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1. January 7

Complex analysis studies the functions from C to C, the set of complex numbers. One
can view C ∼= R2 with the usual vector addition and the usual real-scalar multiplication.
Thus we can map each complex number in the usual xy-plane, where the x-axis is the real
axis, and the y-axis the complex axis. Clearly, (x, 0) corresponds to the real number x, and
(0, y) corresponds to the imaginary number yi. Thus (x, y) = x(1, 0) + y(0, 1) corresponds
to x+ iy ∈ C.

Furthermore, we define a product (x1 + iy1)(x2 + iy2) such that i satisfies i2 = −1,
and the usual rules of arithmetic are hold. Thus, we must have (x1 + iy1)(x2 + iy2) =
x1x2 + ix!y2 + iy1x2 + i2y1y2 = (x1x2−y1y2)+ i(x1y2 +x2y1). All in all, we have the following
definition of C.

Definition 1.1. C, the set of complex numbers, is a two-dimensional real vector space (R2)
with the vector addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and the vector product

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

With these operations ,C forms a field.

The real axis is a subfield (or a subspace) identical to R. Note that (x1, 0) + (x2, 0) =
(x1 + x2, 0) and (x1, 0) · (x2, 0) = (x1x2, 0). Therefore, R ⊂ C by writing point (x, 0) as
x (i.e., identify the real axis as R). And the real-scalar multiplication is special case of
product (x1, 0) · (x2, y2) = (x1x2, x1y2) = x1(x2, y2). Hence the following notation is justified:
(x, y) = (x, 0) + (0, y) = x+ y(0, 1) = x+ iy.

Remark. C is a field obtained from R by adjoining an element i such that i2 = −1. (i.e.,
C = R(i)). Note that x2 + 1 is irreducible, and i2 + 1 = 0, so i is degree 2 over R. Hence
C = R(i) is a vector space over R of dimension 2, i.e., C is the smallest field (unique up to
isomorphism) containing R and i where i2 = −1.

Definition 1.2. Let z = x + iy ∈ C. Then the real part of z is Re(z) := x; the imaginary
part of z is Im(z) := y. Therefore, Re : C → R and Im : C → R are both coordinate
projections π1 = Re and π2 = Im, which are both real linear maps.

As in any field, there must be an inverse −z and a multiplicative inverse z−1, and they
are unique. Define

z − w := z + (−w)
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z

2
:= zw−1 (w 6= 0).

Then −z = (−1)z and z−1 = 1/z for any z 6= 0.
What about the integer powers of complex numbers? Let zn := z · · · · · z︸ ︷︷ ︸

n times

and z−n :=

z−1 · · · · · z−1︸ ︷︷ ︸
n times

. Then for all m,n ∈ Z, we have

zm+n = zmzn

(zm)n = zmn.

Furthermore, we let 00 = 1 and 0n = 0 for all n ∈ N.
A norm can be defined on C to make C a metric space. For any z = x+ iy ∈ C, define

|z| := ‖(x, y)‖Euc =
√
x2 + y2.

One can easily verify that |z| indeed has the norm properties, i.e.
• |z| = 0⇔ z = 0
• |z + w| ≤ |z|+ |w|
• |az| = |a||z| where a ∈ R.

Additionally, |z| satisfies |wz| = |w||z| and hence∣∣∣w
z

∣∣∣ =
|w|
|z|

and

|z−1| =
∣∣∣∣1z
∣∣∣∣ =

1

|z|
= |z|−1.

Definition 1.3. Write z := x− iy for any z = x+ iy. Then z is said to be the conjugate of
z. In other words, the map z 7→ z is a reflection in the x-axis.

The following are the properties of the conjugation map:
• Real-linear: z + w = z + w and az = az for a ∈ R.
• Involution: bijective, and the inverse is itself.
• Isometry: |z| = |z|.
• Preserves the product: zw = zw.

All in all, the conjugation map is a field isomorphism. Thus we also have
• z − w = z − w
• z/w = z/w

• z−1 = z−1.
Notice also that

zz = (x+ iy)(x− iy) = x2 − (iy)2 = x2 + y2 = |z|2

1

z
=

z

|z|2
(z 6= 0).

Furthermore,

Re z =
1

2
(z + z)
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Imz =
1

2i
(z − z).

1.1. Polar coordinates

Given (x, y) ∈ R2 \ {0}, there exists unique r > 0 and angle θ (unique mod 2π) so that

x = r cos θ and y = r sin θ, and r =
√
x2 + y2 = |z| (the length of the vector (x, y)). As for

the angle, θ must satisfy tan θ = y/x with the quadrant same as (x, y).

Definition 1.4. θ as defined above is called an argument of z, which we write arg(z). Thus,

arg(z) = {all such values of θ ∈ R}.

The principal value of the argument z, written Arg(z), is the unique value of θ in arg(z) such
that θ ∈ (−π, π]. In other words,

arg(z) = {Arg(z) + 2kπ : k ∈ Z}.

Remark. Notice that arg : z 7→ arg(z) is not a function (because arg is multiple-valued).
However, Arg : C \ {0} → (−π, π] is a well-defined function.

Notice for w = a+ ib = r(cos θ + i sin θ) and z = x+ iy,

wz = (a+ ib)(x+ iy) = (ax− by) + i(bx− ay)↔ (ax− by, bx+ ay),

and so (
ax− by
bx+ ay

)
=

(
a −b
b a

)(
x
y

)
= r

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
for w = r(cos θ + i sin θ). Thus the multiplication in polar form is

r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2) = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)). (1)

In other words, |z1z2| = |z1||z2|; per the trigonometric identities, arg(z1z2) = arg z1 +
arg z2 mod 2π. Putting these facts together, we have

wz = Mw

(
x
y

)
,

where Mw denotes the scaled rotation rRθ. This yields the correspondence between C and
the matrix of scaled rotations, namely

w := a+ ib = r(cos θ + i sin θ) ∈ C 7→Mw :=

(
a −b
b a

)
= rRθ.

In fact, this correspondence is a field isomorphism.

1.2. The unit circle

Let S = {z : |z| = 1} = {x + iy : x2 + y2 = 1} = {cos θ + i sin θ : θ ∈ R}. This is a
subgroup of (C \ {0}, ·).

Proposition 1.1 (Euler’s formula). eiθ = cos θ + i sin θ.
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Using Euler’s formula, we see that S = {eiθ : θ ∈ R}.
From Euler’s formula, we see that eiθ = 1 if and only if cos θ = 1 and sin θ = 0. Therefore

θ = 2πk for k ∈ Z. Therefore θ ∈ 2πZ.
Clearly, the conjugate of eiθ is eiθ = cos θ − i sin θ = cos(−θ) + i sin(−θ) = e−iθ. As we

have seen in (1), we have eiθ1eiθ2 = ei(θ1+θ2), so (eiθ)−1 = e−iθ. Therefore by induction, for
n ∈ Z, (eiθ)n = einθ.

So the map ϕ : R→ S given by θ(t) = eit maps the real line to the unit circle. Note that
ϕ is a group homomorphism, since ϕ(s+ t) = ϕ(s)ϕ(t) for all s, t ∈ R. Furthermore, notice
that kerϕ = ϕ−1(1) = 2πZ = arg(1), and the cosets are

arg(eiθ) = ϕ−1(eiθ) = θ + 2πZ.

1.3. Complex numbers in polar form

For any z = x+ iy ∈ C \ {0}, z has the polar form

z = r cos θ + ri sin θ = reiθ,

is r > 0. So (r, θ) is the polar coordinate for (x, y). Indeed, in this case we let r = |z| and
θ ∈ arg z, which is unique up to mod 2π. That is, in polar forms, r1e

iθ1 = r2e
iθ2 if and only

if r1 = r2 and θ1 ≡ θ2 (mod 2π).
As for the product, note that (r1e

iθ1)(r2e
iθ2) = (r1r2)e

i(θ1+θ2). If z = reiθ, then z = re−iθ

and z−1 = r−1e−iθ. This gives us de Moivre’s law.

Proposition 1.2 (De Moivre’s law). For any n ∈ Z, we have zn = rneinθ.

We can use de Moivre’s law to find the n-th roots of z = reiθ ∈ C \ {0}. For n ∈ N, there
exists exactly n numbers w ∈ C such that wn = z = reiθ. By de Moivre’s law, they are

w = r1/nei(
θ
n
+k 2π

n ),

for k = 0, 1, 2, . . . , n− 1.

Definition 1.5. The ray of θ is Rayθ = {reiθ : r ≥ 0}.
1.4. Complex exponentials and the exponential map

For z = x+ iy ∈ C we define

ez = ex+iy = exeiy = ex cos y + iex sin y.

Thus Re(ez) = ex cos y and Im(ez) = ex sin y. Notice that |ez| = ex > 0, so ez can never be
0. Finally, arg(ez) = y mod 2π. As for the conjugate and the inverse,

ez = exeiy = exe−iy = ex−iy = ez

(ez)−1 = e−z.

Proposition 1.3. For any z, w ∈ C and n ∈ Z,

ezew = ez+w

(ez)n = enz.

When is ez = 1? Recall that ez = exeiy = 1, so |ez| = ex = 1 and eiy = 1. This means
x = 0, and y = 2πk where k ∈ Z. Hence z = 2πik for k ∈ Z, so z ∈ 2πiZ.

When do we have ez = ew? if ez = ew, then eze−w = ez−w = 1. Thus z − w ∈ 2πiZ.
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Definition 1.6. The complex exponential mapping exp : C→ C\{0} is defined as exp(z) =
ez (or equivalently, exp(x+ iy) = exeiy).

Now let’s look at the vertical lines in the complex plane (i.e., real part fixed, imaginary
part varies). If the real part is 0, then exp maps the points to the unit circle. Thus the
imaginary axis is mapped to the unit circle. The set of complex numbers with Re(z) = a, is
mapped to the circle of radius ea.

Take a look at the real axis (i.e., Im(z) = 0). Then exp maps the real axis to the
positive real axis, with smaller z being mapped closer to 0. Any complex number such that
Im(z) = a, is mapped to a point lying on the half-line whose angle between the positive real
axis is exactly a.

Another topic of interest for any function is the pre-image of the function. Let w = reiθ ∈
C \ {0}. Then we want to find z = x+ iy such that ez = w = reiθ. Recall that the modulus
is dictated by the value of x, so r = ex. Hence x = ln r. On the other hand, eiθ advises the
angle, so we need eiθ = eiy. This means y = θ + 2πk for k ∈ Z, i.e., y ∈ argw. Hence

exp−1(w) = {ln |w|+ iα : α ∈ argw} = ln |w|+ i argw.

1.5. Complex logarithm

For w ∈ C \ {0}, we define

logw := exp−1(w) = ln |w|+ i argw.

Notice this is a multiple-valued function. We can convert this one-to-one by taking advantage
of the principal argument Argw.

Definition 1.7. The principal value of the logarithm, denoted Logw, is

Logw := ln |w|+ iArgw.

Therefore, logw = ln |w|+ iArgw + 2πiZ = Logw + 2πiZ.

2. January 9: Metric spaces

Let (X, d) be a metric space, with a metric d(x, y).

Definition 2.1. The δ-ball centred at a is

B(a, δ) := {x ∈ X : d(a, x) < δ}.

Example. Let X = R and d(x, y) = |x − y|. Then δ-balls are open intervals. C ∼= R2 with
the usual Euclidean metric is another example of a metric space.

Definition 2.2. The annulus A(a, r, R) for any r < R is

A(a, r, R) := {x ∈ X : r < d(a, x) < R}.

3. January 11

For f : A→ C where A is R or C, write

f(z) = u(z) + iv(z) =

(
u(z)
v(z)

)
.
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Then

lim
z→a

f(z) =

(
lim
z→a

u(z)

lim
z→a

v(z)

)
= lim

z→a
u(z) + i lim

z→a
v(z).

Thus lim f(z) exists if and only if both limu(z) and lim v(z) exist.

Definition 3.1. The function f : R→ R is differentiable at a if

f ′(a) = lim
x→a

f(x)− f(a)

x− a
exists.

What if the codomain R is replaced with R2? Consider γ : R→ R2.

Definition 3.2. Let γ : R→ R2 = C be equal to

γ(t) = u(t) + iv(t).

Then γ is differentiable at a if

γ′(a) = lim
t→a

γ(t)− γ(a)

t− a
exists.

Remark. γ′(a) from the above definition exists if and only if both u′(a) and v′(a) exist, since

γ′(a) =

 lim
t→a

u(t)−u(a)
t−a

lim
t→a

v(t)−v(a)
t−a

 =

(
u′(a)
v′(a)

)

= lim
t→a

u(t)− u(a)

t− a
+ i lim

t→a

v(t)− v(a)

t− a
= u′(a) + iv′(a).

Therefore γ is differentiable at a if and only if u and v are differentiable at a.

Notice that one equivalent way of defining differentiability involves using the linear map.
It may sound unnecessarily convoluted, but understanding this perspective is imperative
since this perspective allows us to generalize differentiability for Rn for all n ≥ 1.

Definition 3.3. f : R→ R is differentiable at a if there exists α ∈ R such that

lim
t→a

|f(t)− f(a)− α(t− a)

|t− a|
= 0.

Notice that if we define L : R→ R where L(t) := αt, then we can also write that

lim
t→a

|f(t)− f(a)− L(t− a)|
|t− a|

= 0.

Therefore, we can generalize this for any multi-dimensional functional f : Rn → Rm where
n,m ∈ N. From now on, ‖ · ‖ shall denote the Euclidean norm.

Definition 3.4. f : Rn → Rm is real-differentiable at a if there exists a linear map L : Rn →
Rm such that

lim
v→a

‖f(v)− f(a)− L(v − a)‖
‖v − a‖

= 0.

If such L exists, then L is unique; this unique L is the full derivative of f at a, which we
denote Df(a).
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Since C ∼= R2, mostly we will focus on the n = m = 2 case. For f : R2 → R2, the linear
map L : R2 → R2 has a matrix representation, namely

[Df(a)] =

( ∂u
∂x

(a) ∂u
∂y

(a)
∂v
∂x

(a) ∂v
∂y

(a)

)
,

where f = u+ iv =

(
u
v

)
.

For f : R2 → R, the linear map Df(a) : R2 → R has a 1× 2 matrix

[Df(a)] =
(

∂f
∂x

(a) ∂f
∂y

(a)
)
.

In this case, we define the gradient function

∇f(a) =
(

∂u
∂y

(a) ∂u
∂y

(a)
)
.

Example. Any constant functions are differentiable. If f ≡ C, then Df(x) = 0 everywhere
where f is defined.

Example. Linear maps are always differentiable. If T : Rn → Rm is a linear transformation,
then DT (x) ≡ T for all x ∈ Rn.

3.1. Test for differentiability

Definition 3.5. If the partial derivatives of f exists and are continuous on an open set U ,
then we say that f is differentiable at U (or C1 on U).

Proposition 3.1. Let f be differentiable at an open set U ⊆ R (or R2).

(1) Differentiability implies continuity.
(2) (Chain rule) If f (resp. g) is differentiable at a (resp. f(a)), then g◦f is differentiable

at a also; and
D(g ◦ f)(a) = Dg(f(a))Df(a).

Example. If f : R → R2 and g : R2 → R are both differentiable, then (g ◦ f)′(a) =
∇g(f(a)) · f ′(a) · f ′(a), where · denotes the dot product.

Theorem 3.1 (Inverse function theorem). Let f : R2 → R2 where f is defined on an open
set U , and let a ∈ U . If f is C1 in U , and Df(a) is invertible, then there exist open sets U0

and V0 containing a and f(a), respectively, such that:

(1) f : U0 → V0 is invertible whose inverse f−1 : V0 → U0 is C1 as well, and
(2) Df−1(v) = (Df(u))−1 for v = f(u) ∈ V and u ∈ U .

In other words, f is locally invertible with an inverse that is also C1.

4. January 14

4.1. Paths

Definition 4.1. Let E ⊆ C and p, q ∈ E. A path from p to q is a continuous map γ :
[a, b]→ C defined by t 7→ γ(t) = x(t) + iy(t) such that γ(a) = p, γ(b) = q, and γ([a, b]) ⊂ E.
Therefore both x(t) and y(t) must be continuous (because that is equivalent to γ(t) being
continuous). γ is a differentiable path if γ : [a, b] → C ∼= R2 is differentiable. γ : [a, b] → C
is a C1 path if γ is continuous and γ′ is continuous. γ is a smooth path if γ is a C1 path and
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γ′ 6= 0 on [a, b] (so as to remove any singularity). γ is a piecewise-C1 path if γ is C1 on each
subinterval of some partition a = t0 < t1 < · · · < tn = b. Similarly, γ is a piecewise smooth
path if γ is smooth on each subinterval of some partition a = t0 < t1 < · · · < tn = b.

One particular type of paths of our interest is a line-segment path, i.e., γ : [0, 1] → E
where γ(t) = z + t(w − z) so that γ(0) = z and γ(1) = w. Putting multiple line-segment
paths together, we have polygonal paths or rectangular paths.

Definition 4.2. A set E is connected if E 6= A ∪ B for non-empty separated sets A and B
(i.e., A ∩B = ∅, A ⊂ Bext and B ⊂ Aext).

Example. Disjoint open sets are separated sets. The empty set is separated from every set.

Theorem 4.1. Let E be a connected set, and f be a continuous map on E. Then f(E) is
also connected.

Definition 4.3. A set E is path-connected if for any p, q ∈ E there exists a path in E
from p to q. Similarly, we also have analogous definitions for smooth-path-connectedness,
piecewise-smooth-connectedness, rectangular-path-connectedness, and so forth.

Theorem 4.2. Path-connectedness implies connectedness.

Proof (sketch). Suppose E = A ∪ B where A and B are separated, and that p ∈ A and
q ∈ B. But since E is path-connected, there exists a path from γ in E from p to q. Thus
γ : [a, b] → E is continuous. But then [a, b] is continuous, so γ([a, b]) must be connected.
But this contradicts the fact that E can be written in two separated sets. �

Remark. Note that rectangular-path-connected ⇒ polygonal-path-connected ⇒ piecewise-
smooth-connected ⇒ path-connected ⇒ connected. Also, smooth-path-connectedness ⇒
piecewise-smooth-connectedness.

Definition 4.4. A domain (or region) is a connected open set in C.

Theorem 4.3. Every domain U is path-connected (for each above type of path).

Proof (sketch). Let U be a connected open set, and let p ∈ U . Let A = {u ∈ U :
there exists a rectangular path in U from p to u}. Then A is open. However, B = U \ A
is also open since we can apply the same reasoning used to argue that A is open. Hence A
and B are separated, but this contradicts the fact that U is connected. Hence A = U . �

Theorem 4.4. If U is a domain and rectangular-path-connected, then it is smooth-path-
connected.

Example. Disks D(z0, r) are domains. Annuli A(z0, r, R) are domains. The upper half-plane
H = {z ∈ C : Im (z) > 0} is a domain. Slice planes C \ Rayθ are domains as well.

Theorem 4.5 (Zero derivative theorem). If f ′ ≡ 0, continuous on [a, b] and differentiable
on (a, b), then f is constant (on [a, b]).

Proof. Apply the mean value theorem. �

We can generalize this to Rn.

Theorem 4.6 (Generalized ero derivative theorem). Let f : [a, b] → Rn be continuous on
[a, b], differentiable on (a, b), and f ′ ≡ 0 on (a, b), then f is a constant on [a, b].
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Theorem 4.7. If f : Rn → Rn differentiable on a domain U and Df ≡ 0 on U , then f is
constant on U .

