity). If not degenerate, then we say that f(n) is non-degenerate.

Proposition 12.2. If f(n) is a simple linear recurrence then if {n € Ny : f(n) = 0} contains
an infinite arithmetic progression then f(n) is degenerate.

Proof. Suppose that f(an+r) =0 for all n,a > 1. Start with 0 = f(an+7r) = (c;A3)(A\{)" +
A (AL (AT =1y B + - -+ Y Ol. So we have

B+ ymbB =0, (2)

for all n and y1, ..., ¥, all non-zero.
Claim. If holds for all n, then there exist 4, j such that 7 # j and 3; = 3;.

For the above claim, use the Vandermonde matrix:

1 1 ... 1 m
B B2 0 B Y2
. ) ) . _ =0.
szl ;Lfl . B;zn—l Ym
Since the determinant of the Vandermonde matrix must be zero, the claim follows. 0

Theorem 12.3 (Derksen). Let f: Ny — K, where char K = 0, be a simple non-degenerate
linear recurrence (f(n) = 1A} + -+ BmAL, ). Then {n: f(n) =0} is p-normal.

Proof. So we have f(n) = BiA} + -+ + B AL, 51, ..., Bn all non-zero, A; all non-zero and
Ai/Aj is not a root of unity for all i # j.
Step 1. Recall that we found a finite-dimensional [F,-vector space W, such that ./ =

{fw(n) == w AT + - - - + w,, Al } has the property that .7 := all finite products of

MW:F<@W=®

0 otherwise

is finite and if A(n) €  and 0 < j > p — 1, then h(pn + j) € 7.

Step 2. (Compare #2 on Assignment 2)

We make an automaton I' = (X, Q, qo, 0, F'), and take ¥ = {0,1,....,p—1},Q = T ,q =
Xb1..pm(n) and F = {h € 7 : h(0) = 1}. If hy,he € 7 and hi(pn + j) = he(n) then we
draw a labelled edge from h; to hy with label j. Then I' accepts exactly the n € Ny for
which £(n) = 0( .5, (1) = 1).

More generally, if we change ¢y to some other g € .7, then I' will accept the n for which
g(n) = 1.

Step 3. Show that these exists at most one cycle in all non-maximal classes. Suppose
otherwise. Then there exists h € 7 in this class that has two cycles based on h. Call
the cycles ¢; and t,. Let a = length(t),b = length(ty) and let u; = t5,uy = t3. So
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length(u;) = length(us) = ab, where uy, us are two paths from h to h of the same length but
distinct paths. We will show that how this gives a contradiction.

First, h € 7. So h(n) = x, 0 @ (n) X, m ,m(n). Thus h(n) is the characteristic
sequence of the intersection of the zero sets of

wy)/\a“ o wPAn (all wj(-i))\? nondegenerate)

for i = 1,...,r. To get a contradiction, we shall suppose that we have a state h € .7 with
two paths uy, ug of the same length from h — h, and that h is the characteristic sequence of
the intersection of zero sets of simple non-degenerate linear recurrences all of length < d (d
being the smallest number with respect to this property). So h(n) = xs(n) where S is an
intersection of zero sets of h;(n) = caVli + -+ cavly (1 <i<7),v; € {M,..., A}

Let s be the length of u; (hence the length of uy also). Let j; = [u1], < p® and j» =
[us], < p*. (Example: if u; = 031,uy = 151 and p > 5, then [u1], = 3p+ 1 < p* and
[us], = 1+ 5p+ p* < p®.) So we have

h(n) = h(p’n+j1) = h(p’n+j2) (Vn >0)
Thus h(n) = 1 if and only if
cavip + -+ CiaYia = 0
for all 1 <+ < r, which is also equivalent to saying

pen+ji pin+tje __
CilVin T+ CidYg =0,

where 1 <i <r k=1,2. [lecture stopped| O

13. OCTOBER 15
Recall that our goal is to prove the following theorem:

Theorem 13.1. If f(n) = S\ + -+ + Bl is a simple non-degenerate linear recurrence
over K with char(K) = p > 0 then (by Derksen) {n € Ny : f(n) = 0} is p-normal, which is
a finite union of {co + c1p*It + -+ 4 cppSITTImIm g g > 0.

Let T' = (2,Q, qo, 0, F') be an automaton. Let @) be the functions in 7, i.e., products of
characteristic functions of zero sets of WA} + - -+ + w AL, (wy,wa, . .., wy,) € W™, Let, for

g,h e,

where g(pn + i) = h(n). Define F = {g € 7: g(0) = 1}, and g = xs, where S is the zero
set of f.

If h € 7 is not in a maximal equivalence class, then we cannot have

U2
Uy

Once we get this, we are done. To see why, start with the fact that we get < 1 cycle in each
non-maximal class, and we claim the states in mammal classes cannot accept
= ['is a saguaro

= v accepts a p-normal set (because I' accepts the zero set of f)
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= the zero set of f is p-normal.
As for what happens in a maximal class, Derksen showed that if i # x4 then we get at most
1 cycle. In the proof, we argued that if there exist at least two cycles based at h and h # X,
then let wy = ul(uz) and wy = ué( D Let s = lwy) = lwse), and jy = [w1]p, jo = [wal, < p°.
Then h(p°n + ji1) = h(p°n + ja) = h(n). Now by assumption, let h # x4. So h(n) is the
characteristic sequence of an intersection of zero sets of non-degnerate linear recurrences

h(n) = xs(n), where
S = w2 + -+ wdAn, = 0},

Remark 16. If A\y,..., g € K \ {0}, then \;/\; is not a root of unity for ¢ # j. Then if
(ar,...,aq) € K% and (by,...,bg) € K% are linearly independent over K, then {n : a;\} +

s ag\y = 0&by AT + - - - 4 bg A = 0}, which is the intersection of zero sets of simple linear
recurrences of length < d.

Proof. Without loss of generality, suppose a;bs — asby # 0. Start off with

al)\?+---+ad)\3:0 (3)
DIAT + -+ bgAl = 0. (4)
Then we have
(b1a2 — albg))\g + -+ (blad - albd))\g =0 (5)
(b2a1 — (Igbl))\n + -+ (bgad - agbd)Ag = 0. (6)

(Note—bl—al @—bg.—al) Then both.and.—Olffand@ 0

because a1by — bias # 0.
So if h(n) is the hcaracteristirc sequence of the intersection of zero sets of

d
gi(n) = Zcij%”j,l <i<r
j=1
So h(pn + 71) = h(p’n+ja) = 0 < h(n) =1 < g1(n) = --- = g.(n) = 0, and this is
equivalent to saying ¢1(p*n+ji1) = -+ = g.(p°n+j1) = ¢2(p°n+j2) = -+ = g-(p°n+ja) = 0.

Then for g;(n), which is of length < d and non-denegrate,

d
gi(p’n+5) = i} (75) ;

J=1

and

gi(p°'n + ja) = Zczﬂ

Define cZ])\] = aj, cijfyij; = b;. Then for
! ()" 4+ (e ) ()"
(B )+ (car) ()",
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Suppose without loss of generality that ¢y, co # 0:
(e ) (e23’) = (2 ) (ed) = creand' g (33 =7 7). (7)

So the intersection of zero sets of ¢1(p°n+j1),..., - (P°n+j1), g1 (P°n + j2), . . ., g-(P°n + 72)
is an intersection of zero sets of simple non-degenerate linear recurrence of length < d. Thus
the result follows by induction. O

Corollary 13.2. If h # xg, it is impossible to get

Uz
Uy

Thus we get Derksen’s theorem.

Corollary 13.3 (Derksen). Let f : Ny — K satisfy a linear recurrence over K, with
char(K) =p > 0. Then {n € Ny : f(n) = 0} is a finite union of arithmetic progressions
along with a p-normal set.

