
MATH CGT: CATALAN NUMBERS AND GRAPH THEORY

HEESUNG YANG

Abstract. This notes covers Chapters 8.1 and most of Chapters 11 and 12 of Brualdi’s
Introductory Combinatorics, 5th edition, the chapters that are part of Dalhousie’s combina-
torics comprehensive exam syllabus but was not covered in MATH 5370.

1. Chapter 11.1: Basic properties of graphs

Definition 1.1. A graph (or simple graph) G = (V,E) is an object consisting of two types
of objects:

• a finite set called vertices V = {a, b, c, . . . }, and
• a set E of pairs of distinct vertices called edges.

The order of the graph G is |V |, i.e., the number n of vertices in the set V .

Definition 1.2. Suppose that α = {x, y} = {y, x} ∈ E (i.e., α is an edge of G). Then we
say that x and y are adjacent (or α joins x and y). Then x and y are the vertices of the edge
α. In this case, x and α are said to be incident. Similarly, y and α are also incident.

Definition 1.3. A curve is simple if the curve is not self-intersecting.

Remark. We can view graphs geometrically. Geometrically speaking, for any point x and a
distinct point y, we only connect those two points with a simple curve.

Our current definition of graphs is rather restrictive in the sense that a pair of vertices can
only form one edge, so a new definition is required to loosen this restriction.

Definition 1.4. G = (V,E) is a multigraph is a graph whose pair of vertices may form more
than one edge.

Remark. If G is a multigraph, then E is a multi-set, since there are more than one {x, y}
whenever x and y have more than one edge.

Definition 1.5. Suppose that G = (V,E) is a multigraph, and that x, y ∈ V . If there are
m edges incident to x and y, then m is called the multiplicity of an edge α = {x, y}; we
write m{x, y} to indicate how many edges there are between x and y in E. If x = y, then
the edges become of the form {x, x}. Such edges are called loops, A multigraph where loops
are allowed is called a general graph.
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Definition 1.6. A graph of order n is called complete if every pair of distinct vertices
forms an edge, and we denote such graph Kn. Therefore any complete graph of order n has(
n
2

)
= n(n − 1)/2 edges. Conversely, if a graph of order n has no edges, then such graph is

called the null graph of order n, and it is denoted by Nn.

Before introducing a particular type of graph, we will draw a few complete graphs (say,
K1, K2, K3, K4, K5).

It is not hard to see that, up to n = 4, it is possible to draw them so that Kn has no
overlapping edges (i.e., no two edges cross each other upon drawing them at a point that
is not a vertex). However, there are always at least overlapping edges for K5. We will
categorically define a sub-class of graphs that have no such overlapping edges.

Definition 1.7. A general graph G is planar if G can be geometrically represented so that
there are no two overlapping edges. Such drawing of G is said to be a planar graph, and that
graph is called a planar representation of G.

Example. Kn is planar if and only if n is one of 1, 2, 3, 4. For any n ≥ 5, Kn is not planar.

Recall that we defined the notion of multiplicity on the edges, based on how many edges
there are between a pair of vertices. We can also define a similar notion for each vertex.

Definition 1.8. The degree of a vertex x in a general graph G is the number of edges that
are incident with x, and we write deg(x). Any loop of x contributes 2 to deg(x). The list of
degrees of each vertex in a graph G in non-increasing order is called the degree sequence of
G.

Example. The degree sequence of Kn is (n− 1, n− 1, . . . , n− 1) (repeated n times).

Theorem 1.1. For any general graph G, the sum
∑
di of the degrees of all the vertices is

of G is always even. Consequently, the number of vertices of G with odd degree is even.

Proof. Every edge increases the degree by two – one for each of the two vertices that this
edge connects. Therefore the sum is always even, and this can happen only when the number
of “odd vertices” is even. �

Example. Consider handshaking at a party. One can represent the handshaking in a graph
format, by creating an edge between two vertices (guests) if two people shook hands (edges).
Applying the above theorem gives that the number of handshaking is always even, and that
there must be an even number of people who shook hands odd number of times.
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In abstract algebra, one of our main interests is examining structural similarities between
two mathematical objects. If they are structurally identical, then the two objects are said
to be isomorphic. Thus, it is natural to wonder if the two graphs that look seemingly
different geometrically are in fact the same, which prompts the notion of isomorphism in
graph-theoretic sense.

Definition 1.9. Let G = (V,E) and G′ = (V ′, E ′) be two general graphs. Then G and G′

are said to be isomorphic if there is a bijective map θ : V → V ′ so that for any x, y ∈ V ,
there are θ(x), θ(y) ∈ V ′ such that the number of edges joining x and y and the number of
edges joining θ(x) and θ(y) match. Such map θ is called an isomorphism of G and G′.

Just as in abstract algebra, to prove that the two graphs are isomorphic, one can display a
bijective map θ, and demonstrate that θ is an isomorphism. To show why two graphs are
not isomorphic, one can demonstrate a characteristic not shared by the two graph (e.g. one
graph has three vertices of degree 3, whereas the other only has two instead).

It should be noted that having the same degree sequence does not necessarily guarantee an
isomorphism. For instance, it is possible to construct two graphs of order 6 with degree
sequence (3, 3, 3, 3, 3, 3). Note that the left graph has a cycle of length 3, but the right graph
does not have any cycle of length 3.

Thus, we can conclude that any two isomorphic graphs must have the same degree sequence,
but its converse is false.

Definition 1.10. If G = (V,E) is a general graph, and this sequence consists of edges
{x0, x1}, {x1, x2}, . . . , {xn−1, xn} is a walk of length n, and this walk is said to join the vertices
x0 and xn. We denote the walk by x0 − x1 − · · · − xn−1 − xn. In particular, if x0 = xn, then
the walk is said to be closed ; otherwise, the walk is open. Suppose that each edge is distinct.
Then that walk is called a trail. Furthermore, if a walk has distinct vertices, then that walk
is a path. A closed path is said to be a cycle.

Definition 1.11. Any graph G is called connected if there is a walk from any two vertices
of G. Otherwise, G is disconnected. In other words, if G is disconnected, then there exists a
pair of vertices x and y where it is impossible to reach y from x (or vice versa). The length
of a shortest walk (hence a path) from x to y is called the distance between x and y and is
denoted by d(x, y).

Definition 1.12. Let G = (V,E) be a general graph, and H = (U, F ) where U ⊆ V and
F ⊆ E. Then H is a general subgraph of G. If F consists of all the edges whose endpoints
are the vertices from U , then H is a subgraph induced by U , and is denoted GU . If V = U ,
but F ⊆ E, then H is said to be a spanning subgraph of G. Suppose that V1, . . . , Vk form
a partition of V , and that GV1 , . . . , GVk

are all connected. Then each GVi
is a connected

component of G.
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Now we are ready to state necessary conditions for two general graphs to be isomorphic.

Theorem 1.2. If G and G′ are two general graphs, then the following need to hold in order
for G and G′ to be isomorphic.

(1) If G is a graph, then so is G′.

(2) If G is connected, so is G′. Also, G and G′ must have the same number of connected
components.

(3) If G has a cycle of length equal to some integer k, then so must G′.

(4) If G has an induced general subgraph which is Kn of order n, then so does G′.

Finally, we make a brief remark that any graph can be represented in matrix form, namely
with an adjacency matrix. Thus, if vi and vj are vertices of a graph G and are adjacent, then
in the (ij)-th entry of its adjacency matrix must have the number of edges between these
two vertices. Clearly, any adjacency matrix must be symmetric. Furthermore, if A and A′

are adjacency matrices of G and G′ respectively, then G and G′ are isomorphic if and only
if there is an invertible matrix D such that A′ = DAD−1.

2. Chapter 11.2: Eulerian trails

In this section, we will examine what condition(s) must a graph satisfy in order for one
to draw the entire graph without lifting a pencil. Specifically, we will prove that this can
be done if and only if every vertex has even degree (for a closed Eulerian trail to exist) or
exactly two of the vertices is of odd degree (for an open Eulerian trail to exist).