Proof. Fix z0 ∈ U . Then given any z ∈ U , there exists a smooth path γ : [a, b] → U in U
from z0 to z so that γ(a) = z0 and γ(b) = z. So f ◦ γ : [a, b] → R2 is continuous on [a, b],
differentiable on (a, b) with (f ◦ γ)′(t) = Df(γ(t))γ′(t) = 0 since Df(γ(t)) = 0. Hence f ◦ γ
is constant on [a, b]. Thus f(z0) = (f ◦γ)(a) = (f ◦γ)(b) = f(z). Since z is arbitrary, indeed
f ≡ f(z0). �

4.2. Holomorphic (complex-differentiable) functions

Let f : C→ C be defined on an open set U , and write f(z) = u(z) + iv(z). If z = x+ iy,
then

f(x, y) =

(
u(x, y)
v(x, y)

)
.

Definition 4.5. f is holomorphic (or complex-differentiable) at a ∈ U if

lim
z→a

f(z)− f(a)

z − a
exists. If so, we denote its value by f ′(a) or df

dz
(a). Thus, f ′(a) is a complex number.

Also, as in R,

lim
z→a

f(z)− f(a)

z − a
= α ∈ C⇔ lim

z→a

|f(z)− f(a)− α(z − a)|
|z − a|

= 0.

So there is a matrix Mα so that α(z − a) = α(z − a).

Mα(z) = αz =

(
c −d
d c

)(
x
y

)
= rRθ

(
x
y

)
,

where α = c + id, r = |α|, θ = Argα. Hence f : C → C is holomorphic at a. Thus, we see
that f : CtoC is holomorphic at a if and only if f : R2 → R2 is real-differentiable at a, and
Df(a) is a scaled rotation.

5. January 16

Let f : CtoC be f(z) = u(z) + iv(z), where z = x + iy. Then using the partials, we see
that

Df(a) =
∂u

∂x
(a) =

( ∂u
∂x

(a) ∂u
∂y

(a)
∂v
∂x

(a) ∂v
∂y

(a)

)
= Mf ′(a),

so the matrix must be of the form

(
c −d
d c

)
. This gives us the Cauchy-Riemann equation.

Theorem 5.1 (Cauchy-Riemann equations). f : C→ C is holomorphic at a if and only if

∂u

∂x
(a) =

∂v

∂y
(a) and

∂u

∂y
(a) = −∂v

∂x
(a).
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So if f is holomorphic at a, then

f ′(a) =
∂u

∂x
(a) + i

∂v

∂x
(a) =

∂u

∂x
(a)− i∂u

∂y
(a) =

∂v

∂y
(a) + i

∂v

∂x
(a) =

∂v

∂y
(a)− i∂u

∂y
(a).

Locally speaking, a holomorphic map is like a scaled rotation for any z near a, i.e.,

f(z)− f(a) ≈ f ′(a)(z − a).

Definition 5.1. If f : C → C is holomorphic at each z ∈ U for an open set U , then f is
holomorphic on U . If f is holomorphic on C, then f is an entire function.

Theorem 5.2. If all four partials of f = u + iv exist, are continuous, and satisfy the
Cauchy-Riemann equations on U , then f is holomorphic on U , and f ′ is continuous.

5.1. Properties of holomorphic functions

Proposition 5.1. If f is holomorphic at a, then f is continuous at a.

Theorem 5.3. If f and g are holomorphic on U then the sum f + g is holomorphic on U ,
and

(f + g)′(z) = f ′(z) + g′(z).

Similarly, fg is holomorphic on U and

(fg)′(z) = f ′(z)g(z) + f(z)g′(z).

f/g is holomorphic on U \ {a ∈ U : g(a) = 0}, and(
f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g(z)2
.

Proof. The proofs work exactly the same way for the real versions. We will prove the product
rule as an example.

lim
z→z0

f(z)g(z)− f(z0)g(z0)

z − z0
= lim

z→z0

f(z)g(z)− f(z)g(z0) + f(z)g(z0)f(z0)g(z0)

z − z0

= lim
z→z0

f(z)
g(z)− g(z0)

z − z0
+
f(z)− f(z0)

z − z0
g(z0)

= lim
z→z0

f(z)g′(z0) + f ′(z0)g(z).

But since f and g are holomorphic, they are continuous as well, so f(z), g(z)→ f(z0), g(z0)
respectively as z → z0. The result now follows. �

Example. If f : C→ C is a constant function for some a ∈ C (i.e., f(z) ≡ a), then Df(z) ≡ 0
which is a scaled rotation. Thus f is holomorphic with f ′(z) ≡ 0. Another way of looking
at it is

lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0

a− a
z − z0

= 0.

Thus f is entire, and it has f ′ ≡ 0.
10



Example. Let f(z) = z. Then

lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0

z − z0
z − z0

= lim
z→z0

1 = 1.

Therefore f is entire with f ′ ≡ 1.

Example. Let n ∈ Z, and f(z) = zn. Then f ′(z) = nzn−1 which one can show with the
product rule and induction. Similarly, if f(z) = 1/z, then f is holomorphic on the punctured
complex plane (C \ {0}), and f ′(z) = −1/z2 (use the quotient rule).

With the application of chain rule, one can also show that (z−n)′ = −nz−n−1 for any
z ∈ C \ {0}.

Example. Any polynomial function p(z) = anz
n + · · · a1z + a0 (for n ∈ N, an 6= 0) is entire,

and p′(z) = nanz
n−1 + · · · + a1. Any rational function r(z) = p(z)/q(z) is holomorphic in

C \ {a ∈ C : q(x) = 0}.

Example. Recall that exp : C → C \ {0} maps x + iy 7→ exeiy = ez, and that this is
differentiable since

D exp(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
= exRy.

Thus exp is entire. Finally,

exp′(z) = ex cos y + iex sin y = ex(cos y + i sin y) = exeiy = ez = exp(z).

Theorem 5.4 (Chain rule). Suppose that f : C → C is holomorphic on U an open set,
and g : C → C holomorphic on V an open set. Suppose also that f(U) ⊂ V. Then g ◦ f is
holomorphic on U with (g ◦ f)′(z) = g′(f(z))f ′(z).

Proof. This follows from the chain rule for functions f, g : R2 → R2 which tells us that g ◦ f
is a real-differentiable function on U , with

D(g ◦ f)(z) = Dg(f(z))Df(z).

Since both Dg(f(z)) and Df(z) are scaled rotations, so is Dg(f(z))Df(z) = D(g◦f)(z). �

Suppose that γ : [a, b] → C is differentiable and f : C → C is holomorphic on an open
set U , and that γ([a, b]) ⊂ U . Then using the chain rule, (f ◦ γ)′(t) = Df(γ(t))γ′(t) =
f ′(γ(t))γ′(t).

Remark. Chain rule holds also for one-sided limits. That is, (f ◦ γ)′(a+) = Df(γ(a))γ(a+).
The same holds for b−.

Remark. If γ is C1 or piecewise-C1, then the same holds for f ◦γ. If γ is smooth or piecewise-
smooth with f ′ 6= 0, then the same claim holds for f ◦ γ.

6. January 18

6.1. Angle-preserving maps

Definition 6.1. A smooth path at z0 is a path γ : [−a, a] → C for some a > 0 such that
γ(0) = z0, γ differentiable at z0 with γ′(0) 6= 0. The angle between two smooth pats γ and
µ at z0 is the angle between the vectors that are tangent to γ and µ respectively at z0, i.e.,
](γ′(0), µ′(0)).

11



Definition 6.2. A map f : C → C defined on an open set U is conformal (or angle-
preserving) at z0 ∈ U if there exists α 6= 0 such that if γ is a smooth path at z0 in U then
f ◦ γ is differentiable at 0 and (f ◦ γ)′(0) = αγ′(0) (i.e., scalar rotation).

Theorem 6.1. f is holomorphic at z0 with f ′(z0) 6= 0 if and only if f is conformal at z0.

Proof. (⇒) This is straightforward from the chain rule: (f ◦ γ)′(0) = f ′(γ(0))γ′(0) =
f ′(z0)γ

′(0), so the result follows upon recognizing that α = f ′(z0).
(⇐) Left as an exercise. �

Theorem 6.2 (Inverse function theorem). Suppose U is open and z0 ∈ U . If f is holomor-
phic on U , f ′(z0) 6= 0, and f ′ is continuous on U , then there exist open sets U0 and V0 with
z0 ∈ U0 ⊂ U and f(z0) ∈ V0 such that f : U0 → V0 is invertible with a holomorphic inverse
f−1 : V0 → U0. Furthermore,

f−1(w) =
1

f(′(z)

for all w = f(z) ∈ V0 and z ∈ U0.

Proof. Since f : R2 → R2 is C1 on U and Df(z0) = Mf ′(z0) is a scaled rotation and invertible
(since f ′(z0) 6= 0), then the inverse function theorem on R2 implies that there exist U0 and
V0 with z0 ∈ U0 ⊂ U and f(z0) ∈ V0 so that f : U0 → V0 is invertible and f−1 : V0 → U0 is
real differentiable. Furthermore, there exists f(z) := w ∈ V0 and z ∈ U0 so that

Df−1(w) = (Df(z))−1 = (Mf ′(z))
−1 = M1/f ′(z0),

which is a scaled rotation. Thus f−1 is holomorphic on V0 with (f−1)′(w) = 1/f ′(z), as
required. �

Theorem 6.3 (Zero derivative theorem). If f is holomorphic on domains U and f ′ ≡ 0 on
U , then f is constant on U .

Proof. This is immediate from the analogous result for R2. �

Definition 6.3. Let f : C → C be a function defined on an open set U . A primitive for f
on U is a holomorphic function g on U such that g′ = f on U .

Remark. If g1 and g2 are primitives for f on a domain U , then (g1−g2)′ = g′1−g′2 = f−f = 0
on U . So by the zero-derivative theorem, g1 − g2 ≡ C for some constant C on U . Therefore,
g1 = g2 + C on U . So if g is a primitive for f on U open, then so is g + C for any C ∈ C.

6.2. Multiple-valued map

Definition 6.4. Let A,B be non-empty sets. Then a multiple-valued map F : A → B is a
function F : A→ P(B) such that for each a, F (a) ⊂ B. A representative function for F on
a set E in A is a function f : A→ B such that for each a ∈ E, f(a) ∈ F (a).

Example. Let F : [0,∞)→ R be defined F (x) = ±
√
x. Then F (x) is a multiple-valued map.

One possible representative function is

f(x) =

{√
x x ∈ Q
−
√
x x /∈ Q.

Definition 6.5. A branch of F on E is a continuous representative function on a connected
open set E.

12



Example.
√
x is a branch of F on (0,∞).

Example. arg : C \ {0} → R is multiple-valued; one representative function of arg is the
principal argument Arg : C\{0} → [−π, π). Note that we need to restrict the domain further
to make Arg continuous by replacing C \ {0} with C \ Rayπ. Therefore Arg : C \ Rayπ →
(−π, π) is a branch of arg on C \ Rayπ. This is also called the principal branch. Similarly,
for Rayθ, the function arg : C \ Rayθ → (θ, θ + 2π) is a branch of arg.

6.3. Multiple-valued inverses

Let X and Y be non-empty sets, and suppose that g : X → Y is a function that is not
one-to-one. Then its pre-images

g−1(y) = {x ∈ X : g(x) = y}
define a multiple-valued map.

Definition 6.6. The function F : Y → X such that y 7→ F (y) =: g−1(y) is called the
multiple-valued inverse of g.

Example. log : C \ {0} → C is a multiple-valued inverse of exp : C→ C \ {0}.

Definition 6.7. For a function f : Y → X defined on a set E in Y , f is a representative
function of F on E if f(y) ∈ F (y) = g−1(y) for all y ∈ E. Note that this definition is
equivalent to saying g(f(y)) = y for all y ∈ E, which is also equivalent to saying that f is
one-to-one on E with inverse g : f(E)→ E (i.e., f is an inverse for g on E).

Example. Suppose that f : C \ {0} → C is a branch of log on a domain U in C \ {0}, so f
is continuous on U and f(z) ∈ log(z) for all z ∈ U (by definition). Hence ef(z) = z for all
z ∈ U , and f is continuous on U . Thus f is continuous on U and f : U → f(U) is the inverse
of exp : f(U)→ U .

Example. For any n ∈ N, zn : C \ {0} → C \ {0} is not one-to-one since its inverse z1/n is
the multiple-valued inverse.

7. January 21: Sequences and series in C

Definition 7.1. Let {an : n ≥ 1} ⊂ C be a sequence in C. Then {an} converges to a if for
any ε > 0 there exists N > 0 such that |an − a| < ε (i.e., an ∈ D(a, ε)) for all n ≥ N . We
write an → a or lim an = a.

Definition 7.2. Let {an} ⊂ C. Then a0, a0 +a1, a0 +a1 +a2, . . . ,
∑
aj, · · · forms a sequence

in C. If this sequence of partial sums converges, we say that the series
∞∑
n=0

an converges, and

we define its sums to be
∞∑
n=0

an := lim
n→∞

n∑
j=0

aj.

Thus
∑
an denotes a complex number which we call the sum of the series. If the sequence

of partial sums diverges then we say
∑
an diverges.

Definition 7.3.
∞∑
n=0

an converges absolutely if
∞∑
n=0

|an| converges as well.
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Some results are in the handout, so refer to those. A few remarks regarding them:

Remark. The n-th term test is to test the divergence of a series. If |an| 6→ 0, then
∑
an

diverges. Absolute convergence implies convergence, since∣∣∣∣∣
∞∑
n=0

an

∣∣∣∣∣ ≤
∞∑
n=0

|an|,

which may be viewed as the infinite triangle inequality.

Proposition 7.1. Suppose that
∑
an and

∑
bn are convergent.

(i) (sum)
∑

(an + bn) =
∑
an +

∑
bn

(ii) (scalar product) If λ ∈ C, then
∑
λan = λ

∑
an. Thus if λ is a non-zero scalar, then∑

an converges if and only if
∑
λan converges.

(iii) (product of the series) in the handout.
Other results in handout.

Definition 7.4. Let {bn} be a sequence of real numbers. Then lim sup bn = lim
k→∞

sup
n≥k

bn. In

essence, lim sup bn is the largest y value such that bn ≤ y for all n ∈ N ∪ {0}.
Remark. Visually, we can plot the sequence {bn}, where the x-axis denotes n and the y-axis
bn. Then try to place y = k so that none of the bn’s are above the graph, but once you lower
it, there are bound to be some points above that line. This is one way to visualize lim sup.

Remark. lim sup bn always exists; if lim bn exists, then lim bn = lim sup bn.

Proposition 7.2 (Root test). Let
∑
an be a complex series. Then:

(i) if lim sup |an|1/n < 1 as n→∞ then the series converges absolutely.
(ii) if lim sup |an|1/n > 1 or ∞ as n→∞, then the series diverges.

Both the ratio test and the root test can be proved as in R, by comparison of the absolute
value series with the geometric series.

Definition 7.5. For any z ∈ C, the geometric series with ratio z is
∞∑
n=0

zn.

If |z| ≥ 1, then the series diverges by the n-th term test. Note that lim |zn| = lim |z|n is
either ∞ (if |z| > 1) or 1 (if |z| = 1). If |z| < 1, then by the partial sum method (same as
in R), we have (1− z)Sn = 1− zn+1 where Sn := 1 + z + · · ·+ zn.

Since |z| < 1, we have z 6=. Thus

Sn =
1− zn+1

1− z
.

But lim |zn+1| = lim |z|n+1| = 0 since |z| < 1. Thus lim zn+1 = 0, from which it follows that

lim
n→∞

Sn = lim
n→∞

1− zn+1

1− z
=

1

1− z
.

Therefore, in the unit disc D(0, 1),
∑
zn always converges, and
∞∑
n=0

1

1− z
.
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Outside D(0, 1),
∑
zn diverges despite 1

1−z still defined except when z = 1.

7.1. Exponential series

Recall that for t ∈ R, the series

et =
∞∑
n=0

tn

n!

converges absolutely. For z ∈ C, consider
∞∑
n=0

zn

n!
.

Observe that ∣∣∣∣znn!

∣∣∣∣ =
|z|n

n!
,

that |z| ∈ R, and that
∞∑
n=0

|z|n

n!
= e|z|

(as usual in R). Then
∑

zn

n!
converges absolutely, and we have∣∣∣∣∣

∞∑
n=0

zn

n!

∣∣∣∣∣ ≤
∞∑
n=0

|z|n

n!
= e|z|.

We define Exp : C→ C (we will use Exp rather than exp since we don’t know at this point
if the complex exponential is indeed equal to the analogous version in C)

Exp :=
∞∑
n=0

zn

n!
.

Then |Exp z| ≤ e|z|; and when z = x ∈ R, then

Exp(x) = exp z = ex.

Thus Exp = exp.
Similarly, we can define sin and cos as we did over R, i.e., sin, cos : C → C are complex-

valued functions satisfying the following:

sin z =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!

cos z =
∞∑
k=0

(−1)k
z2k

(2k)!
.

The geometric series, exp, sin, and cos are all examples of power series.

Definition 7.6. A power series is a series of the form
∞∑
n=0

anz
n,

where {an} is a complex-valued sequence.
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Remark. For z = 0 the series is just equal to a0+0+0+ · · · = a0, which absolutely converges,
with a0 the first term. If z 6= 0, then by the root test

lim sup |anzn|1/n = lim sup |an|1/n|z| = |z| lim sup |an|1/n = |z|l,

where l := lim sup |an|1/n.
If l = 0 then |z|l = 0 < 1, so the series converges absolutely at each z ∈ C. Thus the disk

of convergence is the entire C, and the radius of convergence is ∞.
If l = ∞ then |z|l = ∞ > 1, so the series diverges as long as z 6= 0. Hence the disk of

convergence is {0}, and the radius of convergence is 0.
If 0 < l < ∞, then |z|l < 1 if and only if |z| < l−1 (i.e., |z| ∈ (0, l−1)); similarly, |z| > 1

if and only if |z| > l−1 (i.e., z /∈ D(0, l−1). Therefore, the series converges absolutely in
D(0, l−1) and diverges for any |z| > l−1. Hence the disk of convergence is D(0, l−1), and the
radius of convergence is l−1. If |z| = l−1, the test is inconclusive.

One can also apply the ratio test instead to find the radius of convergence. For z 6= 0, if
an’s don’t converge eventually to 0, then

lim
n→∞

|an+1z
n+1|

|anzn|
= lim

n→∞

|an+1|
|an|

|z| = |z| lim
n→∞

|an+1|
|an|

.

Letting lim |an+1|/|an| = L, we see that the radius of convergence is L−1 = l−1. In conclusion,
we have

R =
1

lim sup |an|1/n
=

1

limn→∞ |an+1|/|an|
. (2)

Definition 7.7. (2) is called Hadamard’s formula.

What are some take-away messages from this section? Every power series
∑
anz

n has a
radius of convergence R = [0,∞], and has a disk of convergence:

(i) {0} if R = 0
(ii) C if R =∞

(iii) D(0, R) if 0 < R <∞.
The series converges absolutely at each z in its disk of convergence, and this defines a function

f(z) :=
∞∑
n=0

anz
n ∈ C

for each z ∈ Dconv, where Dconv denotes the disk of convergence. The series diverges for any
|z| > R.

