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1. Modules and Categories

Wherever R appears in the text, it will be assumed that it is a ring. In addition, we will
assume that every ring has unity, i.e. 1 ∈ R for all rings R.

Definition 1.1 (R-Module #1). Let R be a ring. A (left) R-module is an abelian group
M equipped with a scalar multiplication R ×M → M by (r,m) 7→ r.m = rm such that
the following four conditions hold:

• Right distribution: r.(m1 +m2) = r.m1 + r.m2 for all r ∈ R and all m1,m2 ∈M .

• Left distribution: (r1 + r2).m = r1.m+ r2.m for all r1, r2 ∈ R and all m ∈M .

• Associativity: r1.(r2.m) = (r1r2).m for all r1, r2 ∈ R and all m ∈M .

• Identity: 1.m = m for all m ∈M .

In particular, when R is a field, these are exactly the same axioms as a vector space,
as long as M is an abelian group.

We also consider an equivalent definition to Definition 1.1:

Definition 1.2 (R-Module #2). A left R-module is an abelian group M with a ring
homomorphism ϕ : R→ End(M) where End(M) denotes the ring of endomorphisms of
M as an abelian group. The ring structure on End(M) is given by the following:

• Addition: f + g is given by (f + g)(m) = f(m) + g(m) for all f, g ∈ End(M) and
all m ∈M .

• Multiplication: fg is given by (fg)(m) = f(g(m)) for all f, g ∈ End(M) and all
m ∈M .

• Identity: 1 = idM .

Theorem 1.3. Definition 1.1 and Definition 1.2 are equivalent.

Proof. Given a scalar multiplication R ×M → M from Definition 1.1, define ϕ : R →
End(M) by r 7→ (m 7→ r.m); in other words (ϕ(r))(m) = r.m. It suffices to show that ϕ
is a ring homomorphism to show that Definition 1.1 implies Definition 1.2. Let r1, r2 ∈ R
and let m ∈M , then

(ϕ(r1 + r2))(m) = (r1 + r2).m = r1.m+ r2.m = (ϕ(r1))(m) + (ϕ(r2))(m),

so we have that ϕ(r1 + r2) = ϕ(r1) + ϕ(r2). Further,

(ϕ(r1r2))(m) = r1r2.m = r1.(r2.m) = r1.(ϕ(r2))(m) = (ϕ(r1) ◦ ϕ(r2))(m),

which means that ϕ(r1r2) = ϕ(r1)ϕ(r2). Lastly, (ϕ(1))(m) = 1.m = m, so ϕ(1) = idM .
In the other direction, let ϕ : R→ End(M) be a ring homomorphism and define the

scalar multiplication R ×M → M by (r,m) 7→ (ϕ(r))(m) = r.m. It is then an easy
exercise to see that Definition 1.2 implies Definition 1.1.
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Definition 1.4 (Submodule). Let R be a ring and let M be an R-module. An R-
submodule of M is a subgroup N ≤M such that r.n ∈ N for all r ∈ R and n ∈ N .

Lemma 1.5. Let R be a ring and let M be an R-module, a subset N ⊂ M is an
R-submodule of M if and only if N 6= ∅ and x+ r.y ∈ N for all r ∈ R and x, y ∈ N .

Proof. If N is an R-submodule, then 0 ∈ N , hence N 6= ∅; furthermore, N is closed
under addition and action by elements of R.

In the other direction, suppose N 6= ∅ and x + r.y ∈ N . Recall for a group G and
a subset H, we say that H is a subgroup of G if H is nonempty and xy−1 ∈ H for
all x, y ∈ H. For abelian groups, this translates to x − y ∈ H for all x, y ∈ H. Let
r = −1, then x+ r.y = x− y ∈ N and N is nonempty by hypothesis, therefore N ≤M .
Finally, let x = 0, then r.y ∈ N , hence N is closed under action by R, therefore N is an
R-submodule.

Definition 1.6 (R-Module Homomorphism). Let M and N be R-modules. An R-module
homomorphism f : M → N is an abelian group homomorphism which preserves scalar
multiplication, i.e. f(r.m) = r.f(m) for all r ∈ R and all m ∈M .

Definition 1.7 (R-Module Isomorphism). An R-module isomorphism f : M → N is
an R-module homomorphism with an inverse R-module map g : N → M such that
g ◦ f = idM and f ◦ g = idN .

Example 1.8. When the underlying ring structure on a module is a field, the module
is a vector space over said field.

Take, for instance, R = Q, the field of rational numbers. If we have a left Q-module
V , then V satisfies the axioms of a vector space when we consider its module structure
in addition to the underlying field structure of Q. Furthermore, we can assign a basis
to V and we have that V ∼= Qα where {vα}α∈A is a basis of V . In the case that V is a
finite-dimensional vector space, V ∼= Qn where n is the dimension of V , i.e., the number
of basis elements needed to capture the structure of V .

Definition 1.9 (HomR). Let R be a ring and let M be a left R-module. Define
HomR(R,M) to be the set of all R-module homomorphisms R→M .

We then state the following lemma without proof.

Lemma 1.10. Let R be a commutative ring. Then, the set HomR(R,M) as in Definition
1.9 is an R-module with operations given by (f + g)(x) = f(x) + g(x) for all f, g ∈
HomR(R,M) and x ∈ R, and (r.f)(x) = r.f(x) for all r, x ∈ R and all f ∈ HomR(R,M).

Theorem 1.11. Let R be a commutative ring, then there is an “evaluation” R-module
isomorphism ε : HomR(R,M)→M given by f 7→ f(1).

Proof. We first show that ε is an R-module homomorphism. Let r ∈ R and f, g ∈
HomR(R,M), then ε(r.f) = (r.f)(1) = r.f(1) = r.ε(f), and ε(f + g) = (f + g)(1) =
f(1) + g(1) = ε(f) + ε(g).

Let m ∈ M and define ϕm : R → M by r 7→ r.m. Then, ϕm(r1r2) = (r1r2).m =
r1.(r2.m) = r1.ϕm(r2), and ϕm(r1 + r2) = (r1 + r2).m = r1.m+ r2.m = ϕm(r1) +ϕm(r2),
hence ϕm ∈ HomR(R,M).
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Now, define g : M → HomR(R,M) by m→ ϕm, we will show that g is an R-module
homomorphism and is inverse to ε. First, g(m1 +m2)(r) = ϕm1+m2(r) = r.(m1 +m2) =
r.m1 + r.m2 = ϕm1(r) + ϕm2(r) = g(m1)(r) + g(m2)(r), and g(r1.m)(r2) = ϕr1.m(r2) =
r2.(r1.m) = (r2r1).m = (r1r2).m = ϕm(r1r2) = r1.ϕm(r2) = r1.g(m)(r2), so g is an
R-module homomorphism.

Lastly, observe that (ε ◦ g)(m) = ε(g(m)) = ε(ϕm) = ϕm(1) = 1.m = m, hence
ε ◦ g = id, and (g ◦ ε)(f) = g(ε(f)) = g(f(1)) = ϕf(1). It then follows that ϕf(1)(r) =
r.f(1) = f(r), so ϕf(1) = f , hence (g◦ε)(f) = f , and ε is an R-module isomorphism.

Definition 1.12 (Category). A category C consists of

• A class of objects, denoted Ob(C).

• For objects X, Y ∈ Ob(C), a set of morphisms (or arrows), denoted HomC(X, Y ).

• For objects X, Y, Z ∈ Ob(C), a composition operation

HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z)

given by (g, f) 7→ g ◦f that is associative when defined, i.e. h◦ (g ◦f) = (h◦g)◦f .

• For X ∈ Ob(C), there is a morphism, denoted idX or 1X in HomC(X,X) such that
f ◦ 1X = f and 1X ◦ g = g for all appropriately chosen morphisms f and g.

Definition 1.13 (Covariant Functor). Let C and D be two categories. A (covariant)
functor F : C → D associates

• to each object X ∈ Ob(C) an object F(X) ∈ Ob(D).

• to each arrow/morphism f : X → Y in HomC(X, Y ) an arrow F(f) : F(X) →
F(Y ) in HomD(F(X),F(Y )) in such a way that preserves composition: F(g◦f) =
F(g) ◦ F(f) and identities F(1X) = 1F(X).

Definition 1.14 (Categorical Products). Let C be a category. Let F = {Xα}α be a family
of objects such that Xα ∈ Ob(C) for all α. A product of F is an object P ∈ Ob(C) equipped
with a family of maps {P πα−→ Xα}α that is universal: given any object Q ∈ Ob(C) and

any family {Q fα−→ Xα}α of objects, there exists a unique arrow f : Q → P such that
the diagram commutes for all α:

Xα P

Q
fα

πα

f

Definition 1.15 (Categorical Coproducts). Let C be a category. Let F be a family of
objects as in Definition 1.14. A coproduct of F is an object C equipped with arrows
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{Xα
iα−→ C}α which is couniversal: given any object D and any family {Xα

iα−→ D}α of
arrows, there is a unique f : C→ D such that the diagram commutes for all α:

Xα C

D

iα

fα
f

Theorem 1.16 (Uniqueness of Universality of Categorical Products). In Definition
1.14, if P exists, then it is unique up to canonical isomorphism.

Proof. Suppose there is another solution to the universal property, i.e. there exists

an object P ′ equipped with a family of maps {P ′ π′α−→ Xα}α which is also universal.
By universality of P , the maps {π′α}α induce a unique map π′ : P ′ → P such that
π′α = πα ◦ π′. Likewise, by universality of P ′, the maps {πα}α induce a unique map
π : P → P ′ such that πα = π′α ◦ π. It follows that πα = π′α ◦ (π ◦ π′ ◦ π), and uniqueness
of π implies that π ◦ π′ ◦ π = π. Likewise, we have that π′ = π′ ◦ π ◦ π′. It’s then easy
to see that π ◦ π′ = id and π′ ◦ π = id since identity maps are unique, hence P and P ′
are isomorphic.

The technique used in proving Theorem 1.16 can be extended to any universal map-
ping problem. This means that any object satisfying a universal mapping problem is
unique up to canonical isomorphism. More importantly, this means that if such an
object exists, it is independent of its construction. This means is that if we were to
construct such an object in radically different ways, in the end we actual construct the
same object.

Example 1.17 (Products of Sets). Let Sets be the category of sets, and let F = {Xα}α
be a family of sets. Define P :=

∏
αXα = {(xα)α : xα ∈ Xα for all α}. Define πα : P →

Xα as projections, i.e. πα((xβ)β) = xα. We claim that P is a product of F .

Proof. Let Q be any set, and let {Q fα−→ Xα}α be any family of set maps. Define
f : Q → P by f(q) = (fα(q))α. Then, (πα ◦ f)(q) = πα(f(q)) = πα((fβ(q))β) = fα(q),
hence πα ◦ f = fα.

While this example may seem easy and innocent, it is incredibly powerful in its
generality. We will now be able to consider products of arbitrary classifications of sets in
a very natural, straightforward manner that is consistent with our intuition on products.

Example 1.18 (Products of R-Modules). Let R be a ring and let C be the category of R-
modules. Let F = {Xα}α be a family of R-modules. Define P (as a set) as P =

∏
αXα

equipped with projections {πα}α as per Example 1.17. Define the module operations
component-wise by (xα)α + (yα)α = (xα + yα)α and r.(xα)α = (r.xα)α. We claim that P
is a product of R-modules.
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Proof. We must first check that πα are actually R-module maps as per Definition 1.6.
This follows from our definition of the module operations:

πα(r.(xβ)β) = πα((r.xβ)β) = r.xα = r.πα((xβ)β),

and
πα((xβ)β + (yβ)β) = πα((xβ + yβ)β) = xα + yα = πα(xβ)β) + πα(yβ)β).

Let Q be any R-module and let {Q fα−→ Xα}α be a family of R-module maps. As sets,
these induce a unique map f : Q → P such that fα = πα ◦ f , i.e., f(q) = (fα(q))α. We
now need to check that f is an R-module map; so,

f(q + q′) = (fα(q + q′))α = (fα(q) + fα(q′))α = (fα(q))α + (fα(q′))α = f(q) + f(q′),

and
f(r.q) = (fα(r.q))α = (r.fα(q))α = r.(fα(q))α = r.f(q);

hence f is an R-module map.