Definition 2.1. A trail of in a general graph is said to be Eulerian if that trail contains
every edge of G.

Lemma 2.1. Let G = (V,E) be a general graph, and assume that the degree of each vertex
is even. Then each edge of G belongs to a closed trail, and hence to a cycle.

Theorem 2.1. Let G be a connected general graph. Then G has a closed Eulerian trail if
and only if the degree of each vertex is even.

Proof. (⇐) Suppose every vertex of G has even degree; we will give a constructive proof.
Let G1 = (V,E1) = G. Pick some α1 ∈ E1, and by the previous lemma there is a closed trail
containing the edge α1. Let E2 = E1 \ F1, where F1 is the set of edges that belong to γ1.
Thus by the above lemma, removing the edges reduces the degree of each involved vertex by
even number. In conclusion, all vertices in G2 = (V,E2) are of even degree. Assuming that
E2 is non-empty, pick a vertex v1 which is part of γ1, and an edge α2 ∈ E2 which is incident
to v1. Again apply the above lemma to obtain a closed trail containing the edge α2. We can
now concatenate γ1 and γ2 to obtain a closed trail. First, start from α1, and travel through
γ1 until v1 is hit for the first time; now traverse through the closed trail γ2, and once the
trail arrives at v1 for the second time, travel through the remaining edges of γ1. Repeating
this algorithm until the graph Gk = (V,Ek) satisfies Ek = ∅ yields a closed Eulerian trail for
G.
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(⇒) Suppose that G has a closed Eulerian trail. Observe that from one edge, we visit a
vertex that is not a starting vertex, and then through another edge we leave that vertex.
As for the starting vertex, we leave at the beginning, but we arrive back at the end, which
concludes the trail (note it is still possible, however, for us to enter the vertex and then
leave the vertex in the middle of a trail, just like any other ordinary vertices after the initial
departure). Thus for any vertex v, two edges can be paired up: one used to visit v and one
used to leave v – hence, every vertex must have even degree. �

Theorem 2.2. Let G be a connected general graph. Then G has an open Eulerian trail if
and only if there are exactly two vertices u and v which is of odd degree. Particularly, every
open Eulerian trail joins u and v.

Proof. Recall that every general graph has even number of vertices of odd degree. Therefore
it suffices to argue that there cannot be more than two vertices of degree.

(⇐) Suppose that G = (V,E) has exactly two vertices of odd degree u and v. Then observe
that G′ = (V,E ∪ {{u, v}}) is a general graph where every vertex has even degree. Thus
there is a closed Eulerian trail starting from v with the starting edge {v, u}; call this Eulerian
trail γ. Then removing the initial edge {v, u} gives us an open Eulerian trail from u to v.

(⇒) Suppose that G = (V,E) has an open Eulerian trail. Observe that the observation on a
pair of edges for each non-starting and non-terminating vertex holds, so every vertex other
than the initiating vertex and the terminating vertex must be of even degree. Therefore,
an open Eulerian trail must start from u, an odd-degree vertex, and end at v, the other
odd-degree vertex. In order for every other vertex to be even except for u and v, it follows
that u and v must be adjacent. �

3. Chapter 11.3: Hamiltonian paths and cycles

Definition 3.1. Let G be a graph of order n. Then a cycle of G is a Hamiltonian cycle if
the cycle hits every single vertex in G (hence is of length n). A path is a Hamiltonian path
in G if it is a path hitting every single vertex in G (hence is of length n− 1).

Remark. It follows from the definition that every edge of a Hamiltonian path or a Hamiltonian
cycle is distinct. Furthermore, the existence of a Hamiltonian path or a Hamiltonian cycle
wholly depends on which pairs of vertices are adjacent, regardless of multiplicity. Hence, it
suffices to consider simple graphs only in this section.

Example. For any complete graph Kn, we see that there are n! Hamiltonian paths (just
permute the vertices v1, . . . , vn), and that there are (n − 1)! Hamiltonian cycles (circular
permutations of n vertices).

We first discuss one condition that guarantees a graph not to have a Hamiltonian cycle.

Definition 3.2. An edge of a connected graph G is called a bridge if the removal of that
edge renders the new graph disconnected. In other words, a bridge is an edge whose removal
creates more than one connected component.
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Theorem 3.1. A connected graph of order n ≥ 3 that has a bridge cannot have a Hamil-
tonian cycle.

Proof. Suppose that α = {x, y} is a bridge of a connected graphG. LetG′ = (V,E\{{x, y}}).
Then G′ has two connected components. Now suppose that G has a Hamiltonian cycle γ.
Then γ necessarily starts in one of the connected components in G′, eventually travels
through the vertices of the other connected component, and then come back to the first
connected component to complete the cycle. But this necessitates that γ travel the bridge
edge α twice, but this contradicts the fact that γ is a Hamiltonian cycle. �

Now we discuss a sufficient condition for a graph to have a Hamiltonian cycle.

Definition 3.3. Suppose G is a graph of order n. Then we say G has the Ore property if
for any pair of distinct non-adjacent vertices x and y, we have deg(x) + deg(y) ≥ n.

Lemma 3.1. Any disconnected graph G cannot satisfy the Ore property.

Proof. Suppose that G has more than one connected component. Then there is a partition
of the set of vertices, say U and W where |U | = r and |W | = s. Then each vertex from U
can have degree at most r− 1 and that from W at most s− 1. So if x ∈ U and y ∈ W , then
deg(x) + deg(y) ≤ (r − 1) + (s− 1) = (r + s)− 2 = n− 2 < n. We found a pair of vertices
not satisfying the Ore property. �

Theorem 3.2. Any connected graph G of order n satisfying the Ore property has a Hamil-
tonian cycle.

Corollary 3.1. A graph of order n ≥ 3 whose vertices have degree at least n/2 has a
Hamiltonian cycle.

Proof. The given condition automatically implies that a graph satisfies the Ore property. �

Theorem 3.3. A graph of order n in which the sum of the degrees of each pair of non-
adjacent vertices is at least n− 1 has a Hamiltonian path.

Proof. Exercise – tweak the algorithm used to prove that any graph with the Ore property
has a Hamiltonian cycle (see Brualdi, Theorem 11.3.2). �

4. Chapter 11.4: Bipartite multigraphs

Definition 4.1. Let G = (V,E) be a multigraph. Then G is bipartite if there is a bipartition
of vertices X and Y such that every edge in G connects one vertex in X to one vertex in Y .
Thus, any two vertices in the same bipartition are not adjacent. We call X the left vertices
and Y the right vertices.

Remark. It follows from the definition that no bipartite multigraph can contain loops. A
bipartite graph G is complete with bipartition X and Y if any vertex from X is adjacent to
each vertex in Y . The complete bipartite graph with m vertices in X and n vertices in Y is
denoted Km,n.
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Theorem 4.1. A multigraph is bipartite if and only if each of its cycle has even length.

Proof. It suffices to assume that G is connected; if G is not connected, then one can apply
the argument in this proof to each connected component of G.