Proof. Step 1. Let
f(n) = Z Cijnioz? for all sufficiently large n.
2%

Without loss of generality, we may assume that
f(n) = Zcijni&? for all n > 0.
.3
Step 2. For r =0,1,...,p— 1, let
filn) = flpn+7r) = Z cigrial(af)".
1,

If S, is the zero set of f, then the zero set of f is the union of pS,. + r. Therefore it’s enough
to consider simple linear recurrences.
Step 3. If f(n) is simple and non-generate we are done. Otherwise, consider all i # j such

that there exists a;; > 0 with A = XJ", where f(n) = Y ¢;A}. Then let A = lem(a,;). For
=1

te{0,1,...,A—1}, let fi(n) == f(An+t), which is nor;—degenerate or identically zero. To
see why, suppose A"? = A3'?, so A = a5 So we have

m m

S el = S (A ()"

i=1 =1

= (@A + ) (A" + () (Ag)" + - F em(A)"™
So either f(n) =0« f(An+1t) =0. Thus {n: fi(n) = 0} is p-normal. So

Aq
f(n) = Z(A - (zero set of fi(n)) +1).
t=0
Note that each one is either p-normal of an arithmetic progression. [l
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14. OCTOBER 17
Definition 14.1. We define m4(z) to be the counting function, i.e.,
ms(x) =#{n eNynNS:n <z}

Definition 14.2. We call f(S) the upper density of S and f(S) the lower density of S
where:

5(5) = lim sup =)
00 T
8(8) = limnf WS:”).
Moreover, if
5(5) = 8(8) = lim "2,

then we call this the density of S.

Ezxample 14.3. 1t S = {1,4,9,16, ...} then mg(x) ~ v/z, so 6(S) = 0.

Ezample 14.4. If S = {1,p,p?, ...}, then mg(x) ~ log,(x). Thus §(S) = 0. In fact, if S is
p-normal, then we have §(S) = 0.

Ezxample 14.5. Let S = {n € Ny : binary expansion of n has an even number of 1’s}. Then
mg(x) ~ x/2, and wg(2" — 1) = 2"~1. Thus §(5) = 1/2.
Example 14.6. However, it is entirely possible to have

5(S) =1

4(5) = 0.
Consider the following indicator function:

(n) = 1 if there exists j such that (2j)! <n < (25 + 1)!
ST 0 0 if there exists j such that (25 + 1)! <n < (25 +2)!.
Since mg((25 + 1)!) > (25 + 1)! — (25)!, we have
] !
(2 AD) oy Ly
(2j +1)! 27+
On the other hand, note
mo((2)) < 1+ (2 — 1)1 —1 = (2j — 1),
SO o1 .
m(@D) 1
(25)! 2j—1

Conjecture (Erdés-Turan (1936)). If S C N and f(S) > 0, then if k € N there exist
a,b € Ny with a > 1 such that b,b + a,b+ 2a,...,b+ (k — 1)a € S (k-term arithmetic
progression).

Theorem 14.7 (Roth (1953)). Erdds-Turan is true for k = 3.

Theorem 14.8 (Szemerédi (1975)). Erdds-Turan is true.
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Furstenberg (1977) and Gowers (2001) gave proofs independently.

Theorem 14.9 (Bézivin (1987)). Let K be a field and let f : Ng — K satisfy a linear
recurrence over K. Then if S :={n € Ny : f(n) =0} and has §(S) > 0, then S contains an
infinitely many arithmetic progression.

Proof of Bézivin’s result. Start with the fact that

f(n) = Zm(nw

for all sufficiently large n. Suppose that p;(n) are polynomials in n such that p;(z) € K[z],
and \; € K. Let D; denote the degree of p;(x). The main claim is as follows:

d
Claim. If f(n) = >_ pi(n)Al is zero on an arithmetic progression of length > Dy + Do+ - -+
i=1
Dy + d+ 1, then it is zero on the whole infinite arithmetic progression.

Proof of the main claim. We prove by induction on M := D1+ Do+ ---+ Dg+d. If M =1,
it is trivial. Now assume this is true whenever M < k, and consider the case when M = k.
By assumption, there exist b and a > 1 so that f(b) = f(b+a) =---= f(b+ ka) = 0. Now
we need to show that f(b+ na) =0 for all n > 0. Let

d
f(b+an)= sz‘(b + an) \otom

=1

=> [pilb+ an))\?]w'

i=1

=:1q;(n) =i
Then we have ¢1(n)B7 + -+ +qa(n)B; =0 for n =0,1,..., k. Define
an+DBM + -+ qun+ 1) =0 (n=0,...,k—1). (9)

Now compute X By — @:
la1(n) — a1(n+ D)]BiBT + [¢2(n) 81 — @2(n + 1) Be] B3 + -+ - + [qa(n) B1 — qa(n + 1) B4l B7 = 0
forn=0,...,k—1. Let

D! = deg(qi(n)f1 — qi(n+1)5;).
Then D} < D;, and let d’ = length of equation, d’ < d. If D; = 0 then d goes down (no first
term) and d’ < d. In other words,

Di+---+Dj+d <D+ +Dy+d.

It vanishes on an arithmetic progression of length & > D] + D) + ---+ D), +d + 1. So by
inductive hypothesis it vanishes on the entire progression. 0

At this we are really done. Note that we just showed that ¢;(n)57 + -+ -+ qa(n) 8] = 0 for
alln > 0. If not, there exists smallest m so that ¢ (m~+1)87"" +- - +q4(m+1)87"+ #£ 0. By
minimality ¢;(m)57" +- - - 4+qa(m)+ B = 0. We just showed that 51(q(m)B7 +- -+ qa(m)+
B —(q(m—+1) B 4 - dga(m+1) 371 = 0. Thus g1 (m+1) 87 4 - 4ge(m+1) 87+ = 0,
but this is a contradiction. O
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Definition 14.10. A map f : Ny — C is called a holonomic (or p-recursive) sequence if
there exists d > 1 and polynomials Py(z), ..., Py(z) € C[z] not all zero such that

Po(n)f(n) + Pi(n)f(n — 1) + Pa(n) f(n — d) =0,

for sufficiently large n.

15. OCTOBER 20

=Y _f(n)a" € Cllal],

n>0

If we let

then we have

Theorem 15.1. f : Ny — C is holonomic (or p-resursive) if and only if F(x) satisfies a
differential equation of the form

Eq )F9 (x) = P(x), (10)

where qo, q1, - - -, Ge, P € Clz].

For instance, if aF + bF' = P, then aF’' + o'F + V'F' + bF” = P’. Then we have
(aF +bF') — P' — (aF' + d'F + V'F' + bF")P = 0.

Rubel (1972) asked whether SML holds for f : Ny — C, where f is holonomic. Bézivin
(1981) proved a weaker variant for F'(z) = > f(n)z" satisfying with goge # 0, and qo, e
not zero at x = 0. Methfessel (2000) removed the restrictions on o, ge.

Theorem 15.2. Let F(z) =Y f(n)a" satisfying (10). Then {n € Ny : f(n) =0} is a finite
union of arithmetic progressions along with a set of S of density zero, i.e., §(S) = 0.

Around 1994, Dénid began looking at a “dynamical” version of SML.

Theorem 15.3 (Multidimensional Skolem-Mahler-Lech). Let char K = 0, and T : K™ —
K™ a linear transformation. Suppose also that v € K", W = {z : w'z = 0} C K". If
[T]=A, Then{n €Ny :T"(v) e W} ={neNy: Av e W} ={n e Ny: wl A" =0} is a
finite union of arithmetic progressions along with a finite set.

Dénis asked more generally whether this was true for ¢ : X — X, where X = K"
is a quasi-projective variety and ¢ : X — X is a morphism from K" to K" such that
(a1, . an) = (Pi(ag,...,an), ..., Polag ... ap)). fY C X is Zariski-closed (Y subspace
of K™) and z € X, then:

Question 1. Is it true that {n € Ny : ¢"(z) € Y} is a finite union of arithmetic progressions
along with a finite set? Assume char K = 0.

Question 2. If char K need not be zero, can we get the result when we replace finite set by
a set of zero density?