Now that we’ve answered the question of what the product of R-modules are, we will
now look at the coproduct of R-modules.

Example 1.19 (Coproducts of R-Modules). Let R be a ring, let C be the category of
R-modules, and let F = {Xα}α be a family of R-modules. Let C = {(xα)α ∈

∏
αXα :

xα = 0 for all but finitely many α}. We claim that C is the coproduct of R-modules.

Proof. Let D be any R-module and let {Xα
fα−→ D}α be any family of R-module maps.

Let {iα}α be the family of canonical inclusions and denote eα := iα(1). Define f : C→ D
by f((xα)α) =

∑
α fα(xα). Then, f(iα(x)) = f(xeα) = fα(x), so f ◦ iα = fα. We now

consider the following:

f(r.(xα)α) = f((r.xα)α) =
∑
α

fα(r.xα) = r.
∑
α

fα(xα) = r.f((xα)α),

and

f((xα)α + (yα)α) = f((xα + yα)α) =
∑
α

fα(xα + yα) =
∑
α

fα(xα) +
∑
α

fα(yα)

= f((xα)α) + f((yα)α);

hence f is an R-module map. Now that we’ve shown that f is an R-module map, we
must show that it is unique, thereby proving our claim. Suppose there is an R-module
map g : C→ D such that fα = g ◦ iα for all α. We then have

g((xα)α) =
∑
α

g(iα(xα)) =
∑
α

fα(xα) =
∑
α

f(iα(xα)) = f((xα)α),

and so f = g, thus f is unique.
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This construction works because of a key restriction we placed on C, namely that its
elements are zero at all but finitely many positions. Without this restriction, we could not
exploit linearity as cavalierly as we did. Furthermore, these two examples demonstrate a
useful characteristic of products and coproducts in the category of R-modules: products
and coproducts of finite families of modules coincide. What this means is that for a
finite family of R-modules {M1, . . . ,Mn}, we have that M1⊕· · ·⊕Mn = M1×· · ·×Mn.

In light of Definitions 1.14 and 1.15, we make the following observations.

Corollary 1.20. Let C be a category, let F = {Xα}α with product P =
∏

αXα their

product, along with a family of maps {P πα−→ Xα}α which are universal. Given any object

Q ∈ Ob(C) with maps {Q fα−→ Xα}α, then

ϕ : HomC

(
Q,
∏
α

Xα

)
→
∏
α

HomC(Q,Xα)

given by g 7→ (πα ◦ g)α is a natural bijection.

Proof. Using Defintion 1.14 on Q and its associated maps, we induce a unique map in
HomC(Q,P), so surjetivity is done. We now show that ϕ is injective; let f, g be maps
such that ϕ(f) = ϕ(g), thus (πα ◦ f)α = (πα ◦ g)α. For all α, we have πα ◦ f = πα ◦ g,
and since {πα}α is universal, it follows that f = g, hence ϕ is injective.

Corollary 1.21. Let C be a category, F = {Xα}α a family of objects, and coproduct

C =
∐

αXα equipped with a family of maps {Xα
iα−→ C}α which is universal. Given any

D ∈ Ob(C) with maps {Xα
fα−→ D}α, then

ψ : HomC

(∐
α

Xα,D

)
→
∏
α

HomC(Xα,D)

given by g 7→ (g ◦ iα)α is a natural bijection.

Proof. Definition 1.15 induces a unique map in HomC(C,D) for the given object D and
its morphisms, hence ψ is surjective. Similar to the method used in Theorem 1.20 we
conclude that ψ is injective.

These two corollaries tell us that not only can we induce unique morphisms using
universality of products and coproducts, but that the converse is also true. Given a
morphism either in to a product or out of a coproduct, we can induce a unique family
of morphisms in the same direction. The importance of this observation cannot be
overstated, as the next theorem will illustrate.

Theorem 1.22 (Representing Matrices). Let R be a ring, let M1, . . . ,Mn, N1, . . . , Nm be
R-modules, and let f ∈ HomR(M1⊕· · ·⊕Mn, N1⊕· · ·⊕Nm). Let λi : Mi →M1⊕· · ·⊕Mn

and πj : N1 ⊕ · · · ⊕ Nm → Nj be the canonical inclusion and projection maps. The
representing matrix of f is given by

[f ] =


π1 ◦ f ◦ λ1 π1 ◦ f ◦ λ2 · · · π1 ◦ f ◦ λn
π2 ◦ f ◦ λ1 π2 ◦ f ◦ λ2 · · · π2 ◦ f ◦ λn

...
...

. . .
...

πm ◦ f ◦ λ1 πm ◦ f ◦ λ2 · · · πm ◦ f ◦ λn


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Proof. This is an immediate consequence of Corollaries 1.20 and 1.21. Since we are
considering a finite family of R-modules, then products and coproducts coincide as
previous noted, hence

HomR

(
n∐
i=1

Mi,

m∏
j=1

Nj

)
←→

m∏
j=1

HomR

(
n∐
i=1

Mi, Nj

)
←→

m∏
j=1

n∏
i=1

HomR(Mi, Nj)

given by

f 7→


π1 ◦ f
π2 ◦ f

...
πj ◦ f

 7→ [f ].

Since the maps we are dealing with are bijective, we can reverse the process and recover
f from [f ].

This allows us to consider R-module maps between (finite) products in a way similar
to that of matrix multiplication! Of course, the next natural question is whether the
representation matrix of a composite of two such functions can be represented as a
product of the individual representation matrices.

Theorem 1.23 (Matrix Composition). Let R be a ring, let f ∈ HomR(M1 ⊕ · · · ⊕
Mn, N1 ⊕ · · · ⊕ Nm), and let g ∈ HomR(N1 ⊕ · · · ⊕ Nm, P1 ⊕ · · · ⊕ Pr). Let {λj} be
canonical inclusion maps for the M modules, let {ρk} and {µk} be canonical projection
and inclusion maps for the N modules, and let {πi} be canonical projection maps for the
P modules. Then, [g ◦ f ] = [g][f ].

Proof. Define [g]ik := πi◦g◦µk, define [f ]kj := ρk◦f◦λj, and define [g◦f ]ij = πi◦(g◦f)◦λj.
Fix i and j and consider the following:

([g][f ])ij =
m∑
k=1

[g]ik ◦ [f ]kj =
m∑
k=1

πi ◦ g ◦ (µk ◦ ρk) ◦ f ◦ λj

= πi ◦ g ◦

(
m∑
k=1

µk ◦ ρk

)
◦ f ◦ λj.

Fix k and consider (µk ◦ ρk)(n1, . . . , nm) = µk(nk) = (0, . . . , 0, nk, 0, . . . , 0) where all but
the k-th coordinate is zero. It then follows that the sum of the µk ◦ ρk terms yields the
identity. This means that ([g][f ])ij = πi ◦ (g ◦f)◦λj = [g ◦f ]ij, hence [g][f ] = [g ◦f ].

2. Exact Sequences

Definition 2.1 (Exact Sequences). Let R be a ring. Let M2
u−→ M1

v−→ M0 be a
sequence of maps.

• The sequence is said to be a complex if v ◦ u = 0; in other words, Im(u) ⊂ Ker(v).

• The sequence is exact at M1 if Im(u) = Ker(v).
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• A sequence · · · −→ Cn+1 −→ Cn −→ Cn−1 −→ · · · is said to be an exact sequence
if it is exact at Cn for all n.

• An exact sequence of the form 0 −→ M ′ u−→ M
v−→ M ′′ −→ 0 is said to be a

short exact sequence.

Example 2.2. 0 −→ Ker(v) −→M
v
�M ′′ −→ 0.

Example 2.3. 0→M ′ →M →M/M ′ → 0.

Proposition 2.4. Let 0 −→ M ′ u−→ M
v−→ M ′′ −→ 0 of R-modules. Then, u is

injective, v is surjective, and M ′′ ∼= M/Im(u).

Proof. Exactness at M ′ implies that Ker(u) = 0, hence u is injective. Exactness at
M ′′ implies that Im(v) = M ′′, hence v is surjective. Lastly, we have M ′′ = Im(v) ∼=
M/Ker(v) = M/Im(u).

Short exact sequences are going to play an integral role in helping us recognize direct
sums of R-modules. The next few propositions and theorems will address a few situations
in which direct sums arise.

Proposition 2.5. Let M be an R-module with submodules M1,M2 ⊂ M satisfying
M1 +M2 = M and M1 ∩M2 = 0, then M ∼= M1 ⊕M2.

Proof. Define f1 : M1 ↪→M and f2 : M2 ↪→M . These maps are clearly R-module maps
and therefore induce a unique map f : M1 ⊕M2 →M such that the diagram

M1 M1 ⊕M2 M2

M

i1 i2

f1 f2
f

commutes, where i1 and i2 are the universal inclusion maps. Let (m1,m2) ∈ Ker(f),
then by definition of f1 and f2, this means that m1 + m2 = 0, and it follows that
m1 = m2 = 0, so f is injective. Let m ∈ M , and let m1 ∈ M1 and m2 ∈ M2 such that
m = m1 + m2. We then have that f(m1,m2) = f1(m1) + f2(m2) = m1 + m2 = m, so f
is surjective.

Definition 2.6 (Sections). A section of a map p : M → M ′′ is a map s : M ′′ → M
such that p ◦ s = idM ′′.

Definition 2.7 (Retractions). Given a map i : M ′ → M , a retraction of i is a map
r : M →M ′ such that r ◦ i = idM ′.

Theorem 2.8. Let 0 −→M ′ u−→M
p−→M ′′ −→ 0 be an exact sequence of R-modules.

Suppose s : M ′′ →M is a section of p, i.e. s is an R-module map such that p◦s = idM ′′.
Then, M ∼= M ′ ⊕M ′′.
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Proof. We have maps u : M ′ → M and s : M ′′ → M , hence the universal mapping
property of coproducts induces a unique R-module map ϕ : M ′ ⊕M ′′ → M such that
the diagram

M ′ M ′ ⊕M ′′ M ′′

M

i1 i2

u s
ϕ

commutes. In particular, this means that ϕ(m′,m′′) = u(m′) + s(m′′). Our goal will
now be to show that ϕ is in fact an isomorphism. Let (m′,m′′) ∈ Ker(ϕ), so it follows
that u(m′) + s(m′′) = 0 and pu(m′) +ps(m′′) = 0. Since p◦u = 0 and p◦ s = idM ′′ , then
m′′ = 0. This implies that u(m′) = 0 and since u is an injection, we therefore conclude
that ϕ is an injection as well. Now, let m ∈ M and note that m − sp(m) ∈ Ker(p),
since p(m) − psp(m) = p(m) − p(m) by the property that p ◦ s = idM ′′ . This means
that m − sp(m) ∈ Im(u), so there is some m′ ∈ M ′ such that u(m′) = m − sp(m). It
then follows that ϕ(m′, p(m)) = u(m′) + p(m′′) = m − sp(m) + sp(m) = m, so ϕ is
surjective.

Theorem 2.9. Let 0 −→ M ′ u−→ M
p−→ M ′′ −→ 0 be an exact sequence of R-

modules. Suppose r : M →M ′ is a retraction of u, i.e. r is an R-module map such that
r ◦ u = idM ′. Then M ∼= M ′ ⊕M ′′.

Proof. We could easily construct an argument similar to that of Theorem 2.8 to prove
our claim, but that’s no fun. Instead, we’re going to show that given a retraction of u,
we can construct a section of p, and our conclusion will follow.

First, we have maps r : M →M ′ and p : M →M ′′, which by the universal mapping
property of products induces a unique R-module map ϕ : M →M ′ ×M ′′ such that the
diagram

M ′ M ′ ×M ′′ M ′′

M

π1 π2

r p
ϕ

commutes. Our claim is that p|Ker(r) : Ker(r)→M ′′ is an isomorphism, so we need only
show that it is bijective.

Let m ∈ Ker(p|Ker(r)), and so m ∈ Ker(r) ∩ Ker(p) = Ker(r) ∩ Im(u). This means
there is m′ ∈M ′ such that u(m′) = m, which in turn implies ru(m′) = r(m). From this
it follows that m′ = 0 since r is a retraction of u, and m is in the kernel of r, hence
p|Ker(r) is injective.

