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HEESUNG YANG

1. September 6: Field Extensions (Section 5.1)

Definition 1.1. A field F is an extension field of a field K (or simply an extension) if
K ⊆ F . We will often say that F/K is an extension of fields. Then F is a K-vector space.
The dimension dimK F will be denoted by [F : K], which is also known as the degree of an
extension. If F/E and E/K are both field extensions, we call E an intermediate field of
F/K. Visually, the following diagram represents this tower of fields.

F

E

K

Theorem 1.1 (Multiplicativity of degrees in towers). Let F/E and E/K be field extensions.
Then

[F : K] = [F : E][E : K]

Proof (sketch). Let {u1, . . . , um} ⊂ E be a basis for E/K and {v1, v2, . . . vn} be a basis for
F/E. All we need is to display a basis for F/K, and that there are mn elements. Namely,
we claim that {uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for F/K. Proof of this claim will be
left to the reader as an exercise. Finally, from the claim, we have [F : K] = #{uivj |1 ≤ i ≤
m, 1 ≤ j ≤ n} = mn = [F : E][E : K], as required. �

Definition 1.2. The subfield (resp. subring) of F generated by X is the intersection of all
subfields (resp. subrings) of F that contain R, i.e., the smallest subfield (resp. subring) of
F containing X. If F/K is an extension of fields, the subfield generated by X ⊆ F over K
(resp. subring) is the subfield (resp. subring) generated by X ∪K. This will be denoted by
K(X) (resp. K[X]).

Definition 1.3. For ease of notation, if X = {u1, . . . , un} is finite, we write K(X) =
K(u1, . . . , un) and K[X] = K[u1, . . . , un]. Then K(X) and K[X] are finitely generated.
They are called simple if n = 1.

Lemma 1.1. K(u1, . . . , un) and K[u1, . . . , un] do not depend on the order of the uj. Fur-
thermore, we have

K[u1, . . . , un] = (K[u1, . . . , un−1])[un]

K(u1, . . . , un) = (K(u1, . . . , un−1))(un).
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Theorem 1.2. Let F/K be an extension of fields. Then we have:

(a) K[X] = {f(u1, . . . , un) |n ∈ N, u1, . . . , un ∈ X, f ∈ K[x1, . . . , xn]}
(b) K(X) = {f(u1, . . . , un) |n ∈ N, u1, . . . , un ∈ X, f ∈ K(x1, . . . , xn)}
(c) For each v ∈ K(X) there is a finite subset X ′ of X such that v ∈ K(X). Similar

claims hold for K[X] and K[X ′].

Proof (sketch). As for (a) and (b), we note that it is readily verified that our candidate sets
have the required algebraic structure and sit inside F (hence, left as an exercise). Thus K[X]
is a subring of F containing K, and K(X) is a subfield of F containing K. Finally, if R is
any subring of F containing both X and K, then R would have to contain all polynomial
expression in elements of X having coefficients in K. Similarly, if L is any subfield of F
containing both X and K, then L must contain all rational function expressions in elements
of X with coefficients in K.

As for part (c), if v ∈ K[X] then v can be written in the form f(u1, . . . , un) for some
u1, . . . , un ∈ X and f ∈ K[x1, . . . , xn]. But then v ∈ K[u1, . . . , un], so v ∈ K[X ′] for
the finite subset X ′ = {u1, . . . , un} ⊆ X. Similarly, if v ∈ K(X), then v = f(u1, . . . , un)
for some u1, . . . , un ∈ X, except that f this time is a rational function. Hence we obtain
v ∈ K(u1, . . . , un) by employing the similar type of argument. �

2. September 7: Composite fields, algebraic, and transcendental extension

Definition 2.1. Let L and M be subfields of F . Then the composite field of L and M in F
is the field generated by L ∪M . It is denoted by LM . The tower of the fields will look like
the below:

F

LM

L M

K

Definition 2.2. Let F/K be a field extension.

(a) u ∈ F is algebraic over K if it satisfies a non-zero polynomial in K[x]. Otherwise u
is transcendental over K.

(b) F/K is an algebraic extension if every element of F is algebraic over K. Otherwise
it is a transcendental extension.

Remark. • Every u ∈ K is algebraic over K (because x− u ∈ K[x]).
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• If u ∈ F is algebraic over K, then u is automatically algebraic over intermediate
fields of F/K. This is simply because K[x] ⊆ E[x] for any intermediate fields E.

F 3 u

E

K

• u ∈ F is algebraic over K if and only if it satisfies a monic polynomial (a poly-
nomial with leading coefficient 1) in K[x]. In fact, the only algebraic elements in
K(x1, . . . , xn) over K are those in K itself.

Example. • i ∈ C is algebraic over Q (satisfies x2 + 1 ∈ Q[x]). Thus i ∈ C is algebraic
over R also. In faxt, R(i) = C.
• π, e ∈ R are transcendental over Q.
• Each of the variables xj in the rational functions field K(x1, . . . , xn) is transcendental

over K.

3. September 7: Simple extensions

Let F/K be a field extension where F = K(u) for some u ∈ F , ie, F/K is a simple
extension. Let ϕ : K[x] → K[u] be a homomorphism defined by a0 + a1x + · · · + anx

n 7→
a0 + a1u+ · · ·+ anu

n. Then by the first isomorphism theorem, we have K[x]/ kerϕ ∼= K[u].
If the kernel is trivial, then we have K[x] ∼= K[u]. In this case, u is transcendental (in
fact, K[x] ∼= K[u] iff u is transcendental). It thus follows that u is algebraic if and only if
kerϕ 6= (0). In particular, we have the following:

Theorem 3.1. With the above notation, let u ∈ F be transcendental over K. Then there is
an isomorphism K(u) ∼= K(x) that is the identity on K.

So, nothing much can be said about the transcendental case, as K(u) is just isomorphic
to the “boring“ field of rational functions. But the algebraic cases are more interesting.

Recall that kerϕ 6= (0) if u is algebraic. K is a field, so K[x] is a principal ideal domain
(PID). Thus kerϕ = (f) for some f ∈ K[x]. There is a unique monic generator fu(x) for
this ideal.

Definition 3.1. The polynomial fu(x) above is said to be the minimal polynomial of u over
K.

The definition makes it clear that fu is minimal with respect to divisibility amongst all
the polynomials satisfied by u. That is, fu divides every polynomial satisfied by u. Also, fu
is the polynomial of least degree satisfied by u.

Theorem 3.2. fu is the unique monic polynomial of least degree in K[x] satisfied by u.

Definition 3.2. Let D be an integral domain.

(a) u ∈ D is a prime ⇔ if u |vw then u |v or u |w for all v, w ∈ D.
(b) u ∈ D is irreducible⇔ if u = vw then one of v, w is a unit (and the other is associate

to u)t.
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In any integral domain, primes are irreducible.

Remark. Every irreducible is a prime only when D is a unique factorization domain (UFD).
Thus the same claim holds for PIDs, as every PID is a UFD. Thus any irreducible in K[x]
is also a prime.

Proposition 3.1. Let D be an integral domain.

(a) An element u ∈ D is a prime if and only if (u) is a prime ideal of D.
(b) An element u ∈ D is an irreducible if and only if (u) is maximal amongst principal

ideals of D.
(c) In particular, if D is a PID, then u ∈ D is irreducible if and only if (u) is maximal.

Proposition 3.2. Let R be a commutative ring.

(a) Let P be a prime ideal. Then R/P is an integral domain.
(b) Let M be a maximal ideal. Then R/M is a field.

Theorem 3.3. Let F/K be a field extension, and let u be algebraic over K. Suppose that
fu(x) ∈ K[x] is the minimal polynomial of u over K.

(a) K(u) = K[u]
(b) K(u) ∼= K[x]/(fu(x))
(c) [K(u) : K] = n where n := deg fu.
(d) {1, u, u2, . . . , un−1} is a K-basis for K(u).
(e) Every element in v ∈ K(u) can be written uniquely in the form of v = a0 + a1u +
· · ·+ an−1u

n−1 for a0, . . . , an−1 ∈ K.

Proof. It follows from the first isomorphism theorem that K[u] ∼= K[x]/(fu(x)), which is
an integral domain. Thus, fu(x) is a prime ideal of K[x]. This means that fu(x) is prime
hence irreducible also. Therefore (fu(x)) is maximal, so K[x]/(fu(x)) ∼= K[u] is a field. But
note that K[u] ⊆ K(u). But K(u) is the smallest subfield of F containing K and u and
K[u] ⊆ K(u). This completes parts (a) and (b). �

4. September 11

Proposition 4.1. Let F/K be a field extension, and u ∈ F algebraic over K. Let f(x) ∈
K[x] be the monic polynomial satisfied by f . Then the following are equivalent:

(a) f is the minimal polynomial of u over K.
(b) f is of least degree amongst monic polynomials in K[x] satisfied by u
(c) f divides all such polynomials.
(d) f is irreducible over K.

Definition 4.1. The degree of u ∈ F over K is the degree of fu. It equals the dimension
[K(u) : K] of K(u) over K.

Example. Let u be a real root of f(x) = x3 − 3x− 1 ∈ Q[x].

(a) Show that [Q(u) : Q] = 3 and {1, u, u2} is a Q-basis for Q(u).
Solution: We show that f is irreducible over Q. Suppose not. Then f would have
a rational root, say a ∈ Q. The rational root theorem limits us to two possibilities:
±1. But then we see that 13 − 3 − 1 6= 0 and (−1)3 − 3(−1) − 1 6= 0. Thus
x3 − 3x − 1 is irreducible over Q. f is thus fu, the minimal polynomial of u, hence
[Q(u) : Q] = 3 = deg fu. It is a standard exercise to check that {1, u, u2} is a basis.
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(b) Express v = u4 + 2u3 + 3 ∈ Q[(u) as a Q-linear combination of 1, u, u2.
Solution: f(u) = 0, so u3 = 3u+ 1. Thus

v = u · u3 + 2u3 + 3

= u(3u+ 1) + 2(3u+ 1) + 3

= 5 + 7u+ 3u2.

(c) Do the same for v−1.
Solution: Let v−1 = a+ bu+ cu2 where a, b, c ∈ Q. Thus we have (5 + 7u+ 3u2)(a+
bu+ cu2) = 1 = vv−1.

(5 + 7u+ 3u2)(a+ bu+ cu2) = 1

5a+ (5b+ 7a)u+ (5c+ 3a+ 7b)u2 + (7c+ 3b)u3 + 3cu4 = 1

5a+ (5b+ 7a)u+ (5c+ 3a+ 7b)u2 + (7c+ 3b)(3u+ 1) + 3cu(3u+ 1) = 1

(5a+ 3b+ 7c) + (7a+ 14b+ 24c)u+ (3a+ 7b+ 14c)u2 = 1.

Equate coefficients, and make the computer solve the system for you. Then you get
a = 28

111
, b = − 26

111
, c = 7

111
. Therefore v−1 = 28

111
− 26

111
+ 7

111
u2.

Let σ : R → S be a ring isomorphism. Then σ naturally extends to a ring isomorphism
between R[x] and S[x], by applying σ to the coefficients of polynomials in R[x], i.e.,

σ :
∑
j

ujx
j 7→

∑
j

σ(uj)x
j.

Theorem 4.1. Let σ : K → L be a field isomorphism, u an element in some extension of
K and v an element in some extension of L. If either:

(i) u is transcendental over K, and v is transcendental over L; or
(ii) u is algebraic over K (with the minimal polynomial fu, and v is algebraic over L

(with the minimal polynomial fv), and σfu = fv holds,

then σ extends to an isomorphism K(u)→ K(v) that maps u onto v.

K(u) σ
// K(v)

K σ
// L

Proof. Suppose that (i) holds. Then σ extends further to a field isomorphism K(x)→ L(x)
(just apply σ to the numerators and denominators). If u is transcendental over K and v
transcendental over L, then we have isomorphisms between

K(u)→ K(x)→ L(x)→ L(v)

f(u) 7→ f(x) 7→ (σf)(x) 7→ (σf)(v),

the composite of which is an isomorphism from K(u) to L(v), extending σ and mapping u
onto v.
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Now suppose that (ii) holds. Then we have the field isomorphism σ : K[x]→ L[x]. Under
this map, we have σ((fu)) = (σfu) = (fv). We therefore obtain an induced isomorphism

K[x]/(fu)→ L[x]/(fv)

x+ (fu) 7→ x+ (fv).

All in all, we get isomorphisms K(u) = K[u] → K[x]/(fu) → L[x]/(fv) → L[u] = L(v),
the composite of which is an isomorphism. Now take K = L and σ = idK , then the result
follows. �

Corollary 4.1. Let u and v be elements in some extension of K. Suppose also that u and
v are algebraic over K. Then the following are equivalent:

(i) fu = fv (i.e, u and v have the same minimal polynomial over K)
(ii) There exists an isomorphism from K(u) to K(v) that maps u onto v and is the

identity on K.

Proof. ((ii) ⇒ (i)) Let fu(x) =
∑
j

ajx
j. Then clearly we have 0 = fu(u) =

∑
j

aju
j.

Applying σ : K(u)→ K(v) gives

0 = σ(0) = σ

(∑
j

aju
j

)
=
∑
j

σ(aj)σ(u)j

= σjajv
j,

since σ fixes aj ∈ K and σ : u 7→ v. Thus v is a root of fu. The result follows upon observing
that fu is irreducible over K.

((i) ⇒ (ii)) This is a direct consequence of Theorem 4.1. �

5. September 13

Theorem 5.1. Let f ∈ K[x] be a degree n polynomial. Then there exists a simple extension
K(u) over K such that:

(i) u is a root of f
(ii) [K(u) : K] ≤ n with equality holding if and only if f is irreducible over K

(iii) whenever f is irreducible, K(u) is unique up to an isomorphism fixing K.

Proof (sketch). Let g be an irreducible factor of f . Then (g) is maximal in K[x]. Therefore
K[x]/(g) is a field. Then the inclusion map K ↪→ K[x]/(g) defined by a 7→ a + (g) is a
monomorphism, so we can view K as a subfield of K[x]/(g). For u := x + (g) is a root of
g (and therefore of f), it follows K[x]/(g) = K(u). So it follows that [K(u) : K] = deg g ≤
deg f = n. If f is irreducible, then g = f , so equality holds in this case. �

Theorem 5.2. Every finite extension is algebraic and is finitely generated.

Proof. Let F/K be a finite extension, say of degree n. Let u ∈ F . The elements 1, u, u2, . . . , un ∈
F must be K-linearly dependent. Thus there are constants a0, a1, . . . , an ∈ K not all zero
such that a0 + a1u+ a2u

2 + · · ·+ anu
n = 0. Therefore u is algebraic as desired. F/K is thus
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algebraic as u was arbitrary. Finally, observe that any chosen K-basis for F generates F as
a field, so F is indeed finitely generated. �

Theorem 5.3. If F = K(X) for some subset X of F consisting entirely of elements that
are algebraic over K then F/K is algebraic.

Proof. Let u ∈ F . Then u ∈ K(u1. . . . , un) for finitely many uj ∈ X. Consider the following
tower of fields:

K(u1, . . . , un)

K(u1, . . . , un−1)

...