(⇐) Suppose that each cycle of a connected graph G has even length. Let x be a vertex of
G, and let G be connected. Let X be a set of vertices whose distance from x is even; let Y
be a set of vertices whose distance from x is odd. We see that X and Y form a bipartition.
Clearly, X and Y are disjoint, so we only need to prove that no two vertices in the same set
can be adjacent. Suppose that a, b ∈ X, and that {a, b} is an edge. Then d(x, a) and d(x, b)
are both even. Suppose that α and β are walks of length d(x, a) and d(x, b) respectively. If
α and β have no common vertex other than x, then there is a cycle starting at x of length
d(x, a)+d(a, b)+d(b, x) = d(x, a)+1+d(b, x). Since d(x, a) and d(b, x) have the same parity,
it follows that d(x, a) + 1 + d(b, x) is odd, contradicting the assumption that any cycle of G
must have even length. Now suppose that α and β have at least one common vertex other
than x. Particularly, let z be the last common vertex of α and β. Break α into two parts:
α1 from x to z and α2 from z to a. Similarly, break β into two parts: β1 from x to z and
β2 from z to b. Thanks to the way z is chosen, there cannot be any common vertex besides
z between α2 and β2. We claim that the length of α1 and β1 need be the same. Suppose
otherwise – without loss of generality, suppose α1 is shorter than β1. If this is the case, then
concatenating α1 and β2 will create a shorter walk from x to b, and this contradicts the
minimality of β. Hence, the length of α2 and that of β2 must have the same parity. Note
that the concatenation of α2, {a, b}, and β2 form a cycle of odd length, which cannot happen.
Thus no two vertices from X can be adjacent, and the similar reasoning shows that no two
vertices from Y can be adjacent, as required.

(⇒) Suppose that a connected graph G is bipartite with bipartition X and Y ; let γ be a
cycle. Furthermore, without loss of generality, assume that γ starts from a vertex in X.
Then any walk γ alternates between X and Y , so any walk of odd length ends up at a vertex
in Y , and any walk of even length ends up at a vertex in X. Thus, any cycle of a bipartite
multigraph must be of even length. �

Theorem 4.2. Let G be a bipartite graph with bipartition X and Y . If |X| 6= |Y |, then G
does not have a Hamiltonian cycle. If |X| = |Y |, then G does not have a Hamiltonian cycle
beginning at a vertex X and ends at a vertex in X. If |X| and |Y | differ by at least 2, then
G cannot have a Hamiltonian path. If |X| = |Y | + 1, then G does not have a Hamiltonian
path that begins at X and ends at Y , or vice versa.

5. Chapters 11.5 & 11.7: Trees

Definition 5.1. A connected graph G is a tree if removing any one edge results in a discon-
nected graph. In other words, G is a tree if every edge of G is a bridge.

The remainder of this section is devoted to examining different ways of characterizing
trees.
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Theorem 5.1. A connected graph of order n has at least n − 1 edges. Moreover, for each
positive integer n, there exist connected graphs with exactly n− 1 edges. Removing any edge
from a connected graph of order n with exactly n− 1 edges leaves a disconnected graph, and
hence each edge is a bridge.

Proof. Start with n vertices but with no edge. Adding an edge decreases the number of
connected components by at most 1. If the two already connected vertices are connected,
then there is no reduction in the number of connected components; otherwise, the number
decreases by 1. Thus, in order to decrease the number of connected components from n to
1, there must be at least n− 1 edges in order for a graph of order n to be connected. �

In light of the following theorem, we obtain the first alternative characterization of trees.

Theorem 5.2. A connected graph G is a tree if and only if G has exactly n− 1 edges.

Proof. (⇐) This is immediate from the previous theorem.

(⇒) Suppose G is a tree of order n. We prove by induction on n. If n = 1, then G has
no edges, so is indeed a tree. Now suppose that the claim holds for all 1 ≤ k < n. Let
G be a tree of order n, and let α be an edge of G. Let G′ be the graph of G but with α
removed. Since G is a tree, removing α results in two connected components; say the two
connected components have k vertices and l vertices respectively. Then by the inductive
hypothesis, the two connected components have k − 1 and l − 1 edges, respectively. Hence,
G has (k − 1) + (l − 1) + 1 = (k + l) − 1. But then k + l = n, so G has n − 1 edges as
required. �

One can also characterize trees in terms of cycles. We first need to prove a lemma before
stating this characterization.

Lemma 5.1. If G is a connected graph with an edge α = {x, y}, then α is a bridge if and
only if there is no cycle of G containing α.

Proof. (⇒) Suppose that α is a bridge. Then G must consist of two connected components
that are only connected by α; so if there were to be a cycle including α, then the two
connected components must be held together by another edge in that cycle since a cycle
cannot have repeated edges. Therefore α cannot be contained in any cycle.

(⇐) Suppose that α is not a bridge. Then even when α is removed, the new graph still
remains connected. Therefore, for any x and y, there is a path in the new graph (hence in
the original graph), say x − · · · − y. Add α at the end, i.e., x − · · · − y − x; this creates a
cycle containing α, as desired. �
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Theorem 5.3. A connected graph G is a tree if and only if G has no cycles.

Proof. (⇒) Suppose that G is a tree, and let α be an edge of G. Since α is a bridge, it follows
that there is no cycle of G containing α. Since this applies to any edge in G, it follows that
G has no cycle.

(⇐) Suppose that G has no cycle. Then by the previous lemma, any edge is a bridge, so G
is a tree. �

Theorem 5.4. A graph G is a tree if and only if every pair of distinct vertices x and y is
joined by a unique path. This path is necessarily a path of length d(x, y), i.e., it is a shortest
path.

Proof. (⇒) Suppose G is a tree. Then G is connected, so for any x and y there is a path
connecting the two vertices. Suppose that there is more than one path connecting x and y.
Then there is some u, the first vertex in which the two paths begin to diverge; let v be first
vertex in which the two diverging walks meet together again. Then there are two distinct
paths from u to v, so concatenating these two paths gives us a cycle, which contradicts the
fact that G is a tree. Thus there can only be one path from x to y.

(⇐) Suppose that any two vertices are joined by a unique path, which implies that G is
connected. Since there is only one path from any two points, there cannot be any cycle.
(Otherwise, this will imply that these two points are joined by more than one paths, which
is a contradiction.) Therefore G is a tree. �

We summarize all the equivalent characterizations of trees.

Theorem 5.5. The following statements are equivalent.

(i) G is a tree.
(ii) G is a connected graph with exactly n− 1 edges.

(iii) G is a connected graph that has no cycles.
(iv) G is a graph such that every pair of vertices x and y of G is joined by a unique path.

Now we look at some properties of trees.

Definition 5.2. A pendent vertex (or a leaf ) of G is a vertex whose degree is equal to 1.
The unique edge incident to a leaf is called a pendent edge.

Theorem 5.6. Let G be a tree of order n ≥ 2. Then G has at least two leaves.

Proof. Since there are n−1 edges, if (d1, d2, . . . , dn) is a degree sequence of the vertices, then

d1 + d2 + · · ·+ dn = 2(n− 1).

Suppose at most one vertex equals 1. Then the remaining n− 1 di’s has degree at least 2, so

d1 + · · ·+ dn ≥ 2(n− 1) + 1,

but this is a contradiction, so at least two of the di’s must equal to 1. The claim follows. �

Definition 5.3. Let G be a graph. If H is a spanning subgraph of G that is also a tree,
then H is a spanning tree of G.
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Theorem 5.7. Every connected graph has a spanning tree.

Proof. Start with the set of entire edges, and remove all the edges that are not bridges. Once
this procedure is completed, then every edge is a bridge, and the new subgraph remains
connected. Thus this new graph is a spanning tree. �

The remainder of this section will explore some algorithms related to trees.

5.1. Dijkstra’s algorithm for a distance tree for a vertex

Definition 5.4. Suppose G = (V,E) is a graph, and for each edge α = {x, y} there is a
weight associated with α, say c(α) = c{x, y}. Then G is called a weighted graph with weight
function c : E → R≥0. If γ : x0 − x1 − · · · − xk is a walk, then the weight of a walk γ is
c(γ) = c{x0, x1}+ c{x1, x2}+ · · ·+ c{xk−1, xk}. If γ is a walk from x0 to xk of the smallest
weight, then c(γ) becomes the weighted distance between x0 and xk denoted by dc(x0, xk).
If x0 = xk = x, then dc(x, x) = 0. If there is no walk from x to y, then dc(x, y) =∞.

Definition 5.5. Let G = (V,E) be a graph, and u a vertex of G. Let H be a spanning tree
rooted at u so that the weight of a walk between u and x is equal to dc(u, x) for any x ∈ V .
Then H is called a distance tree for u.