Now, let m′′ ∈M ′′ and since p is surjective, there is m ∈M such that p(m) = m′′. It
is easy to show that m−ur(m) ∈ Ker(r), and so (p|Ker(r))(m−ur(m)) = p(m−ur(m)) =
p(m) − pur(m) = p(m) = m′′. Therefore p|Ker(r) is bijective. This means that we can

define s = (p|Ker(r))
−1 : M ′′ → M , which is clearly a section of p. Since p has a section,

then M ∼= M ′ ⊕M ′′ by Theorem 2.8.
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3. Free Modules

Definition 3.1 (Free R-modules). Let S be any set. A free R-module on S is an R-
module F (S) equipped with a set map ι : S → F (S) which is universal: i.e. given any R-
module M and any set map f : S →M , there is a unique R-module map f̃ : F (S)→M
making the diagram

S F (S)

M

ι

f
f̃

commute.

Recall from our previous observations when dealing with universal mapping proper-
ties of products and coproducts that if such an object exists, it is unique up to canonical
isomorphism. The next theorem will demonstrate a construction of such a free module,
hence the object constructed is the only such object that can exist.

Theorem 3.2 (Free R-Module Construction). Let R be a ring and let S be any set,
then

F (S) =
∐
s∈S

R.

Proof. Let M be any R-module and let f : S → M be any set function. Define f̃ :
F (S) → M by (rs)s 7→

∑
s∈S rs.f(s). The fact that f = f̃ ◦ ι follows directly from our

definition of f̃ , so we must now show that it is an R-module map:

f̃((rs)s + (ps)s) = f̃((rs + ps)s) =
∑
s∈S

(rs + ps).f(s) =
∑
s∈S

rs.f(s) +
∑
s∈S

ps.f(s)

= f̃((rs)s) + f̃((ps)s)

and
f̃(r.(ps)s) = f̃((r.ps)s) =

∑
s∈S

(r.ps).f(s) = r.
∑
s∈S

ps.f(s) = r.f̃((ps)s).

These properties confirm that f̃ is indeed an R-module map.
We will now show that f̃ is a unique R-module map, hence F (S) with ι is universal.

Let g̃ : F (S)→M be an R-module map such that f = g̃ ◦ ι. Then,

g̃((rs)s) = g̃

(∑
s∈S

rs.ι(s)

)
=
∑
s∈S

g̃(rs.ι(s)) =
∑
s∈S

rs.g̃(ι(s)) =
∑
s∈S

rs.f(s)

=
∑
s∈S

rs.f̃(ι(s)) =
∑
s∈S

f̃(rs.ι(s)) = f̃

(∑
s∈S

rs.ι(s)

)
= f̃((rs)s);

therefore g̃ = f̃ , and we’re done.

Notice that we defined F (S) in terms of coproducts instead of in terms of products.
This means that given any element (ms)s ∈ F (S), then there is a finite subset A ⊂ S
such that mx = 0 if and only if x 6∈ A. In essence, this says that any element in F (S)
can be expressed (not necessarily uniquely) as a finite sum

∑
a∈A ra.ea where ea := ι(a).
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4. Zn = Zm implies n = m

To prove the claim in the title of this section, we must first develop some additional
theory. Our approach will be that of rephrasing the problem in terms of vector spaces.
In addition, throughout this section, unless otherwise specified, we will assume that R
is a commutative ring.

Theorem 4.1 (Correspondence Theorem for Groups). Let G be a group. If K C G,
then there is a lattice isomorphism

{H ≤ G : K ⊂ H ⊂ G} ←→ {H ≤ G/K}.

Before we prove this claim, we will consider an analogous problem in set theory.
Consider a set map f : X → Y between two sets X and Y . In general, we know that
S ⊂ f−1(f(S)) and f(f−1(T )) ⊂ T for arbitrarily subsets S ⊂ X and T ⊂ Y , but when
do we have set equality? For starters, if f is surjective, then f(f−1(T )) = T , so when
do we have S = f−1(f(S))?

To answer this question, recall that f induces an equivalence relation ∼ on X where
x1 ∼ x2 if and only if f(x1) = f(x2). Let X/ ∼ be be set of equivalence classes, and
note that there is a unique map f̄ such that the diagram

X Y

X/ ∼

f

η
f̄

commutes where η sends each element to its respective equivalence class. We then claim
that set equality holds when S is saturated, i.e. S is a union of equivalence classes.
To prove our claim, let s ∈ f−1(f(S)) where S is saturated, then f(s) ∈ f(S) and
f−1(f(s)) ⊂ S. But f−1(f(s)) = [s] where [s] denotes the equivalence class of s, so
[s] ⊂ S and it then follows that s ∈ S.

The result of these observations allows us to say that if f : X → Y is surjective, then
there is a bijection between the saturated subsets of X and the subsets of Y , i.e.:

{saturated subsets of X} ←→ {subsets of Y }.

Proof of Theorem 4.1. From the observations we just made, we note that in the context
of group theory, equivalence classes are cosets of subgroups. We then take the canonical
projection map π : G → G/K to be our surjective map, and our saturated subsets to
be subgroups of G such that K ⊂ H ⊂ G. Applying this directly to our observations
above, we have X = G, Y = G/K, and f = π.

Theorem 4.2. Let R be a commutative ring with an ideal I, then R/I is a field if and
only if I is maximal.

Proof. The Correspondence Theorem extends well beyond mere group theory and can
be applied to the context of ring theory as well. In this sense, if we assume that R/I
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is a field, then we know that it contains only two ideals: R and 0. However, the
Correspondence Theorem then tells us that there can only be two ideals between R and
I, namely R and I themselves, hence I is a maximal ideal. Similarly, if I is a maximal
ideal, any ideal between R and I must be either R or I, hence R/I is a field.

Example 4.3. Let p be a prime. Then pZ is a maximal ideal in Z, hence Z/pZ is a
field.

Let I be an ideal such that pZ ⊂ I ⊂ Z. Since Z is a principal ideal domain, then
I = nZ for some n ∈ Z. This means that p ∈ nZ, hence n|p, but this implies that n = 1
or n = p, hence I = pZ or I = Z.

Lemma 4.4. Let M and N be R-modules, and let M ′ ⊂M and N ′ ⊂M be submodules,
then

M ⊕N
M ′ ⊕N ′

∼=
M

M ′ ⊕
N

N ′
.

Proof. The canonical projections M → M/M ′ and N → N/N ′ induce a surjective map
M ⊕N →M/M ′⊕N/N ′ given by (m,n) 7→ (m,n). The kernel of this map is M ′⊕N ′,
hence by the First Isomorphism Theorem, our conclusion follows.

Definition 4.5. Let R be a ring and let m be a maximal ideal in R. For any R-module
M , we denote the R/m-module M/(mM) by M .

Lemma 4.6. Let R be a ring and let m be a maximal ideal. Given an R-module map
f : M → N , there is a unique map f : M → N such that πN ◦ f = f ◦ πM , where πM
and πN are the canonical projection maps.

Proof. Our goal is to induce a map f which makes the diagram

M N

M

πN ◦ f

πM
f

commute. We will do so by showing that mM ⊂ Ker(πN ◦ f). Let x.m ∈ mM and
note that f(x.m) = x.f(m) ∈ mN , so πN(f(x.m)) = 0 and so mM ⊂ Ker(πN ◦ f). The
fundamental theorem on homomorphisms then induces the desired unique map.

Proposition 4.7. Let R be a ring and let m be a maximal ideal in R. Let C be the
category of R-modules and let D be the category of R/m-modules. Define F : C → D on
objects by M 7→M and on arrows f 7→ f , given by Lemma 4.6. Then F is a functor.

Proof. Let f : M → N and g : N → P be R-modules maps. We must show that
F(g) ◦ F(f) = F(g ◦ f), or in other words that g ◦ f = g ◦ f . This is most easily seen
by the observation that

g ◦ f ◦ πM = πP ◦ g ◦ f = g ◦ πN ◦ f = (g ◦ f) ◦ πM .

Our desired identity follows by uniqueness of g ◦ f ; it is then easy to show that F
preserves identities.
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Lemma 4.8. Let R be a ring and let M and N be R-modules, then M ⊕N ∼= M ⊕N .

Proof. This follows almost immediately from Lemma 4.4, but we will make this explicit
as follows:

M ⊕N =
M ⊕N

m(M ⊕N)
=

M ⊕N
mM ⊕mN

∼=
M

mM
⊕ N

mM
= M ⊕N.

We are now ready to prove our desired theorem, which will imply the title of this
section.

Theorem 4.9. Let R be a commutative ring. If Rn ∼= Rm, then n = m.

Proof. Let ϕ : Rn → Rm be an isomorphism of R-modules and let m be a maximal ideal
of R. Applying our functor from Proposition 4.7 along with Lemma 4.8, we induce a
map

ϕ : R
n → R

m

which is an isomorphism of R-modules. However, Theorem 4.2 says that R is a field,
hence we have an isomorphism of finite-dimensional vector spaces, therefore n = m.

To obtain this result, we made a key assumption that R was a commutative ring.
This begs the question: can we obtain the same result if we were to omit the hypothesis
that R was commutative? The answer is yes, provided R contains a commutative ideal
I. We could then consider R/I which yields a commutative quotient and then apply
Theorem 4.9 to the quotient.

5. Modules of Fractions

This section will be motivated by the construction of the rationals from the integers.
We will consider a commutative ring R and let S be a multiplicatively closed subset
of R which contains 1R. Our goal will be to construct a ring, denoted by S−1R, with
a universal mapping property. The first step will be to put an equivalence relation on
R× S as the next proposition will demonstrate.

Proposition 5.1. Define a relation (a, s) ∼ (a′, s′) if and only if there exists t ∈ S such
that tsa′ = ts′a. Then, ∼ defines an equivalence relation on R× S.

Proof. We must show reflexivity, symmetry, and transitivity of ∼. Reflexivity follows
since 1 ∈ S; likewise, symmetry follows since equality is also symmetric. Lastly, suppose
(a, s) ∼ (a′, s′) and that (a′, s′) ∼ (a′′, s′′) and let t, u ∈ S such that tas′ = ta′s and
ua′s′′ = ua′′s′. Multiplying the first equation by us′′ and the second by ts, we have

tuas′s′′ = tua′ss′′ and tua′ss′′ = tua′′ss′,

so it follows that tuas′s′′ = tua′′ss′, and so (tus′)as′′ = (tus′)a′′s. Since tus′ ∈ S, then
this demonstrates transitivity, hence (a, s) ∼ (a′′, s′′).
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For convenience, we denote (a, s) ∈ R×S by a
s
. We then define addition on R×S by

a
s

+ a′

s′
= as′+a′s

ss′
and multiplication by a

s
· a′
s′

= aa′

ss′
. Once we confirm that these operations

are well-defined, we will have constructed our ring desired S−1R.

Definition 5.2 (Ring of Fractions). Let R be a commutative ring and S ⊂ R a mul-
tiplicatively closed set such that 1 ∈ S. The ring of fractions of R with respect to S is
a ring denoted S−1R equipped with a map ι : R → S−1R which is universal: i.e. given
any commutative ring A and any ring map f : R → A, there is a unique ring map
f̃ : S−1R→ A such that the diagram

R S−1R

A

ι

f
f̃

commutes.

We’ve already constructed S−1R, so all that remains is to show that it satisfies the
universal mapping property as described in Definition 5.2.

Theorem 5.3. The ring S−1R as previous constructed satisfies the universal mapping
property with ι : R→ S−1R given by ι(r) = r

1
.

Proof. Let A be any ring and let f : R → A be any ring map. Define f̃ : S−1R → A
by f̃( r

s
) = f(r)f(s)−1. We must first show that this map is well-defined, so suppose

(r, s) ∼ (r′, s′), so there is t ∈ S such that trs′ = tr′s. This means that f(t)f(r)f(s′) =
f(t)f(r′)f(s), then multiply both sides by f(t)−1f(s)−1f(s′)−1. It then follows that
f(r)f(s)−1 = f(r′)f(s′)−1, therefore f̃ is well-defined. We then observe that f̃(ι(r)) =
f̃(r/1) = f(r)f(1)−1 = f(r), hence f = f̃ ◦ ι. Next, we will show that f̃ is a ring map,
so we have

f̃

(
r

s
+
r′

s′

)
= f̃

(
rs′ + r′s

ss′

)
= f(rs′ + r′s)f(ss′)−1

= f(rs′)f(ss′)−1 + f(r′s)f(ss′)−1

= f̃

(
rs′

ss′

)
+ f̃

(
r′s

ss′

)
= f̃

(r
s

)
+ f̃

(
r′

s′

)
and

f̃

(
r

s
· r
′

s′

)
= f̃

(
rr′

ss′

)
= f(rr′)f(ss′)−1 = f(r)f(s)−1f(r′)f(s′)−1 = f̃

(r
s

)
f̃

(
r′

s′

)
.