In general, f(z) =
∑
anz

n means f is the function defined by the power series insider the
disk of convergence. Thus we call 0 the centre of the power series.

Remark. Suppose that we know
∑
anz

n converges at some z. Then we know that z must be
in the closure of the disk of convergence. Thus R ≥ |z|. If

∑
anz

n diverges for some z, then
R ≤ |z|.
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8. January 23

8.1. Power series centred at z0 ∈ C
Consider the series

∞∑
n=0

an(z − z0)n.

So in this case, the centre is z0 rather than 0. Now fix z ∈ C and write w := z − z0. Then
∞∑
n=0

= an(z − z0)n =
∞∑
n=0

anw
n.

Thus the power series
∑
an(z − z0)n converges at z if and only if

∑
anz

n converges at w =
z−z0. The same equivalence holds for absolute convergence as well. So g(z) =

∑
an(z−z0)n

has the same radius of convergence R, as

f(z) =
∞∑
n=0

anz
n

and its disk is just translated by z0. All in all, we have, for g(z) = f(z − z0), the disk of
convergence for g(z) is {z0} if R = 0, C if R =∞, and D(z0, R if 0 < R <∞.

8.2. Basic properties of power series

Definition 8.1. Let
∞∑
n=0

cn = c0 + c1 + · · ·+ ck−1 +
∞∑
n=k

cn.

Then a tail of the power series is the summand
∞∑
n=k

cn.

Remark. It is straightforward from the definition that the series converges if and only if any
tail of a power series converges. If the given series converges, then the tails tends to 0 as
k →∞. Indeed, note that

∞∑
n=0

anz
n = a0 + a1z + · · ·+ ak−1z

k−1︸ ︷︷ ︸
polynomial

+
∞∑
n=k

anz
n,

and so they have the same radius of convergence R and hence the same disk of convergence
R also; and for any z in the disk of convergence, we have

lim
k→∞

∞∑
n=k

anz
n = 0.

Recall that for any λ,

λ
∑

cn =
∑

λcn,

and that the LHS converges if and only if the RHS does, provided λ 6= 0.
So for some fixed z ∈ C \ {0} and k ∈ N, we see that

zk
∞∑
n=0

anz
n =

∞∑
n=0

anz
n+k,
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and so the LHS converges if and only if the RHS converges. Hence both have the same radius
of convergence and the same disk of convergence. Hence for any power series f(z),

f(z) =
∞∑
n=0

anz
n = a0+a1z+· · ·+ak−1zk−1+sumn≥kanz

n = a0+· · ·+ak−1zk−1+zk
∞∑
n=0

anz
n−k.

Note that both
∑
n≥k

anz
n and

∑
n≥k

anz
n−k both have the same R, and the same goes for

∑
anz

n.

In particular,

f(z)− f(0) = f(z)− a0 =
∑
n≥1

anz
n = z

∑
n≥0

anz
n−1,

which has the same radius R. Using this as a springboard, we will examine the continuity of

f(z) at the centre. Both f(z) and
∑
n≥1

anz
n−1 have the same R, so f(z) converges absolutely

for all |z| ≤ r < R/2. So for all |z| < r,

|f(z)− f(0)| = |z|

∣∣∣∣∣
∞∑
n=1

anz
n−1

∣∣∣∣∣
≤ |z|

∞∑
n=1

|an||z|n−1 = C|z|,

where

C :=
∞∑
n=1

|an|rn−1.

Hence |f(z) − f(0)| ≤ C|z|, which implies that f is continuous at 0. It follows that every
power series is continuous at its centre.

For any series, we can shift the index, i.e.,

∞∑
n=0

cn = c0 + c1 + · · · =
∞∑
n=k

cn−k.

Indeed,
∑
cn−k converges if and only if

∑
cn does. We can do something similar for power

series.
∞∑
n=0

anz
n = a0 + a1z + · · · =

∞∑
m=k

am−kz
m−k.

We can apply this concept to the tail of a power series.

∞∑
n=k

anz
n = zk

∞∑
n=k

anz
n−k = zk

∞∑
m=0

am+kz
m.

Note that all three series have the same radius, and that the second and the third series are
the identical series.
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8.2.1. Sums and products. For series, addition is defined by piece-wise addition, i.e.,
∑

(cn+
dn) =

∑
cn +

∑
dn, provided both converge. As for the product,

Definition 8.2. Suppose that
∑
cn and

∑
dn converge, and suppose that one of them

converges absolutely. Then multiplying the two series gives(∑
cn

)(∑
dn

)
=
∞∑
n=0

n∑
j=0

cjdn−j.

This is called the Cauchy product.

Now, suppose that
∑
anz

n has radius Ra > 0 and
∑
bnz

n has the radius Rb > 0. Then
both

∑
(an + bn)zn and

∑
cnz

n have radii of convergence min(Ra, Rb) =: R, where cn =
n∑
j=0

ajbn−j =
∑

i1+i2=n

ai1bi2 .

Remark. We will further examine some properties of the Cauchy product. If a0 = a1 = · · · =
ak−1 = 0 and b0 = b1 = · · · = bl−1 = 0 but ak, bl 6= 0, then c0 = c1 = · · · = ck+l−1 = 0, but
ck+l 6= 0 since akbl 6= 0. Hence(

∞∑
n=k

anz
n

)(
∞∑
n=l

bnz
n

)
=

∞∑
n=k+l

cnz
n.

Example. If Ra 6= RB then
∑

(an + bn)zn has radius min(Ra, Rb).

Example. cos z + i sin z = Exp(iz) for all z ∈ C, so it is not that hard to verify via power
series that

(Exp z)(Expw) = Exp(z + w)

for all z, w ∈ C. In particular, Exp z = Exp(x+ iy) = (Exp x)(Exp iy) = ex(cos y+ i sin y) =
exeiy = exp(z) for all z ∈ C, giving us an alternate way of proving that Exp ≡ exp.

9. January 25

Let f(z) =
∑
anz

n have radius of convergence R > 0. Then for |z| < R, we have

f(z)2 = (
∑

anz
n)(
∑

anz
n) =

∑
c2,nz

n,

where
c2,n :=

∑
i1+i+2=n

ai1ai2 ,

and
f(z)2 =

∑
n≥0

c2,nz
n

has radius ≥ R. But then for |z| < R,

f(z)3 =

(∑
n≥0

c2,nz
n

)(∑
n≥0

anz
n

)
=
∑
n≥0

c3,nz
n

with
c3,n =

∑
i+i3=n

c2,iai,3 =
∑

i1+i2+i3=n

ai1ai2ai3 .
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So by induction, for |z| < R

f(z)k =

(
∞∑
n=0

anz
n

)k

=
∞∑
n=0

ck,nz
n,

and

ck,n =
∑

i1+···+ik=n

ai1ai2 · · · aik .

Notice that if the constant term a0 = 0, then

f(z) =
∞∑
n=1

anz
n

with R > 0. Then f(z)k starts at zk in this case.

9.1. Composition of power series

Let
∑
n≥1

anz
n and

∑
n≥0

bnz
n with radius Ra > 0 and Rb > 0 respectively. Then f is contin-

uous at 0 and f(0) = 0, This means there exists δ > 0 such that δ < Ra and |f(z)| < Rb for
|z| < δ. So for |z| < delta, f(z) is defined and is inside the disk of convergence for g. Note
that

g(f(z)) =
∞∑
k=0

bkf(z)k = b0 +
∞∑
k=1

bkf(z)k

= b0 +
∞∑
k=1

bk
∑
n=k

ck,nzn.

One natural question now arises: can we switch the two summands? See the notes distributed
during the class for more information on this. Thus we have

b0 = b0

b1f(z) = +b1c11z+b1c12z
2 + b1c13z

3 + · · ·
b2f(z)2 = + b2c22z

2 + b2c23z
3 + · · ·

Since we can change the summands,

∞∑
k=1

∞∑
n=k

|wk,n| =
∞∑
n=1

n∑
k=1

|wk.n|,

and they obviously have the same radii of convergence. So we need convergence of

∞∑
k=1

|bk|
∞∑
n=k

|ck,n||z|n,
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where ck,n =
∑

i1+···+ik=n

ai1ai2 · · · aik . But then

∑
k≥1

|bk|
∑
n≥k

|ck,n||z|n ≤
∞∑
k=1

|bk|
∑
k≥k

Ck,n|z|n,

where Ck,n :=
∑

i1+···+ik=n

|ai1| · · · |aik |. Hence

∞∑
k=1

|bk|
∑
k≥k

Ck,n|z|n =
∑
k≥1

|bk|

(
∞∑
n=1

|an||z|k
)k

= G(F (z)),

where G(z) =
∑
|bk|zk with the same radius of convergence Rb (same as g) and F (z) =∑

n≥1

|an|zn with the same radius of convergence Ra (same as f).

Since F (| · |) = F ◦ | · | is continuous at 0 and F (0) = 0, there is r > 0 such that r < Ra

and F (|z|) < R whenever |z| < r. So∑
k≥1

|bk|

(∑
n≥1

|an||z|k
)k

converges, which means we can switch the two summands. Furthermore, |z| < Ra so
∑
anz

n

converges; also, |f(z)| = |
∑
anz

n| ≤
∑
|an||z|n = F (|z|) < Rb. Hence

g(f(z)) = b0 +
∞∑
k=1

bk

(
∞∑
n=1

anz
n

)k

= b0 +
∞∑
k=1

bk

∞∑
n=k

ck,nz
n

= b0 +
∞∑
n=1

(
n∑
k=1

bkck,n

)
zn.

Note that the change of summands works because
∑
bk(
∑
anz

n)k converges. In conclusion
we have the following theorem.

Theorem 9.1. Let

g(z) =
∞∑
n=0

bnz
n

f(z) =
∞∑
n=1

anz
n,

whose radii of convergence are Rb and Ra respectively. If 0 < r < Ra such that (note that
such an r exists)

∞∑
n=1

|an|rn < Rb,
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then g(f(z)) converges for |z| < r. If Rb =∞, then for any r < Ra, the composition g(f(z))
converges for all |z| < r. Hence g(f(z)) converges for all |z| < Ra.

9.2. Reciprocals

Let f(z) = anz
n with radius of convergence R > 0. What can we say about 1/f(z)?

Clearly we need f(0) 6= 0 i.e., constant term cannot be 0. Assume that a0 = 1, since we can
always multiply by a constant for general case. Notice that if

f(z) = 1 +
∞∑
n=1

anz
n

︸ ︷︷ ︸
has the same radius R

then
1

f(z)
=

1

1− (1− f(z))
=
∞∑
n=0

(1− f(z))n,

provided that |1− f(z)| < 1 (geometric series). Using composition,

g(z) =
1

1− z
=
∞∑
n=0

zn

has radius 1, and

h(z) = 1− f(z) = −
∞∑
n=1

anz
n

has the radius R. So there exists r such that 0 < r < R so that |h(z)| = |1− f(z)| < 1 and
1

f(z)
= g(h(z)) is convergens for |z| < r. All in all we proved the following theorem.

Theorem 9.2. Let

f(z) =
∞∑
n=0

anz
n

with a0 6= 0 and radius R > 0. Then there exists r > 0 such that 1/f(z) converges for all
|z| < r.

10. January 28

Is f holomorphic in |z| < R with f ′(z) = g(z)? That is, for |w| < R we want

lim
z→w

f(z)− f(w)

z − w
?
= g(w).

For each z and w in the disk of convergence, we know that

f(z) =
∞∑
n=0

anz
n = a0 +

∞∑
n=1

anz
n

f(w) =
∞∑
n=0

anw
n = a0 +

∞∑
n=1

anw
n

g(w) =
∞∑
n=1

nanw
n−1.
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Note that all three series are convergent series of complex numbers, so must have some radius
of convergence.

For any z 6= w with z in this disk of convergence, we have∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

an

[
zn − wn

z − w
− nwn−1

]∣∣∣∣∣
≤

∞∑
n=2

|an|
∣∣∣∣zn − 2n

z − w
− nwn−1

∣∣∣∣︸ ︷︷ ︸
0 if n = 1

But then from the first assignment, we know∣∣∣∣zn − wnz − w
− nwn−1

∣∣∣∣ =

∣∣∣∣∣(z − w)
n−1∑
j=1

jz(n−1)−jwj−1

∣∣∣∣∣
≤ |z − w|

n−1∑
j=1

j|z|(n−1)−j|w|j−1.

If both |z|, |w| < r then we have

|z − w|
n−1∑
j=1

j|z|(n−1)−j|w|j−1 < |z − w|
n−1∑
j=1

j︸ ︷︷ ︸
n(n−1)

2
≤n2

rn−2 ≤ |z − w|n2rn−2.

Now let |z|, |w| < r < R and z 6= w. Then z, w are both in the dis kof convergence, so there
is a constant C > 0 such that

0 ≤
∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ ≤ ∞∑
n=2

|an||z − w|n2rn−2 ≤ C|z − w| = |z − w|
∞∑
n=2

|an|n2rn−2.

Because r < R, by the root test, we see that
∞∑
n=2

|an|n2rn−2 converges by the root test:

lim sup
n

(|an|rn−2)1/n = r lim sup
n
|an|1/n = rR−1 < 1.

So by the squeeze theorem as z → w, we see that

0 ≤
∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ ≤ ∞∑
n=2

|an||z − w|n2rn−2 ≤ 0.

Hence

lim
z→w

f(z)− f(w)

z − w
= g(w)

for all |w| < R. This proves the following theorem.
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Theorem 10.1. If
∑
anz

n have radius of convergence R > 0, then the function defined by
f(z) :=

∑
anz

n is holomorphic on |z| < R with

f ′(z) =
∞∑
n=1

nanz
n−1,

i.e., term-by-term differentiation of each term. Furthermore, f ′(z) has the same radius of
convergence R.

Corollary 10.1. If
∑
an(z−z0)n has radius of convergence R > 0, then F (z) is holomorphic

on |z − z0| < R with

F ′(z) =
∞∑
n=1

nan(z − z0)n,

and both F (z) and F ′(z) have the same radius of convergence R.

Proof. Let F (z) = f(z − z0). Then F ′(z) = f ′(z − z0)(z − z0)′ = f ′(z − z0) by the chain
rule. �

So we show that

F ′(z) =
∑

nan(z − z0)n−1

with the same radius of convergence R > 0, then F ′ is holomorphic on |z − z0| < R with

F ′′(z) =
∞∑
n=2

n(n− 1)an(z − z0)n−2

with the same R. Now applying induction onto this argument, we prove the following
corollary.

Corollary 10.2. If an(z − z0)n has radius R > 0, then f(z) =
∑
an(z − z0)n is infinitely

complex differentiable on |z − z0| < R with

f (k)(z) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(z − z0)n−k = k!
∞∑
n=k

an

(
n

k

)
(z − z0)n−k

with the constant term k!ak; and for k ∈ N, all have the same radius of convergence R. So
in fact,

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

i.e., the Taylor series of f at z = z0.

Finally, we remark on the uniqueness of such power series. Suppose that
∑
an(z−z0)n and∑

bn(z−z0)n represent the same function with Ra, Rb each radius of convergence respectively.
Suppose R < Ra, Rb. Then an = bn for all n.
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11. January 30

Definition 11.1. Given f(z) =
∑
anz

n with radius of convergence R > 0, the primitive
power series of f(z) is just a term-by-term integral, i.e.,

g(z) =
∞∑
n=0

an
zn+1

n+ 1
= a0z +

a1z
2

2
+ · · ·

is the primitive power series of f(z).

Both series have the same radius R, and g′(z) = f(z) for |z| < R. Thus, g is a primitive
for f on |z| < R.

Definition 11.2. Let f : C → C defined on an open set U . Then f has a power series
expansion at z0 ∈ U if there exists a power series

∑
an(z − z0)n centred at z0 with radius of

convergence R > 0 so that f(z) =
∑
an(z − z0)n for all z in some disk around z0.

Remark. If f has a power series expansion at z0, then f is infinitely differentiable in a disk
around z0. Also, there is only one possibility for the power series. Therefore, this power
series matches the Taylor series; that is,

an =
f (n)(z0)

n!
for all n.

Definition 11.3. f is analytic in U if f has a power series expansion at each z0 ∈ U .

Remark. Every power series expansion defines an analytic functions in its disk of convergence.

Proposition 11.1. If f is analytic on U , then f is also holomorphic on U ; furthermore, all
derivatives are analytic. Therefore, f has a local primitive in U (i.e., for each z ∈ U there
exists a disk around z on which f has a primitive or a power series expansion at z0).

Proposition 11.2. If f is analytic on U and g is the primitive of f on U , then g is also
analytic on U .

Proposition 11.3. If f and g are analytic on U , then so are f + g and fg. f/g is analytic
on U \{g = 0}. If f : U → V and g : V → C where f(U) ⊆ V, and both f and g are analytic
on U and V respectively, then g ◦ f is analytic on U .

11.1. Isolation at zero

Let f be an analytic function on domain U . Define

Z := {zeros of f} = {z ∈ U : f(z) = 0} =: f−1(0).

Let z0 ∈ Z. Then there is a power series expansion for f(z) at z0 on some disk D(z0, δ).
But recall that either f is either 0 on D(z0, δ) (i.e., z0 ∈ Z◦) or f 6= 0 on some D∗(z0, δ) so
z0 ∈ Ziso. If z0 ∈ U \Z so that f(z0) 6= 0, then f 6= 0 on some D(z0, δ) as f is continuous at
z0. So D(z0, δ) ∈ Zc so z0 ∈ Zext. Hence U = Z ∪ (U \ Z) = Z◦ ∪ Ziso ∪ (U ∩ Zext). Note
that Z◦ is open by definition; so is Ziso ∪ (U ∩Zext) = Ziso ∪Zext since it is the union of two
open sets. Also Z◦ and Ziso ∪ Zext are disjoint, making them separated sets. But then U
is connected and open (since U is a domain), so either U = Z◦ or U ⊂ Ziso ∪ Zext = (Z ′)c.
In conclusion, either f ≡ 0 on U (if U = Z◦) or the zeroes of f are isolated, and do not
accumulate in U (if U ⊂ Ziso ∪ Zext). However, since Z ′ = (Ziso ∪ Zext)

c ⊂ U c, the zeros can
still accumulate in ∂U , the boundary of U .
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12. February 6

Definition 12.1. Consider h : [a, b] → C where h(t) = x(t) + iy(t). Then h is Riemann-
integrable if both x, y : [a, b]→ R are. In other words, if∫ b

a

h(t) dt :=

∫ b

a

x(t) dt+ i

∫ b

a

y(t) dt,

then both
∫ b
a
x(t) and

∫ b
a
y(t) exist.

Proposition 12.1. If h : [a, b]→ C is Riemann-integrable, then h has all the usual properties
that Riemann-integrable real functions have.

•
∫ b

a

f + g =

∫ b

a

f +

∫ b

a

g

• λ
∫ b

a

f =

∫ b

a

λf (where λ ∈ C

• If h in integrable, then so is |h|, and∣∣∣∣∫ b

a

h

∣∣∣∣ ≤ ∫ b

a

|h|.

Note that h : [a, b]→ C whereas |h| : [a, b]→ R.
• If h is integrable on [a, b] and a ≤ c ≤ b, then∫ b

a

h =

∫ c

a

h+

∫ b

c

h.

• If h is continuous on [a, b], then h is integrable.
• If g is integrable on [a, b], and h = g on [a, b] \ F where F is a finite set, then

∫
h

can be defined even if h is undefined at finitely many points.
• If h is bounded on [a, b] and is continuous on [a, b] \ F , then h is integrable.