K(u1, u2)

K(u1)

K

Each uj is algebraic over K (because uj ∈ X), so each uj is algebraic over K(u1, . . . , uj−1).
For all j, we see that [K(u1, . . . , uj) : K(u1, . . . , uj−1)] <∞. So we have that

[K(u1, . . . , un) : K] =
∏
j

[K(u1, . . . , uj) : K(u1, . . . , uj−1)]

is finite. Hence K(u1, . . . , un)/K is algebraic, so u is algebraic over K. Hence F/K is
algebraic. �

Remark. If X happened to be finite, then K(X)/K is not just algebraic, but finite as well.

Theorem 5.4. If F/E and E/K are algebraic extensions, then F/K is an algebraic exten-
sion.

Proof. Let u ∈ F . Then u is algebraic over E.Therefore there exist b0, . . . bj ∈ E and bn 6= 0
such that b0+b1u+ · · ·+bnun = 0. Hence u is algebraic over K(b0, . . . , bn). But K(b0, . . . , bn)
is a finite extension of k. Finally, we see that we have the tower

K(b0, . . . , bn)(u)

K(b0, . . . , bn)

K
7



such that each of the extension is finite. Therefore K(b0, . . . , bn)(u)/K is finite, hence alge-
braic. So u is algebraic over K as required. �

Theorem 5.5. The set E of all elements of F that are algebraic over K is a field. It is the
maximal algebraic subextension of F/K.

Proof. The second statement is immediate from the first statement, so it suffices to prove
the first statement. Let u, v ∈ E with v 6= 0. We need to show that u− v, uv−1 ∈ E in order
to show that E is a field. Consider the tower

E

K(u, v)

K

Clearly K(u, v) is a field, so K(u, v) 3 u− v, uv−1. Therefore u− v, uv−1 ∈ E. Thus E is a
field as required. �

6. September 13 & 14: Fundamental Theorem of Galois Theory

Let E/K and F/K be field extensions, and let σ : E → F a non-zero field homomorphism.
We are mostly interested in σ that also preserves the linear structure of E/K and F/K. The
following result shows that the maps of interest are those that fix K element-wise.

Lemma 6.1. Let E/K and F/K be fields extensions, and σ : E → F a non-zero field
homomorphism. Then σ is a K-linear transformation (or a K-module homomorphism) if
and only if σ|K = idK (i.e., σ fixes K element-wise).

Proof. Suppose first that σ is K-linear, and let a ∈ K. Then σ(a) = σ(a · 1) = aσ(1) = a.
Thus σ fixes K element-wise. Conversely, if σ fixes K element-wise, and if u, v inE and
a ∈ K, then we have σ(u+ av) = σ(u) + σ(a)σ(v) = σ(u) + aσ(v). Thus σ is K-linear. �

Definition 6.1. A K-homomorphism a non-zero homomorphism from E to F that fixes K
element-wise. Similarly, we can define aK-monomorphism, K-epimorphism, K-isomorphism,
and K-automorphism.

Definition 6.2. The Galois group of F/K, denoted AutK F is the set of allK-automorphisms
of F .

Example. Let F := K(x) be the rational function field over the infinite field K. Show that
the Galois group AutK K(x) is an infinite, non-abelian group.

Proof. For a ∈ K \ {0}, the dilation map defined as

σa

(
f(x)

g(x)

)
=
f(ax)

g(ax)
,

for f, g ∈ K[x], is a K-automorphism of K(x). Further, for b ∈ K we have the K-
automorphism

τb

(
f(x)

g(x)

)
=
f(x+ b)

g(x+ b)
,
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for f, g ∈ K[x], given by translation by b. Therefore AutK K(x) is infinite. Also, AutK K(x)
is indeed not abelian because σa and τb cannot commute as long as a 6= 1, b 6= 0. Note that
σaτb(x) = a(x+ b) = ax+ ab whereas τbσa(x) = τb(ax) = ax+ b. �

Theorem 6.1. Let σ ∈ AutK F and f ∈ K[x]. If u is a root of f , then so is σ(u).

Proof. Let f(x) :=
∑
j

ajx
j with aj ∈ K. Then it follows that

0 = σ(0) = σ

(∑
j

aju
j

)
=
∑
j

σ(aj)σ(u)j

=
∑
j

ajσ(u)j = f(σ(u)),

as desired. �

Our primary focus will be extensions of the form F = K(u) where u is algebraic over K.

• Each element in AutK K(u) is uniquely determined by its value at u.
• Each element of AutK F must send u to a root of the minimal polynomial of u over
K.

From these facts, we see that # AutK K(u) does not exceed the number of distinct roots of
the minimal polynomial of u over K, so cannot exceed the degree of the minimal polynomial
of u over K either. Therefore, we have # AutK K(u) ≤ [K(u) : K].

Proposition 6.1. # AutK K(u) ≤ [K(u) : K].

Recall that if σ : K → L is a field isomorphism, u is algebraic over K, and v algebraic over
L, then σ extends to an isomorphism from K(u) to L(v) if and only if σ maps the minimal
polynomial of u over K onto that of v over L.

Example. Find the Galois group of the given extension:

(a) K/K
Solution: AutK K = {id}, since [K : K] = 1. If K/K, then indeed the Galois group
is trivial. However, the converse is false, as we will see in part (b).

(b) Q( 3
√

2)/Q
Solution: We note that f(x) = x3 − 2 is irreducible over Q (by the rational root
theorem), so f is the minimal polynomial of 3

√
2 over Q. There are three roots of f :

3
√

2, 3
√

2ω, 3
√

2ω2, with ω being the primitive cube root of unity. Thus we get three
isomorphisms:

σ1 = id :
3
√

2 7→ 3
√

2

σ2 :
3
√

2 7→ 3
√

2ω

σ3 :
3
√

2 7→ 3
√

2ω2.
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But note that 3
√

2ω ∈ Q( 3
√

2ω), and Q( 3
√

2) contains the real numbers only. Therefore
σ2 /∈ AutQ Q( 3

√
2). Similarly, σ3 /∈ AutQ Q( 3

√
2), since 3

√
2ω2 ∈ Q( 3

√
2ω2). Thus σ1 is

the only automorphism of Q( 3
√

2). Thus AutQ Q( 3
√

2) = {id}.
(c) C/R

Solution: Note that C = R(i), and that f(x) = x2 + 1 is the minimal polynomial
of i over R. So we get two isomorphisms: σ1 which sends i to i (i.e., the identity),
and σ2 which sends i to −i. It’s clear that R(i) = R(−i), so both σ1 and σ2 are
R-automorphisms of C. In conclusion, AutRC ∼= Z/2Z.

(d) Q(
√

2)/Q
Solution: Clearly f(x) = x2 − 2 is the minimal polynomial of

√
2 over Q. So there

are two isomorphisms (namely
√

2 7→ ±
√

2). Thus AutQ Q(
√

2) ∼= Z/2Z.

(e) Q(
√

2,
√

3)/Q
Solution: We need to split up the extension into two pieces, specifically:

Q(
√

2,
√

3)

Q(
√

2)

Q

We claim that the minimal polynomial of
√

3 over Q(
√

2) is indeed f√3(x) := x2 − 3

since
√

3 /∈ Q(
√

2) (not that hard to see – just prove this by contradiction).
We have isomorphisms

σ1 : Q(
√

2)→ Q(
√

2)
√

2 7→
√

2

σ2 : Q(
√

2)→ Q(−
√

2) = Q(
√

2)
√

2 7→ −
√

2.

Each extends to two maps on Q(
√

2,
√

3), Thus [Q(
√

2,
√

3) : Q] = 2 · 2 = 4. one
sending

√
3 7→

√
3 and the other

√
3 7→ −

√
3. So we end up with the four isomorphism

maps τ1, . . . , τ4 such that

τ1 :
√

2 7→
√

2 τ2 :
√

2 7→
√

2 τ3 :
√

2 7→ −
√

2 τ4 :
√

2 7→ −
√

2
√

3 7→
√

3
√

3 7→ −
√

3
√

3 7→
√

3
√

3 7→ −
√

3.

So {1,
√

2,
√

3,
√

6} is the standard basis for Q(
√

2,
√

3)Q. Note that there are only
two groups of order 4 up to isomorphism: Z/4Z or Z/2Z ⊕ Z/2Z (also known as
the Klein-four group.) In this case, we see that ord (τ1) = 1, and ord (τj) = 2

for j = 2, 3, 4. This means that AutQQ(
√

2.
√

3) is not cyclic, so is isomorphic to
Z/2Z⊕ Z/2Z.
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7. September 18: Galois correspondence

F oo // {id}

E oo // H

K oo // G = AutK F

Theorem 7.1. The following statements hold, regarding the towers of fields and groups
above:

(i) H ′ := {u ∈ F | σ(u) = u for all σ ∈ H} is an intermediate subfield of F/K.
(ii) E ′ := AutE F = {σ ∈ G | σ(u) = u for all u ∈ E} is a subgroup of G.

Proof (sketch). It is clear that H ′ is a subset of F that contains K and E ′ is a subset of G.
Just verify closure under the appropriate operations. �

So we have F ′ = {id} and {id}′ = F . Similarly K ′ = G. However, G′ ⊇ K but could be
strictly larger.

Definition 7.1. F/K is called Galois if G′ = K.

Remark. For any field extension F/K, one can find a subfield K ⊆ K0 ⊆ F such that F/K0

is Galois (i.e., K0 = G′ = AutK F ).

Example. C/R is Galois. Previously, we sound that AutR C = {σ1, σ2} where σ1 is identity
on C and σ2 is the complex conjugation. If u ∈ C\R then σ2(u) 6= u. So no elements outside
of R is fixed by AutRC. Therefore C/R is Galois.

Example. Q(
√

3)/Q is Galois. If u = a+b
√

3 ∈ Q(
√

3)\Q, then u is not fixed by AutQQ(
√

3)

since AutQ Q(
√

3) = {σ1, σ2}, where σ1 is the identity and σ2 sends a+ b
√

3 to its conjugate.

If u /∈ Q then b 6= 0. Therefore σ2(u) 6= u, implying that G′ = Q. So Q(
√

3)/Q is indeed
Galois.

Definition 7.2. The dimension [M : L] in the tower of fields below is called the relative
dimension of L in M (or relative dimension of M over L).

F oo // {id}

M oo // H

L oo // J

K oo // G := AutK F

Then the index [J : H] is said to be the relative index of H in J (or relative index of J over
H).
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Theorem 7.2 (Fundamental theorem of Galois theory). Let F/K be a finite Galois ex-
tension. Then the maps E 7→ E ′ and H 7→ H ′ induce a one-to-one, inclusion-reversing
correspondence between the set of all intermediate fields of F/K and the set of all subgroups
of G = AutK F such that:

(i) The relative dimension of intermediate fields is equal to the corresponding relative
index of subgroups, i.e., [M : L] = [L′ : M ′]. In particular, we have #G = [G :
{id}] = [F : K].

(ii) F is automatically Galois over intermediate fields E.
(iii) However, E/K is Galois if and only if E ′ is a normal subgroup of G; and in this

case, AutK E ∼= G/E ′.

The proof of this theorem will involve a lot of technicalities, so we will go over some
examples first to illustrate this theorem.

Example. We want to show that Q(
√

2,
√

3)/Q is Galois, and want to find the lattices of
intermediate fields and subgroups that illustrate the fundamental theorem.
Solution: We’ve already seen that

G := AutQ Q(
√

2,
√

3) = {id = σ√2,
√
3, σ
√
2,−
√
3, σ−

√
2,
√
3, σ−

√
2,
√
3}.

So there is one subgroup of order 4, namely G itself. There are three subgroups of order 2,
each of which is generated by the remaining three elements of order 2 (besides the identity):
〈σ√2,−√3〉, 〈σ−√2,√3〉, 〈σ−√2,√3〉. And there is the trivial subgroup, {id}. So the lattice of
subgroups look like below.

{id}

〈σ√2,−√3〉 〈σ−√2,√3〉 〈σ−√2,−√3〉

G

To see why Q(
√

2,
√

3)/Q is Galois, we start by picking u = a + b
√

2 + c
√

3 + d
√

6 ∈
Q(
√

2,
√

3) \ Q, where at least one of b, c, d 6= 0. If b 6= 0, then σ−
√
2,±
√
3(u) 6= u; if c 6= 0,

then σ±
√
2,−
√
3(u) 6= u. If d 6= 0, then σ−

√
2,
√
3(u) 6= u and σ√2,−

√
3(u) 6= u. Therefore

(AutQ Q(
√

2,
√

3))′ = Q. Therefore we have a Galois extension.
Now we need to find the corresponding fields for each group. Which subfield does the

automorphisms in 〈σ√2,−√3〉 fix? note that

σ√2,−
√
3(u) = a+ b

√
2− c

√
3− d

√
6,

so −c = c and −d = d, or c = d = 0. Thus u is of the form a+ b
√

2. Therefore 〈σ√2,−√3〉′ =
Q(
√

2). Similarly, we have 〈σ−√2,√3〉′ = Q(
√

3). For the last remaining order-2 subgroup
〈σ−√2,−√3〉, note that

σ−
√
2,−
√
3(u) = a− b

√
2− c

√
3 + d

√
6,

12



so −b = b and −c = c, or b = c = 0. Thus 〈σ−√2,−√3〉′ = Q(
√

6). So the lattice of the
subfields looks as follows.

Q(
√

2,
√

3)

Q(
√

2) Q(
√

3) Q(
√

6)

Q

Lemma 7.1. Let F/K be a field extension (need not be finite; need not be Galois either),
and let L,M be intermediate fields of F/K. Similarly, let H, J be subgroups of AutK F = G.
Then the following are true:

(i) F ′ = {id}, K ′ = G
(i’) {id}′ = F and G′ ⊇ K. The equality holds if and only if F/K is Galois.
(ii) L ⊆M ⇒ L′ ≥M

(ii’) H ≤ J ⇒ H ′ ⊇ J ′

(iii) L ⊆ L′′ and H ≤ H ′′

(iv) L′ = (L′′)′ and H ′ = (H ′′)′

Proof (sketch). We only need to prove (iv). By (iii), we see that L′ ≤ (L′)′′, so L′ ≤ (L′′)′.
But then L′′ ⊇ L by (ii), so (L′′)′ ≤ L′ by (ii) also. Thus we get the first equality L′ = (L′′)′

as required. The other equality can be proven using a similar technique. �

Definition 7.3. Call an object X (either an intermediate field or a subgroup) closed if
X ′′ = X.

Remark. F is Galois over K if and only if K is closed.

8. September 21

Theorem 8.1. Let F be an extension over K. Then there is a one-to-one correspondence
between:

(1) closed intermediate fields of the extension; and
(2) the closed subgroups of the Galois group,

given by E 7→ E ′ = AutE F .

Proof (sketch). Inverse of the correspondences is given by assigning each subgroup H to its
fixed field H ′. �

Remark. All “primed” objects are closed.

Remark. To use this theorem, we need to determine which intermediate fields and which
subgroups are closed.

Lemma 8.1. Let F be a field extension of K, and L ⊂M intermediate fields. If [M : L] is
finite, then [L′ : M ′] ≤ [M : L]. In particular, for F/K finite, we have |AutK F | ≤ [F : K].

13



Proof. Induction on n := [M : L]. The base case [M : L] = 1 is trivial. now suppose that
n > 1, and assume that the theorem is true for all 1 ≤ i < n. Now choose u ∈ M \ L
which we know we can choose as [M : L] > 1. Since [M : L] is finite, u is algebraic over
L, with irreducible polynomial, say, f ∈ L[x] of degree k > 1. Then [L(u) : L] = k, and
[M : L(u)] = n/k. Now consider the following tower:

M oo // M ′

L(u) oo // L(u)′

L oo // L′

Now we have two cases:

(1) k < n. Then 1 < n/k < n, so by the induction hypothesis [L′ : L(u)′] ≤ k and
[L(u)′ : M ′] ≤ n/k. Hence

[L′ : M ′] = [L′ : L(u)′][L(u)′ : M ′] ≤ k · n
k

= n = [M : L].