All that remains is to show that f̃ is unique. Suppose there is a ring map g̃ : S−1R→ A
such that f = g̃ ◦ ι. It then follows that

g̃
(r
s

)
= g̃

(r
1

)
g̃

(
1

s

)
= g̃(ι(r))g̃(ι(s))−1 = f(r)f(s)−1 = f̃

(r
s

)
,

therefore f̃ is unique.
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Lemma 5.4. Let R be a commutative ring and let S be the set of multiplicative units
of R, i.e. S = {s ∈ R : there exists s−1 ∈ R such that ss−1 = 1}. Then, S−1R ∼= R.

Proof. Let i : R → R be the inclusion map. Definition 5.2 then induces a unique map
ĩ : S−1R → R such that ĩ( r

s
) = i(r)i(s)−1 = rs−1. It is clear that ĩ( r

1
) = r, hence ĩ

is surjective, so it remains to show that it is likewise injective. Let r
s
∈ Ker(̃i), hence

rs−1 = 1, therefore uniqueness of inverses implies that r = s, hence r
s

= 1.

Definition 5.5 (Local Ring). A commutative ring R is called a local ring if it contains
a unique maximal ideal.

Lemma 5.6. A commutative ring R is a local ring if and only if the complement of its
set of units is an ideal in R. In other words, the set of nonunits form the maximal ideal
of a local ring.

Proof. Suppose R is a local ring and denote its maximal ideal by m, let U denote the
set of units in R. Let x 6∈ m and suppose x 6∈ U . It then follows that (x) is an ideal
and is therefore contained in some maximal ideal. However, since x 6∈ m and m is the
unique maximal ideal in R, this is a contradiction, hence x ∈ U . This means that x 6∈ m
implies x ∈ U ; or in other words, x 6∈ U implies that x ∈ m. Now, let x, y ∈ U c and
suppose x + y ∈ U . Since x, y 6∈ U , then x, y ∈ m, hence x + y ∈ m as well; however,
this implies that x + y is a unit, which further implies that m = R, a contradiction. It
then follows that U c is closed under addition, and is therefore an ideal in R.

Conversely, suppose U c is an ideal in R. Let I be an ideal of R such that U c ⊂ I ⊂ R.
If I 6= U c, then there is some i ∈ I such that i 6∈ U c, hence i is a unit; however, this
implies that I = R, hence U c is a maximal ideal. Suppose there is another maximal
ideal m in R. Since m is maximal, then it is not identically R and it cannot contain any
units, hence m ⊂ U c. Maximality of m then implies that m = U c, therefore R is a local
ring.

Lemma 5.7 (Localization). Let R be a commutative ring and let S = R−p where p is a
prime ideal in R. Then, S−1R is a local ring; in particular, this is called the localization
of R at p, and denoted Rp.

Proof. Let M = {p
s
∈ S−1R : p ∈ p, s ∈ S} and let U be the set of units of S−1R. By

Lemma 5.6, it suffices to show that M is an ideal such that M = U c. It is clear that M
is an ideal since r

s
· p
s′

= rp
ss′
∈M since rp ∈ p.

Let r
s
∈ U , hence there is r′

s′
∈ S−1R and t ∈ S such that t(rr′ − ss′) = 0. Since

0 ∈ p and t 6∈ p, then rr′ − ss′ ∈ p. Suppose r ∈ p, then rr′ ∈ p, and so ss′ ∈ p, a
contradiction. This means that r 6∈ p, hence r

s
6∈M , which says that M ⊂ U c. Now, let

r
s
6∈ M and so r 6∈ p, hence r ∈ S. It then follows that s

r
is inverse to r

s
, hence r

s
∈ U .

This means that U c ⊂M and M = U c, therefore S−1R is a local ring.

Definition 5.8 (Reduced Rings). A ring R is said to be reduced if it contains no nonzero
nilpotent elements.

Theorem 5.9. Let R be a ring. If Rp is reduced for all prime ideals p, then R is likewise
reduced.
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Proof. Let x ∈ R such that x is nonzero and let ann(x) = {r ∈ R : rx = 0}. Since
0 ∈ ann(x), then ann(x) ⊂ m for some maximal ideal in R. Furthermore, since maximal
ideals are prime ideals, then Rm is reduced. Suppose that x

1
= 0

1
in Rm, and so it follows

that there is t 6∈ m such that t · x · 1 = t · 1 · 0 = 0. This means that t ∈ ann(x) ⊂ m,
but t ∈ S = R − m, a contradiction. Now, suppose x is nilpotent, so there is n ∈ Z+

such that xn = 0. It then follows that since Rm is reduced, we have 0 = xn

1
= (x

1
)n 6= 0,

a contradiction. Therefore x is not nilpotent, and so we conclude that R is reduced.

Having constructed the ring of fractions of R with respect to S and shown it satisfies
the universal mapping property, we now set out to construct modules of fractions from
this ring. Given an R-module M , we wish to construct S−1M as an S−1R module. But
first, we prove a quick and useful lemma.

Lemma 5.10 (Pullback Module Structures). Let A and B be rings and ϕ : A → B a
ring map. Then if N is a B-module, then N is also an A-module by “pullback along ϕ”.

Proof. Since N is a B-module, there is a ring homomorphism ψ : B → End(N). We
then consider the following diagram

B End(N)

A

ψ

ϕ

Since ψ and ϕ are both ring homomorphisms, then ψ ◦ ϕ : A → End(N) is also a ring
homomorphism. Therefore N is an A-module given by ϕ(a).n.

We define an equivalence relation on M×S by (m, s) ∼ (m′, s′) if and only if there is
t ∈ S such that t.(s.m′) = t.(s′.m), similar to what we did previously. Likewise, denote
(m, s) by m

s
for convenience, and denote S−1M as the collection of all such elements.

Define addition and multiplication on S−1M by m
s

+ m′

s′
= s′.m+s.m′

ss′
and r

s
· m
t

= r.m
st

,
thereby endowing S−1M with a S−1R-module structure. These operations are well-
defined as they were in the case of the ring of fractions; however, we must now be a bit
more careful in how we express these relationships now that we are in the context of
modules.

Definition 5.11 (Modules of Fractions). Let S−1R be the ring of fractions of R with
respect to S and let M be an R-module. The module of fractions of S−1R is denoted
S−1M and is equipped with a map ι : M → S−1M which is universal: i.e. given any
S−1R-module N and any R-module map f : M → N , there is a unique S−1R-module
map f̃ : S−1R→ N such that the diagram

M S−1M

N

ι

f
f̃

commutes.
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This definition may be a bit confusing, since we’re mixing categories, but Lemma
5.10 remedies this confusion. Since N is an S−1R-module and there is a ring map
ι : R→ S−1R, then N is an R-module map by pullback.

Theorem 5.12. The module of fractions S−1M as previous constructed satisfies the
universal mapping property with ι : M → S−1M given by ι(m) = m

1
.

Proof. Let N be any S−1R-module and let f : M → N be any R-module map. Define
f̃ : S−1M → N by f̃

(
m
s

)
= f(m)

s
. The proof that f̃ is well-defined, an S−1R-module

map, and unique follows similarly to that of Theorem 5.3.

Lemma 5.13. Let f : M → N be an R-module map, then there is a unique S−1R-module
map S−1f : S−1M → S−1N such that ιN ◦ f = S−1f ◦ ιM .

Proof. Invoke Definition 5.11, and let S−1f be the unique S−1R-module map making
the diagram

M S−1M

S−1N

ιM

ιN ◦ f
S−1f

commute.

Theorem 5.14 (Functoriality of S−1(·)). Let S−1R be the ring of fractions of R with
respect to S. Let C be the category of R-modules and D be the category of S−1R-modules.
Define S−1(·) : C → D by M 7→ S−1M on objects and f 7→ S−1f on arrows. Then,
S−1(·) is a functor.

Proof. Let f : M → N and g : N → P be R-module maps. It then follows that

S−1(g ◦ f) ◦ ιM = ιP ◦ g ◦ f = S−1g ◦ ιN ◦ f = (S−1g ◦ S−1f) ◦ ιM .

Uniqueness of S−1(g ◦f) implies S−1(·) preserves composition, and preservation of iden-
tities is readily seen.

Lemma 5.15. If M ′ f−→M
g−→M ′′ is an exact sequence of R-modules, then S−1M ′ →

S−1M → S−1M ′′ is an exact sequence of S−1R-modules.

Proof. Since g◦f = 0 and S−1(·) is a functor, then S−1g◦S−1f = S−1(g◦f) = S−1(0) =

0, so Im(S−1f) ⊂ Ker(S−1g). Let m
s
∈ Ker(S−1g), then S−1g(m

s
) = 0 and g(m)

s
= 0.

This says that there is t ∈ S such that t.1.g(m) = t.s.0 by our equivalence relation, so
g(t.m) = 0 and t.m ∈ Ker(g) = Im(g). Then, there is then x ∈M ′ such that f(x) = t.m,

and it follows that S−1f( x
ts

) = f(x)
ts

= t.m
ts

= m
s

.

Lemma 5.16. Let M and N be R-modules, then

S−1(M ⊕N) ∼= S−1M ⊕ S−1N.
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Proof. Let

0→M
i−→M ⊕N π−→ N → 0

be an exact sequence where i and π are canonical inclusion and projection maps, respec-
tively. There is also a retraction r : M ⊕N → M which is a canonical projection map,
i.e. r ◦ i = idM . Since S−1(·) is exact by Lemma 5.15, then we induce an exact sequence

0→ S−1M
S−1i−→ S−1(M ⊕N)

S−1π−→ S−1N → 0.

Functoriality of S−1(·) then implies that S−1r ◦S−1i = S−1(r ◦ i) = S−1(idM) = idS−1M .
This means that S−1r is a retraction of S−1i, and our conclusion follows by Theorem
2.9.

Recall the motivation question behind Theorem 4.9 which asks was whether Zn ∼= Zm
implies n = m. It turned out that we could prove the result in more generality than the
original question posed. In fact, after developing the theory of module of fractions, we
can answer the same motivating question very easily.

Proposition 5.17. If Zn ∼= Zm, then n = m.

Proof. Let S = Z−{0} and note that Q = S−1Z, hence exactness of S−1(·) implies that
Qn ∼= Qm, and so n = m.

6. Chinese Remainder Theorem

Theorem 6.1 (Chinese Remainder Theorem). Let R be a commutative ring with ideals
I, J C R such that I + J = R, i.e. I and J are coprime ideals. Then IJ = I ∩ J and
R/(IJ) ∼= R/I ×R/J as rings.

Proof. Let p1 : R → R/I and p2 : R → R/J be canonical projection maps. These
maps induce a unique map p : R → R/I × R/J , via the universal mapping property of
products in the category of rings, hence the diagram

R/I R/I ×R/J R/J

R

π1 π2

p1 p2
p

commutes. Our approach will be to show that p is surjective, that Ker(p) = I ∩ J ,
and lastly that I ∩ J = IJ . First, however, since I + J = R, then 1 = i + j for
some i ∈ I and j ∈ J . It then follows that p(i) = (i, i) = (0, 1 − j) = (0, 1) and
p(j) = (j, j) = (1− j, 0) = (1, 0). Let (a, b) ∈ R/I ×R/J , then

p(aj + bi) = p(aj) + p(bi) = (a, a) · (j, j) + (b, b) · (i, i) = (a, 0) + (0, b) = (a, b).

Since p was induced via canonical projection maps, then we must have that Ker(p) =
I ∩ J . Next, we will show that I ∩ J = IJ . Let xy ∈ IJ , then ideality of I imples that
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xy ∈ I and ideality of J implies that xy ∈ J , hence xy ∈ I ∩J . Now, let x ∈ I ∩J , then
x = 1x = (i+ j)x = ix+ jx, then ix ∈ IJ and jx ∈ IJ as well, thus x ∈ IJ . The First
Isomorphism Theorem then implies that the diagram

R R/I ×R/J

R/IJ

p

π
ϕ

commutes where ϕ is an isomorphism.