Dénid proved Question 1 for X =P" and ¢ € Aut(P").
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Proof of Theorem[15.1. (=) There exist d, Py, ,sP; € C[x] not all zero so that
Poy(n)f(n) + -+ Py(n)f(n—d) =0
for sufficiently large n. So one can write
R d
Y amifin—4)=0
i=0 j=0

for all sufficiently large n. Notice that we can also write this as
2 bn = 3

for some constants b;; where X = X (X — 1)+ (X —i+ 1) and X@ = 1. (See Example
following this proof for an example.)
Given

= g(n)e

n>0
we will write [zV]G () = g(N). Then what is [z"]2"" FU)(2)? For sufficiently large n:
§=0:[2"]2"F(z) = [2""|F(z) = f(n — 1)
j=1:[z"]a""F'(z) = [2" 2F'(z) = (n — ) f(n — 1)
:§:ﬁmﬂ*
oF'(z Z]f

j=2:[a"] ’+2F”( )= —i)(n—i-1)f(n—1i)

> bij(n— ) = byl ]V FO(z) = 0.
[z"] (Z bl-jX”jF(i)(a:)> =0,
2

for all sufficiently large n. So

So we have

So

> bya PO (@) = Pla)
.3
for some polynomial P. Grouping the terms gives

Zqi(ﬂf)F(i)(x) = P(z),

where ¢;(z) =3 bt

j
(<) This process follows easily, since the argument done in (=) is reversible. O
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Ezample 15.4. Let n®f(n) + (2n — 3) f(n — 1) = 0 for all sufficiently large n. Then one can
rewrite the given relation of the form

(0 ) () + 2((n = D) + (1= D)0 = 1) = 30 = 1O f (0 = 1) = 0,

so we have

1 f(n) + 10 () + 200 = DV f(n = 1) = (0 = O f(n— 1) =0,

Definition 15.5. A topological space X is Noetherian if it satisfies the descending chain
condition on closed subsets, i.e., if C1 2 Cy D ---Cf D ... with C; closed there exists n so
that Cn = Cn+1 = Cn+2 =

Let X be a Noetherian topological space, ¢ : X — X continuous, and Y a closed subset
of X, and x € X. We will show that {n € Ny : ¢"(z) € Y} is a finite union of arithmetic
progression along with a set of S with f(S) = 0, from which we can answer affirmative to
Dénis’ second question and prove the Bézivin-Methfessel result.

Remark 17. If X is a Noetherian topological space and S is a non-empty collection of closed
subsets of X, then S has a minimal element, with respect to O. Take C} € §. If (] is
minimal, then we are done. Otherwise, there exists Cy € S so that Cy € C). If Cy is
minimal, we are done. Otherwise, search for C5 so that C's C (5. Since X is Noetherian, we
cannot have an infinite chain. Thus there exists n such that C,, is minimal.

16. OCTOBER 22

Theorem 16.1. Let X be a Noetherian topological space, and let f : X — X be continuous.
Let Y C X be closed and let x € X. Then {n € Ny : f*"(z) € Y} is a finite union of
arithmetic progressions along with a set S of density zero.

Lemma 16.2 (Combinatorial lemma). Let S C Ny be a subset with 5(S) > 0. Then there
exists a € N with a > 1 such that

T:={ieNy:i,i+acS}
has 6(T) > 0

Proof. Let S C Ny have positive upper density. We shall show that we can take a € [

= \

(s )
Choose N := [ G )-‘ Let Sp:={i >0:|{iN,...,(i+1)N—-1}NnS| <1} and S; := {i >
{iN,...,(i+1)N =1} N S| > 2}. Then Sy U S; = Ny. Then let’s estimate:

m—1

ms(mN —1) =#{i <nN-1:i€ S8} =Y |{jNJjN+1,... (j+1)N-1}1n3|

7=0

:ZH]N (i + 1N —1}ﬂSI+Z|{JN LG+ 1N -1} 5|
7=0
JES1

< Wgo(m — 1)+ Nmg,(m — 1).
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So we have mg(mN — 1) < mg,(m — 1) + N7wg,(m — 1). We claim that the upper density of
S1 must be positive. If not, then the upper density of S; will be zero. Since

ws(mN — 1) < s,(m—1)  Nmg, (m—1) c_m N7g,(m —1)
mN—-1 — mN-1 mN—-1 — mN-1 mN -1 "~
Nrg, (m—1)

and —1—— — 0 as m — oo (since mg_1(m — 1) = o(m) and mN — 1 grows faster than
the numerator), it follows that for any sufficiently large m, we have

ms(mN — 1) 2 3=
= < _ <)
wN—1 =~ 1)
due to our choice of N. By assumption, there exists {x,} € N so that, as z,, — 0o, we have
7'['5(1'”)
Tn
Note that for x € N, there exists a unique j so that jJN —1 < 2z < (j+ 1)N — 1. So
ms(JN — 1) < mg(x) < mg((j + 1)N — 1), and we also have

msUN—1) _ms(z) ws((G+ YN -1

— 6(9).

G+rOUN—-1- 2z —  jN-1
Thus
ms(x) _ ms(G+ DN 1) G+DN—-1 3- . 12 -
< . e .2
r = (GrDN_1 N1 <00 <o),
or @
. ws(x - 36—
o) < =
llrxris;}p " 5(5)_445(S),

but this is a contradiction, since §(S) > 0. Hence 6(S;) > 0, as required. S ofor each
i € Ny, there exist y,z € {iN,...,i +1)N =1} NS,y < zand 1 < z—y < N. For
a€{l,2,...,N — 1}, let

T,={i€ S : thereexists y,y +a=z¢€ {iN,...,(i+1)N -1} NS}
Then we have S; =Ty UT, U ---UTxn_;. Notice that

0<d(8) < Z_IS(TJ')-

So there exists a € {1,2,..., N — 1} so that 0T,) >0 Let T ={j € Ny:j,j+acS}
Then we claim that 6(7") > 0. Notice that 7p(mN — 1) > 7r, (m — 1). To see why, we begin
by noting that i € T, implies that there exists y € {iN —1,...,(i+1)N — 1} N T’; therefore,

it follows
mp(mN — 1) - mr(m —1) - mr,(m—1) 1

mN—-1 — mN-1 — m-1 2N
for all sufficiently large m, hence §(T) > 5%6(T,) > 0, as required. O

Proposition 16.3. Let X be a Noetherian topological space, f : X — X continuous, Y C X
closed, x € X. Then if S :== {n € Ny : f"(x) € Y} has positive upper density, then S
contains an infinite arithmetic progression aN + b.
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Proof. Suppose not, and let S be the collection of closed subsets Z C X for which there
exist a continuous map gz : X — X and a point x, such that {n € Ny : ¢"(z) € Z} has
a positive upper density but does not contain an arithmetic progression. By assumption,
S # (). So there exist a minimal element Zy € S and g : X — X and z € X such that
{n : g"(z) € Zo} =: Sp has positive upper density but does not contain an arithmetic
progression. Then 0(Sp) > 0. By the combinatorial lemma, there exists a > 1 so that

Ty = {iENoii,i+a€SO}

has positive upper density. Thus, i € Ty < i,i +a € Sy & ¢'(z),¢"%(x) € Zy &
g'(z), g*(g'(x)) € Zy. Let Yy := {z € Zy : g%(2) € Zy}. Then Yj is closed since both
g~ %(Zy) and Z, are closed, and Yy = g=*(Zy) N Zy. Two possible cases:

Case I: Yy € 2y

Notice that ¢'(z) € Yy < i € Ty, and §(Tp) > 0. By minimality of Zy, Yy ¢ S. So Tj
contains an arithmetic progression but Ty C 5.

Case II: Yy = %,

Note that Yy = Zy < ¢7%(Zy) 2 Zo < g*(Zy) € Zy. This implies that Sy contains an
infinite arithmetic progression: note that if i € Sy then ¢ + a € Sy. O

Theorem 16.4. If X is a Noetherian topological space, Y C X closed, f : X — X continu-
ous and x € X, then {n € Ny : f"(x) € Y} is a finite union of arithmetic progression along
with a set of zero density.

Proof. Suppose otherwise. Let & be the collection of closed subsets Z C X for which
g=gz:X — X,z =x, € X such that the conclusion doesn’t hold. By assumption, S # ().
Let Zy € S be minimal and let g : X — X continuous and x € X be such that

S() = {n S NO : gn(l’) S Zo}

is not a finite union of arithmetic progressions along with a set of density zero. If 6(Sy) = 0,
then we are done. So we may assume that §(Sg) > 0. So by the proposition, there exist
a > 1,b > 0 such that Sy D aN + b. Thus we have ¢g*"*°(z) € Z, for all n > 0. Now let

Yo ={¢"(@),9"*(x),....} € Zo.