(2) k = n. Then [M : L(u)] = 1, so M = L(u).

For now, we shall assume that there is an injective map from the set of all left cosets of M ′

in L′ (call this set S) to the set of all distinct roots (in F ) of f ∈ L[x] (call this set T ). We
will prove this claim afterwards, as Lemma 8.2. By Lemma 8.2, we have |S| ≤ |T |. It is also
known that |T | ≤ n and |S| = [L′ : M ′] (by definition). Hence [L′ : M ′] ≤ |T | ≤ n = [M : L].
This implies that the final statement of Theorem 8.1 (with L = K and M = F , since
|AutK F | = [AutK F : 1] = [K ′ : F ′] ≤ [F : K]. �

Lemma 8.2. Let M,L,M ′, L′ be the same as in Lemma 8.1. Then there is an injective map
from the set

S := {all left cosets of M ′ in L′}
to the set

T := {all distinct roots (in F ) of f ∈ L[x]}.

Proof. Let τM ′ be a left coset of M ′ in L′. If σ ∈M ′ = AutM F , then since u ∈M we have
τ(σ(u)) = τ(u). Hence every element of the coset τM ′ has the same effect on u (namely,
u 7→ τ(u)).

Since τ ∈ L′ = AutL F ., and u is a root of f ∈ L[x], it follows that τ(u) is a root of f also
(Theorem 2.2 in Hungerford). Hence, the map S → T given by τM ′ 7→ τ(u) is well-defined.

It still remains to show that it is injective. Suppose that τ(u) = τ0(u) where τ, τ0 ∈ L′.
Then τ−10 τ(u) = u, so τ−10 τ fixes u. Hence τ−10 τ fixes L(u) = M element-wise (Theorem
1.6(iv) in Hungerford), and so τ−10 τ ∈M ′. So τ0M

′ = τM ′, as required. �

9. September 25

Lemma 9.1 (The subgroup counterpart for Lemma 8.1). Let F be a field extension of K,
and let H ≤ J be subgroups of AutK F . If [J : H] is finite, then [H ′ : J ′] ≤ [J : H].
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Proof. We will prove this by contradiction. So suppose that [J : H] = n is finite but that
[H ′ : J ′] > n. Then we can find a J ′-independent subset, say {u1, . . . , un+1} of H ′. Now let

{τ1, . . . , τn} be a complete set of representatives for the cosets of H in J (i.e., J =
n⊔
i=1

τiH).

Now consider the linear system

[τi(uj)] 1≤i≤n
1≤j≤n+1

x̃ = 0̃.

This system has a nontrivial system, as there are more columns than rows. So let a nontrivial
solution be x1 = a1, . . . , xr = ar, and xr+1 = · · · = xn+1 = 0 having the least number of
non-zero components. We will now show that, under the given circumstances, it is possible
to come up with another nontrivial solution that has fewer than r non-zero components.
Then Exactly one of the τiH is H; say τ1H = H, without loss of generality. Then τ1 ∈ H,
so τ1 fixes all elements of H ′. Hence τ1(uj) = uj for all j. So the first equation is reduced
into u1a1 + · · · + urar = 0. Since {u1, . . . , un+1} is linearly independent over J ′, it follows
that aj /∈ J ′ for some j. Let a2 be such element. Since we can scale solutions, we can
assume that a1 = 1. Since a2 /∈ J ′, for some σ ∈ J we have σ(a2) 6= a2. Note also
that {στ1, . . . , στn} is also a complete set of representatives for H in J , and the system
[στi(uj)]x̃ = 0̃ is just the original system (with equations put in a different order, possibly).
But then x1 = σ(a1), . . . , xr = σ(ar), and xr+1 = · · · = xn+1 = σ(0) = 0 is a solution
to this system. But then the difference of our two solutions is also a solution. Therefore,
(1−1, a2−σ(a2), . . . , ar−σ(ar), 0, . . . , 0) = (0, a2−σ(a2), a3−σ(a3), . . . , ar−σ(ar), 0, . . . , 0)
is another solution. But note that a2 − σ(a2) 6= 0. Thus, this is a nontrivial solution that
has more zero components than our initial solution, thereby contradicting the minimality
assumption. �

Lemma 9.2. Let F/K be an extension, L ≤ M intermediate fields, and H ≤ J subgroups
of AutK F .

(i) If L is closed and [M : L] finite, then M is closed and [L′ : M ′] = [M : L].
(ii) If H is closed and [J : H] finite, then J is closed and [H ′ : J ′] = [J : H].

(iii) Let F/K be finite and Galois. Then all intermediate fields E and all subgroups H
are closed. Also, we have # AutK F = [F : K].

Proof. (i) Let L be closed and [M : L] <∞. Recall that [L′ : M ′] ≤ [M : L] and [M ′′ : L′′] ≤
[L′ : M ′]. But since M ⊆M ′′, it follows [M : L] ≤ [M ′′ : L]. But then L is closed, so L′′ = L.
Hence [M : L] ≤ [M ′′ : L] = [M ′′ : L′′] ≤ [L′ : M ′] ≤ [M : L], so this string of inequality
actually has equality throughout. But since L ⊆M ⊆M ′′ and [M : L] = [M ′′ : L], it follows
M = M ′′. Thus M is closed. (ii) can be proven as similarly (or, refer to the textbook).

(iii) Let F/K be Galois and finite, and E an intermediate field. Since K is closed (as
F/K Galois) and [E : K] is finite (as F/K is finite), from part (i) it follows that E is closed.
Also, by (i) we have # AutK F = [F : K] is finite. Similarly, each subgroup H is finite. So
[H : {id}] is finite; hence by part (ii), H is closed (since {id} is evidently closed). �

Remark. At this point, we finished proving the first half of Theorem 7.2.
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10. September 27

Today, we want to prove that whenever F/K is Galois (let K ⊆ E ⊆ F be a tower of
extensions), so is F/E. However, the same cannot be said about E/K. In fact, E/K is
Galois if and only if E ′ E G. Particularly, in this case, AutK E ∼= G/E ′.

Definition 10.1. E is stable if every σ ∈ AutK F maps E to itself.

Remark. If E is stable, then σ|E ∈ AutK E for all σ ∈ AutK F ; furthermore, both σ and σ−1

map E onto itself.

Lemma 10.1. Let F/K be any field extension. Then the following are true.

(i) If E is stable, then E ′ E G.
(ii) if H E G, then H ′ is stable.

Proof. (i) Suppose τ ∈ E ′. Then τ(u) = u for all u ∈ E. Since E is stable, so if u ∈ E then
σ(u) ∈ E. Hence τσ(u) = σ(u), or equivalently σ−1τσ(u) = u. Therefore σ−1τσ ∈ E ′, so
indeed E ′ E G, as required.

(ii) let H E G = AutK F . We need to show that H ′ is stable, i.e., for any σ ∈ G and
u ∈ H ′, we need to show σ(u) ∈ H ′. In other words, we need to show that τσ(u) = σ(u) for
all τ ∈ H. But this holds – since H E G, we see that σ−1τσ ∈ H. So σ−1τσ(u) = u for all
u ∈ H ′. This completes the proof. �

Lemma 10.2. Let F/K be Galois, and E be stable, where K ⊆ E ⊆ F is a tower of field
extensions. Then E/K is Galois.

Proof. Let u ∈ E \ K. We need to show that τ(u) 6= u for some τ ∈ AutK E. Since F/K
is Galois, indeed σ(u) 6= u for some σ ∈ AutK F . Since E is stable, we have σ|E ∈ AutK E.
From this σ|E(u) 6= u. Thus E/K is Galois. �

Lemma 10.3. Let F/K be any field extension. E be a subextension that is both algebraic
and Galois over K. Then E is stable.

Proof. Let u ∈ E, and let f(x) ∈ K[x] be a minimal polynomial of u over K. Let u =
u1, u2, . . . , ur be the distinct roots of f that lie in E. If τ ∈ AutK E, then τ permutes the
roots of f . So let g(x) = (x−u1)(x−u2) · · · (x−ur). The coefficients on g are the elementary
symmetric functions in u1, . . . , ur. So the coefficients are fixed by AutK E. But then since
E/K is Galois, it follows that the coefficients all lie in K.

But then deg g ≤ deg f , so g = f – since f is the minimal polynomial over u over K.
Finally, for σ ∈ AutK F , we see that σ(u) ∈ E since σ(u) is a root of g and all roots of G lie
in E. Therefore E is stable, as required. �

Definition 10.2. Let K ⊆ E ⊆ F be a tower of field extensions. Then τ ∈ AutK E is
extendible to F if τ = σ|E for some σ ∈ AutK F .

Proposition 10.1. The set of extendible automorphisms in AutK E is a subgroup of AutK E.
Furthermore, if E is stable, then E ′ = AutE F E G. Therefore G/E ′ is defined.

Lemma 10.4. Let F/K be any extension, and K ⊆ E ⊆ F a tower of extensions, where E
is stable. Also, let Z be the set of extendible automorphisms in AutK E. Then G/E ′ ∼= Z.
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Proof. Consider the map ϕ : G→ AutK E where σ 7→ σ|E. Since E is stable, the map ϕ is a
well-defined homomorphism with image Z and kernel E ′. The claim now easily follows from
the first isomorphism theorem. �

Now we are ready to prove the remaining parts of the fundamental theorem (Theorem
7.2):

Theorem 7.2 (Fundamental theorem of Galois theory). Let F/K be a finite Galois ex-
tension. Then the maps E 7→ E ′ and H 7→ H ′ induce a one-to-one, inclusion-reversing
correspondence between the set of all intermediate fields of F/K and the set of all subgroups
of G = AutK F such that:

(i) The relative dimension of intermediate fields is equal to the corresponding relative
index of subgroups, i.e., [M : L] = [L′ : M ′]. In particular, we have #G = [G :
{id}] = [F : K].

(ii) F is automatically Galois over intermediate fields E.
(iii) However, E/K is Galois if and only if E ′ is a normal subgroup of G; and in this

case, AutK E ∼= G/E ′.

Proof of Theorem 7.2. First we will prove that F/E is Galois. First, let u ∈ F that is fixed
by e′. Then u ∈ E ′ = E since all intermediate fields are closed. Therefore F/E is Galois.
Second, we will prove the property regarding E/K being Galois. If E/K is Galois, then E/K
is finite, so E/K is algebraic over K. Now recall that then E is stable, so E ′ E AutK F
as required. Conversely, assume E ′ E G. Then E ′′ is stable. But since E is closed, we see
E ′′ = E. So E is stable. Thus E/K is Galois.

Finally, note that

#G/E ′ = [G : E ′] = [E ′′ : G] = [E : K] = AutK E,

which is enough to show that the set of extendible automorphisms in AutK E is in fact a
subgroup of AutK E having the same finite size, so these two sets are in fact equal. Therefore
G/E ′ ∼= AutK E as required. �

Theorem 10.1. Let F be a field, and G be any group of automorphism of F . Then F is
Galois over the fixed field K of G. Furthermore, if G is finite, then F/K is a finite Galois
extension whose Galois group is G.

11. September 28

Definition 11.1. Let K be a field, and f ∈ K[x] a non-constant polynomial. Then f splits
over K if f(x) = (x− u1)(x− u2)(x− u3) · · · (x− un) for some u1, u2, . . . , un ∈ K.

Definition 11.2. F is a splitting field of S over K, for a subset S of K[x] if:

• every polynomial in S splits in F .
• F = K(U) where U is the set of all roots of all polynomials in S that lie in F .

Intuitively, the splitting field over K for some polynomials in K[x] is equal to the smallest
extension of K containing all roots of all polynomials in S.

Example. Q(
√

2) is a splitting field extension for x2 − 2 over Q since Q(
√

2) = Q(±
√

2).
Similarly, C = R(i) = R(i,−i) is a splitting field extension of x2+1 ovecr R since C = R(±i).

17



Example. However, Q( 3
√

2) is not a splitting field extension of x3−2 over Q since the complex
roots 3

√
2ζ and 3

√
2ζ2 where ζ := e2πi/3 do not lie in Q( 3

√
2).

Remark. Splitting fields over K are algebraic over K. They are in fact finite for finitely
many polynomials.

Remark. If S = {f1, . . . , fn} is a finite set of polynomials in K[x], then a splitting field
extension for {f1, . . . , fn} over K will coincide with a splitting field extension of the single
polynomial f := f1f2 . . . fn. Therefore, we only need to study the cases of a single polynomial
or infinitely many polynomials.

Remark. Every set of polynomials S in K[x] has a splitting field extension. Also, splitting
field extensions for a given set are unique up to a K-isomorphism (hence the splitting field
of...).

Theorem 11.1. Let K be a field and f ∈ K[x] a polynomial of degree n ≥ 1. Then f has a
splitting field extension F/K of degree [F : K] ≤ n!.

Proof. We will prove via induction on n. If n = 1, then F = K is (trivially) the splitting
field extension of f over K of degree [K : K] = 1 ≤ 1!. Fix l ≥ 1, and suppose that the
result holds for all polynomials in K[x] of degree l. Let f(x) have degree (l + 1).

Case I. f splits over K. In this case F = K is a splitting field, so [F : K] = [K : K] = 1 ≤
(l + 1)!.

Case II. f has an irreducible factor g ∈ K[x] with degree deg g ≥ 2. Then there is a simple
extension K(u)/K of degree [K(u) : K] = deg g ≥ 2, where u is a root of g, and
so a root of f . So f(x) = (x − u)h(x) for some h(x) ∈ K(u)[x] of degree l. By the
inductive hypothesis, h has a splitting field extension over K(u) of degree ≤ l!. Say
F/K(u).

Now we claim that F is a splitting field extension of f over K of degree [F : K] ≤
(l + 1)!. This is not that hard to see considering the tower below.

F

≤l!

K(u)

deg g

K

Since F = K(u)(all roots of h) = K(all roots of f), it follows that F/K is a splitting
field extension of f . Finally,

[F : K] = [F : K(u)][K(u) : K] = [F : K(u)] deg g ≤ l! deg g = l!(l + 1) = (l + 1)!.

So the result follows by induction. �

Clearly, infinite case is much harder. It is hard to show in general that there is a field
containing the roots of infinitely many polynomials.

Theorem 11.2. Let F be any field. Then the following are equivalent:

(i) Every non-constant polynomial f ∈ F [x] has a root in F .
18



(ii) Every non-constant f ∈ F [x] splits over F .
(iii) Every irreducible f ∈ F [x] has degree one.
(iv) F has no proper field extensions.
(v) F is algebraic over a field K for which every f ∈ K[x] splits over F .

Proof (sketch). ((i) ⇒ (ii)) Exercise.
((ii) ⇒ (iii)) Exercise.
((iii) ⇒ (iv)) Assume that every irreducible f ∈ F [x] has degree 1. If L/F is an algebraic

extension and u ∈ L, then the min polynomial of u ovre F has degree 1. So u ∈ F .
((iv) ⇒ (v)) Exercise.
((v) ⇒ (i)) If f ∈ F [x] has u as a root, then the minimal polynomial of u over K in K[x],

then u as well as all the roots lies in F . �

Definition 11.3. If F satisfies these equivalent conditions outlines in Theorem 11.2, then
F is said to be algebraically closed.