Example 6.2. The idempotents of Z/296Z are 112 and 185.

Proof. We first make the observation that 296 = 8 ·37, and since gcd(8, 37) = 1, then we
have a Diophantine equation 1 = 8x+ 37y for some integers x and y. It then follows by
the Chinese Remainder Theorem that Z/296Z ∼= Z/8Z×Z/37Z since lcm(8, 37) = 296,
hence 8Z ∩ 37Z = 296Z. To find the idempotents of Z/296Z, we make use of the
Euclidean Algorithm to show that x = 14 and y = −3 is a solution to the Diophantine
equation. We then have that 8x = 112 and 37(−3) = −111 ≡ 185 (mod 296). An easy
calculation (with a calculator) confirms that (112)2 ≡ 112 (mod 296) and (185)2 ≡ 185
(mod 296).

Theorem 6.3 (Noncommutative Chinese Remainder Theorem). Let R be a ring and
let A and B be coprime ideals in R such that A ∩B = 0. Then, R ∼= R/A×R/B.

Proof. Since R = A + B, then there is a ∈ A and b ∈ B such that a + b = 1. Define
Ra = {ra : r ∈ R} and Rb = {rb : r ∈ R} and define fa : Ra ↪→ R and fb : Rb ↪→ R by
inclusion. These maps induce a unique map f̃ : Ra×Rb→ R such that the diagram

Ra Ra×Rb Rb

R

ιa ιb

fa fb
f

commutes. Let r ∈ R, hence ra + rb = r, so f̃(ra, rb) = fa(ra) + fb(rb) = ra + rb = r,
so f̃ is surjective. Now, let (x, y) ∈ Ker(f̃), hence f̃(x, y) = 0. This means that
f̃(x, y) = fa(x) + fb(y) = x+ y = 0, hence x = −y ∈ A ∩ B, hence x = 0 and y = 0. It
then follows that f̃ is an isomorphism.

Now, since A ∩ B = 0, then it’s clear that ab = ba = 0. It then follows that
a = a(a + b) = a2 + ab = a2 and b = b(a + b) = ba + b2 = b2, hence a and b are
idempotent. Furthermore, since B is an ideal, then rb ∈ B and a(rb) ∈ B as well, hence
arb = 0, and bra = 0 by symmetry. It then follows that 0 = arb−bra = (1−b)rb−bra =
rb− brb− bra = rb− br(b+ a) = rb− br, hence rb = br, and ra = ar by symmetry.

Define ϕ : R → Ra by r 7→ ra. This is a ring homomorphism since ϕ(r + s) =
(r + s)a = ra + sa = ϕ(r) + ϕ(s) and ϕ(rs) = (rs)a = (rs)a2 = r(sa)a = r(as)a =
(ra)(sa) = ϕ(r)ϕ(s). It then follows that ϕ(b) = ba = 0 for all b ∈ B, hence B ⊂ Ker(ϕ).
Likewise, ϕ(r) = 0 implies that 0 = ra = r(1 − b) = r − rb, so r = rb ∈ B. It then
follows that Ker(ϕ) = B, and so the First Isomorphism Theorem says that R/B ∼= Ra.
Defining a similar map r 7→ rb, we conclude that R ∼= R/A×R/B.
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7. Finitely-Generated Modules over a PID

Lemma 7.1. Let R be a ring, then any R-module is a quotient of a free R-module.

Proof. Let S = {mα}α be a generating set of M as an R-module. Definition 3.1 induces
a map f̃ such that the diagram

S F (S)

M

ι

f
f̃

commutes, where f(mα) = mα for all α. Since S generates M , then f̃ is surjective, and
the First Isomorphism Theorem induces an isomorphism ϕ such that the diagram

F (S) M

F (S)/Ker(ϕ)

f̃

π
ϕ

commutes. Therefore M is isomorphic to the quotient of a free module.

Definition 7.2 (Representable Functor). Let P be an R-module. Let C be the category
of R-modules and let D be the category of Z-modules. Define HomR(P, ·) : C → D
by M 7→ HomR(P,M) on objects and (f : M → N) 7→ f∗ on arrows, where f∗ :
HomR(P,M)→ HomR(P,N) is given by u 7→ f ◦ u.

With this definition, it is easy to see that HomR(P, ·) is a functor, since (g ◦f)∗(u) =
g ◦ f ◦ u = g ◦ f∗(u) = g∗(f∗(u)), so (g ◦ f)∗ = g∗ ◦ f∗.

Theorem 7.3 (Left Exactness of HomR(P, ·)). If 0 → M ′ f−→ M
g−→ M ′′ is an exact

sequence, then 0 → HomR(P,M ′)
f∗−→ HomR(P,M)

g∗−→ HomR(P,M ′′) is an exact
sequence.

Proof. It suffices to show that f∗ is injective and that Ker(g∗) = Im(f∗), we’ll first show
that f∗ is injective. Let u ∈ Ker(f∗), then 0 = f∗(u) = f ◦ u, thus Im(u) ⊂ Ker(f) = 0
since f is injective, so Im(u) = 0 as well. It then follows that u = 0, so f∗ is injective.
Now, observe that g∗ ◦ f∗ = (g ◦ f)∗ = 0∗ = 0, so Im(f∗) ⊂ Ker(g∗). Let v ∈ Ker(g∗), so
0 = g∗(v) = g ◦ v, so Im(v) ⊂ Ker(g) = Im(f). This means that for all m ∈M , there is
p ∈ P and a unique m′ ∈ M (since f is injective) such that f(m′) = m = v(p). Define
w : P →M ′ by p 7→ m′ where v(p) = m′, which is easily shown to be a homomorphism.
Then, f∗(w)(p) = (f ◦ w)(p) = f(w(p)) = f(m′) = v(p), hence f∗(w) = v, and we’re
done.

Notice that we could only conclude that HomR(P, ·) is left exact and not exact. We
need additional hypotheses on P to conclude that HomR(P, ·) is exact, which will soon
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be provided. First, however, we will demonstrate a counterexample to the exactness of
HomR(P, ·) with our current hypotheses.

Consider the short exact sequence 0 → Z ·2−→ Z π−→ Z/2Z → 0 with P = Z/2Z. It
then follows that Hom(Z,Z/2Z) = 0 and Hom(Z/2Z,Z/2Z) = {id, 0}. This means that
(.2)∗ is injective, but π∗ is not surjective, hence the resulting sequence is not exact.

Definition 7.4 (Projective Modules). An R-module P is projective if for every R-module
epimorphism v : M → N and every R-module map f : P → N , there is an R-module
map g : P →M (not necessarily unique) such that the diagram

P

M N 0
v

f
g

commutes.

Theorem 7.5. The representable functor HomR(P, ·) is exact if and only if P is pro-
jective.

Proof. Suppose P is projective, then we need only show that g∗ from the statement of
Theorem 7.3 is surjective. Let v : P → M ′′ be any R-module map, then since g is
surjective (an epimorphism), then there is h : P →M such that v = g◦h = g∗(h), hence
g∗ is surjective.

Now, suppose that HomR(P, ·) is exact and let v ∈ HomR(M,M ′′) be an epimor-
phism, then we have an exact sequence M

v−→ M ′′ → 0. Since HomR(P, ·) is ex-
act, then this induces an exact sequence HomR(P,M)

v∗−→ HomR(P,M ′′) → 0. Let
h ∈ HomR(P,M ′′) and since v∗ is surjective, there is r ∈ Hom(P,M) such that v∗(r) = h,
therefore P is projective.

Lemma 7.6. All free modules are projective.

Proof. By Theorem 7.5, it suffices to show for any surjection v : M → N that

v∗ : HomR

(∐
α

R,M

)
→ HomR

(∐
α

R,N

)
is likewise a surjection. For any R-module Q, we have

HomR

(∐
α

R,Q

)
∼=
∏
α

HomR(R,Q) ∼=
∏
α

Q

by Theorems 1.11 (only if R is commutative) and 1.20. It is then evident that for any
(nα)α ∈

∏
αN , there is (mα)α ∈

∏
αM such that v(mα) = nα for all α. It therefore

follows by these observations that v∗ is surjective.

Proposition 7.7. An R-module is projective if and only if it is the direct summand of
a free R-module.
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Proof. Let P be a projective R-module and let v : M → P be any R-module epimor-
phism, hence the sequence

0→ Ker(v)→M
v−→ P → 0

is exact. Furthermore, the identity map on P yields a map s : P → M such that
id = v ◦ s, hence s is a section of v, and it follows that M ∼= P ⊕ Ker(v) by Theorem
2.8.

In the other direction, let Q ⊕ P be a free R-module. Define i : P ↪→ Q ⊕ P and
π : Q ⊕ P → P as the canonical inclusion and projection maps, respectively, hence
π ◦ i = id. Let v : M → N be an epimorphism and let f : P → N be any R-module
map. Since Q ⊕ P is a free module, hence projective by Lemma 7.6, then the map
f ◦ π : Q⊕ P → N induces an R-module map g : Q⊕ P →M such that the diagram

Q⊕ P P

M N 0
v

π

fg

commutes. It then follows that v ◦ g ◦ i = f ◦ π ◦ i = f ◦ id = f , therefore P is
projective.

Corollary 7.8. If 0 → M ′ u−→ M
v−→ P → 0 is exact with P projective, then M ∼=

M ′ ⊕ P .

Proof. Since P is projective, there is a free R-module F such that F = P ⊕ M by
Proposition 7.7. Let π : P ⊕M → P be the canonical projection and note that v is
surjective. This means there is an R-module map h : F → M such that π = v ◦ h
by definition of P as a projective R-module. Define s : P → M by p 7→ h(p, 0),
which is clearly an R-module map since h is an R-module map. It then follows that
v(s(p)) = v(h(p, 0)) = π(p, 0) = p, thus s is a section of v. Our conclusion then follows
by Theorem 2.8.

Definition 7.9 (Kernel). Let f : M → N be a map of R-modules. A kernel of f is an
R-module K equipped with an R-module map ι : K → M such that f ◦ ι = 0 which is
universal: i.e. given any R-module X and any R-module map λ : X → M such that
f ◦ λ = 0 there exists a unique map λ̃ : X → K such that the diagram

X

K M N
ι f

λ
λ̃

commutes.

To construct the kernel of an R-module map f : M → N , we let K = {x ∈ M :
f(x) = 0} and let ι : K ↪→ M be the inclusion. Given any λ : X → M such that
f ◦ λ = 0, we define λ̃(x) = λ(x). Let ψ be another map such that λ = ι ◦ ψ, then
ι(ψ(x)) = λ(x) = ι(λ̃(x)). Since ι is the inclusion, it is injective, so ψ(x) = λ̃(x).
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Definition 7.10 (Cokernel). Let f : M → N be an R-module map. A cokernel of f is
an R-module C equipped with a map π : N → C such that π ◦ f = 0 which is universal:
i.e. given any R-module X and any R-module map ρ : N → X such that ρ ◦ f = 0,
there is a unique ρ̃ : C → X such that the diagram

C

M N X
f ρ

π
ρ̃

commutes.

To construct the cokernel, let C = N/Im(f) and let π : N → C be the canonical
projection, so that we have π ◦ f = 0. Let X be any R-module and let ρ : N → X be
given such that ρ ◦ f = 0. Since ρ ◦ f = 0, then Im(f) ⊂ Ker(ρ), so the fundamental
theorem on homomorphisms induces a unique map ρ̃ : C → X such that ρ = ρ̃ ◦ π.

Example 7.11. The sequence 0→ Ker(f)→M
f−→ N → Coker(f)→ 0 is exact.

Theorem 7.12. Let Zn be a free Z-module for some n > 0 and let M ⊂ Zn be a
submodule, then M ∼= Zm for some m ≤ n.