Consideri € {0,1,...,a—1}, and suppose b € {0,1,...,a—1}. Consider {n : ¢""*(x) € Zy}.
When ¢ = b, then this is all of Ny and in fact we are always in Yy C Zj. In general, if i # b,
then ¢g*"*(x) € Z;. We also know that g*****%(x) € Z, where a +b > i,a+b—1i =
ka1 < k < 2a—1. So if ¢*""(z) € Z then ¢*"*(x) € Z and ¢g"***(z) € Z. Thus
g ti(z) € ZNg*(Z). Two cases:

Case I: ZNg*2)=2Z

In this case, we have ¢*(Z) C Z, so g'(x) € Z hence g"**(z) € Z. Thus {n : g"(z) € Z}
is a finite union of arithmetic progressions.

Case I1: Yy = Zo N g *(Zy) € Zy

Yy is closed, so Yy ¢ S by minimality of Zy. So {n: ¢*""(z) € Zo} = {n: ¢"""(x) € Yo }.
By minimality of Zy, {m : ¢"(x) € Yo} is a finite union of arithmetic progressions along
with a set of density zero. So for i € {0,...,a— 1}, the set of {n : ¢""™(X) € Zy} is a finite
union of arithmetic progressions along with a set of density 0. Thus

a—1
{n:g"(x) € Zp} = U{n € Ny : g"""(z) € Zp}.

=0
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Since a finite union of a finite union of arithmetic progressions is a finite union of arithmetic
progressions and is a finite union of sets of density 0 is density 0, we get a contradiction. [

17. OCTOBER 27: BEGINNING OF PHASE IV — ALGEBRAIC GEOMETRY"?

Note: Proof of the combinatorial lemma done on 27 October is written under the last
lecture’s section. See the proof of Lemma [16.2]

Definition 17.1. Let K be a field, and K the algebraic closure of K. Write
A" ={(z1,...,1,) 71,..., 7, € K}
P" = (A" {(0,0,...,0)})/ ~.

Denote [zo, ..., z,] the equivalence class of (zo,...,z,) € P". Then V' C A" is called an
affine subvariety of A™ if there exists S C K{xy,...,x,] such that V = {(ay,...,a,) € A" :
flai,...,a,) =0 for all f € S}.

Ezample 17.2. If n = 2, and V' = z-axis N y-axis is an affine subvariety, since f(z,y) = 0 for
all points in V.

If T C A", then we can associate an ideal Z(T) C K[x1,...,,], where
I(T) :=={f € K[x1,...,2,) : f(a1,...,a,) =0 for all (ai,...,a,) €T}

Similarly, given an ideal J C K|x1,...,x,] we can associate an affine subvariety Z(J) C A,
where

Z(J)=A{(a1,...,a,) € A" : f(as,...,a,) =0 for all f e J}.
Note that there is a bijection between Z(J) and J, i.e., between

A" Klxy,. ..,z
Y (subvarieties) | Z(Y') (radical ideals)
Z(]) T

there is a inclusion-reversing bijection Y; C Ys < Z(Y]) D Z(Y3).

Definition 17.3. The Zariski topology on A™ is the topology in which the affine subvarieties
are the closed subsets. If Y7, Y5 are affine subvarieties such that Yy = Z(J;),Ys = Z(J5), Y1 U
Yo=Z(N1J2), Yo =Z(Jo) = Yo =20 Ja)-

18. OCTOBER 29

Definition 18.1. A projective subvariety V' C P" is a subset given by the set of points [z :
xy -+ 1 x,] € P that vanish on some set S C k[zg, x1, ..., 2,] consisting of homogeneous
polynomials.

Remark 18. Note that we need the polynomials to be homogeneous so that the solutions are
well-defined. For instance, the solution to x3 — xq is [a® : a] = [a : 1], but [1 : 1] = [2: 2],
and [2 : 2] is not a solution.

Definition 18.2. Zariski topology on P" is given by the topology where the closed subsets

are precisely the projective subvarieties of P".
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We have

P" = J AT,
=0
where
A i={[zg:xqy - i, €PM iy £ 0}
and that P\ V(z; = 0) = A =2 A" via the map [zg : 2y : -+ x,] = (vo/T4, ..., Tio1 /24,

Tiv1/Tiy ..., xp/x;) € A" Also, A" is open in P™.

Definition 18.3. A quasi-projective variety is an open subset U C V' C P" of a projective
subvariety V' of P" for some n. A quasi-projective variety X is called irreducible if X cannot
be written as X = X; U X, with X3, Xy C X closed.

Thus, U gets a topology from the topology on P™ and we call this the Zariski topology on
U.

Definition 18.4. If X is an irreducible quasi-projective variety, and we have f(z) = [ag :
ap : - ap], we say that a map f : X — A is reqular at € X if for any X C Y C P"
with X open and Y closed, there exists P,Q € K|z, 1,...,,] homogeneous polynomials
of the same degree such that Q(ag,ai,- - ,a,) # 0 and there exists an open neighbourhood
x € U C X such that Q|y # 0 and f = P/Q on U. In particular, f = P/ on U and so
it holds on an open dense set of X. Note that if Y = X \ U, then X = UUY. Since Y is
proper, we have U = X.
If f is regular at all x € X, then we say f is reqular.

Definition 18.5. Let Ox denote the collection of regular functions on X. Then Oy is a
ring. WHen X is affine, we call Ox the (affine) coordinate ring of X.

Ezample 18.6. Suppose K = K = C. Clearly A! CPL. f: Al — Al is regular at [1 : o] if

o Plly]
o) = Gy
with P, homogeneous of same degree and Q([1 : a]) # 0. In other words, for all a =
[1:a] € Al] there is some rational function ¢,(t) € C(t). Then f(z) = ¢,(x) for z in an
open neighbourhood of U,. Notice properly closed sets in Al are finite. So if a,b € A! and
¢a(x) = Pp(x) on U, N Uy, then ¢, = ¢. So we have f = ¢. But f(z) is regular, so it
can have no pole. Thus, f(z) = P(z) for some polynomial P. It follows that Oy = Clx].
Similarly, we get that Oy2 = Clz,y] and Op:1 = C.

Definition 18.7. If X is an irreducible quasi-projective variety and Y C X closed, then we
define the local ring of X along Y Oxy such that Oy y is the collection of paris (U, f) where
Uc Xopenand UNY # () and f € Oy with f: U — A! regular modulo the equivalence
(U, f) ~(V,g) if f =g onUnNV. Addition and multiplication are defined as follows:

(TN 1V,9)] = [UNV, fg)]
(U NI+ V9] =[UNV, [ +9)].

Remark 19. Note that Oy y is a local ring, i.e., it has a unique maximal ideal. Write [(U, f)]
for the class of (U, f). Then

mxy ={[(U,f)]: f=0onUNY}
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is the unique maximal ideal of Oxy. To see why, start with [(U, f)] ¢ mxy. Thus f # 0 on
UNY. Let V={zeU: f(x) # 0} CU open. Then % is regular on V, and

() T (o e

Thus O_)(’y \ Mxy = O}7y.

Remark 20. If Y = {z}, then Oxy = Ox, is a local ring at x. If Y = X, then we have
mx x = (0) so Ox x is a field. This prompts us to introduce the following definition.

Definition 18.8. We call Ox x the field of rational functions on X. We denote Ox x by
K(X).

19. HApPY HALLOWEEN!

Definition 19.1. Let X,Y be quasi-projective irreducible varieties and X C P*) Y C P™,
and f: X — Y with z € X and f(x) € Y. We say that f is reqular at x if f(x) € P™ =

m

U AI", then there exists i so that f(x) € A"
i=0

Remark 21. So regularity at x € X means that there exists x € U C X an open neighbour-
hood of z such that f(U) C A". So f|y : U — A". We just want that each projection
f|U . U ﬁ-Am

N
N 5

N
A
Al

(where j =1,2,...,m).

Definition 19.2. f: X — Y is called a morphism if it is regular at all z € X. f is called
an isomorphism if there exists a morphism ¢ : Y — X such that fog =idy,go f =idx. If
Y = X, then we call f an endomorphism, and if f : X — X is an isomorphism then f is an
automorphism.

Remark 22. The collection of automorphisms of X is a group under composition. It is
denoted by Aut(X).

Ezample 19.3. Aut(P¢) = PGL,4+1(C) = GL,,41(C)/Z
Ezample 19.4. Aut(A%) has two automorphisms: linear and triangular
(x,y) = (ax + By + c1,7x + 0y + ¢2)  (ad — vy # 0) (linear)
(x,y) = (z,y +p(x)) (p(x) polynomial; triangular)

Definition 19.5. A map ¢ : X --+ Y is rational if there exists an open subset U C X so
that ¢|y : U — Y is a morphism. However, ¢ need not be defined for all z € X.