Theorem 11.3. Let F/K be any field extension. Then the following are equivalent:

(i) F/K is algebraic, and F is algebraically closed.
(ii) F is a splitting field extension over K for the set of all non-constant polynomials in

K[x].

Definition 11.4. An extension F ofK is an algebraic closure ofK if it satisfies the equivalent
conditions listed in Theorem 11.3.

Theorem 11.4. Every field K has an algebraic closure, and any two such fields are K-
isomorphic.

Corollary 11.1. Every set S of non-constant polynomials in K[x] has a splitting field ex-
tension.

Proof (sketch). We will only cover the finite case. Note that constructing a splitting field for
{f1, . . . , fn} is equivalent to constructing one for f := f1f2 . . . fn. If u1, . . . , ur are all of the
roots in an algebraic closure, then K(u1, . . . , ur) is a splitting field. �

Theorem 11.5 (Uniqueness of a splitting field extension). Let F be a splitting field of
S = {fi} ⊆ K[x] and M a splitting field of S ′ = {σfi} ⊆ L[x]. Then there is an extension
σ : F →M which is an isomorphism so that σ|K = σ.

F
σ // M

K
'
σ
// L

Proof (sketch). For finite S and S ′, one can further reduce it to S = {f} and S ′ = {σf}
as we did in the proof of Corollary 11.1. So let roots of f be u1, . . . , un, and roots of
σf be σ(u1), . . . , σ(un). By a previous result, we see that σ extends to an isomorphism
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σi : K(u1, . . . , ui)→ L(σ(u1), . . . , σ(ui)).

F = K(u1, . . . , un)
'
σn
// M = L(σ(u1), . . . , σ(un))

K(u1, . . . , un−1)
'

σn−1

// L(σ(u1), . . . , σ(un−1))

...
...

K(u1)
'
σ1

// L(σ(u1))

K
'
σ

// L

Now consider the special case K = L and σ = id. Then any two splitting fields of a set S
of polynomials in K[x] are K-isomorphic. In particular, any two algebraic closure of K are
K-isomorphic. �

Remark. Any automorphism of K can be extended to the splitting field extension of K.

12. October 2: Galois extensions as splitting fields

Definition 12.1. Let K be any field, and let f ∈ K[x] be a non-zero polynomial, and let c
be a root of f . Then f(x) = (x − c)mg(x) where g(x) 6= 0 and m ∈ N. Then c is a simple
root (resp. multiple root) if m = 1 (resp. m > 1).

Definition 12.2. Let f ∈ K[x] be irreducible.

(i) f is separable if f has only simple roots.
(ii) If F/K is a field extension, and u ∈ F is algebraic, then u is separable over K if its

minimal polynomial over K is separable.
(iii) F/K is separable if every u ∈ F is separable over K.

Remark. • If f is separable, then f has no repeated roots in any splitting field exten-
sion.
• An irreducible polynomial f ∈ K[x] is separable if and only if the derivative of f is

non-zero. Particularly, in characteristic zero, all non-constant irreducible polynomials
are separable.
• In characteristic zero, all algebraic extensions are separable.

13. October 4

Theorem 13.1. Let F/K be a field extension. Then the following are equivalent:

(i) F/K is Galois and algebraic.
(ii) F/K is separable, and F is the splitting field extension of some set S of polynomials

in K[x].
(iii) F is the splitting field of some set T of separable polynomials in K[x].

20



Remark. Theorem 13.1 implies that algebraic Galois extensions are splitting fields of sepa-
rable polynomials. So one can rephrase the “splitting field” part and arrive at our intuitive
idea of Galois: the isomorphisms you get for free all end up being automorphisms.

Definition 13.1. Let F/K be algebraic. Then F is normal over K if every irreducible
f ∈ K[x] that has a root in F actually splits over F .

Theorem 13.2. Let F/K be algebraic. Then the following are equivalent:

(1) F/K is normal.
(2) F is a splitting field over K for some sets of polynomials in K[x].
(3) Every K-embedding/monomorphism from F into an algebraic closure K of K is

actually an automorphism of F .

Proof. ((i) ⇒ (ii)) Assume that F/K is normal. Let {ui}i∈I be a K-basis for F . Then
F is the splitting field extension over K of the set of all minimal polynomials of the ui.
Each minimal polynomial has a root in F (namely, one of the basis elements). But since
F is normal, F contains all roots of all minimal polynomials. F is the smallest algebraic
extension of K containing these elements, so this completes this direction.

((ii) ⇒ (iii)) Assume that F is the splitting field extension over K of some set of polyno-
mials in K[x]. So F = K({ui}i∈I) for certain ui that constitute all roots of the polynomials
in question. Assume σ : F → K is some K-monomorphism. Then σ permutes {ui}i∈I .
Thus σ : K({ui}i∈I) → K({ui}i∈I) where F = K({ui}i∈I) is the image. Thus σ is in fact a
K-automorphism of F .

((iii) ⇒ (i)) Assume that every σ : F → K over K is a K-automorphism of F (i.e.,
imσ = F ). Suppose that f ∈ K[x] is irreducible and has a root u ∈ F . Let v be any root of
f such that σ(u) = v.

K
σ // K

F
σ|F // K

K(u)
σ // K(v)

K
id // K

We have a K-isomorphism σ : K(u) → K(v) where u 7→ v. Also since K/K is a splitting
field, so is K/K(u) since K is an algebraic closure of K(u). So σ has an extension σ :
K → K. But then σ|F : F → K is a monomorphism over K, so imσ|F = F . Thus
v = σ(u) = σ|F ∈ F . �

Corollary 13.1. Let F/K be algebraic, Then F/K is Galois if and only if F/K is separable
and normal. Specifically, if K has characteristic 0, then F/K is Galois if and only if F/K
is normal.

Theorem 13.3. Let E/K be algebraic. Then there is an extension F of E such that:

(i) F/K is normal;
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(ii) no intermediate field of F and K is normal over K;
(iii) if E/K is separable, then F/K is Galois; and
(iv) if E/K is finite, then F/K is finite also.

Example. Q( 4
√

2)/Q is not normal since the complex roots of the Q-minimal polynomial of 4
√

2
are not contained in Q( 4

√
2). So the normal closure is Q( 4

√
2,− 4
√

2, 4
√

2i,− 4
√

2i) = Q( 4
√

2, i).

14. October 5: Fundamental theorem of algebra

Some required background materials:

(1) Analytic
(a) Every positive real number has a positive square root.
(b) Every odd degree polynomial in R[x] has a root in R.

(2) Algebraic (Sylow)
(a) If G is a finite group of order pnm for n ≥ 1 and m relatively prime to p. Then

G has subgroups of order pj for all 0 ≤ j ≤ n.

Lemma 14.1. Let K be an infinite field, and F/K be a finite separable extension. Then
F = K(u) for some u ∈ F , i.e., F/K is simple.

Proof. Let F1/K be a normal closure of F/K. Then F1/K is finite Galois. So AutK F1 is
finite, which implies that AutK F1 has finitely many subgroups. By correspondence, only
finitely many fields are intermediate to F1 and K. So only finitely many intermediate fields
of F and K. So we choose an intermediate field K(u) that is maximal. Now suppose that
K(u) ( F . Let v ∈ F \K(u). Consider fields of the form K(u+av) where a ∈ K. Since there
are only finitely many of these and K is infinite, we must have K(u + av) = K(u + bv) for
a, b ∈ K and a 6= b. Thus (u+av)− (u+ bv) = (a− b)v ∈ K(u+av). Since a− b 6= 0, indeed
v ∈ K(u+av). Also, u = (u+av)−av, so u ∈ K(u+av) as well. Hence, K(u) ( K(u+av).
But this contradicts the maximality of K(u), so F = K(u). �

Lemma 14.2. C has no extensions of degree 2.

Proof. Suppose that E/C is of degree 2. Then by Lemma 14.1, there is u ∈ E such that
E = C(u), and the minimal polynomial of u over C is of the form fu(x) = x2 + sx + t for
s, t inC. The quadratic formula says

u =
−s±

√
s2 − 4t

2
.

Thus E = C(−s±
√
s2 − 4t) = C(

√
s2 − 4t) = C(

√
α) for some α ∈ C. So we are done once

we prove that
√
α ∈ C for all α ∈ C. Solve for c and d where (c + di)2 = a + bi. We can

conclude c, d ∈ R since positive reals have positive square roots. So c + di ∈ C. This gives
us the desired contradiction. �

Theorem 14.1 (Fundamental theorem of algebra). C is algebraically closed.

Proof. Suppose that E1/C is a finite extension. Then E1/R is a finite extension of even
degree. So let F/R be a normal closure of E1/R, and G := AutR F . We prove that E1 = C
by showing that, in fact, F = C. Let #G = 2nm for some n ≥ 1 and m odd (since
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#G = [#G : {id}] = [F : R] = [F : C][C : R] = [F : C] · 2). Let H ≤ G such that #H = 2n,
and let E = H ′ (i.e., the intermediate field fixed by H).

F oo //

2n

{id}

E oo //

m

H

R oo // G

So F/R is finite Galois. Note that for some u ∈ E, we have E = R(u); and the minimal
polynomial of u over R has odd degree m. Irreducibility implies that m = 1, since otherwise
it will be reducible (since every odd-degree polynomial over the reals has at least one real
root). Hence E = R, so #G = 2n for some n ≥ 1.

F oo // {id}

J ′ oo //

2

J

2

C oo // AutC F

Therefore AutC F has order 2l for some 0 ≤ l ≤ n, since it is a subgroup of G = AutR F .
Now, if l > 0, then choose subgroup J of AutC F of index 2. This means that J ′ is a
degree 2 extension of C, but this contradicts Lemma 14.2. This means l = 0. Hence indeed
[F : C] = 20 = 1, so F = C. �

15. October 4: the Galois group of a polynomial

Definition 15.1. Let K be a field. Then the Galois group of f ∈ K[x] is the group AutK F
where F is some splitting field of f over K.

Definition 15.2. Let Sn be the group of permutation on {1, 2, . . . , n}. Then a subgroup G
of Sn is transitive if for any 1 ≤ i 6= j ≤ n, there is σ ∈ G with σ(i) = j.

Theorem 15.1. Let K be a field, and G be the Galois group of f ∈ K[x].

(i) G is isomorphic to a subgroup of Sn, for some n.
(ii) If f is separable of degree n, then n |#G, and G is isomorphic to a transitive subgroup

of Sn.

Proof (sketch). (i) Assignment #3, Problem #1.
(ii) If f is separable, then F/K is Galois, where F is the splitting field of f over K. If u

is a root of f , then under Galois correspondence, there is a subgroup of index n (namely the
subgroup of K-automorphisms fixing K(u)). Thus n |#G. �

Now we can determine the Galois groups of polynomials of degrees 1, 2, 3, 4.

Proposition 15.1. Let f ∈ K[x] be irreducible over K. If deg f = 1, then G = AutK K =
{id}. If deg f = 2, then G = {id} if f is not separable; if f is separable, then G ∼= Z/2Z.
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Proof. The degree 1 case readily follows. If u 6= v are the distinct roots of f , then AutK F =
{σ1 = id, σ2} where σ2 : u 7→ v. If u = v then σ2 = σ1, so the claim follows. �

Proposition 15.2. If f ∈ K[x] is irreducible over K, is separable, and is of degree 3, then
the Galois group of f is isomorphic to either one of A3 or S3.

Proof. Suppose that deg f = 3, and f is separable over K. then F/K is Galois as F is the
splitting field of a separable polynomial f . Since the only transitive groups of S3 are A3 and
S3, then the Galois group of separable cubic polynomials must be one of A3 or S3. �

To determine whether G is isomorphic to A3 or S3, we need to compute the discriminant
of f .

Definition 15.3. Let K be a field with charK 6= 2, and let f ∈ K[x] be irreducible over K
and of degree n, with distinct roots u1, . . . , un ∈ F . Then the discriminant of f is

D = ∆2,

where
∆ :=

∏
i<j

(ui − uj) ∈ F.

Proposition 15.3. Let D and ∆ be defined as above.

(i) D = ∆2 ∈ K.
(ii) Suppose σ ∈ AutK F ≤ Sn. Then σ is even (resp. odd) if and only if σ(∆) = ∆

(resp. σ(∆) = −∆).

Proof (sketch). (ii) σ can be viewed as a permutation of the uj, so it can be viewed as a
product of transpositions. And each transposition reverses the order of some factor ui − uj.
Thus it introduces a minus sign into the product. Thus σ is odd if and only if there is an odd
number of switches (as there is an odd number of minus signs introduced in the product),
so this is equivalent to σ(∆) = −∆.

(i) For any σ ∈ AutK F , we have

σ(D) = σ(∆2) = σ(∆)2 = (±∆)2 = ∆2 = D,

so D ∈ K. �

Corollary 15.1. In the Galois correspondence, the intermediate field K(∆) corresponds to
G ∩ An. In particular, G ≤ An if and only if ∆ ∈ K.

Proof. We know that σ ∈ An is equivalent to σ(∆) = ∆. The claim follows upon noting that
K(∆) is the fixed field of G ∩ An. �

Corollary 15.2. Let f ∈ K[x] be separable and deg f = 3. Then G is isomorphic to A3 or
S3. If charK 6= 2, then G = A3 if and only if ∆ ∈ K.

Proposition 15.4. Let charK 6= 2, 3, and let f(x) = x3 + bx2 + cx+ d ∈ K[x] be separable.
Then g(x) = f(x − b

3
) has the form x3 + px + q. This polynomial has discriminant of the

form −4p3 − 27q2.

Proof. If u is a root of f , then u + b/3 is a root of g. But the factors in the definition of ∆
are the same since, for roots ui and uj we have ui − uj = (ui + b/3) − (uj + b/3). Thus f
and g have the same ∆, hence D. �
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Example. Let f = x3 − 3x + 1 ∈ Q[x]. Then ±1 are not roots, so by the rational root
theorem, f is irreducible. Since charQ = 0, f is separable. Compute the discriminant:
D = −4(−3)3 − 27(1)2 = 81 = 92. Thus D is the square of something in Q, so G = A3.

Example. Let f(x) = x3 + 3x2 − x − 1 ∈ Q[x]. For the same reason as x3 − 3x + 1 in the
previous example, f(x) is also separable over Q. Note that g(x) = f(x− 3/3) = f(x− 1) =
(x− 1)3 + 3(x− 1)2 − (x− 1)− 1 = x3 − 4x+ 2. So D = −4(−4)3 − 27(2)2 = 148. So this
is not a square in Q, so G = S3.

16. October 12 & 16: Moving onto the quartic case

Let f ∈ K[x] be a separable degree-four polynomial, and let u1, u2, u3, u4 be distinct roots
in the splitting field F . F/K is Galois with Galois group G, a transitive subgroup of S4 of
order divisible by 4. Let V := {(1), (12)(34), (13)(24), (14)(23)} ∼= Z/2Z⊕ Z/2Z. Note that
V is a normal subgroup of S4, so V ∩G is a normal subgroup of G.

Lemma 16.1. Write (α, β, γ) := (u1u2 + u3u4, u1u3 + u2u4, u1u4 + u2u3). Then there is a
correspondence between K(α, β, gamma) and V ∩G, via Galois correspondence.