Proof. Define i : Zn−1 → Zn by inclusion on the first n − 1 coordinates and define
p : Zn → Z by projection on the n-th coordinate. It then follows that

0→ Zn−1 i−→ Zn p−→ Z→ 0

is exact. If n = 1, then M is an ideal of Z, hence M = kZ for some k ≥ 0, therefore
M ∼= Zm where m ≤ 1. This takes care of the base case, so now suppose n ≥ 1 and that
submodules of Zn−1 are isomorphic to Zm for some m ≤ n− 1. We then have

0 Ker(p|M) M p(M) 0

0 Zn−1 Zn Z 0

p|M

i p

and since p(M) is a submodule of Z, it must be an ideal, hence p(M) ∼= kZ for some
k ≥ 0. Furthermore, since Ker(p|M) ⊂ Zn−1, then Ker(p|M) ∼= Zm for some m ≤ n− 1.
If k = 0, then p(M) = 0, and exactness of the top row implies that M ∼= Ker(p|M) ∼= Zm
where m ≤ n−1 ≤ n. If k 6= 0, then p(M) = kZ ∼= Z, and since Z is free, it is projective,
and the top sequence splits by Corollary 7.8. This means that

M ∼= Ker(p|M)⊕ p(M) ∼= Zm ⊕ Z ∼= Zm+1

where m ≤ n− 1, so m+ 1 ≤ n.
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Corollary 7.13. Any finitely-generated Z-module M arises as a cokernel of some Z-
module map Zm → Zn with m ≤ n.

Proof. Let {x1, . . . , xn} be a finite generating set for M as a Z-module. Let {ei}ni=1

be a basis of Zn where ei has 1 in the i-th coordinate and zeros elsewhere. Define
π : Zn → M by π(ei) = xi for all i ∈ {1, . . . , n}, which is clearly a surjection since it
maps to all of the generators of M . This means that Ker(π) is a submodule of Zn, and
it follows by Theorem 7.12 that Ker(π) ∼= Zm with m ≤ n. Let ϕ : Zm ∼= Ker(π) ↪→ Zn
be the inclusion map, then Coker(ϕ) = Zn/Im(ϕ) ∼= Zn/Ker(π) ∼= M , where the last
isomorphism follows from the First Isomorphism Theorem on π. We therefore have that
M ∼= Coker(Zm ϕ−→ Zn).

Theorem 7.14 (Smith Normal Form). Let ϕ : Zm → Zn be any Z-module map.
Then, there exists a basis B of Zm and B′ of Zn such that [ϕ]BB′ is diagonal with en-
tries d1|d2| · · · |dm.

Note that the representing matrix of ϕ will not necessarily be a square matrix.
Instead, when we say that it will be diagonal, it means that the only non-zero entries in
the matrix occur in positions where the row and column index agree.

Proof. Let E be the standard basis of Zm and E ′ be the standard basis of Zn. Let
A = [ϕ]EE ′ . Note that for any basis B of Zm and any basis B′ of Zn, we have that

[ϕ]BB′ = [id ◦ ϕ ◦ id]BB′ = [id]E
′

B′ · [ϕ]EE ′ · [id]BE .

Our goal will be to construct the change-of-base matrices which flank A in the above
equality. To show that such matrices can be constructed, we will show that elementary
row and column operations can reduce A to the desired form. In this way, one would
need only keep track of the elementary row and column operations to recover the change-
of-base matrices. What are the elementary row and column operations though? They
must be operations which can be undone through some inverse operation. Consistent
with standard linear algebra, there are only three operations: row/column swap, adding
a multiple of a row/column to another row/column, and scaling a row/column by a unit
(in this context, scaling by ±1).

Step 1: If A = 0, we’re done, so we’ll assume that A 6= 0, hence there is at least one
non-zero entry in A. We can then perform a row and column swap to move this element
to the upper-left corner of A.

Step 2: If the left-most entry of the first row is the only non-zero element, go to
Step 3. Otherwise, swap columns to place one such entry to the immediate right of the
upper-left corner. Denote the value of the number in upper-left corner with x and the
value to its right by a. We can then write a = xq + r for some q and some 0 ≤ r < x,
and perform a column operation by subtracting q times the first column from the second
column. This places a value of r to the immediate right of x; swap the first and second
row and continue this process until we get a zero at the top of the second column. We
continue this process for all non-zero values in the first row until the first column is the
only column with a non-zero element in the first row.

Step 3: Repeat the process described in Step 2 for clearing the first row, but instead
with the first column. Explicitly, all column operations described in Step 2 are replaced
by row operations.
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Step 4: At this point (and this needs to be spelled out more explicitly), we arrange
so that the entry in the upper-left corner of the matrix divides all other entries in the
matrix.

Step 5: Induct this process on the submatrix consisting of all but the first row and
first column.

Definition 7.15 (Torsion). Let R be any ring, and let M be an R-module. We say that
x ∈ M is torsion if there is r ∈ R − {0} such that r.x = 0. Let Tor(M) = {x ∈ M :
x is torsion}.

Lemma 7.16 (Torsion Submodule). Let R be a domain and let M be an R-module,
then Tor(M) is a submodule of M .

Proof. Since M is an abelian group, there is 0 ∈M which is clearly torsion, so Tor(M)
is nonempty. Let x, y ∈ Tor(M), let r ∈ R, and let a, b ∈ R be elements such that
a.x = b.y = 0. Then, (ab).(x+ r.y) = (ab).x+ (ab).(r.y) = (ba).x+ a.(br).y = b.(a.x) +
a.(rb).y = b.0 + (ar).(b.y) = (ar).0 = 0. This means that x + r.y ∈ Tor(M), and so
Tor(M) is an R-submodule of M by Lemma 1.5.

Corollary 7.17. Any finitely-generated Z-module M has a decomposition M ∼= T ⊕ F
where T is finitely-generated torsion and F is free of finite rank.

Proof. Since M is a finitely-generated Z-module, then by Corollary 7.13, we know that
M ∼= Coker(ϕ) = Zn/Im(ϕ) where ϕ : Zm → Zn with m ≤ n. We know that Im(ϕ) is a
submodule of Zn, hence Im(ϕ) ∼= Zk with k ≤ m by Theorem 7.12. It then follows by
Lemma 4.4 that

M ∼=
Z
d1Z
⊕ · · · ⊕ Z

dkZ
⊕ Zr

where r = n− k and di’s are nonzero. Let T = Z/d1Z⊕ · · · ⊕ Z/dkZ and F = Zr.

Lemma 7.18. Let T be a torsion Z-module and let S = Z− {0}, then S−1T = 0.

Proof. It suffices to show that t/s = 0 for all t ∈ T and all s ∈ S. To do so, we need to
produce an r ∈ Z− {0} = S such that r.(1.t) = r.(0.s), but the fact that T is a torsion
Z-module produces such an element.

As a consequence of Lemma 7.18, the torsion part of a finitely-generated Z-module
vanishes whenever we consider its module of fractions. This means that if M ∼= T ⊕ Zr
for some r ≥ 0 and T torsion, then S−1M = Qr, hence S−1M becomes an r-dimensional
Q-vector space.

Definition 7.19 (Noetherian Module). Let R be a ring. A Noetherian module is an
R-module M which satisfies the ascending chain condition on submodules: any sequence
M1 ⊂ M2 ⊂ · · · of R-submodules of M stabilizes, i.e. there is an integer n such that
Mn = Mn+1 = · · · .

Theorem 7.20. An R-module is Noetherian if and only if all of its submodules are
finitely-generated.
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Proof. Let M be a Noetherian module and suppose that M is not finitely-generated.
Let a1 ∈ M and let M1 = (a1). Let a2 ∈ M −M1 and let M2 = (a1, a2). Continue in
this way inductively, hence M1 ( M2 ( · · · . Since M is Noetherian, there is n such
that Mn = Mn+1; however, this contradicts our construction, therefore M is finitely-
generated.

In the other direction, suppose all submodules of M are finitely-generated, and let
M1 ⊂M2 ⊂ · · · be an ascending chain of submodules. It then follows that M ′ =

⋃∞
i=1 Mi

is a submodule of M , hence finitely-generated. Let M ′ be generated by {a1, . . . , am} and
let ki be any index of any submodule such that ai ∈ Mki . Let n = max{k1, . . . , km},
then it follows that Mn = M ′, and subsequently that M ′ = Mn = Mn+1 = · · · , therefore
M is Noetherian.

8. Decompositions

Definition 8.1 (Cyclic Module). An R-module M is called cyclic if it is generated by
one element, i.e. M = R.x = 〈x〉 for some x ∈M .

Definition 8.2 (Annihilator). Let M be an R-module and let x ∈ M . The annihilator
of x is given by ann(x) = {r ∈ R : r.x = 0}. The annihilator of M is given by

ann(M) = {r ∈ R : r.x = 0 for all x ∈M} =
⋂
x∈M

ann(x).

Definition 8.3 (Invariant Factor Decomposition). Let T be a finitely-generated torsion
abelian group (i.e. Z-module), an invariant factor decomposition is a sequence of integers
1 6= d1|d2| · · · |ds 6= 0 such that

T ∼=
Z
d1Z
⊕ · · · ⊕ Z

dsZ
.

Definition 8.4 (Elementary Divisor Decomposition). Let T be a finitely-generated tor-
sion Z-module, an elementary divisor decomposition is given by

T ∼=
⊕
p

⊕
k

(Z/pkZ)rp,k

for some integers rp,k.

Our goal in this section will be to show that not only does an elementary divisor
decomposition determine an invariant factor decomposition, but the converse is also true.
To this end, we will not prove these results in great generality, but give an example to
highlight the methodology behind such a proof. The statement in Definition 8.4 may
seem a bit confusing, but it is much easier to understand through an example. To
demystify its statement, we consider the following elementary divisor decomposition:

Example 8.5 (Elementary Divisor Decomposition).(
Z
2Z
⊕ Z

4Z

)
⊕
(

Z
3Z
⊕ Z

9Z
⊕ Z

9Z

)
⊕
(

Z
5Z
⊕ Z

125Z

)
.

In this case, we would have r2,1 = 1; r2,2 = 1; r3,1 = 1; r3,2 = 2; r5,1 = 1; r5,3 = 1; and
rp,k = 0 for all other p and k.
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Using this example, along with commutativity of direct sums, we can rearrange the
summands however we please. We will choose the highest order elementary divisor from
each prime grouping and utilize the Chinese Remainder Theorem to collapse them into
a single module representative. We demonstrate this via Example 8.5:

Z
3Z
⊕
(

Z
2Z
⊕ Z

9Z
⊕ Z

5Z

)
⊕
(

Z
4Z
⊕ Z

9Z
⊕ Z

125Z

)
∼=

Z
3Z
⊕ Z

90Z
⊕ Z

4500Z
.

It is easy to see that this satisfies the definition of an invariant factor decomposition,
since 3|90|4500. In fact, this will be true for any combination by virtue of how we
grouped the elementary divisors. As a consequence, elementary divisor decompositions
determine invariant factor decompositions.

Our next goal will be to show the converse; in order to do this, we will need to make
use of the following lemma.

Lemma 8.6. Let m,n ∈ Z, then Z
mZ ⊕

Z
nZ
∼= Z

(mn)Z if and only if gcd(m,n) = 1.

Proof. First, we note that if gcd(m,n) = 1, we can apply the Chinese Remainder Theo-
rem (Theorem 6.1), since mZ and nZ are coprime ideals. Now, suppose Z

mZ⊕
Z
nZ
∼= Z

(mn)Z .

Recall that lcm(m,n) gcd(m,n) = mn, hence gcd(m,n) = 1 if and only if lcm(m,n) =
mn. It therefore suffices to show that mn(a, b) = 0 for arbitrary (a, b) ∈ Z

mZ ⊕
Z
nZ ; this,

however, is evident.

This lemma allows us to say that Z/pkZ is indecomposable for p prime and k ≥ 1.
To be precise, this says that Z/pkZ cannot be written as Z/mZ ⊕ Z/nZ for any such
m,n ≥ 2. The importance of this is that we can take invariant factor decompositions,
and by repeatedly using the Chinese Remainder Theorem break cyclic modules apart into
sums of the form Z/pkZ. Hence, invariant factor decompositions determine elementary
divisor decompositions.

A natural question at this point would be to ask whether or not these decompositions
are unique. As it will turn out, they are; however, we will need to develop some additional
theory along the way to prove it. In fact, we will only need to prove uniqueness for one
such flavor of decompositions, since uniqueness of the other will follow immediately.