Let G = (V,E) be a weight graph of order n; let u be an arbitrary vertex of G. The following
algorithm, called Dijkstra’s algorithm, starts with a vertex, pick a vertex whose edge is of
the smallest weight. After that, we keep track of the vertices that were accounted for, and
keep adding edges of the minimum weight from one of the vertex covered by the algorithm
already to another vertex not yet accounted for. Terminate the algorithm once no more edge
can be added. See p444 of Brualdi (Theorem 11.7.4) for the proof that this algorithm gives
us a distance tree for u.

(1) Begin with U = {u}, D(u) = 0, F = ∅, and T = (U, F ).

(2-i) Suppose that x ∈ U and y /∈ U . If there is no edge from x to y for any x and y, then
the algorithm terminates.

(2-ii) Suppose there is at least one edge from a vertex in U to a vertex not in U . Pick an
edge α = {x, y} where x ∈ U and y /∈ U whose weight is the minimum weight. Once
this edge is chosen, do the following:

(a) Add y to U .

(b) Add α = {x, y} into F .

(c) Let D(x) + c{x, y} = D(y) → D(x), and then go back to (2-i) to determine if
the algorithm must terminate. Otherwise, go to Step (2-ii).
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5.2. Algorithms for a minimum weight spanning tree

In this section we present two algorithms that can be used to find a spanning tree of a graph
whose sum of weights is the smallest.

Definition 5.6. For any subgraph H, we can define the weight of a subgraph H of G as the
sum of weights of all the edges of H, which we denote c(H). If H is a spanning tree such
that

c(H) = min{c(J) : J a spanning tree of G},
then H is said to be a minimum weight spanning tree.

5.2.1. Greedy algorithm

The following greedy algorithm gives a minimum weight spanning tree. See p446-447 (Theo-
rem 11.7.5) for the proof that this algorithm indeed yields a minimum weight spanning tree
for G = (V,E) of order n, a weighted connected graph with weight function c.

(1) Start with F = ∅ ⊆ E.

(2) Let α be an edge not in F such that F ∪ {α} does not contain any cycle. Out of
those edges, let α be an edge of minimum weight. Add this chosen edge to F .

(3) Repeat the second step until |F | = n − 1; output T = (V, F ) upon termination of
this algorithm.

5.2.2. Prim’s algorithm

See Theorem 11.7.6 from Brualdi (p448-449) for the proof that Prim’s algorithm outlined
below yields a minimum weight spanning tree. Let G = (V,E) be a weighted connected
graph with weight function c, and let u ∈ V .

(1) Let i = 1, U1 = {u}, F1 = ∅, and T1 = (U1, F1).

(2) While i ≤ n− 1, do the following steps:

(a) Let x ∈ Ui and y /∈ Ui. Let αi = {x, y} be an edge of smallest weight.

(b) Let Ui+1 := Ui ∪ {y} and Fi+1 := Fi ∪ {αi}. Let Ti+1 = (Ui+1, Fi+1).

(c) Increase i by 1.

(3) Once the previous step terminates, output Tn−1 = (Un−1, Fn−1). Note that necessarily
Un−1 = V .

6. Chapter 12.1: Chromatic numbers

Definition 6.1. For any graph G = (V,E), a vertex colouring of G is an assignment of a
colour to each of the vertices of G so that adjacent vertices are assigned different colours. If
k different colours were used to obtain a colouring, then such colouring is called a k-vertex
colouring. If there is a k-colouring of G, then G is k-colourable. The smallest number k such
that G is k-colourable is called the chromatic number of G, which is denoted by χ(G).
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Theorem 6.1. If G is a graph of order n ≥ 1, then 1 ≤ χ(G) ≤ n for any graph G.
Furthermore, χ(G) = n if and only if G = Kn, and χ(G) = 1 if and only if G = Nn. In
particular, χ(G) = 2 if and only if G is a bipartite graph.

Proof. Clearly, we need at least one colour to get any vertex colouring of G, and we need at
most n colours to colour all the vertices of G. Suppose that χ(G) = 1. Since every vertex is
of the same colour, this implies that no two vertices are adjacent to each other, so G = Nn.

Conversely, suppose that χ(G) 6= 1. Thus χ(G) > 1, so we need at least two colours to get
a vertex colouring. This is possible only when there is at least one edge, say from x to y so
that x and y are forced to get different colours. Thus G 6= Nn as required.

Suppose that G = Kn. Then every pair of vertices is adjacent, so no two vertices can have
the same colour. Hence χ(Kn) = n. Suppose that G 6= Kn. Then there exist x and y
such that x and y are not adjacent. This means we can assign x and y the same colour, so
χ(G) 6= n− 1.

Suppose that G is bipartite. Then there exist a bipartition X and Y so that no two vertices
in the same bipartition is adjacent. Thus we can colour all the vertices in X with the first
colour, and all the vertices in Y with the second colour. Hence χ(G) = 2. Conversely, if
χ(G) = 2, then the set of vertices with the first colour and the set of vertices with the second
colour form a bipartition, so G is bipartite. �

Corollary 6.1. Suppose that G is a graph that contains an induced subgraph that is iso-
morphic to Kp. Then χ(G) ≥ χ(Kp) = p. More generally, if H is a subgraph of G, then
χ(G) ≥ χ(H).

Corollary 6.2. Let G = (V,E) be a graph of order n, and suppose that q be the largest
number satisfying the following condition: G contains an induced subgraph isomorphic to
Nq. Then χ(G) ≥ dn/qe.

Proof. Suppose χ(G) = k. Partition the vertices into V1, . . . , Vk so that any vertices in the
same partition have the same colour. By assumption we have |Vi| ≤ q for any i, so we have

n = |V | =
k∑

i=1

|Vi| ≤ qk.

Thus χ(G) = k ≥ n/q, and the claim follows upon noting that χ(G) ∈ N. �

In general, it is not straightforward to obtain a chromatic number of any graph G in general;
in fact, there is no good known algorithm to obtain the chromatic number of an arbitrary
graph G. However, there are some algorithms to obtain a vertex colouring which can help
in estimating the chromatic number. We shall take a look at one of the algorithms called
the greedy algorithm.

Algorithm 6.1 (Greedy algorithm for vertex colouring). Let G = (V,E) with V = {x1, . . . , xn}.

(1) Assign the first colour to vertex x1.

(2) For each i = 2, . . . , n, define p to be the smallest colour such that none of the vertices
x1, . . . , xi−1 adjacent to xi is coloured p. Assign the p-th colour to xi.

12



In essence, in the i-th step, the greedy algorithm the following:

(1) Consider the vertices that already received a colour (i.e., x1, . . . , xi−1).

(2) Only consider the vertices from that list that is adjacent to xi.

(3) See how many colours are used amongst these vertices. Say p− 1 colours were used
to colour those vertices. Then colour xi with the p-th colour.

Hence, if the maximum degree of a vertex is ∆, at most ∆ vertices are adjacent to xi for
any i. If colour p is assigned to xi, then p ≤ ∆ + 1, since p hits the maximum if and only
if each of the ∆ vertices adjacent to xi is coloured with a different colour. This guarantees
that a (∆ + 1)-colouring always exists. Hence χ(G) ≥ ∆ + 1. This observation proves the
following theorem.

Theorem 6.2. Let G be a graph for which the maximum degree of a vertex is ∆. Then the
greedy algorithm produces a (∆ + 1)-colouring of the vertices of G. Hence χ(G) ≤ ∆ + 1.

It cannot be emphasized enough that the greedy algorithm may give χ(G), but not always.
Also, the greedy algorithm itself does not tell us how far off a vertex colouring is from the
actual chromatic number. However, in some cases, it is possible to get a tighter bound on
χ(G). The following theorem indicates when this is possible, but the proof is beyond the
scope of this notes.

Theorem 6.3 (Brooks). Let G be a connected graph for which the maximum degree of a
vertex is ∆. Suppose also that G is neither a complete graph Kn nor a graph of odd cycle
Cn. Then χ(G) ≤ ∆.