Proof. Since F/K is Galois, so is F/K(α, β, γ). So K(α, β, γ) is the fixed field for the
group of all K-automorphisms that fix α, β, γ. We claim that if σ(V ∩ G) = τ(V ∩ G),
then σ(δ) = τ(δ) for δ ∈ {α, β, γ}. Note that the elements in V fix α, β, γ – so indeed
σ(V ∩ G) = τ(V ∩ G). Therefore σ = τµ for some µ ∈ V ∩ G. But then µ(δ) = δ for
δ ∈ {α, β, γ}, so σ(δ) = τ(µ(δ)) = τ(δ). Now, we have that

S4 = V t (12)V t (13)V t (14)V t (123)V t (132)V.

So finally, we have

(12)(β) = u2u3 + u1u4 6= β

(13)(α) = u2u3 + u1u4 6= α

(14)(α) = u2u4 + u1u3 6= α

(123)(α) = u2u3 + u1u4 6= α

(132)(α) = u2u3 + u1u4 6= α.

So only the elements in G that lie in V fix α, β, γ, as required. �

Remark. Furthermore, K(α, β, γ)/K is Galois with the Galois group G/(G ∩ V ).

Definition 16.1. The polynomial g(x) = (x− α)(x− β)(x− γ) is the resolvent cubic of f .

Remark. It seems at first glance that a resolvent cubic of f lies in F [x], but in fact it lies in
K[x].

Lemma 16.2. Let f(x) = x4 + bx3 + cx2 + dx + e ∈ K[x]. Then the resolvent cubic g is
given by g(x) = x3 − cx2 + (bd− 4e)x+ b2e+ 4ce− d2.

Proposition 16.1. Let f ∈ K[x] be a separable quartic polynomial, and F/K be the splitting
field of f over K. Let G be the Galois group, which is isomorphic to a transitive subgroup
of S4 of 4, 8, 12, or 24. Let also m = [K(α, β, γ) : K]. Then

(i) m = 6⇔ G = S4

(ii) m = 3⇔ G = A4
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(iii) m = 1⇔ G = V
(iv) m = 2⇔ G ∼= D4 or Z/4Z.

In particular, we get D4 if f is irreducible over K(α, β, γ) (and Z/4Z otherwise).

Example. Let f(x) = x4 + 4x2 + 2 ∈ Q[x]. Then the resolvent cubic of f is g(x) = x3−4x2−
8x+ 32 = (x− 4)(x2 − 8). Thus α = 4, β =

√
8, γ = −

√
8. So Q(α, β, γ) = Q(β) = Q(

√
2).

So [Q(
√

2) : Q] = 2. Hence G = Z/4Z or G = D4. But then f(x) = x4 + 4x + 2 =
(x2 − (−2 +

√
2))(x2 − (−2−

√
2)) ∈ Q(

√
2)[x]. Therefore G = Z/4Z.

Example. Let f(x) = x4 − 2 ∈ Q[x]. Then g(x) = x3 + 8x = x(x +
√

8i)(x −
√

8i). Thus
α = 0, β =

√
8i, γ = −

√
8i. So Q(α, β, γ) = Q(

√
8i). Since [Q(

√
8i) : Q] = 2, we see that

G = Z/4Z or D4. But since f is irreducible over Q(
√

8i), it follows G = D4.

Theorem 16.1. Let p be prime, and f ∈ Q[x] be irreducible where deg f = p. Suppose also
that there are exactly two non-real roots in C. Then the Galois group of f is Sp.

Proof. We can view G as a subgroup of Sp; recall that G is a transitive subgroup of Sp with
p |#G. Cauchy’s theorem implies that G thus has an element σ of order p. Order of σ is the
lcm of the orders of its disjoint cycles. Since p is prime, there can be only one cycle; thus σ
is a p-cycle. Further, complex conjugation is a Q-automorphism of the splitting field F of f
over Q. Complex conjugation fixes the real roots and swaps the two non-real roots. So G
contains a transposition, say (ab). So we can write σ = (aj2 · · · jp). So some power σk is of
the form σk = (abi3 · · · ip). So G contains (ab) and (abi3 · · · ip) (re-order if necessary). Then
G contains (12), (123 · · · p). Hence G ⊇ 〈(12), (123 · · · p)〉 = Sp, so G = Sp as required. �

17. October 16, 18, & 19: Finite fields

Theorem 17.1. Let F be any field, and let

P :=
⋂
{K | K is a subfield of F}.

Then P is a field having no proper subfields. If charF = 0, then P ∼= Q; if charF = p > 0,
then P ∼= Fp = Z/pZ.

Definition 17.1. The P as defined in Theorem 17.1 is called the prime subfield of F . In
particular, P is the subfield generated by 1F .

Proof. Since 0, 1 ∈ P we know that P 6= ∅. For any u, v ∈ P , indeed u, v ∈ K for all subfields
K of F . Then u− v, uv−1 ∈ K for all such K (clearly, v 6= 0 for uv−1), so u− v, uv−1 ∈ P .
So if K is a subfield of P , then K is a subfield of F . Hence P ⊆ K, so P = K. Thus P
cannot have any proper subfield.

For the second part, consider ϕ : Z→ P such that m 7→ m·1F . Then ϕ is a homomorphism
with kernel (m) where m = charF .

(1) Case I: m = p where p is a prime
In this case we get an isomorphism between Z/pZ = Fp and imϕ ≤ P , per the first
isomorphism theorem. So imϕ is a field. But imϕ is a subfield of P which has no
proper subfields. This forces imϕ = P , so Fp ∼= P .

(2) Case II: m = 0
For this case, we see that ϕ : Z → P is a monomorphism. This naturally induces
a monomorphism ϕ : Q → P (just apply ϕ to both numerator and denominator).
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Then imϕ ∼= Q is a field. Thus imϕ is a subfield of P , but P doesn’t have any proper
subfields. Indeed imϕ = P , so P ∼= Q as required. �

Corollary 17.1. If F is a finite field, then charF = p where p is a prime. Furthermore,
#F = pn for n ∈ N.

Proof. charF = p since P ∼= Fp for some prime p. (Alternative for P is Q, but Q is infinite
whereas F is assumed to be finite.) Finally, F/Fp is an extension of finite degree since
otherwise F would be infinite. Say [F : Fp] = n. So #F = pn since F ∼= Fnp . �

Theorem 17.2. Let F be a field, and G a finite subgroup of F ∗. Then G is cyclic. In
particular, the multiplicative group of a finite group is cyclic.

Proof. Let G be a finite subgroup of F ∗. Then G is a finite abelian group. If G = {1}, then
G is cyclic. Otherwise, then by the fundamental theorem of abelian groups, we have

G = Z/m1Z⊕ Z/m2Z⊕ · · · ⊕ Z/mkZ
for some mj ∈ N,m1 > 1, and m1 |m2 | · · · |mk. We thus have umk = 1 for all u ∈ G. In
other words, the polynomial xmk − 1 ∈ F [x] has at least #G roots. But this polynomial has
at most mk roots in F , so #G ≤ mk. At the same time, we have #G = m1m2 · · ·mk, so
this forces k = 1. Hence G ∼= Z/mkZ is cyclic. In particular, F is finite, so F ∗ is cyclic as
required. �

Remark. Taking F = Fp, we see that the primes have primitive roots.

Corollary 17.2. If F is finite, then F = Fp(u) for some u ∈ F . In other words, F is a
simple extension of Fp.

Proof. Let F ∗ be generated by u. Then F = Fp(u). �

Lemma 17.1. Let charF = p and r ∈ N. Then the map ϕ : F → F defined by u 7→ up
r

is
a Fp-monomorphism. In case F is finite, ϕ is in fact a Fp-automorphism of F .

Proof (sketch). Basically this follows from the Freshman’s dream. In characteristic p, we
have (u± v)p

r
= up

r ± vpr , so ϕ is a homomorphism. Furthermore, since ϕ(1) = 1p
r

= 1 6= 0,
ϕ is a non-zero map. ϕ is a non-zero field homomorphism, so ϕ is a field monomorphism
also.

Finally, pick p consecutive integers as the representatives of the elements in Fp (say Fp =
{1, 2, . . . , p}). Then note that

ϕ(1) = 1

ϕ(2) = ϕ(1 + 1) = ϕ(1) + ϕ(1) = 2

...

ϕ(p) = ϕ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
p times

) = ϕ(1) + · · ·+ ϕ(1)︸ ︷︷ ︸
p times

= 1 + · · ·+ 1 = p.

Therefore ϕ is a Fp-monomorphism. Furthermore, if F happens to be finite, then imϕ has
the same size as F , so imϕ = F . The last claim follows. �

Proposition 17.1. Let p be a prime, and n ∈ N. Then F is a finite field with pn elements
if and only if F is a splitting field extension over Fp of xp

n − x.
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Proof. (⇒) Suppose that #F = pn. Then #F ∗ = pn − 1. So up
n−1 = 1 for all u ∈ F∗. All

elements of F ∗ satisfy xp
n−1−1, so they all satisfy x(xp

n−1−1) = xp
n−x (including 0). Hence

every element of F is a root of xp
n−x. In conclusion, F = Fp(F ) = Fp({all roots of xp

n − x}),
which is a splitting field over Fp of xp

n − x, as required.
(⇐) Assume that F is the splitting field of xp

n − x over Fp. Note that (xp
n − x)′ =

pnxp
n−1 − 1 = −1 since charF = p, so xp

n − x is relatively prime to its derivative. This
implies that xp

n − x is separable in F , and so has pn distinct roots.
Let E be the set of all roots of xp

n−x in F . If we can show that E is a field, then we would
have E = F has size pn. Note that u ∈ E if and only if ϕ(u) = u, where ϕ : F → F sending u
to up

n
. Clearly ϕ(1) = 1, so 1 ∈ E. For any u, v ∈ E where ϕ(u) = u and ϕ(v) = v, it follows

ϕ(u− v) = ϕ(u)−ϕ(v) = u− v ∈ E. For any v 6= 0, we have ϕ(uv−1) = ϕ(u)ϕ(v)−1 = uv−1,
so uv−1 ∈ E. Thus E is a subfield of F , so E = F as required. �

Corollary 17.3. Let p be a prime and n ∈ N. Then there exists a field with pn elements,
and any two such field are Fp-isomorphic.

Proof. Any finite fields with pn elements are splitting fields of xp
n − x over Fp, so we know

that there exist such field(s), and any two of them are Fp-isomorphic. �

Corollary 17.4. Let K be any finite field, and let n ∈ N. Then there is a simple extension
F = K(u) with [F : K(u)] = n. Furthermore, any two such F ’s are K-isomorphic.

Proof. Let #K = pr where p is a prime, and r ∈ N. Define F to be a splitting field extension
of xp

rn−x over K. For any u ∈ K we have up
r

= u, so inductively we can also claim up
rn

= u.
Thus F is a splitting field extension of xp

rn − x over Fp also. Every element in K is a root
of xp

rn − x, so F = Fp({all roots of xp
rn − x}) since F = K({all roots of xp

rn − x}). Hence
#F = prn, and F consists precisely of the prn roots of xp

rn−x. So prn = #F = (#K)[F :K] =
pr[F :K], from which [F : K] = n follows.

Furthermore, if [F1 : K] = n, then [F1 : Fp] = rn. So both F and F1 are splitting field
extensions of xp

rn − x over Fp.
F F1

K

Fp
So F and F1 are K-isomorphic, as both are splitting field extensions of xp

rn − x over K.
Finally, we have already shown that any finite extension over a finite field is simple, so the
proof is complete. �

Corollary 17.5. If K is a finite field, then K[x] contains irreducible polynomials of every
positive degree.

Proof. Let n ∈ N, and let F = K(u) be a simple extension of degree n. Then the minimal
polynomial of u over K is an irreducible polynomial in K[x] of degree n. �

Definition 17.2. Let F/K be a Galois extension. Then F/K is a cyclic extension if GalK F
is cyclic.
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Proposition 17.2. Every finite extension of a finite field is Galois with cyclic Galois group.

Proof. Let F/K be finite, and let K be a finite field whose characteristic is p. Then F/Fp is
finite since F/K and K/Fp are both finite.

F

K

Fp

Say [F : Fp] = n. Then #F = pn, so F is a splitting field of xp
n − x over Fp. In fact, F

consists precisely of the pn distinct roots of xp
n−x. Thus F is a splitting field extension over

Fp of the polynomial xp
n − x that has separable irreducible factors. Hence F/Fp is Galois,

so F/K is Galois also. Finally, note that GalK F ≤ GalFp F , and all subgroups of a cyclic
group are cyclic also. So it is sufficient to prove that GalFp F is cyclic. So we want to prove
that there exists ϕ such that GalFp F = 〈ϕ〉, where ϕ : F → F is the Frobenius map, i.e., the
Fp-automorphism given by ϕ(u) = up for all u ∈ F . First, we claim that ϕn = id. Indeed,
note that ϕn(u) = up

n
= u since every u ∈ F is a root of xp

n − x. If ϕk = id then every

u ∈ F would satisfy xp
k−x. This forces k ≥ n – otherwise, all pn elements would be roots of

the polynomial xp
k − x, which has degree strictly less than pn. Hence ordϕ = n. But then

ordϕ = [F : Fp] = # GalFp F . Thus the claim follows. �

18. October 23: Separability (Chapter VI)

Definition 18.1. An element u, algebraic over K, is purely inseparable over K if it is the
only root of it minimal polynomial in K[x]. In other words, its minimal polynomial factors
as (x− u)m for some m ≥ 1. F/K is purely inseparable if each u ∈ F is purely inseparable
over K.

Theorem 18.1. The elements that are both separable and purely inseparable over K are
precisely the elements in K.

Proof. Let u be separable and purely inseparable over K, and let fu be the minimal polyno-
mial of u over K. Since u is purely inseparable, u is the only root of fu, i.e., fu = (x− u)m

for m ∈ N. But since u is separable also, fu has distinct roots. Therefore m = 1. So
degK(u) = 1, so u ∈ K as required. �

Remark. This result implies that whenever F/K is separable (such as when charK = 0),
the only purely inseparable elements are the elements in K. So we need only characterize
purely inseparable extensions in characteristic p > 0, where p is a prime.

19. October 26: Characterization of purely inseparable extensions in
characteristic p

u is purely inseparable over K if and only if the minimal polynomial of u ∈ K[x] has
only one root. Similarly, u is separable if and only if the minimal polynomial of u ∈ K[x]
has distinct roots. In general, only the elements in K are separable and purely inseparable.
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Thus, If F/K is separable (resp. purely inseparable), pure inseparability (resp. separability)
isn’t interesting to look at (e.g. charK = 0).

Let S be the separable closure of K in F ; similarly let P be the purely inseparable closure
of K in F .

F

SP

S P

K

(Recall that K = S ∩ P ).

Lemma 19.1. Let F/K be a field extension, and charK = p where p is a prime. For every
u ∈ F algebraic over K, then up

n
is separable over K for some n.

Proof. We will prove this by induction on [K(u) : K]. If [K(u) : K] = 1, then u ∈ K. So

by Theorem 18.1, up
0

= u is separable over K. So suppose k ≥ 1 and suppose the result
holds for elements of degree 1, 2, . . . , k − 1 over K; and let u have degree k over K. If u
is separable over K, then the result follows from the base case. If u isn’t separable, then
fu ∈ K[x] has a repeated root. So this root satisfies f ′u also. But fu is minimal, so f ′u = 0. If
fu =

∑
ajx

j, then f ′u =
∑
jajx

j−1 = 0; therefore jaj = 0 for all j. This implies that either
aj = 0 or p | j for all j. Thus every exponent is divisible by p, so fu is a polynomial in xp.
Write fu = g(xp) for some g ∈ K[x]. Then deg g = kp−1 < k, so up has degree over K in the

range 1, 2, . . . , k − 1. Apply the inductive hypothesis implies (up)p
n−1

is separable K, so up
n

is separable over K. �

Theorem 19.1. Let F/K be algebraic, and charK = p > 0 where p is a prime. Then the
following are equivalent.