Definition 8.7 (p-Primary Module). We say that a Z-module M is p-primary for p
prime, if there are integers r1, . . . , rk such that

M ∼=
(

Z
pZ

)r1
⊕ · · · ⊕

(
Z
pkZ

)rk
.

This definition in mind, we state the following useful theorem without proof.

Theorem 8.8 (Primary Decomposition Theorem). Let R be a principal ideal domain
and let M be a torsion R-module with a nonzero annihilator a. Suppose that a =
upα1

1 p
α2
2 · · · pαnn and let Ni = {x ∈ M : pαii .x = 0} for all i = 1, . . . , n. Then Ni

is a submodule of M with annihilator pαii and is the submodule of M of all elements
annihilated by some power of pi. We have

M = N1 ⊕N2 ⊕ · · · ⊕Nn.

If M is finitely generated then each Ni is the direct sum of finitely many cyclic modules
whose annihilators are divisors of pαii .
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In order to show that elementary divisor decompositions are unique, we will simplify
matters by showing that for any p-primary module, the exponents provided by the
definition are unique.

Before we continue, however, note that Definition 8.5 can now be reformulated as
follows:

Definition 8.9 (Elementary Divisor Decomposition). Let T be a finitely-generated tor-
sion Z-module, an elementary divisor decomposition of T is given by

T ∼= Tp1 ⊕ · · · ⊕ Tpn

where each Tpk is pk-primary.

As stated, we will need to develop some further theory in order to prove uniqueness
of elementary divisor decompositions...

9. Filtration

Definition 9.1 (Filtered Module). A filtered module is a module with a nested sequence
of submodules:

M = F0M ⊃ F1M ⊃ F2M ⊃ · · · ⊃ Fn−1M ⊃ FnM = 0.

Note that F∗M merely denotes the position of the submodule in the filtration se-
quence of M .

Definition 9.2 (Associated Graded Module). Let M be a filtered module and define
GjM = Fj−1M/FjM for all j ∈ {1, . . . , n}. An associated graded module is a module

G∗(M) =
∐
j∈Z

GjM.

These definitions don’t yield much intuition on the outset, so we will consider a few
examples to illuminate the topic.

Definition 9.3 (Filtration-Preserving Module Map). Let M and N be filtered modules,
a filtration-preserving map is a module map f : M → N such that f(FjM) ⊂ FjN for
all j.

Lemma 9.4. Let M and N be filtered modules and let f : M → N be a filtration-
preserving module map, then there is a module map fj : GjM → GjN .

Proof. We wish to induce a map fj such that the diagram

Fj−1M Fj−1N

GjM GjN

f

πMj πNj

fj
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commutes. We will show that FjM ⊂ Ker(πNj ◦ f), thereby inducing the desired map
by the fundamental theorem on homomorphisms. Our assumption on f tells us that
f(FjM) ⊂ FjN , hence (πNj ◦ f)(FjM) = 0, since GjN = Fj−1N/FjN . We then induce

a unique map fj : GjM → GjN such that πNj ◦ f = fj ◦ πMj .

Theorem 9.5. Let C be the category of filtered modules and let D be the category of
associated graded modules. Define F : C → D on objects by F∗M 7→ G∗M , and on
arrows by f 7→ f :=

∐
j fj where each fj is given by Lemma 9.4. Then, F defines a

functor.

Proof. Let f : M → N and g : N → P be filtration-preserving module maps. We must
show that F(g ◦ f) = F(g) ◦ F(f). The maps f and g individually induce a commuting
diagram

Fj−1M Fj−1N Fj−1P

GjM GjN GjP

f g

fj gj

πMj πNj πPj

for each j ≥ 1. We then consider the analogous diagram induced by the map g ◦ f and
observe that

(g ◦ f)j ◦ πMj = πPj ◦ (g ◦ f) = gj ◦ πNj ◦ f = gj ◦ fj ◦ πMj ,

hence (g ◦ f)j = gj ◦fj by uniqueness, and functoriality follows since j was arbitrary.

Notice that the functor in Theorem 9.5 was defined in terms of a coproduct. This
means that all but finitely many of the fj’s that define f must be zero maps.

Lemma 9.6 (Five Lemma). If the diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

u v

f ′ f f ′′

u′ v′

commutes such that each row is exact, and f ′ and f ′′ are isomorphisms, then f is an
isomorphism as well.

Proof. This is a standard diagram chasing proof.
To prove surjectivity of f , we let n ∈ N and choose m′′ ∈ M ′′ such that f ′′(m′′) =

v′(n). We then let m ∈M such that v(m) = m′′, and so it follows that v′(n) = f ′′(m′′) =
f ′′(v(m)) = v′(f(m)), hence v′(n − f(m)) = 0. Since n − f(m) ∈ Ker(v′), it is in the
image of u′, and so there is n′ ∈ N ′ such that u′(n′) = n− f(m). Now, let m′ ∈ M ′ be
such that f ′(m′) = n′, and we have n − f(m) = u′(n′) = u′(f ′(m′)) = f(u(m′)), hence
f(u(m′) +m) = n.

Let m ∈ Ker(f) and so f(m) = 0, hence 0 = v′(f(m)) = f ′′(v(m)) and so v(m) = 0
since f ′′ is an isomorphism. Then, there is m′ ∈ M ′ such that u(m′) = m and so
0 = f(m) = f(u(m′)) = u′(f ′(m)), so m = 0 since u′ ◦ f ′ is injective.
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We will use this lemma for the following theorem.

Theorem 9.7. Let M and N be filtered modules and let f : M → N be a filtration-
preserving module map. Then, f is an isomorphism if and only if f : G∗M → G∗N

Proof. Add this later...

Theorem 9.8 (p-Primary Dimension). Let M be a p-primary module and let M ⊃
pM ⊃ p2M ⊃ · · · ⊃ pnM = 0 be a filtration. Let G∗M =

∐
j GjM be its associated

graded module, then each GjM is a Zp-vector space with dimension rj + · · · + rn. We
define this dimension by dj(M) := dimZp(GjM).

Proof. First we note that by pjM := (pjZ)M , and that the first j terms of M vanish
via pjM , hence

pjM =

(
pjZ
pj+1Z

)rj+1

⊕ · · · ⊕
(
pjZ
pnZ

)rn
.

It then follows that

GjM =
Fj−1M

FjM
=

(
pj−1Z
pjZ

)rj
⊕
(
pj−1Z
pj+1Z

)rj+1

⊕ · · · ⊕
(
pj−1Z
pnZ

)rn(
pjZ
pj+1Z

)rj+1

⊕ · · · ⊕
(
pjZ
pnZ

)rn
∼=

(
pj−1Z
pjZ

)rj
⊕
(
pj−1Z/pj+1Z
pjZ/pj+1Z

)rj+1

⊕ · · · ⊕
(

pjZ/pnZ
pj−1Z/pnZ

)rn
.

The Third Isomorphism Theorem tells us that pj−1Z/pkZ
pjZ/pkZ

∼= pj−1Z
pjZ
∼= Zp for all k ≥ j. It

then immediately follows that GjM ∼= (Zp)rj+···+rn .

Theorem 9.8 is now enough to prove that elementary divisor decompositions are
unique, but how? First, let M be a p-primary module and let dj := dj(GjM) be clear
from context. We then observe that d1 = r1 + r2 + · · · + rn, d2 = r2 + r3 + · · · + rn,
and so forth. In fact, what this says is that r1 = d1 − d2, that r2 = d2 − d3, and so
forth, hence rj = dj − dj+1. Why does this say that each rj is unique though? Well,
note that each dj is defined without reference to any decomposition of M ; in fact, the
associated graded module doesn’t actually “see” any specific decomposition of M . This
tells us that the dj’s are an intrinsic property of the original module, regardless of the
choice of decomposition, hence unique. Furthermore, since we can then deduce the rj’s
from the dj’s, then it follows that the rj’s are unique as well. We then conclude that
elementary divisor decompositions are unique, hence invariant factor decompositions are
likewise unique. All of this yields the following structure theorem on finitely-generated
Z-modules (i.e. abelian groups)

Theorem 9.9 (Z-Module Structure Theorem). Let M be a finitely-generated Z-module,
then there is a unique invariant factor decomposition given by

M ∼= Z/d1Z⊕ · · · ⊕ Z/dsZ⊕ Zr

where 1 6= d1|d2| · · · |ds 6= 0 are positive integers such that r, s, d1, . . . , ds are uniquely
determined.

Proof. We just did it.
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10. Rational Canonical Form

Okay, so we’ve proven–more or less–this Structure Theorem and it seems really, really
important, but what exactly does it tell us? What exactly does it allow us to do? To
answer this question, we turn toward the world of Linear Algebra!

Let V be a finite-dimensional k-vector space and let T ∈ Endk(V ), hence T is a linear
transformation. It’s easy to see that the polynomials of one variable over the field k,
denoted k[X], is a free k-module. We then define a set map taking X 7→ T , and induce
(by Definition 3.1) a k-module map k[X] → Endk(V ). Theorem 1.3 then implies that
V can be viewed as a k[X]-module induced via T .

Definition 10.1 (Vector Spaces as k[X]-Modules). Let V be a finite-dimensional vector
space and let T : V → V be a linear transformation. We say that V is a k[X]-module
via T where the k[X]-module structure is given by the mapping k[X]×V → V such that
(f, v) 7→ f.v := f(T )(v).

Let V be a finite-dimensional k-vector space such that V = W1⊕W2⊕ · · ·⊕Ws as a
k[X]-module via T . Then each Wj is a k[X]-submodule via T ; in linear algebra terms,
we consider them T -invariant subspaces of V represented by a basis Bj. We could then
let B = B1 ∪ B2 ∪ · · · ∪ Bs be a k-basis of V . Then, the representing matrix of T would
be given by

[T ]BB =


[T |W1

]B1B1 0

[T |W2
]B2B2

. . .

0 [T |Ws
]BsBs

 .
Big deal, right? Well, as it turns out the Structure Theorem allows us to view V as

a k[X]-module

V ∼=
k[X]

(f1)
⊕ · · · ⊕ k[X]

(fs)
⊕ k[X]r,

such that k[X] ) (f1) ⊃ (f2) ⊃ · · · ⊃ (fs) 6= 0 such that f1|f2| · · · |fs 6= 0. In fact, when
the fj’s are taken to be monic, then they are likewise unique. Now, since we’re assuming
that V is finite-dimensional, then it is therefore finitely-generated, hence r = 0 and so
we have Wj = k[X]

(fj)
for all j. This means that V as a k[X]-module is the direct sum of

cyclic k[X]-submodules.

Definition 10.2 (Minimal Polynomial). Let V be a k[X]-module via T as just described.
The minimal polynomial of T , denoted µT , is the unique monic polynomial which gen-
erates ann(V ) in k[X].

As a quick aside, it is pretty easy to see that fs generates the annihilator of V in k[X]
given an invariant factor decomposition. In this way, the invariant factor decomposition
of V as a k[X]−module affords us a quick and easy way of identifying the minimal
polynomial of T : we simply look at the right-most term.

Our goal now will be to construct a representing matrix [T ] for some basis given only
the polynomials of the invariant factor decomposition of V as a k[X]-module. To do

this, we will restrict our attention to a single block [T |Wj
]
Bj
Bj in the above matrix.
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Proposition 10.3. Let V ∼= k[X]/(f) as a k[X]-module, then β = {1, X,X2
, . . . , X

d−1}
is a k[X]-basis of V where d = deg(f).

Proof. We must show that the given basis spans V , as well as that it is linearly inde-
pendent. Let h ∈ k[X]/(f), hence h ∈ k[X] and h = f · q + r where deg(r) < deg(f)
by the Division Algorithm. Then, h = fq + r = r since f vanishes in k[X]/(f). Since
r = c0 + c1X + · · · + cd−1X

d−1 for some coefficients in k, then it follows that β spans
k[X]/(f).

Now, suppose c0.1 + c1.X+ · · ·+ cd−1.X
d−1

= 0 for some coefficients c0, . . . , cd−1 ∈ k.
Consolidating these into a single quotient, it follows that c0 + c1X + · · ·+ cd−1Xd−1 = 0.
However, this says that f divides c0 +c1X+ · · ·+cd−1X

d−1, hence c0 = c1 = · · · = cd−1 =
0, and so β is linearly independent.