The discussion on vertex colouring with k colours raises another question – how many ways
can the vertices of G be colours if we are given k colours? This prompts another definition.

Definition 6.2. Let k ∈ N, and G a graph of order n. Suppose that pG(k) denotes the
total number of available k-colourings of G. In fact, pG(k) is a polynomial function of k (see
Brualdi for more information) that gives the number of available k-colourings of G. pG(k)
is called the chromatic polynomial of the graph G.

In order to prove that pG(k) is indeed a polynomial function in k, we first note a useful
observation in proving this fact. In fact, the following formula is also useful in obtaining the
chromatic polynomial of a graph.

Theorem 6.4 (Edge deletion-contraction formula). Let G be a graph of order n, and x and
y adjacent vertices of G. Let G1 be the graph obtained by deleting the edge {x, y}. Let G2

be the graph obtained by deleting the edge {x, y}, followed by contracting x and y into one
vertex. Then

pG(k) = pG1(k)− pG2(k).

Proof. Observe that x and y in G1 may be coloured with two different colours or with the
same colour. In G, x and y must be coloured differently. In G2, x and y (now contracted
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into one vertex) are necessarily coloured with the same colour. Therefore, we have

pG1(k) = pG(k) + pG2(k),

so the claim follows. �

Theorem 6.5. For any graph G, pG(k) is a polynomial function in k.

Proof. See the informal discussion on p469 of Brualdi and the formal algorithm for computing
the chromatic polynomial of a graph outlined in p470 of Brualdi. �

Now we compute the chromatic polynomial of some familiar graphs.

Example. Let G = Kn. Then the first vertex has k options to choose from; the second
vertex can be coloured with anything except for the first colour, so there are k − 1 options.
Continuing this way, we see that

pKn(k) = k(k − 1)(k − 2) · · · (k − (n− 1)) = [k]n.

Example. pNn(k) = kn since any vertex can be coloured with any colour.

Theorem 6.6. Suppose T is a tree of order n. Then pT (k) = k(k − 1)n−1.

Proof. We prove by induction on the number of vertices. Suppose that the order of T is 1.
Then pT (k) = k = k(k − 1)1−1, so the claim follows. Now assume that the claim holds for
all trees of order n − 1. Any tree of order n can be obtained by adding a vertex to some
tree of order n − 1. The added nth vertex is necessarily a leaf, so there are k − 1 options
for this vertex (any colour except for the colour that the adjacent vertex received). Thus
pT (k) is the product of k− 1 and the chromatic polynomial for a tree of order n− 1. Hence
pT (k) = k(k − 1)n−2(k − 1) = k(k − 1)n−1 as required. �

Example. Let G = C5 the cycle graph of order 5. We will use the edge deletion-contraction
formula to compute pC5(k). Note that any edge deletion gives us a simple tree order 5. On
the other hand, if an edge is deleted and then the two vertices are fused, then we get the
cycle graph of order 4. Suppose Tm is the simple tree of order m. Then we have

pC5(k) = pT5(k)− pC4(k).

Apply the edge deletion-contraction formula again to C4 to get

pC5(k) = pT5(k)− (pT4(k)− pC3(k)) = pT5(k)− pT4(k) + pK3(k)

= k(k − 1)4 − k(k − 1)3 + k(k − 1)(k − 2) = k(k − 1)(k − 2)(k2 − 2k + 2).

One efficient way to compute a chromatic polynomial is recognizing an induced subgraph
isomorphic to Kr for some r. This establishes a lower bound on the chromatic number.
Furthermore, computing the smallest k that makes the chromatic polynomial non-zero gives
us the chromatic number. We first introduce a new definition and a lemma in order to state
the next key result.

Definition 6.3. Let G = (V,E) be a graph of order n that is not equal to Kn. If U ( V is
a subset such that GV−U is disconnected, then U is said to be an articulation set of G.
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Remark. If G is not complete, then there exists two non-adjacent vertices a and b, so U =
V \ {a, b} is an articulation set of G. Therefore, if G is complete, then no such a and b can
be chosen, so G has no articulation set in this case.

Lemma 6.1. Let G be a graph, and assume that G contains a subgraph H isomorphic to
Kr. Then [k]r |pG(k).

Proof. Note that the vertices inH are all coloured differently, and we can extend the colouring
for other remaining vertices not in H after the vertices in H are coloured. That is, we have
pG(k) = [k]rq(k), where q(k) denotes the number of k-colourings for the vertices not in
H. �

Now we state the key result.

Theorem 6.7. Let U be an articulation set of G and suppose that the induced subgraph GU

is a complete graph Kr. Let the connected components of GV−U be GU1 , . . . , GUt. For each
1 ≤ i ≤ t, define Hi := GU∪Ui

. Then

pG(k) =
pH1(k)× · · · × pHt(k)

([k]r)t−1
,

and χ(G) = max{χ(H1), . . . , χ(Hk)}.

Proof. Observe that Hi and Hj for any i 6= j only have the vertices in U as common vertices.
Then for each i, Hi has pHi

(k) colourings. Thus colouring each of Hi covers the all the
vertices. However, note that for a colouring of G, the colouring of Hi must have the same
colouring for all 1 ≤ i ≤ t. Since U is coloured t times, it follows that pH1(k) × · · · pHt(k)
must be divided by pKr(k)t−1 so that the vertices in U are only coloured once. �

7. Chapter 12.2: Plane and planar graphs

Recall that any general graph G = (V,E) is planar if it is possible to draw G without any of
the edges overlapping at non-vertex points. Suppose that r denotes the number of regions
divided by the edges of G; let n be the order of G, and e the number of edges.

Theorem 7.1 (Euler’s formula). Let G be a connected planar graph of order n with e edge-
curves. Then r − e+ n = 2.

Proof. Suppose that G is a tree. Then e = n− 1 and r = 1 (note that G cannot divide the
infinite region because otherwise this will imply that G has a cycle). Thus 1− (n− 1) +n =
1 + 1 = 2 as required. Now suppose that G is not a tree. Then G has a spanning tree
T , and clearly we have r′ − e′ + n′ = 2. Since T is a tree, adding any new edge-curve will
create a cycle, thereby dividing an existing region into two parts. So every time a new edge
is being added, r must increase by 1, and so must e while n remains invariant. Therefore
r − e+ n = 2 still holds even after all the remaining edges are added. �

Using Euler’s formula, we can derive one important property of planar graphs.
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Theorem 7.2. Let G be a connected planar graph. Then there is a vertex whose degree is
at most 5.

Proof. Suppose G is a planar graph. The only way for two regions to be bordered by a
single edge is to be bordered by loops, which G does not have. There are no multiple edges
between any of the two vertices, to no region can be bordered by two edges. So we need at
least three edges to divide a region into two parts. If f1, . . . , fr are the number of edges of
each subdivided region, then indeed f1 + · · · + fr = 2e. Since fi ≥ 3, we have 3r ≤ 2e, or
3(e− n + 2) = 3e− 3n + 6 leq2e. So e ≤ 3n− 6. Now recall that if (d1, . . . , dn) is a degree
sequence of G, then d1 + d2 + · · ·+ dn = 2e. It follows that

d1 + · · ·+ dn
n

=
2e

n
≤ 2(3n− 6)

n
< 6,

so the average of the degrees of vertices is strictly less than 6, and this is possible only when
there is a vertex of degree 5 or less. �

However, a converse of the above theorem is not true, as we will see in the next few examples.

Example. A complete graph Kn is planar if and only if n ≤ 4. It is a straightforward
verification to check that K1, K2, K3, and K4 are all planar. Now consider K5. As shown in
the previous theorem, if K5 were to be a planar graph, we need to have e ≤ 3n−6. But note
that

(
5
2

)
= 10 = e 6≤ 3(5)− 6 = 9, so K5 cannot be planar. Since Kn for any n ≥ 5 contains

K5 as its subgraph, none of Kn can be planar for any n ≥ 5. Observe that K5 consists of
vertices whose degrees are all less than 5, but K5 is not planar.