(i) F/K is purely inseparable.
(ii) Every u ∈ F has minimal polynomial in K[x] of the form xp

n − a.
(iii) For every u ∈ F , we have up

n ∈ K for some n ≥ 0.
(iv) F contains no non-trivial (as in not in K) elements that are separable over K.
(v) F is generated over K by a set of elements purely inseparable over K.

We will prove the equivalence by following the map below.

(i)

y� �& $,
(ii)

�%

(iv)

x�

(v)

rz
(iii)

KS

.
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Proof. ((i) ⇒ (ii)) If F/K is purely inseparable, u ∈ F and fu ∈ K[x] is the minimal
polynomial, then fu(x) = (x − u)m for some m. Write m = prn for p - n (if m = 1, then
u ∈ K anyway; so assume m > 1). Then fu(x) = (x − u)m = (x − u)p

rn = [(x − u)p
r
]n =

(xp
r − up

r
)n ∈ K[x]. Then the coefficient of xp

r(n−1) is −nupr ∈ K. But since p - n, we
have up

r ∈ K. So n = 1 since fu is of lease degree satisfied by u. So fu(x) = xp
r − a for

a = up
r ∈ K.

((i) ⇒ (iv)) Immediate.
((i) ⇒ (v)) Any generating set will consist entirely of purely inseparable elements.
((ii) ⇒ (iii)) Let u ∈ F , and let

fu(x) = xp
n − a.

Then 0 = fu(u) = up
n − a, so up

n
= a ∈ K

((v)⇒ (iii)) Let F = K(u1, . . . , un) where each ui is purely inseparable over K. Repeating

the argument presented in ((i) ⇒ (ii)), we see that for all j there is nj such that up
nj

j ∈ K.

Define n = max{nj}. Then up
n

j ∈ K for all j. Finally, if u ∈ F then u is a rational function

in the uj. Then freshman’s dream implies up
n ∈ K.

((iv) ⇒ (iii)) If u ∈ F then up
n

is separable over K for some n by Lemma 19.1. So by
(iv), up

n ∈ K.
((iii) ⇒ (i)) Suppose u ∈ F . So by (iii), we see up

n ∈ K for some n. Note that f(x) =
xp

n − upn ∈ K[x] is satisfied by u. Since f(x) = (x− u)m has only one root, the same is true
for the divisor fu(x) ∈ K[x]. Thus u is purely inseparable over K as desired. �

Corollary 19.1. If F/K is finite and purely inseparable with charK = p, then [F : K] = pn

for some n.

Proof (sketch). Let F = K(u1, . . . , un) where each ui is purely inseparable over K. Then
consider the tower

K ⊆ K(u1) ⊆ K(u1, u2) ⊆ · · · ⊆ K(u1, . . . , un).

Note that each uj is purely inseparable over K(u1, . . . , uj−1). So we may reduce to proving
the result for simple extensions. Finally, [K(u) : K] = pn for pn with minimal polynomial
being xp

n − a ∈ K[x]. �

20. October 30

As we discuss purely inseparable extensions, we will be referring to the following very
helpful diagram often.

F

SP

S P

K
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(where K = S ∩ P . S is the separable closure of K, and P is the purely inseparable closure
of K. Note that we are required to show that S and P actually are fields (thereby being
subfields of F )).

Theorem 20.1. Let F/K be algebraic.

(i) S is the largest subfield of F that is separable over K.
(ii) F/S is purely inseparable. That is, the S/K is the “separable” portion of the exten-

sion, so the remaining portion (F/S) is the purely inseparable portion.
(iii) P is the largest subfield of F that is purely inseparable over K.
(iv) S ∩ P = K
(v) F/P is separable if and only if F = SP .

(vi) If F/K is normal, then S/K and F/P are Galois with AutK S ∼= AutP F = AutK F .

Before proving the theorem, we are required to prove the following lemma, as this lemma
will be used in the proof of Theorem 20.1.

Lemma 20.1. If F = K(X), and every element of X is separable over K, then F/K is
separable.

Proof. Let v ∈ F . Then v ∈ K(u1, . . . , un) for some uj ∈ X; let fj ∈ K[x] be the min-
imal polynomial of uj for each j. Als, let E be a splitting field over K of the uj. Then
K(u1, . . . , un) ⊆ E. But since E/K is Galois, it follows that E/K is separable over v ∈ E.
Thus v is separable over K. �

Proof of Theorem 20.1. (i) Let 1 ∈ S, and u, v ∈ S. Then u, v ∈ K(u, v). Thus u − v ∈
K(u, v), and uv−1 ∈ K(u, v) (provided v 6= 0). But K(u, v) ∈ S, so S is a field.

(iii) Let 1 ∈ P , and u, v ∈ P . Then u, v ∈ K(u, v). Thus u − v ∈ K(u, v), and uv−1 ∈
K(u, v) (provided v 6= 0). But K(u, v) ∈ P , so P is a field.

(iv) This is Theorem 18.1.
(ii) Let u ∈ F . Note that we need to cover both the characteristic p case and the charac-

teristic 0 case. Let charK = p. Then up
n

is separable over K for some n, i.e., up
n ∈ S for

some n. Thus F/S is purely inseparable as required. If charK = 0, then every element of
F is separable over K. Thus F = S, so F/S is (trivially) purely inseparable (and separable
at the same time).

(v) (⇒) If F/P is separable, then F/SP is separable also. Also, F/S is purely inseparable,
so F/SP is purely inseparable also. The only extension that is both separable and purely
inseparable is the trivial extension; therefore F = SP as required. (⇐) Assume F = SP .
We may view F as F = P (S). So any elements in S that are separable over K are separable
over P also. Since the generators (the elements in S) are separable, indeed F/P is separable.

(vi) We first prove that (AutK F )′ = P . Pick u ∈ P . Then fu(x)(x−u)m ∈ K[x]. For any
σ ∈ AutK F , σ(u) is a root of fu. There is only one root of fu(x), so this forces σ(u) = u.
Hence P ⊆ (AutK F )′. Conversely, assume u ∈ (AutK F )′, and assume that v is another root
of fu(x). Then there is a K-isomorphism τ : K(u)→ K(v) such that u 7→ v. Since F/K is
normal, F/E is also a splitting field of some set of polynomials (where E is an intermediate
field between F and K), τ extends to some element τ ∈ AutK F . So for some τ we have
v = τ(u) = u, as u is the only root of fu(x). This means u ∈ P . This proves the reverse
inclusion, so we have (AutK F )′ = P , hence AutK F = AutP F .

Now consider the map θ : AutP F → AutK S defined by σ 7→ σ|S. First, we need to prove
that θ is well-defined. Let σ ∈ AutP F = AutK F . Then θ(σ) ∈ AutK S since σ|S(S) is
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a subfield of F isomorphic to S. So the separability is preserved, i.e.., im(σ|S) ⊆ S. Now
looking at σ−1|S shows that σ|S ∈ AutK S.

As for surjectivity, note that F/S is normal since F/K is normal. This means that
τ ∈ AutK S is extendible to F . In other words, there is σ ∈ AutK F = AutP F with σ|S = τ .
Such σ satisfies θ(σ) = τ ; thus θ is surjective.

It remains to show injectivity To do so, we shall prove that ker θ is trivial. Suppose
σ ∈ ker θ. This means σ|S = idS, so σ must fix S. But then σ ∈ AutP F , so σ fixes P also.
Hence σ fixes SP . But then we already proved that F/P is Galois, so F/P is separable.
Recall that F = SP (from (v)) so σ = idF . Thus ker θ is trivial. �

Corollary 20.1. Let F/K be a field extension and E an intermediate field. If F/E and
E/K are separable, then F/K is separable also.

Proof. Assume F/E and E/K are separable. Then E ⊆ S. F/S is both purely inseparable
and separable: F/S is separable since F/E is separable, and E ⊆ S (consult the diagram
below).

F

S

E

Thus F = S is separable over K. �

21. November 1

Let charF = p. Then
• For all n ∈ N, F pn = {upn : u ∈ F} is a subfield of F – recall F pn = imϕ where
ϕ : F → F defined by u 7→ up

n
.

• F/F pn is purely inseparable. Thus F/E is purely inseparable for any intermediate
field.

These facts lead us to the following corollaries.

Corollary 21.1. Let charK = p, and suppose that F/K is algebraic.

(1) If F/K is separable, then F = KF pn for every n ∈ N.
(2) If [F : K] is finite, and F = KF p, then F/K is separable.
(3) u is separable over K if and only if K(u) = K(up).

Lemma 21.1. Suppose charK = p, and suppose that F/K is algebraic. Suppose also that
[F : K] is finite. Then there exists n ∈ N such that S = KF pn.

Lemma 21.2. Suppose charK = p, and suppose that F/K is algebraic. Suppose also that
[F : K] is finite. Then for any t ≥ 1,

KF pt = K(upt1 . . . . , u
pt

m)

for any choice of generators uj.
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Proof. By Freshman’s Dream, we have F = K(u1, u2, . . . , um) = K(up1, . . . , u
p
m) if F = KF p

(since each uj is a generator). Similarly, since each upj is a generator, it also follows that

F = K(up1, . . . , u
p
m) = K(up

2

1 , . . . , u
p2

m ). Continuing on with this argument, we see that

K(up
n

1 , . . . , u
pn

m ) = KF pn = S. Thus F/K is separable. �

Proof. (a) If F/K is separable, then for any n, the extension F/KF pn is separable. But
F/KF pn is also purely inseparable, so F = KF pn .

For parts (b) and (c), we will assume that [F : K] is finite. First we show that there
exists n ∈ N such that S = KF pn . Since F = K(u1, . . . , um) = S(u1, . . . , um), indeed F/S

is purely inseparable. So each uj is purely inseparable over S. Thus there is n with up
n

j ∈ S
for all j. Hence F pn ⊆ S, so KF pn ⊆ S.

F

SP

S

KF pn

K

Since S/K is separable, S/KF pn is separable also. Yet S/KF pn is purely inseparable also,
so S = KF pn . �

22. November 2

Definition 22.1. Let F/K be an algebraic extension, and S is the separable closure of K
in F . Then [S : K] is called the separable degree of F/K, denoted by [F : K]s. [F : S] is
called the inseparable degree of [F : K], denoted by [F : K]i.

Remark. Some properties of [F : K]s and [F : K]i
• [F : K] = [F : K]s[F : K]i.
• F/K is separable if and only if [F : K]s = [F : K] and [F : K]i = 1.
• F/K is purely inseparable if and only if [F : K]s = 1 and [F : K]i = [F : K].
• If F/K is a finite extension in prime characteristic p, then [F : K]i is a power of p.

Lemma 22.1. Let N be a normal extension of K containing F . Let E be an intermediate
field of F and K. Then

# HomK(F,N)? = # HomK(E,N)?# HomE(F,N)?,

where # HomK(F,N)? denotes the number of non-zero K-homomorphisms from F to N .

Proof. Let HomK(E,N)? = {σ1, . . . , σt}, and HomE(F,N)? = {τ1, . . . , τr}. Each σi extends
to an element σi ∈ AutK(N). In fact, σi|F ∈ HomK(F,N)?. So all products of σiτj (abuse
of notation here – write σi for σi) are K-monomorphisms of F into N . Here we make the
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claim that HomK(F,N)? = {σiτj : i, j} and that all of σiτj are distinct. Note that proving
this claim will complete the proof since we would have

# HomK(F,N)? = rt = # HomK(E,N)? ·# HomE(F,N)?.

To start off, one of the inclusions ({σiτj} ⊆ HomK(F,N)?) is immediate. Conversely, if σ ∈
HomK(F,N)?, then σ|E ∈ HomK(E,N)?. Thus σ|E = σi for some i. But this tells us that
σ−1σ ∈ HomK(F,N)?, and this will fix everything in E. Thus σ−1σ ∈ HomE(F,N)? = {τj}.
Therefore σ−1i σ = τj for some j, so σ is of the form σiτj. Therefore HomK(F,N)? = {σiτj :
i, j}.

Finally, if

σiτj = σaτb, (∗)
then σ−1a σiτj = τb fixes E. If u ∈ E, then

σ−1a σiτj(u) = τb(u)

σ−1a σi(u) = u

σ−1a σi ∈ HomE(F,N)?

σ−1a σi = id,

since σa, σi = E → N . Thus σa = σi is injective, and from (∗), we have τj = τb also. Thus
σiτj are in fact distinct as a = i, b = j. �

Lemma 22.2. Let [F : K] be finite, and let N be the normal closure of F over K (i.e,
N ⊇ F , and N/K is normal). Then # HomK(F,N)? = # HomK(S,N)?.

Proof. Every element in HomK(S,N)? extends to an element of AutK N , and then restricts to
an element in HomK(F,N)?. All in all, every element of HomK(S,N)? extends to an element
of HomK(F,N)?. So we just need to show that if σ, τ ∈ HomK(F,N)? and σ|S = τ |S, then
σ = τ . If charK = 0, then the lemma becomes evident as S = F . So suppose that
charK = p > 0. Then F/S is purely inseparable, so for any u ∈ F , there exists some n so
that up

n ∈ S. Thus σ(up
n
) = τ(up

n
). Since σ(u)p

n
= τ(u)p

n
, and we can take advantage of

Freshman’s Dream, we have (σ(u)− τ(u))p
n

= 0. Thus σ(u) = τ(u). Hence σ(u) = τ(u) on
F . �

Proposition 22.1. Let [F : K] be finite, N ⊇ F , and N/K normal. Then # HomK(F,N)? =
[F : K]s.

Proof. By Lemma 22.2, we are reduced to proving that # HomK(F,N)? = [F : K] for
finite and separable F/K. We will prove this by induction on [F : K]. If [F : K] = 1,
then the claim trivially holds. Let [F : K] > 1, and assume that result holds for all finite
separable extensions. Pick u ∈ F \ K, and let [F : K(u)] = m and [K(u) : K] = n. By
the inductive hypothesis, indeed # HomK(u)(F,N) = m and # HomK(K(u), N) = n. Thus
# HomK(F,N) = mn = [F : K], as required. �

23. November 6

Corollary 23.1. Let E be an intermediate field to F and K. Then [F : K]s = [F : E]s[E :
K]s and [F : K]i = [F : E]i[E : K]i.
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Proof. Let N ⊇ F be a normal closure so that N/K is normal. Then [F : K]s is the number
of K-monomorphisms from F to N , which is equal to the product of the number of E-
monomorphisms of F and the number of K-monomorphisms of E. Therefore [F : E]s[E : K]s
as required. Finally, note that

[F : K]s[F : K]i = [F : K] = [F : E][E : K]

= [F : E]s[F : E]i[E : K]s[E : K]i

= [F : K]s[F : E]i[E : K]i.

Cancel [F : K]s, and the [F : K]i = [F : E]i[E : K]i as required. �

Definition 23.1. The separable (resp. inseparable) degree of u over K to be the separable
(resp. inseparable) degree of K(u) over K.