Additionally, h satisfies

• Re

∫ b

a

h(t) dt =

∫ b

a

Reh(t) dt

• Im

∫ b

a

h(t) dt =

∫ b

a

Imh(t) dt

•
∫ b

a

h(t) dt =

∫ b

a

h(t) dt.

Remark. From the above proposition, it follows that h is integrable if h is piecewise-continuous
on [a, b]. Piecewise-continuity implies that h is continuous on [a, b] \F for some finite set F ,
and that both the left-sided limit and the right-sided limit exist at each p ∈ F .

We also have integration by substitution in complex analysis as well. Suppose that u :
[a, b]→ R and h : R→ C. If u is C1 and h is continuous on u([a, b]), then∫ u(b)

u(a)

h(u) du =

∫ b

a

h(u(t))u′(t) dt.

In fact, the substitution rule can be used even when the conditions are slightly weakened.
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Proposition 12.2 (Integration by substitution). Suppose u : [a, b]→ R is piecewise-C1 on
[a, b], and h : R→ C piecewise-continuous on u([a, b]). Furthermore, suppose that u−1(F ) is
a finite set, where F is the set of points where h is not continuous. Then∫ u(b)

u(a)

h(u) du =

∫ b

a

h(u(t))u′(t) dt.

Proposition 12.3 (Integration by parts). Suppose g, h : [a, b]→ C which are both piecewise-
C1. Then ∫ b

a

gh′ = gh|ba −
∫ b

a

h′g.

12.1. Paths and curves in C
Definition 12.2. A path is any continuous map γ from [a, b] ⊂ R to C. We can also add
adjectives such as C1, differentiable, smooth, piecewise-smooth, and piecewise-C1 depending
on which additional properties are satisfied. A path γ : [a, b] → C is closed if γ(a) = γ(b).
A path is simple if γ(t) = γ(s) implies t = s or {t, s} = {a, b}.

One can also join two paths. Suppose that γ1 : [a, b] → C and γ2 : [c, d] → C are paths,
and that γ1 ends where γ2 starts. Then γ1 + γ2 : [a, b+ d− c]→ C is a path where

(γ1 + γ2)(t) :=

{
γ1(t) t ∈ [a, b]

γ2(t+ c− b) t ∈ [b, b+ d− c].

Definition 12.3. The opposite path of γ : [a, b] → C is γ− : [a, b] → C such that γ−(t) =
γ(a+ b− t) for t ∈ [a, b].

Definition 12.4. Given a path γ1 : [a, b]→ C, γ2 is a reparametrization of γ1 if γ2 : [c, d]→ C
satisfies γ2(s) = γ1(t(s)) where t : [c, d]→ [a, b] is an increasing homeomorphism.

Remark. The reparametrization relation is an equivalence relation on the set of all paths.
In other words, if γ2 is a reparametrization of γ1, then γ1 ≡ γ2, and that ≡ satisfies all the
conditions for an equivalence relation.

Definition 12.5. A curve is an equivalence class of paths.

13. February 8 & 11

Consider the zw curve parametrized by γ : [0, 1] → C with γ(t) = z + t(w − z). Then
γ′(t) = w − z.

Definition 13.1.

Definition 13.2. Suppose a ∈ C and r > 0. Then C = Cr = Cr(a) is the smooth curve
with parametrization γ : [0, 2π] → C such that t 7→ a + reit. Cr(a) denotes the circle, and
γ′(t) = ireit. We can also parametrize the same curve in the following way: γ : [0, 1] → C
so that t 7→ a + re2πit. In this case, γ′(t) = 2πire(2πi)t. This orientation is the positive
orientation for the circle (counterclockwise). The opposite curve C− is called the negative
orientation. A segment of the circle is called an arc.
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Definition 13.3. Let γ : [a, b] → C be a piecewise-C1 path, and f : C → C continuous on
γ([a, b]). Then let ∫

γ

f :=

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt

is the line integral of f along the curve γ.

Remark. Notice that h(t) := f(γ(t))γ′(t) is piecewise-continuous on [a, b]. So the Riemann

integral

∫ b

a

h(t) dt is well-defined.

Suppose that t : [c, d]→ [a, b] a piecewise-smooth increasing diffeomorphism. If γ̃ := γ ◦ t,
then ∫

γ̃

f =

∫ d

c

f(γ̃(s))γ̃′(s) ds

=

∫ d

c

f(γ(t(s))γ′(t(s))t′(s) ds.

Let f(γ(t(s)))γ′(t(s)) =: h((t(s)), where h : [a, b] → C is piecewise-continuous, and t :
[c, d]→ [a, b] is piecewise-C1 and one-to-one. Then by substitution,∫ d

c

f(γ(t(s))γ′(t(s))t′(s) ds =

∫ t(d)

t(c)

f(γ(t))γ′(t) dt

=

∫ b

a

f(γ(t))γ′(t) dt =

∫
γ

f.

From this, we see that reparatmetrization doesn’t alter the integral. So if γ is a contour,

we can define

∫
γ

f can be defined unambiguously, since we get the same answer using any

parametrizaton of γ.
Now suppose that a curve given is an opposite curve. Given γ : [a, b] → C piecewise-C1,

consider γ− : [a, b] → C which is defined s 7→ γ(a + b − s). Hence let t(s) = a + b − s.
Then t is a smooth diffeomorphism. Note that this is not a change of variables since t(s) is
decreasing. But we can make this into a change of variables via substitution as before.

Proposition 13.1 (Properties of the line integral). Suppose that γ1, γ2 are piecewise-C1

paths. Then ∫
γ1+γ2

f =

∫
γ1

f +

∫
γ2

f.

Definition 13.4. We often write ∮
γ

f =

∫
γ

f

whenever γ is a piecewise-C1 closed curve, in order to emphasize that γ is closed.
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13.1. Invariance of starting point

Let γ be piecewise-C1 path that starts and ends at p ∈ C. Given any q on γ, we have
γ = γ1 + γ2 for piecewise-C1 paths γ1 from p to q and γ2 from q to p. Then∮

γ

f =

∫
γ1

f +

∫
γ2

f =

∫
γ2

f +

∫
γ1

f =

∮
γ2+γ1

f,

where γ2 + γ1 is the closed path starting and ending at q.
Linearity also holds for line integrals, i.e.,∫

γ

(λf + g) = λ

∫
γ

f +

∫
γ

g.

13.2. Arc length and integrals with respect to arc length

Definition 13.5. The arc length of a piecewise-C1 path γ : [a, b]→ C is

L(γ) :=

∫ b

a

|γ′(t)| dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt

where γ(t) = x(t) + iy(t), γ′(t) = x′(t) + iy′(t), and hence |γ′(t)| =
√
x′(t)2 + y′(t)2.

Definition 13.6. Let f be continuous on γ. Then we define∫
γ

f |dz| :=
∫ b

a

f(γ(t))|γ′(t)| dt =

∫ b

a

f(γ(t))
√
x′(t)2 + y′(t)2 dt.

Notice in particular that

L(γ) =

∫
γ

|dz|.

Proposition 13.2. Suppose that γ̃ is a reparametrization of piecewise-smooth γ. Then∫
γ

f |dz| =
∫
γ̃

f |dz|.

Proposition 13.3 (Properties of arc length integrals). Suppose that γ1, γ2 are piecewise-C1

paths.

(1) (additivity)

∫
γ1+γ2

f |dz| =
∫
γ1

f |dz|+
∫
γ2

f |dz|

(2) (opposite curve)

∫
γ−
f |dz| =

∫
γ

f |dz|

(3) (closed curves)

∮
γ

f |dz| remains the same regardless of the starting point.

Therefore, we have

(i) L(γ) = L(γ̃) whenever γ̃ ≡ γ
(ii) L(γ1 + γ2) = L(γ1) + L(γ2)

(iii) L(γ−) = L(γ)
(iv) L(γ) is invariant regardless of the starting point, provided that γ is a closed curve.

Example. L(Cr(a)) = 2πr regardless of the starting point.
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13.3. Bounding in
∫
f

∣∣∣∣∫
γ

f dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣
≤
∫ b

a

|f(γ(t))γ′(t) dt|

=

∫ b

a

|f(γ(t))| · |γ′(t)| dt.

Proposition 13.4 (Additional properties of line integrals). Suppose f and g are continuous
on γ, and that γ : [a, b]→ C is a piecewise-C1 path.

(i) (monotonicity) if |f | ≤ |g|, then∫
γ

|f | |dz| =
∫ b

a

|f(γ(t))| · |γ′(t)| dt

≤
∫ b

a

|g(γ(t))| · |γ′(t)| dt =

∫
γ

|g| |dz|.

In particular, if |f | ≤ C on γ, then

∣∣∣∣∫
γ

f

∣∣∣∣ ≤ C

∫
γ

|dz| = CL(γ).

13.4. Fundamental theorem of calculus for contour integrals

Theorem 13.1 (Fundamental theorem of calculus II). If h : [a, b] → C is continuous with

primitive H on [a, b], then

∫ b

a

h = H(b)−H(a).

So for this, we need that H to be C1 on [a, b] and H ′ = h. Since
∫

is additive, we in fact
only need that H to be piecewise-C1 on [a, b] and H ′ = h.

Suppose that γ is a piecewise-C1 path such that γ(a) = p, γ(b) = q where p, q ∈ U fan
open set. Suppose also that f is continuous on U with F ′ = f . Then∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

F ′(γ(t))γ′(t) dt

= (F ◦ γ)′(t) dt = (F ◦ γ)(b)− (F ◦ γ)(a) = F (q)− F (p).

For a closed curve, since p = q, clearly∫
γ

f = F (p)− F (p) = 0.

So, for any continuous γ : [a, b]→ U we could define∫
γ

f = F (q)− F (p)

where q is the endpoint and p is the starting point. Since we have a primitive F for f on all
of U , now every derivative we know tells us what the integrals are.
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Example. We know that for n = 0, 1, 2, . . . ,, the function zn+1 is entire with derivative
(n+ 1)zn. Therefore zn has primitive zn+1/(n+ 1) on all of C. So for any piecewise-C1 path
in C, ∫

γ

zn dz =
zn+1

n+ 1

∣∣∣∣q
p

=
qn+1

n+ 1
− pn+1

n+ 1
.

Furthermore, if γ is closed, then
∫
zn dz = 0.

Example. For n = 2, 3, . . . , the function z−(n−1) is holomorphic on C \ {0} with derivative
−(n − 1)z−n. So for n = 2, 3, . . . , z−n has primitive −[(n − 1)zn−1]−1 on all of C \ {0}.
Indeed, ∫

γ

dz

zn
=

−1

(n− 1)zn−1

∣∣∣∣q
p

=
−1

(n− 1)qn−1
+

1

(n− 1)pn−1
.

If γ is closed, again we have
∫
dz/zn = 0.

So far, we saw zn where n = 1, 2, 3, · · · or n = −2,−3,−4, . . . . What if n = −1? It has a
primitive on each sliced plane C \Rayθ. In fact, we need to be a bit cautious – suppose that
we integrate z−1 along the circle, with γ1 the path from angle 0 to π/2, and γ2 from π/2 to
2π. Then in fact ∫

γ1

dz

z
6=
∫
γ2

dz

z
.

Theorem 13.2 (Fundamental theorem of calculus I). If h : [a, b]→ C continuous, then

H(t) =

∫ t

a

h

is C1 on [a, b]; furthermore, H ′ = h. Also, by additivity, if h is piecewise-continuous on
[a, b], then H(t) is piecewise-C1 on [a, b] and H ′ = h.

Let U be an open set, with p ∈ U fixed. If f is continuous on U , is it possible to define a
primitive F on f by

F (z) =

∫
γ

f

where γ is piecewise-C1 path from p to z in U? For this definition to make sense, we would
need a path γ in U from p to z; in other words we would want U to be connected (i.e., U is
a domain). We also need the primitive to be well-defined; that is, we want the same answer
γf for every path γ in U from p to z. This brings us the notion of path independence.

14. February 15

14.1. Path independence

Definition 14.1. We say that the integrals of f are type-P path independent in U if for any

p, q ∈ U and γ1, γ2 are type-P paths in U from p to q, then

∫
γ1

f =

∫
γ2

f .

We are defining the restrictions that need to be placed on paths for this definition to work;
we will explore what restrictions we need as we go on.
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Proposition 14.1.
∫
f is type-P path independent in U if and only if

∮
f = 0 for all closed

γ in U of type P .

Note that we already know that the above proposition holds for certain types of paths:

(i) P1: rectangular paths
(ii) P2: polygonal paths

(iii) P3: piecewise-smooth paths
(iv) P4: piecewise-C1 paths.

First, note that each type P above is closed under joining, i.e., for any joinable γ1, γ2 ∈ Pi,
we have γ1 + γ2 ∈ Pi. We also have P1 ⊂ P2 ⊂ P3 ⊂ P4. We also saw from FTC II that if
f is continuous on an open set U , then not only does f have a primitive f on U (call it F ),
we also have ∫

γ

f = F (q)− F (p)

where q is the ending point of the γ and p the starting point of γ (provided γ is piecewise-C1).
Hence the same claim holds for all type-P4, so it holds for P3, P2, and P1 paths also.

But what we are interested in is the converse of this. One reasonable hypothesis: perhaps
the converse will hold if U is a domain. Notice that it suffices to prove the converse for all
rectangular paths (since then the claim will follow for other types).

Suppose that f is continuous on domain U , and that the integrals of f are rectangular-
path-independent in U . Start by fixing p ∈ U . For all z ∈ U , define

F (z) =

∫
γ

f

where γ is a rectangular path in U from p to z. Since U is a domain then it is rectangular-

path-connected. Therefore γ exists. Also, F is well-defined:

∫
γ

f has the same value for all

rectangular paths γ in U from p to z. Finally, we need to show that F is holomorphic in U
with F ′ = f . Let a ∈ U . We need to show that

F ′(a) = lim
z→a

f(z)− f(a)

z − a
= f(a).

Let γ be any rectangular path in U from p to a. Then

F (a) =

∫
γ

f.

Since U is open, there exists a disk D(a, r) ⊂ U . Thus for all z ∈ D(a, r), the path az lies
in D(a, r) so hence in U . Thus γ + az is a rectangular path in U from p to z. Thus

F (z) =

∫
γ+az

f =

∫
γ

f +

∫
az

f = F (a) +

∫
az

f.

And so for any z ∈ D∗(a, r), we have

F (z)− F (a)

z − a
=

1

z − a

∫
az

f.

But recall that ∫
az

dz = z − a.
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So we can write

f(a) =
1

z − a

∫
az

f(a) dz.

Putting these facts together, we have∣∣∣∣F (z)− F (a)

z − a
− f(a)

∣∣∣∣ =
1

|z − a|

∣∣∣∣∫
az

(f(z)− f(a)) dz

∣∣∣∣
≤ 1

|z − a|

∫
az

|f(z)− f(a)| |dz|.

Let’s see what happens if z → 0. Since f is continuous, for any ε > 0 there exists δ > 0 so
that D(a, δ) ⊂ D(a, r) and |f(z)− f(a)| < ε/2 for all z ∈ D(a, δ). So for any z ∈ D∗(a, δ),∣∣∣∣F (z)− F (a)

z − a
− f(a)

∣∣∣∣ < 1

|z − a|
(ε/2)L(az) ≤ 1

|z − a|
(ε/2)2|z − a| = ε,

thanks to the triangle inequality. So for any continuous f on a domain U , we see that f has
a primitive on U if and only if

∮
γ
f = 0 for any closed γ in U of type P1, P2, P3, P4. Thus the

type P we were looking for are exactly the Pi’s listed previously.

Corollary 14.1.

Now suppose f is a holomorphic function on an open set U . Then for any near z0 ∈ U ,
we have f(z) ∼ f(z0) + f ′(z0)(z − z0) =: p(z). And any polynomial has a primitive on C.
So, it is natural to wonder if

∮
γ
f = 0 for closed γ in U near z0. First, we know that f being

holomorphic on an open set U does not imply
∮
γ
f = 0 for any closed γ in U – consider

f(z) = 1/z. Indeed, we know ∮
C1(0)

dz

z
= 2πi 6= 0.

So what if
∮
γ
f for closed γ whose “inside” lies entirely in U? As for the quick answer to this

question, we will state for now that the answer lies in Green’s theorem and line integrals.
Recall that∫

γ

f(z) dz =

∫
γ

f(u+ iv) (dx+ idy) =

∫
γ

u dx− v dy + i

∫
γ

v dx+ u dy. (3)

Suppose γ : [a, b]→ C satisfies γ(t) = x(t) + iy(t). Then γ′(t) = x′(t) + iy′(t). So∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

(u(x, y) + iv(x, y)) · (x′ + iy′) dt

=

∫ b

a

(u(x, y)x′(t)− v(x, y)y′(t) dt,

from which the seemingly “fake” integral (3) follows.

15. February 25

We know that if f is continuous on an open set U , then f has a primitive on U if and
only if

∮
γ
f = 0 for all closed γ in U . Now let’s assume that f is holomorphic on U . Then
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f ≈ h(x) for some polynomial h(x) locally; h(x) has a primitive. To find out if f has local
primitives in U , it suffices to show that

∮
γ
f = 0 for all closed γ in U near z0 ∈ U . We have∫

γ

f(z) dz =

∫
γ

(u dx− v dy) + i

∫
γ

(v dx+ u dy),

so we can apply Green’s theorem on the two line integrals in R2 (on the RHS).

Theorem 15.1 (Green’s theorem). Let P,Q : R2 → R be C1 functions on an open set U .
Let γ be a simple, closed, piecewise-smooth curve on U with positive orientation such that
the inside region R of γ is in U . Then∮

γ

(P dx+Qdy) =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Corollary 15.1. Suppose that f is holomorphic on an open set U and f ′ continuous on U .
Then for all simple closed piecewise-smooth γ in U such that the inside region of γ is in U ,∮

γ

f dz = 0.

Proof. This follows from applying the Cauchy-Riemann equation. �

This answer is somewhat unsatisfying in many ways – note that there are too many
conditions needing to be satisfied:

(1) f ′ continuous (but we will see later that this is actually not needed)
(2) γ is simple
(3) we still lack the precise definition of what we mean by “inside”

So we will return to examining a function locally. Suppose that f is holomorphic on an open
set U , and let z0 ∈ U . Since f is holomorphic at z0, clearly

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0).

Let f(z0) =: a and f ′(z0) =: b. Given ε > 0 there exists δ > 0 such that∣∣∣∣f(z)− a
z − z0

− b
∣∣∣∣ > ε

for any z ∈ D∗(z0, δ). Letting a+ b(z − z0) =: p(z), we can re-write the above inequality:

|f(z)− p(z)| ≤ ε|z − z0|.
Therefore for any radius r < δ, for any closed γ, piecewise-smooth curve in D(z0, r), we have∣∣∣∣∮

γ

f

∣∣∣∣ =

∣∣∣∣∮
γ

f −
∮
γ

p

∣∣∣∣ =

∣∣∣∣∮
γ

(f − p)
∣∣∣∣

≤
∮
γ

|f − p| |dz| ≤ ε

∮
γ

|z − z0|︸ ︷︷ ︸
<r

|dz| < εrL(r).