Example. A complete bipartite graph Km,n is planar if and only if m ≤ 2 or n ≤ 2. It is
straightforward to draw a planar representation of Km,n if either one of them is at most 2.
Now consider K3,3. Any bipartite graph can only have even cycles; and since Km,n cannot
have any multiple edges, any region can be created by a minimum of four edges rather than
three. So in this case 4r = 4e − 4n + 8 ≤ 2e, so e ≤ 2n − 4 if Km,n is to be planar. But
note that K3,3 has 9 edges, so 9 6≤ 2(6) − 4 = 8. Therefore since any Km,n with m,n ≥ 3
contains K3,3 as its subgraph, it follows that Km,n is not planar for any m,n ≥ 3. Note that
all vertices of K3,3 has degree 3 but is not planar.

The above two graphs (K5 and K3,3)) will play an important role in characterizing all non-
planar graphs as we will see shortly.

Definition 7.1. Let G = (V,E) be any graph, and {x, y} ∈ E. Suppose z is a new vertex
added on {x, y} in order to obtain two new edges {x, z}, {z, y}. Let this new graph be G′.
Adding such z is called subdividing the edge {x, y}, and G′ is called a subdivision of a graph
G.

Evidently, if G is not planar, then any of its subdivisions cannot be planar either. If H
were a subdivision of G that is planar, then we can obtain a planar representation of G by
deleting the vertices used to subdivide edges from a planar representation of H, contrary to
G being non-planar. This insight implies that G is not planar it contains a subdivision of
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K5 or K3,3. The converse is the more challenging direction, and Kuratowski proved that the
converse holds as well.

Theorem 7.3 (Kuratowski). A graph G is planar if and only if it does not have a subgraph
which is a subdivision of K5 or K3,3.

We present an alternative characterization of planarity which still involves K5 and K3,3.

Definition 7.2. For any graph G, a contraction of a graph G is a graph that can be obtained
by successively contracting edges (i.e., fuse the two vertices of an edge into one point).

Theorem 7.4 (Wagner-Harary-Tutte). A graph G is planar if and only if it does not contain
a subgraph that contracts to K5 or K3,3.

8. Chapter 12.4: Independence number and clique number

Definition 8.1. Let G = (V,E), and U ⊆ V . Then U is an independent set if no two vertices
from U are adjacent. Equivalently, U is an independent set if GU is a null graph. Let I be
a largest independent set of G. Then the independence number of G is the cardinality of I,
and we denote α(G).

Remark. Clearly, any subset of an independent set is also an independent set.

Example. Let V1, . . . , Vk be the colour partition of G = (V,E). That is, any two vertices
from the same Vi are of the same colour. Then V1, . . . , Vk are independent sets each. χ(G)
is precisely the smallest k such that V can be partitioned into k independent sets. In fact,
we can re-state the inequality in Corollary 6.2 in the following way: χ(G) ≥ dn/α(G)e.

Example. α(Nn) = n and α(Kn) = 1. Also, α(Km,n) = max{m,n}.

Definition 8.2. Suppose G = (V,E) is a graph, and let U ⊆ V a subset of V so that any
vertex not in U is adjacent to some vertex in U . Then U is called a dominating set of G. Let
D be a set of smallest size such that D is a dominating set. Then the domination number,
denoted by dom(G), is the size of D.

Remark. If W is a dominating set, then any set containing W is also a dominating set.

Example. dom(Nn) = n and dom(Kn) = 1. Also, dom(Km,n) = 2 if m,n ≥ 2.

Like independent numbers, computing a dominating number of a graph is very difficult.
However, if G is connected, we can obtain a simple inequality.

Theorem 8.1. Let G be a connected graph of order n ≥ 2. Then dom(G) ≤ bn/2c.

Proof. We prove by induction on n. Any connected graph has a spanning tree; let T be a
spanning tree of G. Then dom(G) ≤ dom(T ), so we can reduce this problem by considering
trees of order n ≥ 2 only. If n = 2, then T can only be K2, so dom(T ) = 1 = b2/2c. Now
suppose that n ≥ 3. Suppose that y is a vertex which is adjacent to a leaf x of T . If T ∗ is a
subgraph of T obtained by removing y, then T ∗ is a forest, at least one of which is a tree of
order 1 (since x is a leaf). Let T1, . . . , Tk be the connected components of T ∗ such that every
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Ti is of order at least 2 (say that ni is the order of Ti). Then n1 + · · ·+ nk ≥ n− 2, so each
Ti has a dominating set by the induction hypothesis, and any dominating set is of size at
most bni/2c. Therefore, the union of these dominating sets and {y} is indeed a dominating
set of T . The claim follows upon noting that

1 +
⌊n1

2

⌋
+ · · ·+

⌊nk

2

⌋
≤ 1 +

⌊
n1 + · · ·+ nk

2

⌋
≤ 1 +

⌊
n− 2

2

⌋
=
⌊n

2

⌋
. �

Definition 8.3. A clique in a graph G is a subset U of vertices whose subgraph induced by
U is a complete graph. The size of a clique of largest size is the clique number of G, which
we denote ω(G).

Definition 8.4. For any graph G, the complementary graph of G is G = (V,E). That is,
G consists of the same vertices V , and two vertices are adjacent in G if and only if the two
vertices are not adjacent in G.

Remark. If U is a clique in a graph G, then U is an independence set in G, the complement
graph of G. Similarly, if J is an independent set in a graph G, then J is a clique in G. Hence,
it follows that α(G) = ω(G) and ω(G) = α(G). Clearly, χ(G) ≥ ω(G) since χ(G) ≥ p if G
contains a subgraph isomorphic to Kp. Let G be a bipartite graph with at least one edge.
Then χ(G) = ω(G) = 2, so this is one example where the chromatic number and the clique
number match. However, it is possible to find an example where the strict inequality holds.
Let G = Cn for some odd n. Then χ(Cn) = 3 but ω(Cn) = 2.

Example. ω(Nn) = 1, ω(Kn) = n, and ω(Km,n) = 2.

Observe that there is a complementary relationship between the clique number and the
chromatic number. Indeed, the chromatic number denotes the smallest number of partitions
V1, . . . , Vk such that two vertices in the same Vi are not adjacent. We can also partition the
vertices so that any two vertices in the same partitions are adjacent also (say W1, . . . ,Wr,
each of which is a clique in G).

Definition 8.5. The partition W1, . . . ,Wr is called a clique-partition of a graph G. The
smallest such r is said to be the clique-partition number of G, and we denote it by θ(G).

Remark. As with the independence number and the clique number, there is a complementary
relationship between the clique-partition number and the chromatic number. Particularly,
we have χ(G) = θ(G) and θ(G) = χ(G). As with the chromatic number and the clique
number, one can derive the following inequality: θ(G) ≥ α(G). Why is this true? This
follows from the observation that no two non-adjacent vertices can be in the same clique.
Thus, each of the vertices in an independence set of size α(G) must be in a separate clique,
so there must be at least α(G) clique-partitions for G.

It is natural to wonder for which G we have χ(G) = ω(G) and/or θ(G) = α(G). Suppose that
G is a graph with two connected components consisting of H and Kp such that ω(H) ≤ p.
Then χ(G) = p and ω(G) = p. In fact it is possible to impose the equality for any induced
subgraph of G. We can do the same thing with θ(G) = α(G), which prompts the following
definitions.
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Definition 8.6. A graph G is χ-perfect if χ(H) = ω(H) for any subgraph H of G. A graph
G is θ-perfect if θ(H) = α(H) for any subgraph H of G. If G is both χ-perfect and θ-perfect,
then G is a perfect graph.

In fact, being χ-perfect implies being θ-perfect and vice versa; therefore, there is only one
kind of perfection, so we can just talk about perfect graphs without any prefix before the
word perfect.