Remark 23. If f : X --» Y is rational and the image of f is dense (dominant), then f
induces a map o o
f* : K(Y) = Oy’y — K(X) = OX,X
such that f*(¢) = ¢ o f. Thus, if f: X — Y is a morphism and f(z) = y then
f* : Oyjy — OX@.
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Counterezample. Let X =Y = A', and f : A’ - A' b 2 — p(x). Note that we have
O = C[z], and that closed sets of Al is the union of finite sets of points and A'. Then

z (z¢{0,1})
fl@)=41 (z=0)
0 (x=1)
is continuous but f(x) is not a polynomial in z.

Corollary 19.6 (Dénis’ conjecture). Let X be an irreducible quasi-projective variety, and
let o : X — X be an endomorphism, let v € X and let Y C X be closed. Then {n € Ny :
¢"(z) € Y} is a finite union of arithmetic progressions along with a set of density zero.

Proof. Since X is Noetherian (why?), ¢ continuous and Y is closed, it follows from Theorem

161 O

Corollary 19.7 (Bézivin-Methfessel theorem). Let F(z) := Y. f(n)z" € C|[z]] and suppose
that F(x) satisfies a non-trivial differential equation of the form

sz JFO(z) = Q(w),

where P;,Q € Clx]. Then {n € NO : f(n) = 0} is a finite union of arithmetic progressions
along with a set of density zero.

Proof. Note that there exists r > 1 and polynomials ho(z),. .., h.(z) such that

ho(n)f(n) +hi(n)f(n—1)+ -+ hy(n)f(n —r) =0
for all sufficiently large n with ho(z) #Z 0. So for all sufficiently large n, we have ho(n) # 0,
hence

f(n) =¢i(n)f(n=1) + -+ ¢(n) f(n—7),

where

Consider the map

o= ((f(n=1),f(n—=2)...,f(n—7),n) € AL = (f(n), f(n—1),.... f(n—r+1),n+1)
Consider
@ AT s AT
with
(t, ..yt z) = (@)t + -+ dp(@)ly by, o g, o+ 1),
Then ¢ is regular at all points where ho(x) # 0 (i.e., in an open set A” x (A'\ V(hg) = 0) =:
U).
)Let
V= {(t1,ta, ..., t,,x) € AT " (t1, by, ...t x) € UVn >0}
Then V C A™! is a Noetherian topological space with the subspace topology. Notice
also that ¢(V) C V is continuous. Note also that There exists ng so that a« = (f(no —
1),..., f(ng —7r),ng) € V. Then

M) =" (f(no—1),..., f(no —1),n0) :37(f(no+n— D,....f(no+n—r),nog+r),



and that ¢"(a) € Y < f(ng+n—1) = 0. By the theorem for Noetherian topological spaces,
{neNy:¢"a) e Y} ={neNy: f(n+mny—1) = 0} is a finite union of arithmetic
progressions along with a set of density zero. Hence {n € Ny : f(n) = 0} is a finite union of
arithmetic progressions along with a set of density zero. 0

20. NOVEMBER 3: BEGINNING OF PHASE IV
20.1. p-adic functions.

Remark 24. When doing p-adic analysis, it is often better to use (g), (f), (;), - (2), e
as a basis for polynomials. Mahler was the first one to notice this. This basis is useful in
proving the following lemma.

Lemma 20.1 (Pdlya-Szego lemma). Let
d

flo) =) ax' € Qlal,

i=0
and suffuse that f(n) € Z for allm € Z. Then dla; € Z for all i.
Proof. We use {(g), c (2)} as a Q-basis for the polynomials in Q[z] of degree < d. Then

d
there exist by, . ..,bs € Q such that f(z) = b;(%).
i=0

Claim. If f(n) € Z for all n, then b; € Z for all i.

Proof of Claim. Notice that
f0)=0by € Z
fQ)y=by+b €Z
f(2)=by+201+by €Z=by€Z

By induction, we have b; € Z for all : = 0,1, ..., d. O

Observe that
f(z) :b0+bl<f> +-"+bd<2),

d x
d\f(z) = ;bid!(i) € Zz],
so the result follows. dJ
20.2. Mahler series.
Definition 20.2. We say that a series

f(z) = iai (j)

=0

and that i!(%) € Z[z]. So

)

with a; € Q, and |a;|, — 0 as i — oo is a Mahler series.
38



Remark 25. Mahler series always converges on Z, and is continuous. To see why, consider
the following claim:

Claim. If z € Z, and 7 > 0, then (j) € Zy.

Proof. Consider the map ¢ : Z, — Q, defined as g(z) := (f) Notice that if n € Z, then
g(n) = w € Z. Thus g|z : Z — Z,. Since g is continuous, g~ *(Z,) is closed, as
Zy,={x € Q,:|z|, <1} is closed. And it contains Z, which is dense in Z,. It follows that
g *Z,) =7Z,) and so g : Z, — Z,. Observe then if

f(z) = iai(j>,\ai’p —0

1=0

r=Ya(})

7

and we define

which is continuous, then for z € Z,, we have

o0
z
10 501 =| 2 )| < maxal, 0
i=n+1
as n — 00. So f(z) is continuous since f,, — f uniformly, and each f,, is continuous. O

Strikingly, the converse holds also:

Theorem 20.3 (Mahler). If f : Z, — Q, is continuous, then there exist a; € Q, with i >0
with |a;|, — 0 such that

fz) = éa (j)

Definition 20.4. Let %, be all the continuous maps f : Z, — Q,. Then the forward
difference operator on continuous functions A : 6, — €, is defined as A(f(2)) = f(z +1) —

f(z).
Suppose that
- z
f(z) = ;ai (Z)
is a Mahler series. What is Af(z)? A(f(2)) = f(z+1)— f(2) =0+ a4 (S) +a2(i) +---. In

particular,

ANf(z) = an + ang (i) + an+2 <;) + -
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Thus, we observe that A" f(2)|,—0 = a,. It will be useful to have another expression for
A f(z):

Af(z) = f(2)

Alf(z) = flz+1) = f(2)

A*f(z) = f(z+2) = 2f(z + 1) + f(2)

Lemma 20.5. If k > d, then

Ny Jdl ifk=d
0 ifk>d

Proof (sketch). We prove by induction. If d = 1, then Az =1=1land A’z =1-1=0. If
true for d < m, then

A" = A" AZ™) = A" (z + D)™ = 2™) = A™ Y (mz™ ! + lower degree terms)
= mA™ 12" A™ 7 (polynomial of degree < m — 2) = m. O

=0
The following is one application of forward differential operators:
Theorem 20.6 (Fermat’s little theorem). For any a € Ny, a? = a (mod p) for all primes
.
Proof (Euler). If a = 0, then the claim is immediate. If the identity holds for a = 0,1, ..., m,
then

p—1

(p) m”_i> +1=mP+1 (mod p)
i

=m+1 (mod p),

=1

(m+1)p:m”+<

by the inductive hypothesis. 0
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Theorem 20.7 (Wilson’s theorem). p is a prime if and only if (p — 1)! = —1 (mod p).

Proof (Euler). Notice that
-1

== ot =Y (p ; 1) (~1pP e i,

i=0
which is constant for all z € Z. In particular, this holds when z = 0:

(p—1)! = pi (p E 1) (L1t

S e

)(—1) =1 (mod p),

as required. [l

i
|
7 N
’U
e}
—_

21. NOVEMBER 5
Let -
z
=Y ()

with a,, € Q,, |an|, — 0. Then f: Z, — Q, is continuous.

Theorem 21.1. If f : Z, — Q, is continuous then there exists a,, € Q, with |a,|, — 0 such

that f(z) = Zan( ) for alleZ

Lemma 21.2 (“Modulo”ﬂ lemma). Let f:Z, — Q, be continuous. Then

3 (T?)fo)(—l)“j

=0 \J

— 0 asn — oo.

[(A™(F)O)], =

p

Proof of Theorem (“modulo” /assuming the lemma). Let a,, = A™(f)(0) and let

g(z) = i a; (j)

=0

Iprofessor Bell couldn’t think of any other way to express ”assuming the lemma” so he used modulo
instead, which is arguably awkward. We settled with “assuming the lemma” or “modulo the proof of the
lemma”, but this whole incident was amusing enough to warrant a mention here!
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Then the above series is a Mahler series because |a;|, — 0 as i — co. Then

2) = a7,

Thus A"(g)(0) = an, = A™(f)(0).
Claim. g(j) = f(j) for all j € N.