Corollary 23.2. Let f ∈ K[x] be a monic irreducible polynomial.

(i) All roots of f have the same separable and inseparable degree over K.
(ii) All roots of f have the same multiplicity.

(iii) The common separable degree is the number of distinct roots of f ; the common in-
separable degree is the common multiplicity of roots.

(iv) Let r be the common multiplicity of roots of f ; let u be any root of f . Then ur is
separable over K.

Proof. If charK = 0, then we get the separable extension for free, so all the four claims
follow evidently. So it suffices to consider the charK = p > 0 case. Let F/K be a splitting
field of f over K, and let u = u1, u2, . . . , un be distinct roots of f in F . Then f(x) =
(x− u1)r1(x− u2)r2 · · · (x− un)rn ∈ F [x]. So for any j, indeed [K(uj) : K]s is the number of
K-monomorphisms of K(uj) onto F . Each monomorphism is determined by where uj is sent
to, and there are exactly n (the number of distinct roots of f) choices. Thus [K(uj) : K]s = n.
So, every root of f has the same separable degree over K, namely the number of distinct
roots of f .

Given any j, k, choose a K-isomorphism σ : K(uj)→ K(uk) such that σ(uj) = uk. Then
the factor of f corresponding to uk is (x−uk)rk = (x−σ(uj))

rj . But the unique factorization
gives rk = rj. Hence every root has the same multiplicity, which we shall call r.

It still remains to show that r is actually the inseparable degree. Note we can re-write
f(x) = [(x− u1)(x− u2) · · · (x− un)]r. So rn = deg f = [K(uj) : K] = [K(uj) : K]s[K(uj) :
K]i = n[K(uj) : K]i. Cancel n, from which it follows r = [K(uj) : K]i. Our choice of uj
was arbitrary, so every root has multiplicity equal to the common inseparable degree. This
finishes the proof of (i), (ii), and (iii).

As for (iv), let g(x) = (x − ur1) · · · (x − urn). Then by Freshman’s Dream, f(x) = (xr −
ur1)(x

r−ur2) · · · (xr−urn). So if u is any root of f then ur is a root of g. Thus ur is separable
over K as required. �

Definition 23.2. A primitive element for F/K is an element u such that F = K(u).

Theorem 23.1 (Primitive element theorem). A finite-dimensional extension is simple if and
only if there are only finitely many intermediate fields. In particular, every finite-dimensional
separable extension is simple.

Proof. We shall assume the first statement in order to prove the second statement first. Since
F/K is finite-dimensional and separable, if N is the normal closure of F/K then N/K is
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finite and Galois. Hence AutK N has finitely many subgroups. By the Fundamental theorem
of Galois theory (Theorem 7.2), N/K has finitely many intermediate fields, so there can only
be finitely many intermediate fields between F and K also. The claim follows from the first
statement.

(⇒ of the first statement) Suppose that F = K(u) is simple, and let f(x) be the minimal
polynomial of u over K. Then we claim that every intermediate field corresponds to a factor
of f .

(⇐ of the first statement) Suppose there are only finitely many intermediate fields between
F and K. We will prove that F is simple by taking a maximal intermediate field of the form
K(u), and then show that F is actually equal to K(u). �

24. November 8: Cyclic extensions

Definition 24.1. Let F/K be a finite-dimensional extension, and let K be some algebraic
closure of K containing F . For any u ∈ F , the norm of u (resp. trace of u) denoted by
NF/K(u) (resp. TrF/K(u)) is given by

NF/K(u) =

(∏
σ

σ(u)

)[F :K]i

resp.

TrF/K(u) = [F : K]i
∑
σ

σ(u),

where σ ranges over the K-monomorphisms F → K.

Remark. If F/K is separable, then [F : K]i = 1. Particularly, if u ∈ F , then NK(u)/K(u)
is the product of conjugates of u; similarly, TrK(u)/K(u) is just the sum of conjugates of
u. However, NF/K(u)(u) is the product of conjugates powered by [F : K(u)]; similiarly,
TrF/K(u)(u) is the sum of the conjugates of u multiplied by [F : K(u)]. Note that the
additional automorphisms in a bigger field creates some repetitions, which justifies the extra
power or the extra multiple, respectively. Thus it is important to always take note of over
which field the norm or the trace of an element is being calculated.

Remark. Call the roots of the minimal polynomial of u in K[x] the conjugates of u. Then
the conjugates are precisely the τi(u) for 1 ≤ i ≤ [K(u) : K]s, where the τi are the K-
monomorphisms of K(u), and the minimal polynomial of u over K is (x − τ1(u))(x −
τ2(u)) · · · (x − τl(u)) where l = [K(u) : K]s. In general, the K-monomorphisms of F are
precisely the τiσj where the τi are as before, and the σj are K(u)-monomorphisms of F .

Consider the following diagram, where 1 ≤ j ≤ [F : K(u)]s.

F τσj

K(u) τ

K id
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So, each τσj extends τ since if v ∈ K(u) then σj(v) = v, and so τσj(v) = τ(v). The
monomorphisms of F/K are just the extensions of the monomorphisms of E/K, each re-
peated [F : E]s times.

Example. Consider the extension

Q( 4
√

2) τ1 τ2 τ3 τ4

Q(
√

2) σ1 σ2

Q id id

where

σ1 :
√

2 7→
√

2

σ2 :
√

2 7→ −
√

2

τ1 :
4
√

2 7→ 4
√

2

τ2 :
4
√

2 7→ − 4
√

2

τ3 :
4
√

2 7→ i
4
√

2

τ4 :
4
√

2 7→ −i 4
√

2.

We will compute the norm and traces of 4
√

2 over Q( 4
√

2)/Q(
√

2) and Q( 4
√

2)/Q.

NQ( 4√2)/Q(
√
2)(

4
√

2) = τ1(
4
√

2)τ2(
4
√

2)

=
4
√

2(− 4
√

2) = −
√

2

TrQ( 4√2)/Q(
√
2)(

4
√

2) = τ1(
4
√

2) + τ2(
4
√

2)

=
4
√

2− 4
√

2 = 0.

NQ( 4√2/Q(
4
√

2) = τ1(
4
√

2)τ2(
4
√

2)τ3(
4
√

2)τ4(
4
√

2)

=
4
√

2(− 4
√

2)(i
4
√

2)(−i 4
√

2) = −2

TrQ( 4√2)/Q(
4
√

2) = τ1(
4
√

2) + τ2(
4
√

2) + τ3(
4
√

2) + τ4(
4
√

2)

= 0.

Also, the norm of traces of
√

2 over different field extensions:

NQ(
√
2)/Q(
√

2) = σ1(
√

2)σ2(
√

2)

=
√

2(−
√

2) = −2

TrQ(
√
2)/Q(

4
√

2) = σ1(
√

2) + σ2(
√

2)

=
√

2−
√

2 = 0.

NQ( 4√2)/Q(
√

2) = τ1(
√

2)τ2(
√

2)τ3(
√

2)τ4(
√

2)
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=
√

2
√

2(−
√

2)(−
√

2) = 4

TrQ( 4√2)/Q(
√

2) = τ1(
√

2) + τ2(
√

2) + τ3(
√

2) + τ4(
√

2)

= 0.

Note that the norms and traces of the same element do differ depending on which field
extension they are taken.

Theorem 24.1. Let [F : K] be finite with u, v ∈ F . Then the following hold:

(1) NF/K(uv) = NF/K(u) NF/K(v) and TrF/K(u+ v) = TrF/K(u) + TrF/K(v).

(2) if u ∈ K, then NF/K(u) = u[F :K] and TrF/K(u) = [F : K]u.
(3) NF/K(u),TrF/K(u) ∈ K.
(4) If the minimal polynomial of u over K is f(x) = a0 +a1x+ · · ·+an−1x

n−1 +xn, then

NF/K(u) = ((−1)na0)
[F :K(u)]

TrF/K(u) = [F : K(u)]an−1.

25. November 9

Lemma 25.1. Let K ⊆ F , and u ∈ F \K. Then

NF/K(u) =
(
NK(u)/K(u)

)[F :K(u)]

TrF/K(u) = [F : K(u)] TrK(u)/K(u).

Proof. Start from the definition. Note that σ in the product denotes K-monomorphisms of
F , and τ the K-monomorphisms of K(u).

NF/K(u) =

(∏
σ

σ(u)

)[F :K]i

=

(∏
τ

τ(u)

)[F :K(u)]s
[F :K]i

=

(∏
τ

τ(u)

)[F :K(u)]s[F :K(u)]i[K(u):K]i

=

(∏
τ

τ(u)

)[K(u):K]i
[F :K(u)]

= (NK(u)/K(u))[F :K(u)].

One can make a similar argument for trace (except that you use the additive reasoning rather
than multiplicative). �

Theorem 25.1. Let u, v ∈ F , and c ∈ K; and let E be an intermediate field between K and
F .

(i) Norm is multiplicative: NF/K(uv) = NF/K(u) NF/K(v)
(ii) Trace is K-linear: TrF/K(cu+ v) = cTrF/K(u) + TrF/K(v)

(iii) NF/K(c) = c[F :K] and TrF/K(c) = [F : K]c
(iv) If the minimal polynomial of u over K is f(x) = a0 +a1x+ · · ·+an−1x

n−1 +xn, then

NF/K(u) = ((−1)na0)
[F :K(u)]

TrF/K(u) = −[F : K(u)]an−1.

(v) NF/K = NE/K ◦NF/E and TrF/K = TrE/K ◦TrF/E.
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Proof. For the first part, note

NF/K(uv) =

(∏
σ

σ(uv)

)[F :K]i

=

(∏
σ

σ(u)σ(v)

)[F :K]i

=

(∏
σ

σ(u)

)[F :K]i (∏
σ

σ(v)

)[F :K]i

= NF/K(u) NF/K(v).

One can use a similar argument to obtain the trace counterpart (ii). As for (iii), pick u ∈ K.
Then every σ : F → K is a K-monomorphism that maps u to itself, and recall that there
are [F : K]s of these maps. Thus

NF/K(u) =

(∏
σ

σ(u)

)[F :K]i

=

(∏
σ

u

)[F :K]i

= u[F :K]s[F :K]i = u[F :K].

From (iii), we know that NF/K(u) and TrF/K(u) are in K. Also, thanks to Lemma 25.1, we
are reduced to proving that NK(u)/K(u) = (−1)na0 and TrK(u)/K(u) = −an−1. Let the σ in
the below product denote the K-monomorphisms of K(u). Then

f(x) =
∏
σ

(x− σ(u))[K(u):K]i .

Thus

a0 = (−1)[K(u):K]i[K(u):K]s

(∏
σ

σ(u)

)[K(u):K]i

= (−1)n NK(u)/K(u).

Hence NK(u)/K(u) = (−1)na0 as required. A similar type of argument shows that an−1 =
−TrK(u)/K(u).

As for part (v), let τ be a K-monomorphism from E to F and σ a K-monomorphism from
K to E. Then

NF/K(u) =

(∏
σ,τ

σ(τ(u))

)[F :K]i

=
∏
σ

σ

(∏
τ

τ(u)

)[F :K]i

=
∏
σ

σ

(∏
τ

τ(u)

)[F :E]i
[E:K]i

=
∏
σ

(
NF/E(u)

)[E:K]i

=

(∏
σ

σ(NF/E(u))

)[E:K]i

= NE/K(NF/E(u)).

One can employ a similar argument to derive the trace counterpart. �

26. November 20

Definition 26.1. Let S be a non-empty set of automorphisms of F . Then S is linearly
independent if a1σ1 + · · · + anσn = 0 for σi ∈ S and ai ∈ F for all 1 ≤ i ≤ n implies
a1 = a2 = · · · = an = 0.
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Lemma 26.1. Any non-empty set of automorphisms on a field is linearly independent.

Proof. Suppose otherwise, i.e., S 6= ∅ is a set of automorphisms on F that is not linearly
independent. Thus there are σ1, . . . , σn ∈ S and a1, . . . , an ∈ F non-zero such that

a1σ1 + · · ·+ anσn = 0. (†)
Then of all such relations, choose one with n minimal.

Suppose that n > 1 and σ1 6= σ2. Let v ∈ F be such that σ1(v) 6= σ2(v), and let u ∈ F .
Then apply (†) to uv. Then (†) becomes

a1σ1(u)σ1(v) + a2σ2(u)σ2(v) + · · ·+ anσn(u)σn(v) = 0. (††)
Now apply (†) to u, then multiply by σ1(v).

a1σ1(u)σ1(v) + a2σ2(u)σ1(v) + · · ·+ anσn(u)σ1(v) = 0. (‡‡)
Subtract (‡‡) from (††).

n∑
k=2

akσk(u)(σk(v)− σ1(v)) = 0.

But clearly a2(σ2(v)− σ1(v)) 6= 0, so we have a contradiction to the minimality of n. �

Definition 26.2. Let F/K be an algebraic Galois extension. Then F/K is a cyclic extension
if AutK F is cyclic. If AutK F is abelian, then F/K is said to be an abelian extension.

Example. If F/K is a finite extension and #K = q = pr where charK = p, then F/K is
cyclic. In fact, we have a canonical generator given by the Frobenius map ϕ, where ϕ(u) := uq

(i.e, AutK F = 〈ϕ〉).

Theorem 26.1 (Kronecker-Weber theorem). Every finite-degree abelian extension over Q
is contained in a cyclotomic field.

The next theorem explores the connection of norm and trace to cyclic extensions.

Theorem 26.2. Let F/K a cyclic extension of degree n; suppose G = AutK F = 〈σ〉, and
u ∈ F .

(i) Tr(u) = 0 if and only if u = v − σ(: v) for some v (i.e., u ∈ im(id−σ)).
(ii) (Hilbert’s Theorem 90) N(u) = 1 if and only if u = vσ(v)−1 for some v 6= 0 (i.e.,

u ∈ im(id /σ)).

Proof. Write AutK F = {1, σ, σ2, . . . , σn−1}. Then Tr = 1 + σ + σ2 + · · · + σn−1 and N =
1× σ× σ2× · · · × σn−1. Note that F/K is separable by default, so there is no need to worry
about the inseparable degree that might affect trace and norm. For any u, we have

Tr(u) = Tr(σ(u)) = Tr(σ2(u)) = · · · = Tr(σn−1(u))

N(u) = N(σ(u)) = N(σ2(u)) = · · · = N(σn−1(u)).

The above observation provides an easy proof for the (⇐) direction for both (i) and (ii).
Note that

Tr(v − σ(v)) = Tr(v)− Tr(σ(v)) = Tr(v)− Tr(v) = 0

N(vσ(v)−1) = N(v) N(σ(v))−1 = N(v) N(v)−1 = 1.
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((i), ⇒) For this direction, we need to show that if u ∈ F and Tr(u) = 0, then u = v − σ(v)
for some v. Choose an element w with T (w) = 1. Since {1, σ, σ2, . . . , σn−1} is linearly
independent, there exists z ∈ F with Tr(z) = z+σ(z) + · · ·+σn−1(z) 6= 0. But then Tr(z) ∈
K, and Tr is K-linear; so if w := Tr(z)−1z, then Tr(w) = Tr(Tr(z)−1z) = Tr(z)−1 Tr(z) = 1.
Then one can show that u = v − σ(v) where

v := uw+(u+σ(u))σ(w)+(u+σ(u)+σ2(u))σ2(w)+ · · ·+(u+σ(u)+ · · ·+σn−2(u))σn−2(w).