Theorem 8.2. A graph G is χ-perfect if and only if G is θ-perfect. Equivalently, G is
χ-perfect if and only if G is χ-perfect. Thus, G is perfect if and only if G is perfect.

9. Chapter 12.5: Matching number

Definition 9.1. Let G = (V,E) be a graph. Then M ⊆ E is a matching if no two edges in
M have any vertex in common. We say the matching M meets a vertex x if there is an edge
in M with one of the endpoints x. Furthermore, if M meets every vertex in x, then M is
called a perfect matching. The matching number of a graph G is the largest number of edges
in a matching in G; we denote it by ρ(G).

Remark. Any edges contain two vertices, so if G has n vertices then a matching M necessarily
have at most n/2 edges. Also any graph with a perfect matching necessarily is of even order.

We can think of a matching problem as an SDR problem. Suppose that A = (A1, . . . , An)
is a collection of subsets of Y = {y1, . . . , ym}. Let each Ai be represented by a vertex xi;
let each elements yj be represented by a vertex yj, with xi and yj being adjacent if yj ∈ Ai.
Then the graph G generated by this relation is a bipartite graph. Notice that we can also
create a collection of subsets based on a given matching. Thus a matching problem for a
bipartite graph and an SDR problem are two equivalent ways of looking at the same problem.
Therefore, if G has a perfect matching, then its corresponding A has an SDR.

Theorem 9.1. Let G = (V,E) be a bipartite graph with bipartition X, Y with associated
family AG of subsets of Y . If t is a positive integer such that a subfamily (Ai1 , . . . , Ait) has
an SDR (ei1 , . . . , eit), then there is a matching M = {(xi1 , ei1), . . . , (xit , eit)}.

Conversely, from a matching M = {(xik , eik) : 1 ≤ i ≤ t}, one can obtain a subfamily of AG

with an SDR. Therefore, G has a perfect matching if and only if AG has an SDR.

Definition 9.2. If G = (V,E) is a graph, then W ⊆ V is a cover of G if every edge of G
contains a vertex from W . The smallest number of vertices that form a cover of G is denoted
by c(G).

Clearly, if W is a cover, then its complement V \ W must be an independent set, since
otherwise there will be an edge connecting two vertices from V \W , which means that W is
not a cover. Conversely, if U is an independent subset of V , then every edge from U must
be connected to a vertex in V \ U , making V \ U a cover of G. Thus we can conclude that
W is a cover of G if and only if its complement is an independent set.

19



Theorem 9.2 (König-Egerváry theorem). If G = (V,E) is a bipartite graph, then the
largest number of edges in a matching equals the smallest number of vertices in a cover, i.e.,
ρ(G) = c(G).

The bipartite assumption in König-Egerváry is crucial since it is possible to find a non-
bipartite graph such that c(G) < ρ(G) – for instance, consider Kn for any n > 3. Then
ρ(G) = dn/2e whereas c(G) = n − 1. However for non-bipartite graphs it is possible to
express ρ(G) in terms of other numbers of graph-theoretic significance. To state further
results on ρ(G), we introduce a few additional notions.

Definition 9.3. Let G be a disconnected graph. Then an odd component of G is a connected
component of G consisting of an odd number of vertices. The number of odd components of
G is denoted by oc(G).

Theorem 9.3. A graph G = (V,E) has a perfect matching if and only if oc(GV \U) ≤ |U | for
every U ⊆ V . Therefore, G has a perfect matching if and only if removing a set of vertices
does not create more odd components than the number of vertices removed.

Theorem 9.4 (Berge-Tutte formla). Let G = (V,E) be a graph with n vertices. Then

ρ(G) = min{n− (oc(GV \U)− |U |)}
where the minimum is taken over all U ⊆ V .

10. Chapter 12.6: Connectivity

Every graph is either connected or disconnected. However, one can discuss how much or how
well a graph is connected. Intuitively speaking, for any graph of order n, Kn is the most
connected graph compared to any other graphs of order n. Indeed, more edges need to be
removed from Kn than any other graphs of order n, and more vertices need to be removed
from Kn to render the new graph disconnected.

Definition 10.1. Let G = (V,E) be a graph of order n ≥ 2. Then the vertex-connectivity
of G is

κ(G) = min{|U | : GV \U is disconnected},
i.e., the smallest number of vertices whose removal renders the new graph disconnected.
Equivalently, κ(G) is the smallest size of an articulation set. The edge-connectivity of G is

λ(G) = min{|F | : G′ = (V,E \ F ) is disconnected},
i.e., the smallest number of edges whose removal renders the new graph disconnected.

Remark. It follows from the definition that κ(G) = λ(G) = 0 if G is disconnected. Note that
λ(G) = 1 if and only if G has a bridge.

Example. κ(Kn) = λ(Kn) = n− 1; κ(Nn) = λ(Nn) = 0.
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Theorem 10.1. If G is a graph of order n ≥ 2, then

0 ≤ κ(G) ≤ n− 1,

with equality on the left if and only if G is disconnected, and with equality on the right if and
only if G is a complete graph.

Proof. The equality is evident, so it suffices to show the remaining inequality. Suppose G is
a non-complete connected graph. Then there are two vertices a and b that are non-adjacent.
So removing all the vertices except for a and b will definitely result in a disconnected graph,
so κ(G) ≤ n− 2 for any non-complete connected graph of order n. �

Theorem 10.2. For any graph G, we have

κ(G) ≤ λ(G) ≤ δ(G),

where δ(G) is the smallest degree of a vertex of G.

Proof. The second equality follows upon noting that if all the edges adjacent to any vertex
of degree δ(G) (say x) are removed, then the new graph is disconnected (there will be no
walk from x to any other vertices). Thus λ(G) ≤ δ(G).

Suppose G = Kn. Then κ(G) = λ(G) = n− 1. If G is disconnected, then κ(G) = λ(G) = 0.
Thus we may assume that G is a connected non-complete graph. Suppose F is a subset
of edges if size λ(G) whose removal results in a disconnected graph (say H); let U be a
subset of vertices whose removal results in a disconnected graph. Since G is connected, and
F is of smallest size to render the new graph disconnected, it follows that H has exactly
two connected components; suppose that V1 and V2 form two connected components. Then
|V1| + |V2| = n. Suppose that F consists of every possible edge joining vertices in V1 to
vertices in V2. But this means |F | ≥ n − 1, or equivalently λ(G) ≥ n − 1. This forces
λ(G) = n−1, which is impossible to happen since G 6= Kn. Hence there is a ∈ V1 and b ∈ V2
that are not adjacent. With this observation, we will try to construct U so that GV \U is
disconnected. Suppose that α ∈ F is an edge with a being one of the vertices of α. If this is
the case, then the other vertex must be in V2 (since α ∈ F ); add this vertex in V2 to U . If
this is not the case, then we add the vertex of α that is in V1. Each operation adds at most
one new vertex, and there are |F | edges, so it follows that |U | ≤ |F |. Note that removing all
the vertices in U renders the graph disconnected since there will be no path from a to b. In
conclusion,

κ(G) ≤ |U | ≤ |F | = λ(G),

as required. �

We can formulate connectedness using the connectivities we introduced so far. For instance,
G is connected if and only if its vertex-connectivity satisfies κ(G) ≥ 1.

Definition 10.2. Let G be a graph such that κ(G) ≥ k. Then G is said to be k-connected.
If {v} is an articulation set of G, then v is said to be an articulation vertex of a graph G.

Clearly if G is k-connected, then G is also m-connected for any k > m since κ(G) ≥ k > m.
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Theorem 10.3. Let G be a graph of order n ≥ 3. Then the following are equivalent.

(1) G is 2-connected.

(2) G is connected and does not have an articulation vertex.

(3) For each triple of vertices a, b, c, there is a path joining a and b that does not contain
c.