Proof of Claim. g(0) = ay = A°(f)(0) = f(0). Thus the claim holds for j = 0. Assume now
that g(j) = f(j) for all 0 < j <n —1. Then

> (M)t = a0 = a0 = 3 (*) s

=0 \J =0 \J

(o () s

)g<j><—1>"f T f(n) — g(n).

By inductive hypothesis,

Z (") st

Il
. 3
3 ||M\
L

n
o \J

J

Therefore f(n) = g(n), as required. O

By assumption, f,g : Z, — Q, are continuous. Let h := f — ¢ is continuous and is zero
on all Ny, so it is zero on Ny = Z,. Thus h =0 so f = g, as desired. U

Proof of the “modulo” lemma (Lemma . Since Z, is compact and f continuous, there
exists a maximum, say, M := max |f(2)].
2&Lp

Claim. For all d > 0, there exists Ny € N such that
M
A" f(2)] < o for all z € Z,
whenever n > Nj.
Proof of the claim. . If d = 0, take Ny = 0, since

> (1) st )

=0

G,

——
€7,<1

A" f(2)]p =

< max
0<j<n

|f<z+j)|p < M.
—_———

Just for fun, let’s take a look at the d = 1 case. We need a right N; € N so that |A” f(2)], <

M/p for all n > Ny,z € Z,. Since f is continuous, we have that, for m > 1, such that
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|f(z4+p™)— f(2)|, < Mp~! for all z € Z,. This is uniformly continuous, since any continuous
function over a compact space is necessarily uniformly continuous. Let

o) = o) = 3 () (-1 s )
= fle+ )+ 07 + X (U )0 )

J=1

So
9(2)|, < max <|f(z + ")+ (=1 F(2)]y, {‘ (p;”)

{M M} M
<max<{—,...,— p = —.
p p p

By the argument we did in the d = 0 case, we have

[A™(g(2)]p = [A™P" (f(2))], <

for all n > 0,2 € Z, So we can take N; = p™ for d = 1.
Now, in general, if we have produced an N, for some d, we may let h(z) = ANef(z). Then

|h(2)], < M/p? for all z € Z,. So now we can do d = 1 case on h(z): we know there exists
Ni € N such that

Pt )y = 1,2,...,pm_1})

p

M
p

M/pd M
p _pd+1

|A™h(z)], <
for all z € Z,, N > Nj. But A"h = A"V f 50
M
’Anf(2)|p < F for all n > Ny + N{ =: Nd+1.

The result follows by induction. O
Now that we proved the claim, the lemma follows also. 0
Remark 26. Quick aside remark on Ruzsa’s conjecture:

Conjecture (Ruzsa’s conjecture). Let f : Z — 7 have the property that for every prime p and
every n € Z, we have f(n+p) = f(n) (mod p). Suppose also that there exists o € (0,1)
such that

|f(n)] < exp(aln])
for all sufficiently large n. Then f(n) is a polynomial in n.

Ruzsa proved this for all |f(n)| < C(e — 1)l for all sufficiently large n. This proof uses
the forward differential operator. First, observe that if n > p then p | A™f(0), since

A fn) = 3 (p) (—1)" f(n+p) = f(n+p)— f(m) =0 (mod p).

=0 \J
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So for all m > p, A" f(n) =0 (mod p). If n > p, then p | A" f(0), and in particular,

[Ir1amr(0)

p<n
for all n > 2. But

A= S (j)(— Y= 1)
£ G-
ng(lJr(e—l)l < e-)

for all sufficiently large n. Since

log<Hp> ~mn asn — oo

p<n

(the prime number theorem), and since log(|A” f(0)| 4 1) < (1 — §)n for all sufficiently large
n, it follows (think about it!) A™f(0) = 0 for all sufficiently large n. Therefore (think about
it no. 2!), f(n) is a polynomial.

The following result by Umberto Zannier is the best result so far:

Theorem 21.3 (Zannier). Ruzsa’s conjecture holds for all |f(n)| < 2.117" for all sufficiently
large |n|.

22. NOVEMBER 7

Recall that we proved the following last class:
e Every continuous f : Z, — Q, is a Mahler series.
e Not every continuous function f : Z, — Q, is analytic.
We would like a criterion that tells us when a Mahler series is analytic.

Proposition 22.1. Suppose that
z
F(z) = E
n>0

satisfies |%|, — 0 as n — oo. Then F(z) is p-adic analytic.
Proof. Let
Fn(z):z (> ZCJ”ZJ (¢jn) € Qp)
=0
= cjn?’ Where cjn = 0 for all j > n.
So we have
2 an
Fun() = Fu(e) = onnn (31 ) = £ (= D=2 (=),

n+1 n+ 1)\ ~
€Z[7]
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Observe also that ](Z’jll), |, — 0. This is also equal to

[ee] [ee] o0
E Cjnt+12’ — E Cjn? = E (Cima1 — i) 7
=0 =0 =0

Qp+1

(n+1)!

for all n, j
P

= [Cjns1 — Cjnl <

Since

An41
(n+1)!
we have that for fixed j, {¢;,}n>0 is a Cauchy sequence. By completeness, one can find
b; € Q, such that c;,, — b; as n — oo. Also, given € > 0, there exists N such that
|cjn —bj|, <eforalln>N,j>0.

Let G(z) := Y b;27. Two claims, which will finish the proof of this proposition:

— 0,
p

Claim. G(z) is p-adic analytic, i.e., |b;|, — 0. Moreover, G(z) = F(z).

Proof of the claim. For the first claim, we start with arbitrary ¢ > 0. Then there exists
N = N(e) such that

lcjn — bs] < g foralln > N,j > 0.

In particular, if j > N, we take n = N so that
£

€ .
5 :>|bj|p<§for all j > N.

|cj v = bjlp <
Thus [b;|, — 0, as required.
As for the second part, since F'(2) is continuous and |a, |, — 0, we know that F,(z) — F(2)
uniformly on Z,. Also,

G(2) = Fo(2) = Y (b — ¢jn)?,
=0
and c¢;, — b; uniformly, so F,(z) — G(z) uniformly. Thus G = F, as desired. O
Thus, the claim follows. 0

Remark 27 (On Poonen’s interpolation theorem). Consider the map f : Z¢ — Z¢ and
a = (01(0),...,2(0)) € Z¢ such that f"(a) = (e1(n),...,aa(n)) € Z% Then Poonen’s
interpolation theorem states that under certain conditions (to be clarified later) there exist
91,92, - -, 9a : L, = Z, all of which are p-adic analytic such that «;(n) = g;(n) for all n € Ny.

Definition 22.2. Let p be prime. We define the Tate algebra
Zp<$1,.’172, s 7xd> - Zp[[a:lwr% R ,ZL’dH

as the set of convergent power series on Zg, ie.,

d
_ i1 id . : :
Lp(21,...,2q) = { E iy gy Ty Ciy iy € Ly Vv, . day |Ciy iyl — 0 as g c; — oo}

i150yiq>0 i=1
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Theorem 22.3 (Poonen’s interpolation theorem (2013)). Letp > 3. If f1,..., fa € Z,(x1, ..
satisfy

filz1,...,xq) =2; (mod p),
or equivalently,

where
. e pZP (.j17"'7ji*17ji7jl'17"‘7jd>#(07"'7071707"'70)
Hendd 1+ pZ, otherwise ‘
Then we can make a map F : Zg — Zg defined by (o, ..., aq) — (filaq, ... aq), ..., faloq, ...

If (B, ..., 0Bq) € Zg, thenthere exists p-adic analytic maps g1, g2, - - ., ga Such that

(91(n), ..., gu(d)) = F" (1, ... Ba)-
Proof. Let R = Z,(x1,...,24). We shall construct a map A : R* — R? by A(hy, ..., hq) =
(hoF,....hgo F) — (hy,ha,- .., ha).
Claim. A : R* — (pR)%.
Proof. Note that

A(hl,..., ):( (fh-~-7fd>7---7hd<f17~--7fd))_<h17~--;hd)
= (hi(w1 +pgr, -+ 2 +pga)s - - - ha(wr +pgr, .., va+pga))  (11)
— (hi(z1, . xq), s ha(ze, .o xq)).