Observe that |z − z0| < r since γ is wholly in D(z0, r). Suppose that γ + γ1 + γ2.∣∣∣∣∮
γ

f

∣∣∣∣ ≤ ∣∣∣∣∮
γ1

f

∣∣∣∣+

∣∣∣∣∮
γ2

f

∣∣∣∣
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≤ 2 max

∣∣∣∣∮
γi

f

∣∣∣∣ ≤ 2

∣∣∣∣∮
γ1

f

∣∣∣∣ ,
where we may assume without loss of generality that |

∮
γ1
f | ≥ |

∮
γ2
f |. Evidently, things can

go wrong if we are not cautious with choosing appropriate γ1 and γ2, so this needs to be
done in a controlled manner. So it’s better to stick to the “nice” curves. Some examples of
nice curves:

(1) Let R = [a, b]× [c, d] ⊂ R2 = {x+ iy : x ∈ [a, b], y ∈ [c, d]} ⊂ C. This set is a compact
subset in C. Then write

∂R := z1z2 + z2z3 + z3z4 + z4z1 = z1z3 + z1z
−
3 ,

so the rectangle consists of piecewise-smooth rectangular curves. Thus L(∂R) =

2(b− a) + 2(d− c); define lR =
1

2
L(∂R) = L(z1z3) = (b− a) + (d− c).

Notice for any rectangle R with z0, z ∈ R, |z − z0| ≤ lR. So R ⊆ D(z0, lR). Now
for f holomorphic at z0, for all ε > 0 there is δ > 0 such that∣∣∣∣∮

∂R

f

∣∣∣∣ < εlRL(∂R) = 2εl2R

for any rectangle R 3 z0 with lR < δ (since then R ⊂ D(z0, lR) ⊂ D(z0, δ)).
Assume that f is holomorphic on open U , and assume also that the rectangle

R ⊆ U . Let R = [a, b]× [c, d], and l = lR. Quarter R in the following way: Thus∮
∂R

f =

∮
∂R(1)

f +

∮
∂R(2)

f +

∮
∂R(3)

f +

∮
∂R(4)

f

and so ∣∣∣∣∮
∂R

f

∣∣∣∣ ≤ 4∑
j=1

∣∣∣∣∣
∮
∂R(j)

f

∣∣∣∣∣ ≤ 4 max
1≤j≤4

∣∣∣∣∣
∮
∂R(j)

f

∣∣∣∣∣ .
Without loss of generality, suppose that |

∮
∂R(1)

f | is the biggest. If l = lR, then

lR1 = l/2. Now R1 can be quartered again; then one of its quarter rectangles R2 is
such that ∣∣∣∣∮

∂R1

f

∣∣∣∣ ≤ 4

∣∣∣∣∮
∂R2

f

∣∣∣∣ .
So ∣∣∣∣∮

∂R

f

∣∣∣∣ ≤ 4

∣∣∣∣∮
∂R1

f

∣∣∣∣ ≤ 42

∣∣∣∣∮
∂R2

f

∣∣∣∣ ,
while lR2 = lR1/2 = l/22. Continuing this operation, we obtain rectangles R ⊃ R1 ⊃
R2 ⊃ · · · such that ∣∣∣∣∮

∂R

f

∣∣∣∣ ≤ 4n
∣∣∣∣∮
∂Rn

f

∣∣∣∣ ,
and lRn = l/2n where l = lR.
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16. February 27

Theorem 16.1 (Goursat’s theorem). Suppose that f is holomorphic on an open set U ; let
R ⊂ U be a rectangle. Then

∮
∂R
f = 0.

Proof. Repeat the quartering process of R as we did previously. Then R ⊃ R1 ⊃ R2 ⊃ · · · ,
so we have ∣∣∣∣∮

∂R

f

∣∣∣∣ ≤ 4n
∣∣∣∣∮
∂Rn

f

∣∣∣∣ ,
and lRn = l/2n where l := lR. Since each Rn is compact, we have⋂

n≥1

Rn 6= ∅.

So we can pick z0 ∈
⋂
Rn. Thus z0 ∈ U , and for each n we have z0 ∈ Rn. Hence Rn ⊂

D(z0, lRn). So for any ε > 0, since f is holomorphic at z0, we know there is some δ > 0 such
that ∣∣∣∣∮

∂S

f

∣∣∣∣ < 2εl2S.

Hence for any rectangle S 3 z0 with ls < δ, we can take n such that 2n > l/δ. Then we have
lRn = l/2n < δ, so ∣∣∣∣∮

∂Rn

f

∣∣∣∣ < 2εl2Rn = 2ε(l2/4n).

From this it follows ∣∣∣∣∮
∂R

f

∣∣∣∣ ≤ 4n
∣∣∣∣∮
∂Rn

f

∣∣∣∣ < 2εl2.

This is indeed true for ε > 0, so the claim follows. �

Can we prove a Goursat-like theorem with weaker hypothesis? Suppose that f is holo-
morphic on U \ {p}. If R ⊂ U and p ∈ Ro, does Goursat’s theorem hold? The answer is no,
since ∮

C1(0)

dz

z
6= 0.

However, we may be able to salvage this by adding some extra conditions. Try to divide the
rectangles as below. Then ∮

∂R

f =
8∑
j=1

∮
∂Rj

f +

∮
∂Rδ

f =

∮
∂Rδ

f,

for any δ > 0, as ∮
∂Rj

f = 0

for all 1 ≤ j ≤ 8. So it suffices to estimate
∮
∂Rδ

f . We can make an estimate of this integral

by using the arc length of Rδ. So if we have |f | ≤ C for some constant C near p, then for
all sufficiently small δ ew have∣∣∣∣∮

∂R

f

∣∣∣∣ =

∣∣∣∣∮
∂Rδ

f

∣∣∣∣ ≤ CL(Rδ) = 8Cδ.
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Therefore all we need is for f to be bounded on some D∗(p, r). This is certainly true, for
example, if f is continuous at p then lim

z→p
f(z) exists. But we can actually prove this with a

weaker condition, namely
lim
z→p

(z − p)f(z) = 0.

For all ε > 0, there is δ > 0 such that Rδ ⊂ Ro, and |z− p| · |f(z)| < ε as long as |z− p| < δ.
Then for all z ∈ ∂Rδ, we have

δ

2
≤ |z − p| < δ,

so
|f(z)| < ε

|z − p|
≤ ε

δ/2

since z ∈ D∗(p, δ). Thus ∣∣∣∣∮
∂R

f

∣∣∣∣ =

∣∣∣∣∮
∂Rδ

f

∣∣∣∣ ≤ ε

δ/2
L(∂Rδ) = 8ε.

Observe that this is true for any ε > 0, so
∮
∂R
f = 0. In conclusion, we proved Goursat’s

theorem with slightly weaker conditions.

Theorem 16.2 (Goursat’s theorem, tweaked version I). Suppose that f is holomorphic on
U \ {p} where U is open and p ∈ U , and that

lim
z→p

(z − p)f(z) = 0.

Then
∮
∂R
f = 0 for any rectangle r ⊂ U with p ∈ Ro.

Corollary 16.1. Suppose p1, p2, . . . , pn ∈ U an open set, and that f is holomorphic on
U \ {p1, ,̇spn}. Then the analogous result holds.

We can even have the “bad” point on ∂R if we ensure that f is continuous at p. Again,
for any δ > 0 we have ∮

∂R

f =

∮
∂Rδ

f.

If f is continuous on ∂R, then f is bounded near p; so suppose that |f | ≤M . Hence∣∣∣∣∮
∂Rδ

f

∣∣∣∣ ≤ML(Rδ) = 4Mδ,

so
∮
∂R
f = 0 as we wanted. In conclusion, we proved the following theorem.

Theorem 16.3 (Goursat’s theorem, tweaked version II). Suppose that U is open, and that
p1, . . . , pk ∈ U . If f is holomorphic on U \ {p1, . . . , pk} and is continuous on U , then∮

∂R

f = 0

for any rectangle R ⊂ U .

Recall that we hav suspected whether the following claim is true or not: if f is holomorphic
on an open set U , then

∮
γ
f = 0 for all closed γ in U which is wholly inside of U . So far,

we proved this for any rectangles in U . But is it possible to construct local primitives for f
using rectangles?
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17. March 1

Suppose f is holomorphic on D = D(z0, R) (except possibly at finitely many points where
f is continuous). Then we can use corner curves to build a primitive F on D: for z ∈ D
define

F (z) =

∫
z0z

f.

Note that this is well-defined (i.e., unique for every corner curve), since

F (z) =

∫
z0z

f =

∫
z0a

f +

∮
∂R

f︸ ︷︷ ︸
=0 (by Goursat)

+

∫
az

f = F (a) +

∫
az

f.

Therefore,
F (z)− F (a)

z − a
=

1

z − a

∫
az

f.

So by the same argument as before (i.e., FTC I), we have F ′(a) = f(a).

Theorem 17.1 (Cauchy’s theorem for a disc). Suppose f is a holomorphic on disc D except
possibly at finitely many points, where f is continuous. Then f has a primitive on D. Thus,∮

γ

f = 0

for all closed curve γ in D.

17.1. Integrals along continuous curves for holomorphic functions

Suppose that f is holomorphic on an open set U (except possibly at finitely many points,
where f is continuous). Then by Cauchy’s theorem for disc, f has a primitive on each disc
in U . Thus

∫
γ
f is well-defined for all continuous curves γ in U . So we have the natural

properties we expect, such as

(1)
∫
γ
(f + g) =

∫
γ
f +

∫
γ
g

(2)
∫
γ
λf = λ

∫
γ
f for all λ ∈ C

(3)
∫
γ−
f = −

∫
γ
f

(4) If γ1, . . . , γn are joinable curves in U , then∫
γ1+···+γn

f =
n∑
j=1

∫
γj

f.

(5) If γ ≡ z0 is a constant curve, then
∫
γ
f = 0.

However, note that it does not necessarily follow that for |f | ≤M ,∣∣∣∣∫
γ

f

∣∣∣∣ ≤ML(γ).

Definition 17.1. If
n∑
j=1

|zi − zj| is bounded, then for any partitions a = z0 < · · · < zn = b,

then we can define L(γ). Such curve is said to be a rectifiable curve.
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Also, we can use the change of variables (say g). So if γ is a curve in V , then∫
g◦γ

f =

∫
γ

f(g(w))g′(w) dw.

In particular, if f is holomoaphic on U open with w ∈ C, if g(z) = z − w, then∫
γ

f(z) dz =

∫
γ+w

f(z − w) dw.

17.2. Homotopic paths

Suppose U is open, and γ0, γ1 : [a, b]→ U are continuous.

Definition 17.2. We say γ0 and γ1 are homotopic in U if there exists a continuous map
ϕ : [0, 1]× [a, b]→ U such that

ϕ(0, t) = γ0(t)∀t ∈ [a, b]

ϕ(1, t) = γ1(t)∀t ∈ [a, b].

Note that for each s ∈ [0, 1], we have γs(t) = ϕ(s, t), which is continuous on γs : [a, b]→ U .
Thus the family {γs}s∈[0,1] is a continuous deformation of γ0 to γ1.

Definition 17.3. The map ϕ above is called a homotopy in U of γ0 and γ1.

Definition 17.4. γ0 and γ1 are homotopic in U with fixed endpoints if there exist p, q ∈ U
such that γs(a) = p and γs(b) = q for all s ∈ [0, 1]. If this is the case, then we write γ0 ∼ γ1
in U .

Remark. One can verify that ∼ is an equivalence relation on all paths in U from p to q,
which will be left as an exercise.

When we say that paths with the same endpoints are homotopic, we will always mean in
the following sense (except the case when they are closed curves).

Definition 17.5. γ0 and γ1 are homotopic in U as closed paths if each γs is closed in the
homotopy ϕ. We write γ0 ∼ γ1 in U .

Definition 17.6. A closed path γ0 is homotopic to a point in U if there exists a constant
path γ1 ≡ p ∈ U such that γ0 ∼ γ1 in U (as closed paths).

Definition 17.7. A domain U is simply connected if every closed path in U is homotopic to
a point in U . To put it intuitively, U has no “holes”.

Example. C \ {0} is not simply connected.

Proposition 17.1. A domain U is simply connected if and only if any two paths with the
same endpoints in U are homotopic in U .

Example. Recall that a set E is convex if zw ∈ E for any z, w ∈ E. Any convex open set is
simply connected.

Definition 17.8. A set Eis said to be star-shaped if there exists p ∈ E such that pz ⊂ E
for all z ∈ E.

Example. Any star-shaped open sets are simply connected. One example of a star-shaped
set is C \ Rayθ.
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Example. If γ is a path in an open set U , one can show that γ ∼ γ̃ in U (as fixed endpoint,
or as closed paths) for some piecewise-smooth γ̃ in U .

Definition 17.9. Given f on an open set U , a primitive for f along a homotopy is a function
p : [c, d]× [a, b]→ C such that for each (s, t) ∈ [c, d]× [a, b] there is an open set (s, t) ∈ I, a
disc ϕ(s, t) ∈ D, and a primitive F for f on D such that P = F ◦ ϕ on I.

Proposition 17.2. Suppose that p is a primitive for f along a homotopy ϕ on an open set
U .

(1) p is continuous
(2) q is another primitive for f along ϕ if and only if p− q is a constant function.
(3) For all s ∈ [c, d], the function ps : [a, b]→ C defined by ps(t) := p(s, t) is a primitive

for f along the path γs(t) = ϕ(s, t).

18. March 4

18.1. Building a primitive along a homotopy

Suppose that U is open, and that f has a primitive on each disc in U . Can we build a
primitive for f along any homotopy ϕ : [c, d]× [a, b]→ U?

We want to partition the rectangles into multiple smaller rectangles, and map to U via
homotopy ϕ; find an open disc for each of the mapped small rectangles (see the diagram
below).

Proposition 18.1. There exist discs Dk,j following partitions c = s0 < s1 < · · · < sm = d
and a = t0 < t1 < · · · < tn = b along ϕ in U . In other words, for all 1 ≤ k ≤ m and
1 ≤ j ≤ n, we have ϕ([sk−1, sk]× [tj−1, tj] ⊆ Dk,j.

Let R = [c, d]× [a, b]. Since R is compact and ϕ continuous, ϕ(R) is compact as well. So
ϕ(R) ⊂ U is a compact subset of an open set, so there is a minimal distance ε > 0 from the
points of ϕ(R) to U c. Hence, ϕ is continuous on a compact set R, so ϕ is uniformly continuous
on R. In conclusion, there is δ > 0 such that ϕ(D((s, t), δ)) ⊂ D(ϕ(s, t), ε) for each (s, t) ∈ R.
For example, one can take n,m large enough so that (b − a)/n, (d − c)/n < δ/

√
2, and use

Dkj = D(ϕ(sk, tj), ε).
Now suppose Dkj follow

c = s0 < s1 < · · · < sm = d

a = t0 < t1 < · · · < tn = b.

along a homotopy ϕ : [c, d] × [a, b] → U . If F has a primitive on each disc in U , then for
each k = 1, . . . ,m, one can map each rectangle in the following manner, sequentially:

Proposition 18.2. There are primitives F1, . . . , Fn for f on discs Dk,1, Dk,2, . . . , Dk,n re-
spectively such that Fj−1 = Fj on Dj−1 ∩ Dj for j = 2, . . . , n. Therefore, we can define
pk : [sk−1, sk] × [a, b] → C by setting pk = Fj ◦ ϕ on Rj. The pk defines a primitive for f
along ϕ : [sk−1, sk]× [a, b]→ U .

Now we have a primitive pk for f along each ϕ : [sk−1, sk]× [a, b]→ U . After constructing
for each rectangle, we can adjust each of the primitives by a constant so that they match on
the edges s = sk. So let q1 = p1. Notice that both q1(s1, ·) and p2(s1, ·) are both primitives
for f along the path γs(t) := ϕ(s, t). Therefore for some C, q1(s1, ·) = p2(s1, ·) + C on
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[a, b]. So write q2 = p2 + C. Then q2 is a primitive for f along ϕ : [s1, s2] × [a, b] → U ,
and q2 = q1 when s = s1. We may continue in this way to obtain primitives qk for f along
ϕ : [sk−1, sk]× [a, b]→ U so that qk−1 = qk when s = sk−1.

Define p : [c, d]× [a, b]→ C by setting p = qk on [sk−1, sk]× [a, b].

Proposition 18.3. p is a primitive for f along ϕ : [c, d]× [a, b]→ U .

In conclusion, we proved that

Theorem 18.1. Let U be an open set, and f has a primitive on each disc in U . Also suppose
that ϕ : [0, 1]× [a, b]→ U is a homotopy in U . Then there exists a primitive p for f along ϕ.

Remark. If ϕ is a fixed endpoint homotopy, i.e., ϕs(a) = ϕ(s, a) = z1 and ϕs(b) = ϕ(s, b) = z2
for all s ∈ [0, 1], then p must be constant on top and the bottom edges.

19. March 6 & 8

Last time, for any U open and ϕ : [0, 1]× [a, b]→ U homotopy, with f having a primitive
for every disc in U , we proved taht there exists a primitive p : [0, 1]× [a, b]→ C for f along
ϕ.

Recall that for all s ∈ [0, 1], if γs : ϕ(s, ·) : [a, b] → U is a path, then we defined ps :=
p(s, ·) : [a, b] → C to be a primitive for f along γs. If ϕ is a fixed point homotopy (i.e.,
γs(a) = z1 and γs(b) = z2, then for all s, both ps(a) and ps(b) are constant. Thus ps(b)−ps(a)
has the same value across all s.

Proposition 19.1. If ϕ is a closed pat homotopy such that γs(a) = γs(b) for all s, then we
also have ps(b)− ps(a) ≡ C for some constant C for all s.

19.1. Homotopy up to reparametrization

Suppose U is open, and γ0 and γ1 are curves in U .

Proposition 19.2. If there are parametrizations γ0, γ1 : [a, b] → U such that γ0 ∼ γ1
(with fixed endpoints, or as closed paths) then for any interval [c, d] and reparametrizations
γ̃0, γ̃1 : [c, d] → U of γ0 and γ1 respectively, we have γ̃0 ∼ γ̃1 (with fixed endpoints or as
closed paths reparametrization).

Definition 19.1. Suppose that γ0 and γ1 satisfy the property as outlined in the above
proposition. Then we say that the curves γ0 and γ1 are homotopic in U (with fixed endpoints
or as closed paths).

Now we are ready to prove Cauchy’s theorem.

Theorem 19.1 (Cauchy’s theorem). Let f be a holomorphic function on an open set U (or
holomorphic on U except for finitely many points with f being continuous on U – call this
property (†)). Let γ0 and γ1 be curves in U .

(i) If γ0 ∼ γ1 in U with fixed endpoints, or
(ii) If γ0 ∼ γ1 in U as closed curves,

then ∫
γ0

f =

∫
γ1

f.
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In particular, (iii) if γ ∼ p where p ∈ U , then∫
γ

f = 0.

Proof. (iii) clearly follows from (ii), so it suffices to prove that the claim holds for (i) and (ii).
Let γ0 ∼ γ1 in U with fixed endpoints or as closed curves. Then for given parametrizations
γ0, γ1 : [a, b]→ U , we have a homotopy (fixed endpoints or closed curve) ϕ : [0, 1]×[a, b]→ U .
Since f is holomorphic in U or has the (†) property, f has primitives on each disc in U . Thus
there exists a primitive for f along ϕ; call this primitive p : [0, 1]× [a, b]→ C. And then p0
and p1 are primitives for f along ϕ0 and ϕ1 respectively, and also p0(b)−p0(a) = p1(b)−p1(a).
Therefore ∫

γ0

f = p0(b)− p0(a) = p1(b)− p1(a) =

∫
γ1

f.�

Definition 19.2. A set U is a simply connected domain if U is a domain such that for any
closed curve γ, there exists a point p ∈ U such that γ ∼ p. Intuitively, a simply connected
domain has no “holes”.