(Verifying that this v works is left as an exercise.) �
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27. November 22

Proposition 27.1. Let F/K be cyclic of degree n where n = ptm with p prime and
gcd(p,m) = 1. Then there is a chain of intermediate fields E0 ⊇ E1 ⊇ · · · ⊇ Et = K
such that F/E0 is cyclic of order m and Ei/Ei+1 is cyclic of order p for all i.

F

rel. prime to p

E0

p

E1

p

...

Et−1

p

Et = K

Proof. AutK F is cyclic of order n = ptm. Since AutK F is cyclic, all subgroups are normal,
and all subextensions E/K are thus Galois. Since all the quotient and subgroups of a cyclic
group are cyclic, it follows that all subextensions of F/K are cyclic. In other words, if L ⊆M
are two intermediate fields, then M/L is cyclic. Now, let E0 be the fixed field of the unique
subgroup of AutK F of size m (per Galois correspondence). Therefore [F : E0] = m, so
E0/K is cyclic of order pt. So there is a chain of subgroups H1 ≤ H2 ≤ · · · ≤ Ht = AutK E0,
where #Hj = pj. We can take advantage of the Galois correspondence in order to map over
to the fixed fields to get the chain E1 ⊇ E2 ⊇ · · · ⊇ Et = K. �

Proposition 27.2. Let charK = p. Then F/K is cyclic of degree p if and only if F/K is
the splitting field of an irreducible polynomial of the form xp − x− a ∈ K[x]. In this case, if
u is any root of xp − x− a in F , then F = K(u).

Proof. (⇒) Let F/K be cyclic of degree p. Then Tr(1) = [F : K] · 1 = p · 1 = 0. So
where AutK F = 〈σ〉, there exists some v such that 1 = v − σ(v). Write u = −v, and let
a := up − u. Note that σ(u) = −σ(v) = 1 − v = 1 + u 6= u. Thus u /∈ K, so F = K(u).
Then σ(a) = σ(up − u) = σ(u)p − σ(u) = (u + 1)p − (u + 1) = up + 1 − u − 1 = up − u, so
indeed a ∈ K. Hence u ∈ F is a root of xp − x− a ∈ K[x], so deg u = p (since F = K(u)).
Since xp− x− a is the minimal polynomial, it is irreducible also. Finally, if w is any root of
xp − x− a, then F = K(w). So F is a splitting field of xp − x− a over K.

(⇐) Let F/K be a splitting field of irreducible xp − x − a ∈ K[x]. If u is any root of
xp − x− a, then all the roots are given by u, u+ 1, . . . , u+ p− 1. Recall that lp = l for any
l ∈ Fp, so (u+ l)p − (u+ l)− a = up + lp − u− l − a = up + l − l − u− a = up − u− a = 0.
Clearly u, u+ 1, . . . , u+ p− 1 are all distinct; therefore, xp − x− a is separable, whence we
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conclude F/K is Galois. But then F/K is Galois of order p, so # AutK F = p. Any group
of prime order is cyclic, so AutK F is cyclic as desired. �

Definition 27.1. Let K be a field and n ∈ N. Then ζ ∈ K is an n-th root of unity if ζn = 1.

Proposition 27.3. Let G be the set of the n-th roots of unity. Then G a subgroup of K?

such that #G ≤ n. Since G is finite, G is cyclic.

Remark. Thus Proposition 27.3 implies that the n-th roots of unity in any field form a cyclic
group of size n or smaller under multiplication.

Definition 27.2. ζ ∈ K is a primitive n-th root of unity if ζn = 1 but ζd 6= 1 for any
1 ≤ d < n.

Remark. Suppose that charK = p. Then the following hold:
• If p |n and n = ptm with gcd(p,m) = 1, then xn − 1 = (xm − 1)p

t
by virtue of the

freshman’s dream. In this case, there is no primitive n-th roots of unity, since all
n-th roots of unity are actually m-th roots of unity.
• On the other hand, if p -n, then xn − 1 has distinct roots. Thus the set of n-th roots

of unity is of size n and is cyclic. If ζ is a generator, then ζ is a primitive n-th root
of unity.

Theorem 27.1. Let K contain a primitive n-th root of unity ζ, and let F/K be a field
extension. Then the following are equivalent:

• F/K is cyclic of degree dividing n.
• F/K is a splitting field over K of a polynomial of the form xn − a ∈ K[x].
• F/K is a splitting field extension over K for a polynomial of the form xd− a ∈ K[x]

where d |n.

28. November 23: Cyclotomic extensions

Definition 28.1. A cyclotomic extension of order n over K is a splitting field extension of
xn − 1 ∈ K[x].

Remark. We only need to consider n not divisible by charK. If charK = p and p |n, then
we can write n = ptm where gcd(p,m) = 1 and t ≥ 1. Then xn− 1 = (xm− 1)p

t
, so any nth

root of unity is mth root of uninty also. So either charK = 0 or charK = p with p -n, and
then F is a cyclotomic extension of K of order n.

Definition 28.2. Euler’s ϕ-function is an arithmetical function defined by

ϕ(n) := #{1 ≤ m ≤ n : gcd(n,m) = 1} = #(Z/nZ)×,

where (Z/nZ)× denotes the group of units modulo n (which is equivalent to invertible classes
m mod n such that gcd(n,m) = 1).

Theorem 28.1. Let ζ be a primitive nth root of unity.
(i) F = K(ζ).

(ii) AutK F is isomorphic to a subgroup of (Z/nZ)×.
(iii) F/K is abelian of degree dividing ϕ(n). If n is prime, then F/K is not only abelian

but also cyclic.
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Proof. (i) The nth roots of unity in F form a cyclic group of order n (since xn − 1 has
distinct roots). Let ζ be a generator. Then the nth roots of unity are 1, ζ, ζ2, . . . , ζn−1, so
F = K(1, ζ, ζ2, . . . , ζn−1) = K(ζ).

(ii) F/K is the splitting field of separable polynomial xn − 1, so F/K is Galois. For
σ ∈ AutK F , σ(ζ) is a root of xn − 1; therefore σ(ζ) = ζ i for some i. But σ is an automor-
phism, so ζ and σ(ζ) must have the same order. In general, ord (ζ i) = ord ζ/ gcd(ord ζ, i) =
n/ gcd(n, i). Therefore ord (ζ i) = n if and only if gcd(i, n) = 1. Hence the elements of
AutK F are determined by exponents i such that gcd(i, n) = 1. It is a routine exercise to
verify that the map from AutK F to (Z/nZ)× defined by σi 7→ i (where σi(ζ) = ζ i) is a
monomorphism.

(iii) Note #(Z/nZ)× = ϕ(n), and (Z/nZ)× is cyclic when n is prime. Thus (iii) follow
from (ii), which we already proved. �

Remark. It is possible for AutK F to be isomorphic to a proper subgroup of (Z/nZ)×. Let
ζ ∈ C be a primitive nth root of unity in C. Consider the tower of extensions R ⊆ R(ζ) ⊆ C.
R(ζ)/R has degree 1 or 2 since [C : R] = 2. But (Z/nZ)× has order ϕ(n).

Definition 28.3. The nth cyclotomic polynomial over K Φn(x) is

Φn(x) :=
∏

1≤i≤n
gcd(i,n)=1

(x− ζ i),

where ζ is a primitive nth root of unity.

Proposition 28.1. Let P be the prime subfield of K.

(i) xn − 1 =
∏
d|n

Φd(x).

(ii) Φn(x) ∈ P [x].

Remark. If charK = 0, then P = Q, so coefficients lie in Z.

Proof. (i) Partition the roots of xn − 1 according to their order. Let
∏
u

denote the product

across all the nth roots of unity, and let
∏
d

be the product of all the nth roots of unity

whose order is d.

xn − 1 =
∏
u

(x− u) =
∏
d|n

∏
d

(x− u) =
∏
d|n

Φd(x).

(ii) We will use induction for this claim. For n = 1, Φ1(x) = x − 1 ∈ P [x]. Now suppose
that the claim holds for all k < n. Then

xn − 1 =
∏
d|n

Φd(x) =

∏
d|n
d<n

Φd(x)


︸ ︷︷ ︸

=:f(x)

Φn(x).

By the inductive hypothesis, we know f(x) ∈ P [x]. Thus

xn − 1 = f(x)Φn(x). (1)
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Now apply the division algorithm onto xn − 1, f(x) ∈ P [x]. Then there exist unique q, r ∈
P [x] with

xn − 1 = f(x)q(x) + r(x), (2)

where r = 0 or deg r < deg f . Compare (1) and (2) over F . Then by the uniqueness
coming from the division algorithm, we conclude that Φn(x) = q(x). Thus Φn(x) ∈ P [x] as
desired. �

Proposition 28.2. Let F = Q(ζ) where ζ is a primitive nth root of unity in C. Then the
following are true.

(i) Φn(x) is irreducible.
(ii) [F : Q] = ϕ(n)

(iii) AutQ F = (Z/nZ)×.

Proof. (ii) and (iii) follow immediately from (i), so it suffices to only prove (i). We will,
however, not prove (i) in full generality, but only when n is prime to illustrate a nice trick
that can be applied in other settings. If n = p is prime, then Φp(x) = (xp − 1)/(x − 1) =
xp−1 + xp−2 + · · ·+ x+ 1. In fact,

Φp(x+ 1) =
(x+ 1)p − 1

x
=

p∑
i=1

(
p

i

)
xi−1.

Therefore Φp(x + 1) is irreducible since it is Eisenstein with respect to p. Hence Φp(x) is
irreducible also. �

29. November 27: Radical extensions

Given a field K, does there exist a formula involving only field operations and extraction
of roots which gives all the roots of all polynomials in K[x]? The answer is yes for the most
part, as long as the polynomial in question is of degree 1, 2, 3, or 4. (We still say “for
the most part” due to some extraordinary circumstances, e.g. for the quadratic formula the
restriction charK 6= 2 is needed since otherwise division by 2 makes no sense.) However,
starting from degree 5, this is no longer true in general.

Definition 29.1. F/K is a radical extension if F = K(u1, . . . , un) where, for each j,
some power of uj lies in K(u1, . . . , uj−1). In other words, uj is some roof of an element
in K(u1, . . . , uj−1).

Remark (Connection to the main problem). Given f ∈ K[x], can we find a radical extension
of K that contains all of the roots of f?

Definition 29.2. Let K be a field, and f ∈ K[x]. Then f(x) = 0 is solvable by radicals if
there is a radical extension of K that contains a splitting field of F .

Lemma 29.1. Let F/K be a radical extension, and let N/K be the normal closure of F/K.
Then N is also a radical extension.

Before proving this, we need to prove the following two claims.

Lemma 29.2. The proof of Lemma is immediate from the next two lemmas. If F/K is
any finite-dimensional extension, then N = E1E2 · · ·Er for suitable subfields Ej of N , each
isomorphic to F .
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Proof. Let {w1, w2, . . . , wn} be a basis for F/K, and f1, f2 · · · fn ∈ K[x] be the corresponding
minimal polynomials. Let v be any root of fj for some j. Then there is a K-isomorphism
σ : K(wj) → K(v) such that wj 7→ v. Then there is an extension τ ∈ AutK N since N/K
is normal. Thus τ(F ) is a subfield of N that is isomorphic to F and contains v = τ(wj).
Continuing this process yields subfields E1, . . . , Er ⊆ N , each of which is isomorphic to F ,
and all roots of fj lie in E1E2 · · ·Er. By virtue of the minimality of r, E1E2 · · ·Er = N . �

Lemma 29.3. Composites of radical extensions are themselves radical.

Proof. This is fairly straightforward; start with the two fields, and then try to prove this by
induction. �

Definition 29.3. Let G be a group. Then the commutator subgroup of G, denoted by G′

or G(1) is the subgroup of G generated by {aba−1b−1 : a, b ∈ G}. G(n) is the nth derived
subgroup of G. G(n) is equal to the commutator subgroup of G(n−1).

Upon taking the commutator subgroup multiple times, we obtain a sequence

G ≥ G(1) ≥ G(2) ≥ · · · ≥ G(i) ≥ · · ·
which may or may not terminate.

Definition 29.4. If the sequence of commutator subgroups of G terminates eventually (i.e.,
G(n) = 〈e〉), then G is solvable.

Remark. If G is abelian, then G(1) = 〈e〉 (i.e., G is solvable).

Definition 29.5. A solvable series of a group is a subnormal series with simple quotients.

Remark. G is solvable if and only if G has a solvable series.

30. November 30

Theorem 30.1. Let F/K be a radical extension, and let E be an intermediate field. Then
AutK E is solvable.

Proof (sketch). The proof has two parts.

(I) Reduce the problem to showing that if F/K is Galois and radical, then AutK F is
solvable.
(a) Prove that we may assume E/K is Galois.

Let K0 = (AutK E)′. Then E/K0 is Galois with group AutK0 E = AutK E.
F/K is radical, so F/K0 is radical as well (if necessary, replace K with K0.
Thus we can assume that E/K is Galois.

(b) If N/K is the normal closure of F/K, then it is sufficient to show that AutK N
is solvable.
If E/K, then E is stable with respect to AutK N . Then the map θ : AutK N →
AutK E with σ 7→ σ|E is surjective as N/K is normal. But homomorphic images
of a solvable group are always solvable; and since θ is surjective, AutK E is
solvable also.

(c) Now we can assume that N/K is Galois; switch back to the original notation by
setting N = F .
N/K is normal, so if it is not Galois, then one can trade in K for the fixed field
of AutK N just as we did in part (a).
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(d) Proof of (I)
Let F = K(u1, . . . , un). Then umi

i ∈ K(u1, . . . , ui−1 for all i. Thus we can
assume that each mi is prime to charK because one can replace mi with r
where mi = ptr and pt ‖mi. If m = m1m2 · · ·mn, and ζ is a primitive mth root
of unity, then it suffices to prove that AutK F (ζ) is solvable; in turn, it suffices
to prove that AutK(ζ) F (ζ) is solvable. The proof is complete once we construct
a solvable series, which shall be done in Part (II).

F (ζ)

F K(ζ)

K

(II) Use roots of unity to construct a solvable series for a related extension.
Now we are ready to construct a solvable series. Let Hn = 〈e〉 ≤ · · · ≤ Hi :=

AutEi
F (ζ) ≤ · · · ≤ Hn = AutK(ζ) F (ζ), where Ei := K(ζ, u1, . . . , ui) for each i (note

that En = F (ζ) ⊇ · · · ⊇ Ei ⊇ · · · ⊇ E0 = K(ζ) forms a tower of field extensions).
This is a solvable series. �

Corollary 30.1. Let f ∈ K[x]. If f(x) = 0 is solvable by radicals, then the Galois group of
f is solvable.

Proof. f(x) = 0 is solvable by radicals if and only if there is a splitting field E of f over K
contained in a radical extension of K. So by Theorem 30.1, AutK E is solvable. Thus the
Galois group of f is the Galois group of a splitting field extension of f over K. �

Corollary 30.2. The general quintic is not solvable by radicals.

Proof. Recall that if f ∈ Q[x] is of degree p for some prime p, and is irreducible over Q,
then f has exactly two non-real roots in C. Thus the Galois group of f is (isomorphic to)
S5. However, S5 is not solvable. �

Example. f(x) = x5−4x+2 ∈ Q[x] is irreducible by Eisenstein (with respect to 2). Sketching
the graph shows that f has exactly three real roots, so the Galois group is S5, which is not
solvable.
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