Since h;(z1 + pgi1, ... x4 + pga) — hi(x1,...,24) = 0 (mod p) for all i, we have (11) = 0
(mod (pR)).

In general, we see that A™ : RY — (p™R)?, since we can pull out powers of p as we
continuously apply A. O

Poonen’s trick goes as follows: let

ZAJ T )(j)

€(pi R)4

= (elj(xl,...,xd),...,edj(xl,...,xd))<z,),

=0 J

where (01}, . ..,04) = A (zy,...,24) € (P R)?. Note that G depends on 1, ..., 24 and 2. So
we will write G(z) = G(x1,...,x4;2). And let (B1,...,08q4) € Zg, and consider

(.

)= 3 O a0 0)

<.

Now define

-0
Then (¢1(2),...,94(2)) = G(B4, ..., Ba; z) We remain to prove these claims (proving them
next class):
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e g;(2z)’s are p-adic analytic
o (Gi(n),. ., ga(n) = F"(By, .., Ba) for all n > 0.
To be continued next Monday... 0

23. NOVEMBER 10

Starting from where we left off:

Claim. We are done once we prove the following two claims:
e g;(2)’s are p-adic analytic
e (gi(n),...,ga(n)) = F™(p1,...,Baq) for all n > 0.

Proof. Recall that

o
z
i\%) = Oin
()= 0
and by our criterion, it is enough to show that
ein

n!

p

as n — oo. Note that 0;, € p"Z,, so |0;,|, < p~". Since

]n‘|p = pi L%JflﬁJf'" — p—ﬁ—FO(logp n)’
it follows that
ein

n!

_ pfn+ﬁ+0(logp n) =0

p

as n — oo (and note that we assume p > 3).
So this proves the first claim. For the second one, since we have

0o ' 5
G(l’l,.ﬁﬂg,...,xd;Z) = ZAJ(mla"'axd)(j>a
=0

so when z = n,

G(z1,x9,...,2q;m) = ZAj(xl,...,xd) (n)
=0

J
Let I : R* — R? be the identity operator. Then we have
Glor, o . 2aim) :ZN<z1,...,md>( )
=0 J
=T+ A)"(xq,...,x4q).
Since A(hy,...,hg) = (hio F,...,hgo F) — (hy, ha, ..., hq), we have (I + A(hy,..., hg) =
(hio F,... hqo F). Therefore, by induction,
(I+A)n(x17 .. 7xd)|(l‘1 ..... zq)=(B1,--,B4) — (1’1 ana S 7$dan)(61a o 76(1) - Fn(ﬁlv SR 7/6d)7

as required. O
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We claim that this gives SML. To see why, let’s start with f : Ny — K (assume char K =
0). This satisfies a linear recurrence over K. Then we know there exist w,v € K¢, A € My(K)
such that f(n) = w? A" for all sufficiently large n. However, what is not as well-known is
the fact that we can assume that A is invertible.

Why we can assume A to be invertible (sketch). Suppose n > 0 and v, = A™v € K% Let
W, = spang{v,, Vpt1,...}. Since K% D Wy D Wy D -+, so there exists m so that W :=
W, = W1 = - -+ by the Noetherian property.

Remark 28. First, we have A(W) C W, and Aly : W — W is surjective. In particular, Al
is invertible.

Suppose = := v,, € W and B := A|y. Then B"z = A™,, = Vpyn € W. Now w? A" =
wlv, = f(n) for all sufficiently large n. Consider g : W — K such that g(y) = w’y. Then
there exists z € W such that w’ A™v,, = 2z B"z. Let «I = 2T B~™, which is well-defined
since B is invertible. Then v’ B"z = 2T B™™B"x = 2" B" ™z = f(n) for all sufficiently
large n, as required. [l

Now we are ready to apply Poonen’s interpolation theorem (Theorem [22.3)) to prove SML.

Proof of SML with PIT. Let f : Ng — K satisfy a linear recurrence over K. Then there
exists d > 1 so that w,v € K% A € GL4(K) such that f(n) = w? A" for all sufficientl
ylarge n. Write
b1 C1
w= | : [,v=1| : |,
ba Cd
with A :=det(A4) € K.

Step 1. Let Ky := Q(by,...,b4,c1,...,¢q,a;5), a finitely-generated extension of Q. By
Lech’s embedding theorem, there exists p > 3 such that Ky < Q, such that by, ...,bg4,c1, ..., cq,
aij, A, AT are sent to Z,.

Step 2. We now regard v,w € Z7 and A € GLg(Z,) because A € Z?). So we think of

A Z;l — Z;l, as a linear and invertible map.
Step 3. Notice that if we reduce mod p, we get

A . md d
A.]Fp—>IFp.

We still have linearity — but we also have invertibility because A € Z%. Thus A € GL4(F,).
Since | GL4(F,)| < oo, there exists N > 1 so that AV =€ GL4(F,). Hence AN =1
(mod p), so AN(z1,...,2q) = (71,...,24) (mod p). So if we let fi, fo,..., fa be linear
forms in zy,..., 24 such that AV (zy,...,24) = (fi(z1,...,24q),..., fa(x1,...,24)). Then
fi(x1,...,2q) = 2; (mod p) Thus we can let AN = F in Theorem

Step 4. Let ¢ € {0,1,..., N — 1}. Let

B C1
| =Av=A"| | €Z
Ba Cd
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Then

AN () = AN A = (AN |2 | = F™(B- .., Ba)
Ba
By Theorem there exist g1,...,9a © Z, — Z, analytic so that F"(Bi,...,84) =
(91(n), -, ga(n)). So
b d
FINn+d) = wT ANy = T Fn(By . By = [ by -+ by ]| : :Zbigi(n).
Ba =1
M. Let

h(z) = Z bigi(2).

Notice that for all sufficiently large n, we have h(n) =0 < f(Nn +i) = 0. By Strassman’s
theorem, either h(z) = 0 or it has finitely many zeros in Z,. Thus, we can conclude that

either f(Nn + ¢) = 0 for all sufficiently large n or there can only exist finitely many n for
which f(Nn+¢) = 0. SML now follows. O

24. DYNAMICAL MORDELL-LANG CONJECTURE

Definition 24.1. Let X be a quasi-projective variety over C. We will say that X is an
algebraic group if X is a group such that M : X x X — X defined as (z,y) — xy and
i: X — X defined as  — 2! are morphisms.

Example 24.2. C* = A'\ {0} is an algebraic group. And note that

AT\ {0} = V(zy —1=0) C AZ,
and such group is called an affine algebraic group. More generally, (C*)™ is an affine algebraic
group.

Ezxample 24.3 (Elliptic curves). Elliptic curves are projective algebraic groups, and in par-
ticular are examples of abelian varieties

Definition 24.4. An abelian variety A is a projective, connected algebraic group. To put it
another way, abelian varieties are complete connected algebraic groups. Note that X closed
implies that 7 : X XY — Y is a closed map for all varieties Y.

Ezample 24.5. GL,(C) € A" \ V(A = 0), where
A(xll; v 7‘7;7177,) = Z Sgn(0)$10(1)$20(2) © Tng(n)-
O’GSn

Then GL,(C) is an affine algebraic group, and GL,(C) 2 V(At = 1) C A" x Al.

Fact 1 (Important fact). Any affine algebraic group is linear, i.e., isomorphic to a Zariski-
closed subgroup of some GL,(C).

Fact 2. If G is an algebraic group and N is a normal and closed subgroup of G, then G/N
can be given the structure of an algebraic group.
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Ezxample 24.6. Let G = GL,,(C), and let

a

7 = , LaeCr ) =C.

Then G/Z = PGL,(C).

Theorem 24.7 (Chevalley’s structure theorem). Let G be a connected algebraic group over
C. Then there exists a unique normal (or characteristic) closed affine algebraic subgroup N
such that G/N s an abelian variety, i.e., the sequence

1= N—-G—-A-=0

(N affine, hence linear; and A abelian variety, hence an abelian group under addition) is
exact.

Definition 24.8. G is a semi-abelian variety if
0= (C)N"—-G—>A—=0

is an exact sequence. We remark also that G is an abelian group, and that (C*)" is an affine
algebraic variety.