Corollary 19.1 (Cauchy’s theorem for simply connected domains). Let f be holomorphic
or has the (†) property on U , where U is a simply connected domain. Then for all closed
curve γ ∈ U , we have ∮

γ

f = 0.

Therefore, f has a primitive in U .

Example (Nudging a curve). Suppose f has the (†) property or is holomorphic on an open
set U and γ closed curve in U with distance ε > 0 to U c. Suppose |w| < ε. Then γ ∼ γ + w
in U as closed curves. Therefore, ∫

γ

f =

∫
γ+w

f

for all |W | < dist(γ,U c).

Example (Nudging a function). Let f be holomorphic on an open set U or has the (†)
property. Let γ be a closed curve in U . Then for all |w| < dist(γ,U c), we have∫

γ

f(z) dz = γγ−wf(z) dz

by nudging a curve. Then by the change of variables,∫
γ−w

f(z) dz =

∫
γ

f(z − w) dz.

Therefore, ∫
γ

f(z) dz =

∫
γ

f(z − w) dz

for all |w| < dist(γ,U c).
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Example (Change in log or arg). For any curve γ curve in C \ {0}, we have δ log γ = l(b)−
l(a) =

∫
γ
dz
z

, since l is a primitive for z−1 along γ. As for argument, δ arg γ = α(b) − α(a)

where l and α are branches of log and arg respectively along a parametrization γ : [a, b] →
C \ {0} of γ. Recall that δ arg γ and δ log γ are independent of parametrization of γ or
branches.

Suppose that γ is closed. Then δ arg γ = α(b) − α(a) = 2πk for some kinZ, since
α(a), α(b) ∈ arg z0. k is equal to the number of times the curve γ wraps around 0. Also, l(a)
and l(b) have the same real part ln |z0|, so∫

γ

dz

z
= δ log γ = l(b)− l(a) = i(α(b)− α(a)) = iδ arg γ = i(2πk).

The example above prompts us to introduce winding numbers.

Definition 19.3. Suppose that γ is a closed curve in C, and that z0 ∈ C \ γ. The winding
number (or index ) of γ around z0 is

I(γ, z0) :=
1

2πi

∮
γ

dz

z − z0
.

Now we shall give a more rigorous and precise definition of the “inside” and “outside” of
a closed curve using winding numbers.

Definition 19.4. Let γ be a closed curve. The inside of γ is {z ∈ C \ γ : I(γ, z) 6= 0}; the
outside of γ is {z ∈ C \ γ : I(γ, z) = 0}.

Proposition 19.3. Let E ⊆ C \ γ. If E is connected and unbounded, then E is in the
outside of γ. However, the converse is not true.

While the proof of the theorem below is beyond the scope of this course, we nonetheless
present it as it is an important result regarding simple curves.

Theorem 19.2 (Jordan curve theorem). Let γ be a simple closed curve. Then γ divides
the plane into two connected components: first, the inside, which is bounded and simply
connected with I(γ, z) = ±1 for any z inside γ; and second, the outside, which is unbounded
with I(γ, z) = 0 for z outside γ. Furthermore, γ is the common boundary of these two
regions.

This theorem may look “simple”, but one should note that a simple closed curve may not
be as “simple” as one thinks – for instance, the diagram below is an example of a simple
closed curve.

Proposition 19.4 (Properties of a winding number). Let γ be a closed curve, and z0 ∈ C\γ.
(i) I(γ, z0) ∈ Z

(ii) Let U = C \ {z0}. For any |h| < dist(z0, γ) = ε,

I(γ, z0) =
1

2πi

∮
γ

dz

z − z0
=

1

2πi

∮
γ

dz

z − h− z0
= I(γ, z0 + h).

In other words, I(γ, ·) is locally constant on C \ γ.
(iii) Therefore, I(γ, ·) is constant on each connected component of C \ γ.
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Proof. By the change of variables,

1

2πi

∮
γ

dz

z − z0
=

1

2πi

∮
γ−z0

dz

z
=

1

2πi
δ log(γ − z0).

The claim follows upon noting that δ log γ is of the form 2πki for some k ∈ Z. �

Proposition 19.5 (Winding number for homotopic curves). Let γ and η be closed curves
such that z0 /∈ γ and z0 /∈ η.

(i) If γ ∼ η in C \ {z0}, then I(γ, z0) = I(η, z0).
(ii) If γ ∼ p for some point p ∈ C \ {z0}, then I(γ, z0) = 0.

19.2. Cauchy integration formula

Suppose f is holomorphic on U open. Also, let γ ∼ p where p ∈ U ; let a ∈ U not in γ.
The function

g(z) :=

{
f(z)−f(a)

z−a z ∈ U \ {a}
f ′(a) z = a

is holomorphic on U \ {a}, and is continuous on U . Therefore, by Cauchy’s theorem,∮
γ

g = 0.

But then ∮
γ

g =

∮
γ

f(z)− f(a)

z − a
dz =

∮
γ

f(z)

z − a
dz − f(a)

∮
γ

dz

z − a
.

Therefore, we have

f(a)I(γ, a) =
1

2πi

∮
γ

f(z)

z − a
dz.

So the values of f on γ completely determine the values of f inside γ.
We shall state this central result explicitly.

Theorem 19.3 (Cauchy integration formula). Suppose f is holomorphic on an open set U
open, and γ ∼ p where p ∈ U . Then for all z ∈ U not on γ,

f(z)I(γ, z) =
1

2πi

∮
γ

f(w)

w − z
dw.

Notice that

1

w − z
=

1

(w − a)− (z − a)
=

1

w − a
1

1− z−a
w−a

=
1

w − a

∞∑
n=0

(
z − a
w − a

)n
.

Thus as long as |z − a| < |w − a|, This holds if z ∈ D(a, dist(a, γ)). So if we could switch
the order of γ and σ, then we might obtain

f(z)I(γ, z) =
1

2πi

∮
γ

f(w)

w − z
dw

=
1

2πi

∮
γ

∞∑
n=0

f(w)

w − a

(
z − a
w − a

)n
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?
=
∞∑
n=0

[
1

2πi

∮
γ

f(w)

(w − a)n+1
dw

]
(z − a)n,

which is a power series expansion for f about a. This would tell us that holomorphicity
implies analyticity, and would also tell us a formula for higher derivatives. So the question
is: when can we switch σ and

∮
? For this we need to discuss a notion called uniform

convergence.

19.3. Uniform convergence

Definition 19.5. f : C→ C is bounded on a set E if there exists C ≥ 0 such that f(z) ≤ C
for all z ∈ E. The uniform norm (or sup norm) of f on E is

‖f‖ = ‖f‖E = sup
z∈E
|f(z)|.

Definition 19.6. We say {fn} converges to f uniformly on E if

lim
n→∞

‖fn − f‖ = 0,

i.e., for all ε > 0 there exists N > 0 such that |fn(z) − f(z)| < ε for all n ≥ N and z ∈ E.
So both of the conditions below must hold:

• lim fn(z) = f(z) at each z ∈ E
• The convergence is uniform: given ε > 0 the same N works at every z ∈ E.

Definition 19.7. We say
∞∑
n=0

fn = f

uniformly on E if

lim
n→∞

n∑
j=0

fj = f

uniformly on E.

20. March 13

Suppose {fn} is a sequence of functions continuous on γ a piecewise-smooth curve. If
fn → f uniformly on γ then∣∣∣∣∫

γ

fn −
∫
γ

f

∣∣∣∣ =

∣∣∣∣∫
γ

(fn − f)

∣∣∣∣
≤
∫
γ

|fn − f | |dz|

≤ ‖fn − f‖γL(γ)→ 0.

So if
∑
fn = f uniformly on γ,

∞∑
n=0

∫
γ

fn = lim
n→∞

n∑
j=0

∫
γ

fj = lim
n→∞

∫
γ

n∑
j=0

fj

=

∫
γ

lim
n→∞

n∑
j=0

fj (∵ uniform convergence)

45



=

∫
γ

∞∑
n=0

fn.

20.1. Uniform convergence of power series

Let
∑
anz

n be a power series.

Lemma 20.1. If the sequence {anzn0 } is bounded for some z0 6= 0 then
∑
anz

n converges

absolutely, and uniformly on D(0, r) for all 0 < r < |z0|.

Proof. Let r0 = |z0|. Then there is C > 0 such that |an|rn0 = |anzn0 | ≤ C for all n. Thus

|an| ≤ C/rn0 for all n. Let 0 < r < r0. Then for z ∈ D(0, r), we have

|anzn| = |an||z|n = (C/rn0 )rn = C

(
r

r0

)n
for all n. For each n,

‖anzn‖D(0,r) ≤ C

(
r

r0

)n
.

Now by the comparison test,
∞∑
n=0

‖anzn‖D(0,r) ≤ C
∞∑
n=0

(
r

r0

)n
.

Since 0 < r/r0 < 1, the geometric series C
∑

(r/r0)
n converges. Therefore

∑
anz

n converges

absolutely, and uniformly on D(0, r) as desired. �

Corollary 20.1. Suppose that the series
∑
anz

n has radius of convergence R > 0. Then∑
anz

n converges uniformly for each D(0, r) for all 0 < r < R. By translation, for any z0
the same result holds for

∑
an(z − z0)n.

Theorem 20.1 (Cauchy-type integrals). Let γ be a piecewise-smooth curve, and g continu-
ous on γ. Then

G(z) =

∫
γ

g(w)

w − z
dw

is analytic on C \ γ and

G(n)(z) = n!

∫
γ

g(w)

(w − z)n+1
dw.

Moreover, the power series expansion at each a ∈ C \ γ is valid for all

|z − a| < dist(a, γ).

Proof. Let a ∈ C \ γ. Then let ε = dist(a, γ) > 0. Let z ∈ D(a, ε). Then

r =
|z − a|
ε

< 1,

since |z − a| < rε and |w − a| ≥ ε. So for every w ∈ γ, we have∣∣∣∣ z − aw − a

∣∣∣∣ < rε

ε
= r < 1.

46



Thus h(γ) ⊂ D(0, r) where h(w) = (z − a)/(w − a). Since the geometric series

1

1− ζ
=
∞∑
n=0

ζn

converges uniformly on D(0, r), we have

w − a
w − z

=
1

1− z−a
w−a

=
∞∑
n=0

(
z − a
w − a

)n
uniformly for all w ∈ γ. And since g(w)/(w − a) is continuous on γ and γ is compact, it
follows that it is bounded on γ. Hence

g(w)

w − z
=

g(w)

w − a
· w − a
w − z

=
∞∑
n=0

g(w)

w − a

(
z − a
w − a

)n
uniformly for w ∈ γ. All in all,

G(z) =

∫
γ

g(w)

w − z
dw =

∞∑
n=0

(∫
γ

g(w)

(w − a)n+1
dw

)
(z − a)n.

Therefore
∑
an(z − a)n converges with coefficients

an =

∫
γ

g(w)

(w − a)n+1
dw

converges to G(z) on D(a, ε). Thus G(n)(a) = n!an. �

21. March 15

We start with a corollary to the theorem on Cauchy-type integrals and the Cauchy inte-
gration formula.

Corollary 21.1 (Taylor’s theorem). Let f be holomorphic on an open set U . Then f
is analytic on U , and for all a ∈ U , the power series expansion for f at a is valid on
D(a, dist(a,U c)).

Proof. Let a ∈ U , and let ε := dist(a,U c) > 0. Then for 0 < r < ε, let γ = Cr(a). Then
γ ∼ p for some p ∈ U since D(a, ε) ⊂ U . So by the Cauchy integration formula, we have

f(z) =
1

2πi

∮
γ

f(w)

w − z)
dw

since I(γ, z) = 1. But f is continuous on γ, and γ is smooth, so

G(z) =

∮
γ

f(w)

w − z
dw

has a power series expansion about a on |z − a| < dist(a, γ). Hence f has a power series
expansion on D(a, r) for each 0 < r < ε, so the same claim holds for D(a, ε) as well. �
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Corollary 21.2 (Cauchy integration formula for higher derivatives). Let f be holomorphic
on an open set U , and let γ ∼ p for some point p ∈ U . Then fro each z ∈ U \ γ, we have

2πi
f (n)(z)

n!
I(γ, z) =

∮
γ

f(w)

(w − z)n+1
dw

for n = 0, 1, 2, . . . .

Proof. The n = 0 case is covered by the Cauchy integration formula, so it suffices to prove the
claim for n ≥ 1. First, we prove the claim for piecewise-smooth γ; after that, use homotopy
to get for γ continuous (exercise in an assignment). �

Now we are ready to prove the converses of some big theorem covered previously. At
this point, we know that holomorphicity implies analyticity, which in turn implies that
the given function is infinitely differentiable. Taylor’s theorem proves analyticity implies
holomorphicity, so we know holomorphicity and analyticity are equivalent. Also, if f has
a primitive F on U , then F is holomorphic on U , so F is infinitely differentiable. Hence
f = F ′ is differentiable hence holomorphic. Thus, the following facts give Morera’s theorem.
There are multiple ways this theorem can be stated; we present four different ways it can be
stated.

Theorem 21.1 (Morera’s theorem). Let f be continuous on an open set U .
(i) (Converse of Goursat’s theorem) If

∮
∂R
f = 0 for all rectangles R ⊂ U , then f has a

primitive on each disk in U . Therefore f is holomorphic in U .
(ii) If f has local primitives in U , then f is holomorphic on U .

(iii) If
∮
γ
f = 0 for all closed curve γ ∈ U , then f has a primitive in U . Therefore f is

holomorphic on U .
(iv) (Converse of Cauchy’s theorem) If

∮
γ
f = 0 for all γ ∼ p in U for some p ∈ U , then∮

∂R
f = 0 for all R ⊂ U . Therefore f is holomorphic on U .

Corollary 21.3. Let f be continuous on an open set U . If f is holomorphic on U except
for finitely many points, then f is holomorphic on U .

Proof.
∮
∂R
f = 0 for all rectangles R ⊂ U by tweaked Goursat’s theorem, so f is holomorphic

on U by Morera’s theorem. �

We present more corollaries of the Cauchy integration formula.

Corollary 21.4 (Cauchy’s inequalities). Let f be holomorphic on an open set U , and
D(z0, r) ⊆ U . Then

|f (n)(z0)| ≤
n!

rn
‖f‖Cr(z0).

Proof. Since γ = Cr(z0) ∼ p for some p ∈ U , we may apply the Cauchy integration formula
at centre z0:∣∣f (n)(z0)I(γ, z0)

∣∣ =
∣∣f (n)(z0)

∣∣ =
n!

2π

∣∣∣∣∮
γ

f(w)

(w − z0)n+1
dw

∣∣∣∣
≤ n!

2π

∮
γ

|f(w)|
|w − z0|n+1

|dw|
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≤ n1

2π

‖f‖Cr(z0)
rn+1

L(γ) (∵ w ∈ γ = Cr(z0))

=
n!

2π

‖f‖Cr(z0)
rn+1

(2πr) = n!
‖f‖Cr(z0)

rn
. �

Theorem 21.2 (Liouville’s theorem). Every bounded entire function is constant.

Proof. Suppose f is entire, and that there exists a constant C so that |f | ≤ C. Suppose

z0 ∈ C. Since f is entire, we can apply Cauchy’s inequality on any disk D(z0, r). For n = 1,

|f ′(z0)| ≤
‖f‖Cr(z0)

r
≤ C

r
.

Since this is true for any r > 0, it follow |f ′(z0)| = 0. Hence f ′ ≡ 0 on C, so f must be
constant on C. �

Theorem 21.3 (Fundamental theorem of algebra). Every non-constant polynomial p(z) =
a0 + a1z + · · ·+ anz

n for aj ∈ C and an 6= 0 has a root in C.

Proof. Suppose otherwise. Then p 6= 0 on C, so 1/p(z) must be entire. Then 1/p(z) is
bounded (think about why). So by Liouville, 1/p(z) is constant; so p(z) must be a constant,
which is a contradiction. �

22. March 18 & 20

Thanks to the fundamental theorem of algebra, every polynomial of degree k ≥ 1 is of the
form

p(z) = a(z − z1)k−1 · · · (z − zn)kn ,

where z1, . . . , zn are zeros of p and k1, . . . , kn ∈ N are multiplicities of respective roots. Thus
k1 + · · ·+ kn = k.

22.1. Uniform convergence of holomorphic functions

Let fn be holomorphic on U open. To show that a function f is holomorphic on U , by
Morera, we only need to verify that ∮

∂R

f = 0

for any rectangle R ⊆ U . Suppose fn → f uniformly on each compact set in U . Then given
any rectangle R ⊆ U , we have fn → f uniformly on ∂R which is compact. Therefore, since
each fn is continuous on ∂R, so is f . Hence,∮

∂R

fn →
∮
∂R

f.

But then
∮
∂R
fn = 0 by Goursat since each fn is holomorphic, which forces

∮
∂R
f = 0. Since

the claim holds true for every R ⊆ U , f must be holomorphic on U by Morera. Therefore,
we proved the analytic convergence theorem stated below.

Theorem 22.1 (Analytic convergence theorem). Let {fn} be a sequence of functions that
are holomorphic on an open set U . If fn → f uniformly on compact subsets in U , then f is
holomorphic in U .
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Corollary 22.1. If f :=
∞∑
n=0

fn uniformly on compact subsets in U , then f is holomorphic

in U .

22.2. On the convergence of derivatives

Notice by Cauchy’s inequality for n = 1, if g is holomorphic on U then

|g′(z)| ≤ ‖g‖Cr
r

.

If K ⊆ U is compact, then let ε = dist(K,U c) > 0; and so for 0 < r < ε, write Kr :=⋃
z∈K

D(z, r). One can verify that Kr is compact. So by Cauchy’s inequality, for any z ∈ K

we have D(z, r) ⊆ U ; therefore

|g′(z)| ≤
‖g‖Cr(z)

r
≤ ‖g‖Kr

r
.

Thus the above inequality holds for all z ∈ K, so

‖g′‖K ≤
1

r
‖g‖Kr .

Now suppose that fn is holomorphic on U open, and fn → f uniformly on compact sets in
U . Then f is holomorphic on U by the analytic convergence theorem.

Now consider any K ⊆ U compact. Then there is r > 0 such that

‖f ′n − f ′‖K ≤
1

r
‖fn − f‖Kr → 0,

so f ′n → f ′ uniformly on compact sets.

Theorem 22.2 (Analytic convergence theorem II). Let fn be holomorphic on an open set
U . If fn → f uniformly on compact subsets of U , then f ′n → f ′ uniformly on compact subsets

in U also. Therefore, f
(k)
n → f (k) uniformly on compact subsets in U for any k.

Remark. Analytic convergence theorem II is not true at all in R.

Corollary 22.2. The analogous result holds for
∑
fn.

22.3. Reciprocal power series

Consider the series
∞∑
n=1

bn
1

zn
=
∞∑
n=1

bnz
−n.

Suppose the power series
∑
bnw

n has radius of convergence R. If R = 0, then
∞∑
n=1

bn

(
1

z

)n
diverges for all z−1 6= 0, so the series diverges for all z. Suppose R > 0. Then

∑
bnz
−n

diverges for any |z−1| > R ⇔ |z| < R−1; similarly,
∑
bnz
−n converges for |z−1| < R i.e.,

|z| > R−1. Thus for any 0 < r < R, we see that the series converges uniformly on |z−1| ≤ r,
i.e., |z| ≥ r−1 > R−1.