Proof. ((1) ⇒ (2)) If κ(G) ≥ 2, then at least two vertices must be removed to make the
new graph disconnected. Therefore G cannot have any articulation vertex. Also, being
2-connected implies being 1-connected, so necessarily G is connected.

((2)⇒ (3)) Suppose a, b, c are three vertices. Since G is connected, there is a path from a to
b. Note that removing c will keep the graph connected since G has no articulation vertex,
meaning one can find a path from a to b not containing c.

((3) ⇒ (1)) For any triple of vertices, we see that there is a path from a to b, so G is
connected. If c is an articulation vertex, then removing c results in a disconnected graph.
Therefore removing c results in no path from a so b, which contradicts our assumption.
Hence G cannot have any articulation vertex. If G has no articulation vertex, then we need
to remove more than one vertex to disconnect G. Therefore κ(G) > 1, so G is 2-connected
as required. �

Definition 10.3. Fo any connected graph G, a block of G is a maximal induced subgraph
of G that is connected and has no articulation vertex.

Suppose that U is a subset of vertices such that GU is a block. If U ( W ⊆ V , then GW is
either disconnected or has an articulation vertex. Thus if |U | ≥ 3, then GU is 2-connected.
If |U | = 2, then GU = K2. We conclude this section with a theorem that are useful in
determining the blocks of a graph, and a theorem that gives an alternative characterization
of 2-connectedness.

Theorem 10.4. Let G = (V,E) be a connected graph of order n ≥ 2, and let

GUi
= (Ui, Ei) for all 1 ≤ i ≤ r

so that each GUi
is a block of G. Then E1, . . . , Er form a partition of the set E of edges of

G, so each edge of G belong to exactly one block. Furthermore, each pair of blocks has at
most one vertex in common.

Theorem 10.5. Let G = (V,E) be a graph of order n ≥ 3. Then G is 2-connected if and
only if, for each pair a, b of distinct vertices, there is a cycle containing both a and b.

Corollary 10.1. Let G be a graph of order n ≥ 3. Then G is 2-connected if and only if for
each pair a, b of distinct vertices, there are two paths joining a and b whose only common
vertices are a and b.

Theorem 10.6 (Menger’s theorem, special case). Let k be a positive integer, and let G be a
graph of order n ≥ k + 1. Then G is k-connected if and only if, for each pair a, b of distinct
vertices, there are k paths joining a and b such that each pair of paths has only the vertices
a and b in common.
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11. Chapter 8.1: Catalan numbers

Definition 11.1. The Catalan sequence, named after Eugéne Catalan, is the sequence
C0, C1, . . . , Cn, . . . of the form

Cn =
1

n+ 1

(
2n

n

)
,

and Cn is called the n-th Catalan number.

Interestingly, Catalan numbers show up in combinatorial contexts, as well will see.

Theorem 11.1. The number of sequences a1, . . . , a2n of 2n terms that can be formed by
using exactly n +1’s and exactly n −1’s whose partial sums are always non-negative (i.e.,
a1 + a2 + · · ·+ ak ≥ 0 for any 1 ≤ k ≤ 2n) equals the n-th Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

Proof. Let S be the set of sequences of length 2n consisting of exactly n +1’s and exactly
n −1’s. Then we partition S into two sequences – let An be the set of sequences whose
partial sums are always non-negative, and let Un be the set of sequences whose partial sum
is negative for some 1 ≤ k ≤ 2n. So |An| + |Un| = |S| =

(
2n
n

)
. Suppose that the sequence

a1, . . . , a2n is in Un. Then there exists first k such that a1 + · · · + ak < 0. Since each term
is ±1, it follows that necessarily ak = −1 and a1 + a2 + · · · + ak−1 = 0. Thus amongst the
remaining 2n− k terms, there are more 1’s than −1’s.

Now consider a new sequence, with the sign of the first k terms reversed (say a′1, . . . , a
′
2n).

Then a′i = −ai for any 1 ≤ i ≤ k and a′i = ai otherwise. Suppose the set of such new
sequences is Vn. Observe that there is a one-to-one correspondence between the set of
sequences in Un and Vn, so |Un| = |Vn|. Any sequence is Vn has one more 1 than −1 in the
first k terms; as observed previously, there are one more 1’s than −1’s amongst the remaining
2n− k terms. Hence any sequence in Vn has n+ 1 1’s and n− 1 −1’s. Therefore,

|Un| = |Cn| =
(2n)!

(n+ 1)!(n− 1)!
,

so we have

|An| =
(

2n

n

)
− |Un| =

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!

= (2n)!

(
1

n!n!
− 1

(n+ 1)!(n− 1)!

)
= (2n)!

(
n+ 1

(n+ 1)!n!
− n

(n+ 1)!n!

)
=

(2n)!

n!(n+ 1)!

=
1

n+ 1

(
2n

n

)
= Cn. �
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Therefore, the theorem above comes in handy when a combinatorial problem can be reduced
into counting the number of sequences of length 2n consisting of the equal number of +1’s and
−1’s. Some examples are presented in Brualdi Chapter 8, Exercises #1, #2, and #36.

We conclude this section with the linear recurrence formula for Cn.

Definition 11.2. C∗n := n!Cn−1 is called the n-th pseudo-Catalan number.

Observe that, from the definition of Cn, we have

Cn =
4n− 2

n+ 1
Cn−1,

so we have C∗n = (4n−6)C∗n−1, with C∗1 = 1. With these facts in mind, consider the following
combinatorial problem. Let a1, . . . , an be n numbers, and we want to find the number of
multiplication schemes i.e., the number of ways to carry out the multiplication of the n
numbers. We need to multiply two numbers n− 1 times in total, each of which is either one
of the ai’s or some partial product of the ai’s thereof. Let hk be the number of multiplication
schemes for k numbers. We may express each multiplication scheme with the multiplication
symbol and the parentheses to indicate the order of multiplications.

So for example, we have h1 = 1, h2 = 2, h3 = 12, and h4 = 120. In fact, we can look at this
inductively.

(1) Pick a multiplication scheme for a1, . . . , an−1, and we will compute the number of
multiplication schemes for a1, . . . , an where an is not the last number to be multi-
plied. Then an belongs to one of the parentheses already present. There are n − 2
multiplication operations in any of the schemes we picked, so there are n− 2 pairs of
parentheses. Now with an in one of the parentheses, note that we can add an in four
possible ways: to the left of the first term, to the right side of the first term (and add
parentheses to group the first term and an), to the left side of the second term, or
to the right side of the second term (and add parentheses to group the second term
and an). Each scheme gives 2 · 2 · (n− 2) = 4n− 8 schemes.

(2) Pick a multiplication scheme for a1, . . . , an−1 where an is the final number to be
multiplied. That is, an is placed either to the left of the chosen multiplication scheme
with n− 1 numbers or to the right. Thus every scheme gives us two schemes.

Hence, we see that hn = (4n − 6)hn−1. But note that h1 = C∗1 , and that hn satisfies the
identical recurrence relation satisfied by C∗n, from which we have C∗n = hn.

Now, we will add one more additional restriction: we are only interested in multiplication
schemes such that a1, . . . , an appear in this particular order if read from left to right. If h′n is
the number of multiplication schemes with this restriction, we note that h′n = hn/n!. Indeed,
the total number of multiplication schemes with a particular arrangement of parentheses is
n!, and we are only interested in one of them, so

h′n =
hn
n!

=
C∗n
n!

= Cn−1.
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Finally, observe that the total number of multiplication schemes of n numbers with that
desired restriction is the sum of h′kh

′
n−k, and that h′1 = h1/1! = 1 = C0, so

Cn−1 = h′n = h′1h
′
n−1 + h′2h

′
n−2 + · · ·+ h′n−1h

′
1 = C0Cn−2 + C1Cn−3 + · · ·+ Cn−2C0.

Therefore, we have the following theorem.

Theorem 11.2. For any n ≥ 1, the n-th Catalan number Cn satisfies the following linear
recurrence relation:

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0 =
n−1∑
k=0

CkCn−1−k.
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