Definition 24.9. The collection of constructible sets of subsets of Y denote the smallest
collection of subsets of Y containing open sets closed under finite unions and complements.

Theorem 24.10. If X and Y are quasi-projective varieties and f : X — 'Y is a morphism,
then f(X) is constructible.

24.1. Group actions.

Remark 29. If G is an algebraic group and X is a quasi-projective variety, then f : GxX — X
defined as f(g,z) = g - x is a group action if f is a a morphism and e - © = x for all x, and
we have (gh)x = g(hx) for all g,h € G,z € X.

24.2. On Mordell-Lang conjecture.

Theorem 24.11 (Vojta-Faltings-Hrushovski-Buium-Voloch, et al.). Let G be a semi-abelian
variety over C, and let T' < G be a finitely-generated (abelian)subgroup and let Y C G be
Zariski-closed. Then

YL =+ V),
i=1
and there exists r > 0 such that Ny,..., N, CI' and y; + N;’s are cosets of Nj.

Proof. Beyond the scope of this course. O

Corollary 24.12. Let X be an irreducible, smooth projective curve defined over a number
field F' (finite-degree extension over Q). Then if K is a finite-degree extension over F and
the genus of X is at least 2, then #X(K) is finite, where X(K) = P*"(K) N X. Note that
there is an inclusion map X — PO P"(K) = {[ag: -+ ay] : ag,...,a, € K}).

Definition 24.13. Let X be an irreducible projective surge. Then a point z € X is smooth

if Ox . is a principal ideal domain (PID). If every x € X is smooth, then X is smooth.
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In general, if X is irreducible with dimension d and = € X is smooth, then dim; M x ./ M%M =
d, where k = Ox ,/ Mx 5.

Definition 24.14. Let X be an irreducible smooth curve over C. A divisor on X is a formal
(finite) Z-linear combination of points of X

Div(X) = {Z nplp] : ny € Z,n, = 0 for all but finitely many p} .

peX

If f e C(X)= Oxx then we can talk about zeroes and poles of f. If 2 € X then we can
view C(X) = Frac(Ox ) (Ox. is a PID), so Mx, = (7). Then we can write f = 7m°u with
s € ZL,u € Ox,.

Definition 24.15. If s > 0, then we say f has a zero of order s at x. If s < 0, then we say
f has a pole of order —s at z, and from now on define v,(f) = s.

25. NOVEMBER 14: PRE-DYNAMICAL MORDELL-LANG

Let X be an irreducible smooth projective curve. Recall that we defined Div(X) to be the
set of all (formal) Z-linear combinations of [P], where P € X. If f € C(X)* = Frac(Ox)
(note that Ox . 2 Mx, = (), and f = 7m°u with u € O% ,, define v,(f) = s. Then
Define

div(f) =Y _ v(f)P),

Pex
which is a finite sum. By we have div(fg) = div(f) + div(g) and div(1/f) = — div(f).
In particular, div : C(X)* — Div(X).
Definition 25.1. ClI(X) := Div(X)/div(C(X)*).
Ezample 25.2. C1(P') 2 Z via an isomorphism Y n,[p] — > n,.

Ezample 25.3. For curves, we have a surjective map deg : Cl(X) — Z, and we define
ker(deg) =: C1°(X). Then the following sequence is a short exact sequence:

0— CI°(X) = Cl(X) = Z — 0.
Proposition 25.4. CIO(X) 1s an abelian variety of dimension g, where g is a genus of X.
The inclusion map X < P" is defined over a number field K. If @ € X(L), where L is
an infinite-degree extension over K. Then the map X — C1°(X) defined by P + [P] — [Q)]
—
deg0
induces(?) an inclusion map X (L) < CI°(X)(L).

Theorem 25.5 (Mordell-Weil-Lang-Néron theorem). Let A be an abelian variety (defined
over K, some finitely-generated extension of Q). Let L be a finitely-generated extension of
k. Then A(L) form a finitely-generated abelian group.

Theorem 25.6 (Faltings’ theorem). X is irreducible smooth projective curve of genus > 2.
Then #X(K) < 0o, where K is a finitely-generated extension over Q.
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Proof. There is an inclusion map from X to A, and pick a K-finitely-generated extension L
so that X has an L-point. Then X (L) < A(L) is an inclusion map also, and A(L) is an
abelian group. If i : X — A then Y :=i(X) C A, and let ' = A(L). Then by Mordell-Lang,

we have

X(L)ycTnY =|Jz+ M),
i=1
so it is enough to show that all N;’s are finite.

Suppose that some |N;| = oo. Without loss of generality, let |N;| = oo. Then since
z1+ Ny CI'NY it follows that Y O z; + N;. Then we have X £ Y £ Y — z; O N;.
If Z:=Y —2 = X then Z D Ny, hence Z O Ny, and N is contained in A. If F is a
connected component of identity of Ny, then Z O E. Then we have an inclusion map from
t: F — Z = X, where F is an irreducible elliptic curve of genus 1 and X is an irreducible
smooth curve of genus g > 2. This is a contradiction, by Riemann-Hurwitz (whatever that
theorem is...). O

26. NOVEMBER 14: DYNAMICAL MORDELL-LANG

Suppose that X is an abelian variety over C, and let

FZ( itlagétla"'7g7:~t1>gXa

with Y C X closed. Then by Mordell-Lang, we have 'NY = |J(z; + N;).

=1
Remark 30. Each g € X gives a translation automorphism
Ty X = X
with 7,(z) = g + 2. Note that 74 o 74(x) = —g + g + v = x. Notice that I' corresponds to

an abelian subgroup
H = (r ...,7‘;;1> C Aut(X).

g1’

Definition 26.1. Given a quasi-projective variety X, with H < Aut(X) and = € X, we
define the orbit of v under H

H, ={¢(x):pec H} C X.
If we go back to the abelian variety case X with x = O, and H = (7,,,...,7,), we have

H%Z{Tgiong:(O)ZluazTEZ}

:{ilgl+"'+irgrZil,...,irEZ}:F.

Therefore,

UnNae={Jz+N)=TnY =(H-z)nY,
=1 =1

where N; = (th :h e N;) CH.
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Conjecture (Dynamical Mordell-Lang: the first attempt). Let X be an irreducible complex
quasi-projective variety, and let H C Aut(X) be a finitely-generated abelian subgroup with
ze X andY C X closed. Then

HzxnNnY = Z 7 N;x
i=1
with N; < H and 1; € H.
Unfortunately, this conjecture is false!

Ezample 26.2. Let X = A? and o(z,y) = (x+1,y) and 7(z,y) = (x,2y). Then Z* = (0, 7) C
Aut(A?). If we let z = (0,1) and H = (o, 7) with Y = A = V(y = 2) C A?, then the orbit
Hzx = {(a,2") : a,b € Z},

SO

HrxnY ={(2"2%:b>0}.
In particular,

HznY = {c¥7"(x) : b > 0},
which is an infinite set. If it contains some uNz with N < H = Z% and N D (o°7%) and
p = o°t’. Soif it contains pNx with N infinite, then there exist ¢, d, e, f with (c,d) # (0, 0)
such that it contains

(ot M) (@) = (e + e, 277) > 0),

and these cannot all be on Y.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, 200 UNIVERSITY AVENUE WEST,
WATERLOO, ON, CANADA N2L 3G1
E-mail address: hsyangQuwaterloo.ca

53



	1. September 15
	2. September 17
	2.1. Strategy for the embedding

	3. September 19
	4. September 22
	4.1. Infinite series in Qp

	5. September 24: Skolem-Mahler-Lech and Dirksen's proof on the characteristic p case
	6. September 26: Positive characteristic case
	7. September 29
	8. October 01
	9. October 3
	10. October 6
	10.1. Derksen's refinement

	11. October 8
	12. October 10
	13. October 15
	14. October 17
	15. October 20
	16. October 22
	17. October 27: Beginning of Phase IV – algebraic geometry?
	18. October 29
	19. Happy Halloween!
	20. November 3: Beginning of Phase IV
	20.1. p-adic functions
	20.2. Mahler series

	21. November 5
	22. November 7
	23. November 10
	24. Dynamical Mordell-Lang Conjecture
	24.1. Group actions
	24.2. On Mordell-Lang conjecture

	25. November 14: pre-Dynamical Mordell-Lang
	26. November 14: Dynamical Mordell-Lang