We also know that

g(w) =
∞∑
n=1

bnw
n
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is holomorphic on D(0, R). So therefore, since

f(z) = g(z−1) =
∞∑
n=1

bn
1

zn
.

Let A(a, b, c) := {z ∈ C : b < dist(a, z) < c}. We claim then that f is holomorphic on
A(0, R−1,∞). Indeed, note that the change of variables from z to 1/z maps any point in
A(0, R−1,∞) onto D(0, R), and g is holomorphic on D(0, R). Therefore f is holomorphic on
A(0, R−1,∞) = {z ∈ C : |z| > R−1}.

Definition 22.1. Given numbers a−1, a−2, . . . , we define∑
n<0

anz
n :=

∑
n=−1,−2,...

anz
n =

∞∑
n=1

a−nz
−n.

Definition 22.2. A Laurent series about 0 is a series of the form

f(z) =
∞∑

n=−∞

anz
n =

∑
n<0

anz
n +

∞∑
n=0

anz
n = · · ·+ a−2z

−2 + a−1z + a1z + a2z
2 + · · ·

A Laurent series
∑
anz

n has two radii of convergence: one for
∞∑
n=0

anz
n and another for

∞∑
n=1

a−nw
−n. Call the respective radii of convergence R+ and R−. Thus the given Laurent

series converges uniformly in A(0, R−1− , R+), and converges uniformly on A(0, r, R) for all

0 < R−1+ < r < R < R+. It diverges outside of A(0, R−1− , R+).
Inside A(0, R−1− , R+) the function

f(z) =
∞∑

n=−∞

anz
n

is holomorphic.

Definition 22.3. The annulus A(0, R−1− , R+) is called the annulus of convergence for the
Laurent series.

Definition 22.4. A function f has a Laurent expansion at 0 if there exists an annulus
A(0, s, S) such that

f(z) =
∞∑

n=−∞

anz
n

for all z ∈ A for some Laurent series that converges on A.

Proposition 22.1. If a function has a Laurent series expansion on an annulus (0, r1, r2),
then such expansion is unique.

Remark. If R− = ∞ then A(0, R−1− , R+ = D(0, R+). If R+ = ∞, ten A(0, R−1− , R+) is just
{|z| > R−1− }. Finally, if R− = R+ =∞ then A(0, R−1− , R+) is C \ {0}.
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Let f(z) =
∑
anz

n be a Laurent series. Then

f ′(z) =
∞∑

n=−∞

nanz
n−1 = · · ·+ (−2)a−2

z3
+

(−1)a−1
z2

+
0

z
+ a1 + 2a2z + · · · .

Note that there is no z−1 term in f ′(z). In fact, both f(z) and f ′(z) have the same annulus
of convergence.

Notice that
∮
Cr(0)

dz
z

= 2πi. On the other hand,
∮
Cr(0)

zm dz = 0 for all m 6= −1 since zn

has a primitive on C \ {0}. So∮
Cr(0)

anz
n

zk+1
dz =

{
2πiak if n = k

0 otherwise.

This particular observation will be helpful in proving the uniqueness of the Laurent expan-
sion. Suppose that f has Laurent expansion at 0. Then there exist s and S such that

f(z) =
∞∑

n=−∞

anz
n

for some annulus s < |z| < S. Now let γ = Cr(0) for some s < r < S. Then

f(z) =
∞∑

n=−∞

anz
n

uniformly on γ, and so for each k ∈ Z, we have

f(z)

zk+1
=

∞∑
n=−∞

an
zn

zk+1

uniformly on γ (since z−(k+1) is bounded on γ). Hence∮
γ

f(z)

zk+1
dz =

∞∑
n=−∞

∮
γ

anz
n

zk+1
dz = 2πiak.

Therefore for all k, ak is completely determined by f , namely

ak =
1

2πi

∮
Cr(0)

f(z)

zk+1
dz

for any r such that s < r < S.
Recall that to show that holomorphicity implies analyticity (more specifically, being holo-

morphic on a disc implies that that function has a power series expansion on that disc), we
used the Cauchy integration formula, and the result regarding the Cauchy-type integrals.
We proved this by applying

f(z) =
1

2πi

∮
Cr

f(w)

w − z
dw

and then by switching
∮

and
∑

. We will carry out precisely the same operation at a = 0.

1

w − z
=

1

w

1

1− z
w

=
1

w

∞∑
n=0

( z
w

)n
=
∞∑
n=0

zn

wn+1
,
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and 1
w−z converges uniformly for

∣∣ z
w

∣∣ ≤ δ < 1. So for f continuous on Cr(0) and for each
z ∈ D(0, r), ∮

Cr

f(w)

w − z
dw =

∞∑
n=0

(∮
Cr

f(w)

wn+1
dw

)
zn.

Similarly, for |z| > |w|,

1

w − z
=

1

z

1
w
z
− 1

=
−1

z

1

1− w
z

= −1

z

∞∑
n=0

(w
z

)n
= −

∞∑
n=0

wn

zn+1
= −

∞∑
n=1

wn−1

zn
,

and the series converges uniformly for |w/z| ≤ δ < 1. So for any f continuous on Cr(0), we
have ∮

Cr

f(w)

w − z
dw = −

∞∑
n=1

(∮
Cr

f(w)wn−1 dw

)
1

zn

for each |z| > r. Notice that wn−1 = (w−n+1)−1, so as long as f is continuous on Cr,∮
Cr

f(w)

w − z
dw =


∑∞

n=0

(∮
Cr

f(w)
wn+1dw

)
zn for |z| < r

−
∑

n<0

(∮
Cr

f(w)
wn+1 dw

)
zn for |z| > r,

thereby proving the uniqueness.

Theorem 22.3 (Laurent expansion theorem). Suppose that f is holomorphic on annulus
A(0, s, S) = {z ∈ C : s < |z| < S}. Then f has a Laurent series expansion on A.

Proof. Let s < r < R < S, and consider the annulus z ∈ A(0, r, R). For any θ 6 in arg z, let
µ : [r, R]→ C be µ(t) = teiθ. Then (left as an exercise) γ = CR + µ−+C−r + µ is homotopic
to a point in A, and so I(γ, z) = 1. Since f is holomorphic on A, by the Cauchy integration
formula,

f(z) =
1

2πi

∮
γ

f(w)

w − z
dw.

But since γ = CR + µ− + Cr −+µ then∮
γ

f =

∮
CR

f −
∮
Cr

f.

So we have

f(z) =
1

2πi

∮
CR

f(w)

w − z
dw − 1

2πi

∮
Cr

f(w)

w − z
dw

=
1

2πi

∞∑
n=0

(∮
CR

f(w)

wn+1

dw

)
zn − 1

2πi

∑
n<0

(∮
Cr

f(w)

wn+1
dw

)
zn;

observe that the first series expansion holds because |z| < CR; and the second expansion
follows since |z| > r. But then for each n ∈ Z, we have f(w)/wn+1 is holomorphic in A.
Hence ∮

C

f(w)

wn+1
dw
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is the same for every circle. So

f(z) =
∞∑

n=−∞

(
1

2πi

∮
C

f(w)

wn+1
dw

)
zn

for any circle C about 0 in A. Hence f(z) =
∑
anz

n for A where

an :=
1

2πi

∮
C

f(w)

wn+1
dw

since the claim holds true for each r < |z| < R for s < r < R < S. �

23. March 22

By translation all the same facts regarding the Laurent series

f(z) =
∞∑

n=−∞

an(z − z0)n

hold about any point z0 ∈ C. Also if a function f is holomorphic on an annulus s <
|z − z0| < S then f has a unique Laurent expansion at z0 valid in this annulus. Specifically,
the coefficients are

an =
1

2πi

∮
Cr(z0)

f(w)

(w − z0)n+1
dw

for any s < r < S.

Example. f(z) = 1/(z(z−1)) is holomorphic on C\{0, 1}, so f is holomorphic on the annulus
D∗(0, 1) = A(0, 0, 1). Therefore we know that f has unique Laurent expansion about 0 in
D∗(0, 1). For any 0 < |z| < 1, the series

f(z) =
1

z(z − 1)
= −1

z

1

1− z

= −1

z

∞∑
n=0

zn = −
∞∑
n=0

zn−1

= −1

z
−
∞∑
n=1

zn−1 = −1

z
−
∞∑
n=0

zn

= −1

z
− 1− z − z2 − · · · ,

which is the Laurent expansion we are looking for. But f is holomorphic on everywhere
except at the point z = 0, z = 1. We just examined what happens in D∗(0, 1), so now
examine what happens outside of that region, namely A(0, 1,∞) (i.e., |z| > 1). f has a
unique Laurent expansion about 0 valid in this annulus due to holomorphicity. Hence

f(z) =
1

z(z − 1)
=

1

z2
1

1− 1
z

for |z| > 1

=
1

z2

∞∑
n=0

(
1

z

)n
=
∞∑
n=0

1

zn+2
=
∞∑
n=2

1

zn

= · · ·+ z−4 + z−3 + z−2
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is the valid Laurent expansion in A(0, 1,∞).

24. March 22 & 25: Zeros and isolated singularities

Let g holomorphic on some disk D(z0, R) with zero at z0. So g has power series expansion
on D(z0, r); call this

g(z) =
∞∑
n=0

an(z − z0)n.

Then from a previous assignment, we know that either g ≡ 0 on D(z0, r) or there is k ∈ N
such that

g(z) = (z − z0)k
∞∑
n=k

an(z − z0)n = (z − z0)kG(z)

where G(z) is holomorphic and G(z0) 6= 0, and ak 6= 0.

Definition 24.1. The k as defined above is called the order or the multiplicity of the zero
z0 of g.

Definition 24.2. f has an isolated singularity at z0 if f is holomorphic on some punctured
disc D∗ at z0 and undefined at z0. We know that f has a unique Laurent expansion

f(z) =
∞∑

n=−∞

an(z − z0)n

on D∗ (annulus about z0).

There are three types of isolated singularity z0; we shall also characterize each type of
singularity in terms of Laurent series.

24.1. Removable singularity

Definition 24.3. z0 is a removable singularity if there exists a holomorphic g on some disc
D(z0, r) such that f = g on D∗(z0, r). Equivalently, there exists α ∈ C such that for some
r > 0 we have

g(z) :=

{
f(z) (z ∈ D∗(z0, r))
α (z = z0)

is holomorphic. Note that in this case, our choice of α is unique due to continuity.

Proposition 24.1. Let z0 be a removable singularity of f . Then the following are equivalent.

(1) z0 has a removable singularity
(2) The Laurent series for f at z0 is a power series expansion, i.e.,

f(z) =
∞∑
n=0

an(z − z0)n

(3) lim
z→z0

f(z) exists.

(4) lim
z→z0

(z − z0)f(z) = 0.

(5) f is bounded near z0.
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24.2. Pole

Definition 24.4. z0 is a pole of f if there exists a holomorphic function g on some D(z0, r)
with a zero at z0 so that f = 1

g
on D∗(z0, r). Equivalently, for some r > 0 the function

g(z) :=

{
1

f(z)
(z ∈ D∗(z0, r))

0 (z = z0)

is holomorphic on D(z0, r).

Notice that g 6≡ 0 on D(z0, r) so z0 is a zero for g with finite order k ∈ N. Hence we know
that g(z) = (z− z0)kG(z) on D(z0, r) where G(z) is holomorphic and never zero on D(z0, r).
Hence

f(z) =
1

g(z)
=

1

(z − z0)k
1

G(z)
.

1/G(z) is never 0 and is holomorphic on D(z0, r), so 1/G(z) = c0+c1(z−z0)+c2(z−z0)2+· · ·
with c0 6= 0. All in all,

f(z) =
c0

(z − z0)k
+ · · ·+ ck−1

z − z0
+ ck + ck+1(z − z0) + · · · .

Define ci+k = ai for all i > −k; then we see that the Laurent series for f has all an = 0 for
n < −k and a−k 6= 0.

Definition 24.5. The k above is called the order or multiplicity of the pole z0; −k is the
integer order of the pole z0, and we write −k := ord (f, z0). If k = 1, then we call z0 a simple
pole.

Proposition 24.2. Let z0 be a pole of order k in f . Then the following are equivalent.

(1) z0 is a pole of order k
(2) f = 1/g on some D∗(z0, r), where g is holomorphic on D(z0, r) with zero of order k

at z0.
(3) Laurent series of f at z0 has the form

f(z) =
∞∑

n=−k

an(z − z0)n

on D∗ where a−k 6= 0.
(4) f(z) is of the form

f(z) =
1

(z − z0)k
G(z)

on some D∗(z0, r), where G is holomorphic and is non-zero on D(z0, r).
(5) (z − z0)kf(z) has a non-zero removable singularity at z0.
(6) lim

z→z0
(z − z0)kf(z) exists and is non-zero.

(7) f 6= 0 near z0, and
lim
z→z0

f(z) =∞,

or equivalently,

lim
z→z0

1

f(z)
= 0.
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Remark. Suppose that f is holomorphic and is non-zero on D∗. Thus, 1/f is holomorphic
and is non-zero as well. Hence, f has a non-zero removable singularity at z0 if and only if
1/f has a non-zero removable singularity at z0. Similarly, f has a removable singularity at
z0 that is a zero of order k if and only if 1/f has a pole of order k at z0. Hence, we can
conclude that f has a removable singularity at z0 if and only if 1/f has a pole or a non-zero
removable singularity at z0.

Furthermore, notice that f is bounded away from 0 near z0 if and only if there is ε > 0
such that |f(z)| ≥ ε on some D∗(z0, r). This is also equivalent to saying that f 6= 0 and
1/|f(z)| < 1/ε on some D∗(z0, r); also equivalently, 1/f has removable singularity at z0 –
and this happens if and only if f has a pole or non-zero removable singularity.

24.3. Essential singularity

Definition 24.6. Let f be holomorphic on D∗, and be undefined at z0. Then z0 is an
essential singularity for f if the singularity at z0 is not removable, nor is it a pole.

Proposition 24.3. Let z0 be an essential singularity in f . Then the following are equivalent.

(1) z0 is an essential singularity in f .
(2) The Laurent series of f on D∗ has infinitely many terms of negative index, i.e.,

f(z) = · · ·+ a−1
z − z0

+
∞∑
n=0

an(z − z0)n.

(3) Neither of the following limits exist:

lim
z→z0

f(z), lim
z→z0

1

f(z)
.

Definition 24.7. Let z0 be an essential singularity in f , and that f(z) has the Laurent
expansion

f(z) = · · ·+ a−1
z − z0

+
∞∑
n=0

an(z − z0)n.

Then the residue of f Res(f, z0) is the value of a−1. The principal part of the Laurent
expansion of f is

· · ·+ a−1
z − z0

=
−1∑

n=−∞

an(z − z0)n.

We will examine what happens at essential singularities. Suppose that f has an essential
singularity at z0. Then so does f(z) − α for any α ∈ C since f(z) − α and f(z) have the
same principal part. Also, z0 is not a pole or a removable singularity for f(z)− α. f(z)− α
is not bounded away from 0 near z0. Hence, f(z) is not bounded away from α near z0. This
gives rise to the following theorem.

Theorem 24.1 (Casorati-Weierstrass theorem). If f has an essential singularity at z0 then
for any α ∈ C, there exists zn → z0 such that f(zn)→ α.
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24.4. Residue theory

Suppose that f has an isolated singularity at z0, i.e., f is holomorphic on some D∗(z0, r).
Then f has Laurent expansion on D∗(z0, r); say this Laurent expansion is

f(z) =
∞∑
n=1

a−n
(z − z0)n

+
∞∑
n=0

an(z − z0)n.

Let S(z) be the singular part of the Laurent series, i.e.,

S(z) =
∞∑
n=1

a−n
(z − z0)n

,

the reciprocal power series with R− =∞ converges for |z− z0| > 1/R− = −0 (i.e., holomor-

phic on C \ {0}). Hence, S(z) converges uniformly on each A(z0, ε,∞) = {z : |z − z0| ≥ ε}.
Suppose that γ is any closed curve in C \ {z0}. Then for n 6= 1, we have∮

γ

dz

(z − z0)n
= 0,

whereas ∮
γ

dz

z − z0
= 2πiI(γ, z0).

Since z0 ∈ C \ γ, and C \ γ is open, there exists a disc D(z0, r) ⊂ C \ γ. Therefore

γ ⊂ A(z0, r,∞). Thus the reciprocal power series converges uniformly on γ. In conclusion,∮
γ

S(z) dz =
∞∑
n=1

∮
γ

a−n
(z − z0)n

dz = a−1(2πi)I(γ, z0) = Res(f, z0)2πiI(γ, z0).

Theorem 24.2 (Residue theorem). Let U be an open set, and γ ∼ p in U for some point
p ∈ U . Let z1, . . . , zn ∈ U \ γ. If f is holomorphic on U \ {z1, . . . , zn}, then∮

γ

f(z) dz = 2πi
n∑
j=1

Res(f, zj)I(γ, zj).

Proof. Let U \ γ be open. For each z, there exists a disc D(zj, rj) ⊂ U \ γ such that
zk /∈ D(zj, rj) for k 6= j. So f is holomorphic on each punctured disc D∗(zj, rj), so f has
Laurent expansion

f(z) = Sj(z) + gj(z)

where Sj(z) is the singular part which is holomorphic on C \ {zj} and gj the power series
part which is holomorphic on D(zj, rj). Then as we already argued previously, we have∮

γ

Sj = 2πiRes(f, zi)I(γ, zi).

Let

g(z) = f(z)−
n∑
j=1

Sj(z).
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Note that f(z) is holomorphic on U \{z1, . . . , zn}; on the other hand
∑
Sj(z) is holomorphic

on everywhere except for {z1, . . . , zn}. Thus g(z) is holomorphic on U \ {z1, . . . , zn}. But on
each D∗(zk, rk), we have

g(z) = f(z)− Sk(z)−
∑
j 6=k

Sj(z).

But note that gk(z) := f(z) − Sk(z) is holomorphic on D(zk, rk); similarly,
∑
j 6=k

Sj(z) is

holomorphic on D(zk, rk) as well, meaning that g in fact has a removable singularity at the
zj’s. Now we can apply Cauchy’s theorem to get∮

γ

g = 0.

The theorem now follows. �

25. March 27

Definition 25.1. f is meromorphic on an open set U if f is holomorphic on U except at
points that are poles. If P is the set of poles of f in U , then P is a set of isolated points, since
isolated singularities are isolated by default. Thus P is discrete, and at most countable.

Proposition 25.1. P cannot accumulate in U . Therefore, P has no limit points in U .

Let f be meromorphic on U an open set. So at each z0 ∈ U , f is either holomorphic or
has a pole at z0, so there exists k ∈ Z such that (with ak 6= 0)

f(z) = ak(z − z0)k + ak+1(z − z0)k+1 + · · ·

= ak(z − z0)k
(

1 +
ak+1

ak
(z − z0) + · · ·

)
= ak(z − z0)kg(z)

on some D(z0, r); evidently, g(z) is holomorphic on D(z0, r). If k < 0, then z0 is a pole of
order −k (or integer order k); if k = 0, then f is holomorphic, and is 6= 0 at z0; if k > 0,
then z0 is a zero of order k. Furthermore, g 6= 0 on D(z0, r) unless f ≡ 0 on connected
components of U 3 z0.

Recall that (gh)′ = gh′ + g′h and (hg)′/(hg) = h′/h+ g′/g. Thus

f ′

f
=
kak(z − z0)k−1

ak(z − z0)k
+
g′

g
=

k

z − z0
+
g′

g

on D∗(z0, r). Since g 6= 0 on D(z0, r) and is holomorphic, it follows that g′/g is holomorphic
on D(z0, r). Hence this is the Laurent series of f ′/f . Thus

Res

(
f ′

f
, z0

)
= k,

the integer order of pole at z0, or order of zero of f at z0; or k = 0 (i.e., f is holomorphic and
is non-zero at z0). Since f is meromorphic on an open set U and not zero on any component
of U , it follows that f ′/f is holomorphic on U except for simple poles at the zeros and poles
of f . And for each zero and pole z of f , indeed Res(f ′/f, z) = ord (f, z), the integer order
of a zero or a pole.
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Theorem 25.1. Suppose that U is an open set, and a curve γ ∼ p for some point p ∈ U .
Let f be a meromorphic function on U , and has zeros and poles at z1, . . . , zn ∈ U \ γ. Then∮

γ

f ′

f
= 2πi

n∑
j=1

ord (f, zj)I(γ, zj).

Proof. Since f ′/f is holomorphic on U \ {z1, . . . , zn}, the residue theorem implies that∮
γ

f ′

f
= 2πi

n∑
j=1

Res

(
f ′

f
, zj

)
I(γ, zj).

The claim follows upon realizing that Res(f ′/f, zj) = ord (f, zj). �

Remark. Recall that via change of variables,∮
γ

f ′

f
=

∮
f◦γ

1

z
dz = 2πiI(f ◦ γ, 0) = i(∆ arg f ◦ γ),

where ∆ arg f ◦γ denotes the change in argument over the curve f ◦γ. Thus by the argument
principle,

1

2π
∆ arg f ◦ γ = I(f ◦ γ, 0) =

n∑
j=1

ord (f, zj)I(γ, zj).

Of our particular interest is when γ is a simple closed curve since its winding number can
be easily characterized, specifically

I(γ, zj) =

{
1 if zj inside γ

0 otherwise.

In other words,
∆ arg f ◦ γ

2π
= I(f ◦ γ, 0) = nz − np,

where nz denotes the number of zeros of f inside γ and np the number of poles of f inside γ
(all counted with multiplicities – that is, a pole of order m counts as −m). Hence, we have∮

γ

f ′

f
= 2πi(nz − np).

25.1. Application of argument principle

We now discuss some applications of the argument principle. The argument principle
can be used to count zeros. As usual, suppose that U is open, and γ is simple such that
γ ∼ p for some point p ∈ U . If f is holomorphic on U and non-zero for every z ∈ γ, then
∆ arg(f ◦ γ) = 2πnz. Thus you can compute ∆ arg f ◦ γ to compute nz.

Now suppose that f and g are holomorphic on U open. If F = g/f , then

F ′

F
=
f

g

g′f − gf ′

f 2
=
g′

g
− f ′

f

on U \ Z, where Z is the set of zeros of f and g. Hence∮
γ

F ′

F
=

∮
γ

g′

g
−
∮
γ

f ′

f
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for any simple closed curve γ in U such that no zeros of f and g are on γ. Note that

I(F ◦ γ, 0) = I(g ◦ γ, 0)− I(f ◦ γ, 0),

so if I(F ◦ γ, 0) = 0 then I(g ◦ γ, 0) = I(f ◦ γ, 0). Hence f and g have the same number of
zeros inside any simple closed curve homotopic to a point in U .

Example. If F ◦ γ lies in D(1, 1), then I(F ◦ γ, 0) = 0. |1− F (z)| < 1 for z on γ, i.e.,∣∣∣∣1− g(z)

f(z)

∣∣∣∣ < 1⇒ |f(z)− g(z)| < |f(z)|

on γ.

Theorem 25.2 (Rouché’s theorem). Let U be open, and γ a simple closed curve homotopic
to a point in U . If f, g are both holomorphic on U with |f(z) − g(z)| < |f(z)| on γ, then f
and g both have the same number of zeros inside γ.

26. March 29

26.1. Mapping theorem

Suppose that f is holomorphic on an open set U . For any z0 ∈ U , “f(z0) = w0 with order
k” means “f(z) − w0 has a zero of order k at z0”. Thus, a power series of f − w0 starts at
order k. That is, f(z) is of the form

f(z) = w0 + ak(z − z0)k + · · ·+,

i.e., f(z0) = w0, f
′(z0) = · · · = f (k−1)(z0) = 0, but f (k)(z0) 6= 0. Let f be holomorphic on U

open and z0 ∈ U , and f(z0) = w0 with order k. So F := f − w0 is holomorphic on U with
zero of order k at z0. So there exists r > 0 such that F 6= 0 on D∗(z0, r).

Let 0 < δ < r and γ = Cδ(z0). Then F is continuous at and is non-zero on a compact γ,
so |F (z)| ≥ ε > 0 on γ for some ε > 0, i.e., |f(z)− w0| ≥ ε on γ.

Therefore, for any w ∈ D(w0, ε), we have |w − w0| < ε ≤ |F (z)| for all z ∈ γ. Define
G(z) := f(z) − w. Then by Rouché’s theorem, F and G have the same number of zeros
inside γ, i.e., in D(z0, δ). But F is zero only at z0, with order k. Therefore, G has k zeros in
D(z0, δ). Thus, f sends k points in D(z0, δ) (counting multiplicities) to w.

In particular, there is z ∈ D(z0, δ) such that f(z) = w – note this is true for all w ∈
D(w0, ε). Hence, for all small enough discs D(z0, δ) there is some D(f(z0), ε) ⊂ f(D(z0, δ)).

Definition 26.1. A map f is open if U being open implies f(U) is also open.

Proposition 26.1. f is open if and only if for any small enough D(z0, δ) there exists some
D(f(z0), ε) ⊂ f(D(z0, δ)).

Theorem 26.1 (Open mapping theorem). Suppose that U is open and f is holomorphic
on U and is non-constant on each component of U . If f(z0) = w0 with order k, then f is
“locally k-to-one (counting multiplicities) near z0. In other words, for all small enough disc
D(z0, δ), there exists a disc D(w0, δ) such that each value w ∈ D(w0, ε) is achieved exactly
k times (counting multiplicities) in D(z0, δ).
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26.2. Some applications of the open mapping theorem

Suppose that U is open, and f is holomorphic on U and is locally one-to-one (i.e., f
is one-to-one on a neighbourhood of each point in U). Suppose that f ′(z0) = 0 for some
z0 ∈ U . Then z0 must be an isolated zero of f ′. Otherwise, f ′ ≡ 0 near z0, so f ≡ C for
some constant C, but this contradicts that f is one-to-one near z0. Thus f ′ 6= 0 on some
D∗(z0, r). Let f(z0) = w0. Then f(z0) = w0 with order ≥ 2 (because f ′(z0) = 0). So by the
open mapping theorem, for all small discs D 3 z0, there exists a disc D′ 3 w0 such that each
w ∈ D′ is at least achieved twice in D. However, there could be z with order 2 such that
f(z) = w. But for D ⊂ D(z0, r) we have f ′ 6= 0 at all z 6= z0. Thus f must have order 1 at
each z 6= z0. But f is not one-to-one on a sufficiently small disc D, but this contradicts the
fact that f is locally one-to-one. Note that this proves one direction (⇒) of the following
theorem, with the other directions following from the inverse function theorem.

Theorem 26.2. If f is holomorphic on an open set U , then f is locally one-to-one on U if
and only if f ′ 6= 0 in U .

Definition 26.2. If f satisfies the conditions outlined in the above theorem, then f is said
to be conformal.

Note that if U is open, then so is f(U) by the open mapping theorem. Also, if f : U → V
is holomorphic and invertible, then f ′ 6= 0 on U . Then by the inverse function theorem,
f−1 : V → U is holomorphic. In this case, we say that f is biholomorphic. Furthermore,
U and V are said to be conformally equivalent, and we also say that f maps U conformally
onto V . Hence, if f is biholomorphic, then both f and f−1 are conformal.

27. April 1: More applications of the open mapping theorem

27.1. Maximum modulus principle

Suppose that U is open, and f is holomorphic on U . Suppose that |f | has a local maximum
at z0 ∈ U , i.e., |f(z0)| ≥ |f(z)| for all z ∈ D(z0, r) for some r. Then since D := D(z0, r) is
open, by the open mapping theorem, f(D) is open unless f ≡ C for some constant C on D.
Therefore, there exists z ∈ D such that |f(z0)| < |f(z)|, but this is a contradiction since z0
is the point of local maximum. This proves the maximum modulus principle stated below.

Theorem 27.1 (Maximum modulus principle). If f is holomorphic and U is an open set,
then |f | cannot have a local maximum in U except when f is a constant on that components
of U .

Remark. If K is compact subset of U , K◦ is a domain, and f is holomorphic on U , then |f |
is continuous on compact K. Therefore |f | must have a maximum value at K. But by the
maximum modulus principle, the maximum cannot be achieved in K◦ unless f is constant
on K◦. Hence either f is constant on K by continuity, or if there is the maximum, it must
occur on ∂K, the boundary of K. This yields the following inequality, for all z ∈ K◦:

|f(z)| ≤ sup
w∈∂K

|f(w)|.

Since z ∈ K◦, if the equality is achieved at some point z, then the equality must be achieved
at all points. Hence in this case f is constant.
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27.2. Application of the maximum modulus principle: Schwarz lemma

Let D = D(0, 1). Suppose that f is holomorphic on D, and f(D) ⊂ D, with f(0) = 0.
Since f is holomorphic on disc D, it has a power series expansion on D. So if

f(z) =
∞∑
n=0

anz
n

on D, then a0 = 0 since f(0) = 0. Hence f(z) = a1z + a2z
2 + · · · = z(a1 + a2z + · · · ), so the

function
f(z)

z
= a1 + a2z + · · ·

has a removable singularity at z = 0. Thus the function

g(z) =

{
f(z)
z

(z ∈ D∗)
a1 = f ′(0) (z = 0)

is holomorphic on D. Suppose 0 < r < 1, and write Dr := D(0, r). Then by the maximum
modulus principle, we have

|g(z)| ≤ sup
|w|=r
|g(w)| = sup

|w|=r

|f(w)|
|w|

=
1

r
sup
|w|=r
|f(w)|.

But note that since f(D) ≤ D, sup |f(w)| is bounded above at 1. So we have

|g(z)| ≤ 1

r

on Dr. So for each z ∈ D, we have z ∈ Dr for all |z| < r < 1. Thus |g(z)| ≤ r−1 for
all |z| < r < 1. Hence |g(z)| ≤ s = r−1 for all s > 1. This implies taht |g(z)| ≤ 1 for
all z ∈ D. This means that by definition of g, we have |f(z)| ≤ |z| for all z ∈ D∗ and
|f ′(0)| = |g(0)| ≤ 1. Furthermore, if |g(z0)| = 1 for some z0 ∈ D (i.e., if |f(z0)| = |z0| for
some z0 ∈ D∗ or if |f ′(0)| = 1, then |g| has a maximum at z0 ∈ D; so g ≡ C for some
constant on D. Hence f(z)/z ≡ C on D∗, or f(z) = cz on D (which is trivially true at
z = 0). But then 1 = |g(z0)| = |c|, so |c| = eiθ for some θ. In conclusion, f(z) = eiθz. In
other words, f(z) must be a rotation Rθ by θ. This proves the Schwarz lemma, which is
formally stated below.

Theorem 27.2 (Schwarz lemma). Suppose that f : D(0, 1) → D(0, 1) is holomorphic, and
f(0) = 0. Then |f(z)| ≤ |z| for all z ∈ D(0, 1). If the equality holds at some z0 6= 0, then f
is a rotation. In particular, |f ′(0)| ≤ 1; if the equality holds, then f is a rotation.

Proposition 27.1. If f : D(0, 1)→ D(0, 1) is holomorphic, bijective, and f(0) = 0, then f
is a rotation.

Proof. Exercise. (Hint: You can apply the Schwarz lemma to both f and f−1. Think about
why this is the case.) �

Remark. Conversely, every rotation Rθ(z) = eiθz is a biholomorphic map from D(0, 1) to
itself that fixes 0.

Thus this gives rise to the following definition.
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Definition 27.1. A biholomorphic map f : U → U is called an analytic automorphism of
U , and we write Aut(U) to represent the set of all analytic automorphisms of U .

So by the proposition above, f is an analytic automorphism with f(0) = 0 if and only if
f is a rotation Rθ.

Example. For any α ∈ D(0, 1),

ψα(z) =
α− z
1− αz

.

Note ψα is holomorphic on C \ {α−1}, and ψα never takes the value α−1 (left as an exercise).
Also, ψα(ψα(z)) = z, so ψα is invertible with ψ−1α = ψα, which implies

ψα ∈ Aut

(
C \

{
1

α

})
Also ψα sends 0 to α and α to 0, and |ψα(z)| = 1 for all |z| = 1.

27.3. Automorphisms of the unit disc

Let D = D(0, 1). We now that {f ∈ Aut(D) : f(0) = 0} = {Rθ : θ ∈ R}. Also, for each
α ∈ D,

ψα : C \
{

1

α

}
→ C \

{
1

α

}
is biholomorphic, and in particular the domain containsD with |ψα| ≡ 1 for all ∂D. Therefore
|ψα(z)| < 1 for all z ∈ D by the maximum modulus principle because ψα is invertible and
hence cannot be constant. So ψα(D) ⊂ D, and this implies ψα ∈ Aut(D).

28. April 3

Recall that AutU for an open set U denotes the set of all analytic automorphisms of U .
Note that if f : U → V and g : V → W are both biholomorphic, then so is g ◦ f : U → W .

Proposition 28.1. AutU is a group under composition. Furthermore, if g : U → V is
biholomorphic then AutU ∼= AutV. Specifically, the map η : AutU → AutV defined by
ϕ 7→ g ◦ ϕ ◦ g−1 is a group isomorphism.

U U

V V

ϕ

g−1g

g◦ϕ◦g−1

Therefore, if we know AutU , then we k now AutV for any conformally equivalent open set
V.

28.1. On AutD

Particularly, if D = D(0, 1) is a unit disc, we saw that {ϕ ∈ AutD : ϕ(0) = 0} = {Rθ :
θ ∈ R}, and furthermore for any α ∈ D, if

ψa(z) =
α− z
1− αz

∈ AutD

such that ψ−1α = ψα. Also ψα switches 0 and α. Let’s see if there are other analytic
automorphisms of D. Let f ∈ AutD, and suppose that α = f−1(0). So f ◦ ψα ∈ AutD
fixes 0, so f ◦ ψα = Rθ for some θ, so hence f = Rθ ◦ ψα. Also, for all α and θ, we have
Rθ ∈ ψα ∈ AutD. Thus putting all these observation together gives the following result.
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Proposition 28.2. f ∈ AutD if and only if

f(z) = eiθ
α− z
1− αz

for some θ ∈ R and α := f−1(0) ∈ D.

28.2. Conformal equivalence to the unit disc

If U and V are conformally equivalent (i.e., there exists a biholomorphic map f : U → V),
then the continuity of f implies that f(U) = V must be connected provided U is connected
also. Similarly, since f is a homeomorphism, one can argue that if U is simply connected,
then f(U) = V is simply connected as well. Finally, if U is bounded, then V 6= C thanks to
Liouville’s theorem. We thus can conclude that if U is conformally equivalent to a unit disc,
then U must be proper (i.e., U 6= C), non-empty, simply connected domain. While we do
not have enough time to fully prove the following theorem, we nonetheless state the theorem
below.

Theorem 28.1 (Riemann mapping theorem). If U is a proper, non-empty, simply connected
domain, then U is conformally equivalent to the unit disc.

Note that each f ∈ AutD is of the form

f(z) = eiθ
α− z
1− αz

,

and that f(z) is in fact a map of the form (az + b)/(cz + d).

Definition 28.1. A fractional linear transformation (or Möbius transformation) is a non-
constant map of the form

f(z) =
az + b

cz + d
for a, b, c, d ∈ C such that ad− bc 6= 0.

If c = 0, then f(z) = (a/d)z + (b/d) : C→ C is entire and invertible by inverse

f−1(z) =
d

a
z − b

a
.

If c 6= 0, then f is holomorphic on C \ {−d/c} and never takes the value a/c. In fact,

az + b

cz + d
= w ⇔ z =

dw − b
−cw + a

.

Therefore, f : C \ {−d/c} → C \ {a/c} is biholomorphic with a fractional linear inverse.

Remark. We can extend the definition of f(z) = (az+ b)/(cz+d) to f : C\{∞} → C\{∞}
by letting f(∞) = ∞ if c = 0; let f(−d/c) = ∞ and f(∞) = a/c if c 6= 0. Then
f : C ∪ {∞} → C ∪ {∞} is bijective.

Proposition 28.3. The set of fractional linear transformations forms a group.

Proposition 28.4. Given distinct points p1, p2, p3 ∈ C∪{∞} and q1, q2, q3 ∈ C∪{∞}, there
exists a unique fractional linear transformation f such that f(pj) = qj for j = 1, 2, 3.

Note that there exists a unique circle or a unique line through any three distinct points.
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28.3. Matrices and fractional linear transformations

Notice that each matrix

A =

(
a b
c d

)
∈ GL(2,C)

defines a fractional linear transformation

fA(z) =
az + b

cz + d
.

Note that this correspondence is not one-to-one, since

az + b

cz + d
=
λaz + λb

λcz + λd

for any λ 6= 0.

Proposition 28.5. The above correspondence defines a group homomorphism. In other
words, we have

fAB = fA ◦ fB; fA−1 = f−1A ; and fA = id⇔ A = λI, λ 6= 0.

Now let’s look at some special cases.

Example. The Möbius transformation corresponding to(
1 b
0 1

)
is the translation map, namely z + b. The scaled rotation az corresponds to a matrix(

a 0
0 1

)
.

Note also that (
0 1
1 0

)
corresponds to the inversion map 1/z.

In fact, every fractional linear transformation f(z) = (az + b)/(cz + d) is a composition
of the maps of the above types. Therefore a fractional linear transformation sends lines or
circles into lines or circles.

What if a, b, c, d ∈ R rather than in C? In this case, both −d/c and a/c are real numbers,
so

Im(f(z)) = Im

(
az + b

cz + d

)
=

ad− bc
|cz + d|2

Im(z).

Thus if ad− bc > 0 then Im(f(z)) > 0 if and only if Im(z) > 0. But then any(
a′ b′

c′ d′

)
with a positive determinant is

λ

(
a b
c d

)
where

(
a b
c d

)
has determinant 1 for some λ ∈ R. Hence, for each A ∈ SL(2,R), we have

fA ∈ AutH where H is the upper half plane.
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28.4. Cayley transform

Definition 28.2. The Cayley transform is the fractional linear transformation

C(z) =
i− z
i+ z

=
−z + i

z + i

with

C−1(z) =
iz − i
−z − 1

= i
1− z
1 + z

.

Notice that C : C \ {−i} → C \ {−1} satisfies |C(z)| = 1 if and only if |i − z| = |i + z|,
which is equivalent to saying that z is equidistant form both i and −i. Therefore, z must be
real. Also, z ∈ H ⇔ |i − z| < |i + z| which is true if and only if z is close to i than to −i,
and this happens if and only if |C(z)| < 1.

Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Rd, Hal-
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