We now have a basis β for k[X]/(f), and so we quickly remind ourselves exactly how
to construct a representing matrix given a transformation and a basis. We are taught
in Linear Algebra that to construct such a matrix, we transform each basis vector via
T and place the resultant vector in the column corresponding to that basis vector. For
example, given a basis B = {v1, . . . , vn}, we would have

[T ]BB = [T (v1) T (v2) · · · T (vn)],

which is consistent with what we found in Theorem 1.22. The same rule applies here,
except that we need to take pause and remind ourselves exactly what is being trans-
formed. Since we are working in k[X]/(f) and not kn, we need to be careful about
exactly what action is taking the place of transformation via T as in the kn case. Well,
in this instance, it’s relatively easy to see that T corresponds to action by X, hence our
module structure tells us that (X, v) 7→ X.v = T (v). We therefore need only consider
how X acts on the basis β, and so we observe that

1
·X7→ X

X 7→ X
2

X
2 7→ X

3

...

X
d−2 7→ X

d−1

X
d−1 7→ X

d
.

The first d − 1 actions are perfectly fine, since we are basically mapping each basis
element to the next one in line. However, we now need to consider how to handle the

last action X
d−1 7→ X

d
, since X

d
isn’t a basis element; in other words, we need to write

X
d

as a linear combination of basis elements.
To do this, we make the observation that f is monic and deg(f) = n, hence f =

Xd + cd−1X
d−1 + · · ·+ c1X + c0 in k[X]. Furthermore, we note that f = 0 in k[X]/(f),

and so X
d

= −cd−1.X
d−1 − · · · − c1.X − c0.1. We now know exactly how to construct
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our representing matrix in k[X]/(f):

[T ]ββ =



0 0 0 · · · · · · −c0

1 0 0 · · · · · · −c1

0 1 0 · · · · · · −c2

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 1 −cd−1


.

Definition 10.4 (Companion Matrix). Let V be a finite-dimensional k-vector space,
and let T : V → V be a linear transformation. Suppose that V ∼= k[X]/(f) for some
polynomial f ∈ k[X] such that deg(f) = d, we then call the matrix above the companion
matrix of f . We will denote the companion matrix of f by C(f).

Definition 10.5 (Rational Canonical Form). Let V ∼= k[X]/(f1)⊕ · · · ⊕ k[X]/(fs) as a
k[X]-module via T . The rational canonical form of the representing matrix of T is given
by the block matrix

R[T ] =


C(f1) 0

C(f2)
. . .

0 C(fs)

 .
This is a good point to put things into perspective by considering an example.

Example 10.6. Let V be a finite-dimensional k-vector space and let T : V → V be
such that T 2 = T . Furthermore, assume that T 6= 0 and T 6= I. What are the possible
rational canonical forms of T?

Solution. First, we observe that T 2 − T = 0, and so we might guess that µT = X2 −X
since this polynomial clearly annihilates V . To prove this is the case, suppose there is
some other polynomial f which annihilates V , then we must have that f |X(X−1) and so
f = X or f = X − 1. If f = X, then we have f.v = 0 for all v ∈ V , but this means that
0 = X.v = T (v), hence T = 0. If f = X−1, then 0 = (X−1).v = (T −I)(v) = T (v)−v,
hence T (v) = v, and so T = I. Since we assumed that T 6= I and T 6= 0, then we
conclude that µT = X2 −X as desired.

We then must ask ourselves what are the possible invariant factor decompositions?
In this instance, there are two possibilities

V ∼=
(
k[X]

(X)

)s1
⊕
(

k[X]

(X(X − 1))

)s2
or

V ∼=
(

k[X]

(X − 1)

)s1
⊕
(

k[X]

(X(X − 1))

)s2
.

Suppose the former, hence we need only compute the companion matrices C(X) and
C(X(X − 1)). It’s clear that C(X) = 0, the 1 × 1 zero matrix, since the polynomial
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X has no constant coefficient. Furthermore, X(X − 1) = X2 − X, hence c0 = 0 and
c1 = −1, and so

C(X2 −X) =

[
0 −c0

1 −c1

]
=

[
0 0
1 1

]
.

Can we simplify C(X(X − 1))? Yes. Let {e1, e2} be the basis on which this matrix is
defined, hence e1 7→ e2 and e2 7→ e2. Define a new basis {u1 = e2, u2 = e1 − e2}, and
note that u1 7→ e2 = u1 and u2 7→ e2−e2 = 0. This means that we can perform a change
of basis operation in such a way that

A =

[
0 0
1 1

]
∼
[

1 0
0 0

]
= B

where ∼ denotes matrix similarity, i.e. there is P ∈ GL2(k) such that A = PBP−1.
This tells us that we can construct the following rational canonical form of [T ]:

R[T ] =



0
. . .

0
1 0
0 0

. . .

1 0
0 0


∼
[
I 0
0 0

]

where I is the s2 × s2 identity matrix.
Lastly, suppose the latter, hence we need only compute C(X − 1), however, this

is easily seen to be the 1 × 1 identity matrix. Coupled with our observations about
C(X(X − 1)) in the previous paragraph, it then follows that

R[T ] =

[
I 0
0 0

]
where I is the (s1 + s2)× (s1 + s2) identity matrix in this instance.

Up to this point, we’ve shown that given an invariant factor decomposition, we
can construct the rational canonical form R[T ]. This begs the question: given a linear
transformation T : V → V , how do we arrive at the invariant factor decomposition of V
as a k[X]-module via T?

Let V be an n-dimensional k-vector space, let T : V → V be a linear transformation,
and let B = {v1, . . . , vn} be a k-basis. For convenience’s sake, define [T ]BB =: A = [aij]ij,
hence T (vj) =

∑n
i=1 aijvi. Let k[X]n be a free k[X]-module of rank n and let E =

{ε1, . . . , εn} be its generating set. Define a map π : k[X]n → V such that εj 7→ vj for all
j = 1, . . . , n. Our goal will be to determine Ker(π).
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Define ξj = X.εj −
∑

i aijεi, and observe that

π(ξj) = π(X.εj)− π

(∑
i

aijεi

)
= X.π(εj)−

∑
i

aijπ(εi)

= X.vj −
∑
i

aijvi

= T (vj)− T (vj) = 0,

hence ξj ∈ Ker(π) for all j = 1, . . . , n. Rewriting our definition of ξj, we have that
X.εj = ξj +

∑
i aijεi, and so we want to consider what happens to X2.εj. We observe

the following:

X2.εj = X.(X.εj) = X.

(
ξj +

∑
i

aijεi

)
= X.ξj +

∑
i

aijX.εi

= X.ξj +
∑
i

aij

(
ξi +

∑
r

ariεr

)
=

∑
α

hα(X).ξα +
∑
α

bαεα

for some hα ∈ k[X]2 and some bα ∈ k. In this case, the α indices ranges over all
possible combinations of integer pairs which make sense in context and are merely there
as convenient shorthand, since the explicit details are not important. By induction, it
then follows that

Xr.εj =
∑
α

hα(X).ξj +
∑
α

bαεα

for some hα ∈ k[X]r and bα ∈ k. This means that we can choose any g ∈ k[X] and write

g(X).εj =
∑
α

hα(X).ξj +
∑
α

bαεα.

Now, choose an arbitrary element η ∈ k[X]n, hence

η =
∑
j

gj(X).εj =
∑
α

hα(X).ξα +
∑
α

bαεα,

for some hα ∈ k[X]n, bα ∈ k. Assuming that η ∈ Ker(π), it immediately follows that∑
α bαεα ∈ Ker(π). However,

∑
α bαεα is just some coefficient in k, and so must be equal

to zero. It then follows that η is a sum of ξj’s, hence {ξj}j generates Ker(π) With this in
mind, we define a map ∂ : k[X]n → k[X]n given by εj 7→ ξj, hence ∂ maps surjectively
to Ker(π). This means that π ◦ ∂ = 0 and Im(∂) = Ker(π), and so V is the cokernel of
∂. We say that V as a k[X]-module via T has a presentation given by

k[X]n
∂−→ k[X]n

π−→ V → 0.
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Now, for all j, we then have

∂(εj) = ξj = X.εj −
∑
i

aijεi =
∑
i

(Xδij − aij)εi =
∑
i

(XI − A)ijεi,

hence [∂]EE = XI − A.
Having done all of this, what exactly does this tell us? Well, it tells us that we need

only perform elementary row and column operations on XI − A over k[X] to obtain a
diagonal matrix of the form

R[T ] =



1 0
. . .

1
f1

. . .

0 fs


such that 1 6= f1|f2| · · · |fs 6= 0, each fi monic; this determines the invariant factor
decomposition of V as a k[X]-module via T . We are allowed to do this for the same
reason Smith’s Normal Form allowed us to determine an invariant factorization of an
arbitrary matrix over the integers. Furthermore, taking a closer look at XI −A, we can
easily recognize this as the form of a matrix whose determinant yields the characteristic
polynomial of A. We then make the following definition:

Definition 10.7 (Characteristic Polynomial). Let V be a finite-dimensional k-vector
space and let T : V → V be a linear transformation. Define A := [T ]BB to be the
representing matrix of T for some basis B. The characteristic polynomial of A, denoted
χA, is given by det(XI − A).

It turns out that the characteristic polynomial is the product f1f2 · · · fs for the given
invariant factorization. In fact, the condition that fi|fs for all i = 1, . . . , s tells us that
the roots of the characteristic polynomial are also the roots of the minimal polynomial
as well.

Example 10.8. Find the rational canonical form of

A =

 3 1 0
1 4 1
3 −2 5


and determine the matrix which conjugates it into its rational canonical form.

Solution. Our approach will be to consider the matrix XI − A in R[X], reduce it into
its invariant factor decomposition, and use this to tell us the rational canonical form,
RA. In doing so, we will keep track of the row operations and use these to reconstruct
the matrix P ∈ GL3(R) such that A = P−1RAP . We need only keep track of the
row operations, since row operations act on the left of the matrix in which we operate;
column operations act on the right. Of course, we could just as easily keep track of the
column operations and use these to construct the inverse of the conjugating matrix.
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We begin with XI − A:  X − 3 −1 0
−1 X − 4 −1
−3 2 X − 5

 e1

e2

e3

C1↔C2,−C1−→

 1 X − 3 0
−X + 4 −1 −1
−2 −3 X − 5

 e1

e2

e3

C2−(X−3)C1→C2−→

 1 0 0
−X + 4 X2 − 7X + 11 −1
−2 2X − 9 X − 5

 e1

e2

e3

R2+(X−4)R1→R2−→

 1 0 0
0 X2 − 7X + 11 −1
−2 2X − 9 X − 5

 e1 − (X − 4)e2

e2

e3

R3+2R1→R3−→

 1 0 0
0 X2 − 7X + 11 −1
0 2X − 9 X − 5

 e1 − (X − 4)e2 − 2e3

e2

e3

C3↔C2,−C2−→

 1 0 0
0 1 X2 − 7X + 11
0 −X + 5 2X − 9

 e1 − (X − 4)e2 − 2e3

e2

e3

R3+(X−5)R2→R3−→

 1 0 0
0 1 X2 − 7X + 11
0 0 (X − 4)3

 e1 − (X − 4)e2 − 2e3

e2 − (X − 5)e3

e3

−→

 1 0 0
0 1 0
0 0 (X − 4)3

 e1 − (X − 4)e2 − 2e3

e2 − (X − 5)e3

e3

Since (X − 4)3 = X3 − 12X2 + 48X − 64, then this tells us that

RA =

 0 0 64
1 0 −48
0 1 12

 .
Our original basis was {e1, e2, e3} and the form of A tells us that Xe1 = 3e1 + e2 + 3e3,
Xe2 = e1 + 4e2 − 2e3, and Xe3 = e2 + 5e3. Having kept track of how the rows affect
our basis, we can easily see that e1 − (X − 4)e2 − 2e3 = 0 and e2 − (X − 5)e3 = 0.
This means that 0, 0 and e3 are the generators of V as a cyclic R[X]-module, hence
V ∼= R[X]/(e3) in its invariant factor decomposition as an R[X]-module. We can then
recover the conjugating matrix

P = [1.e3 X.e3 X
2
.e3] = [e3 T (e3) T 2(e3)] =

 1 3 10
0 1 10
0 3 22

 .
It can be easily checked that RA = P−1AP , and so P conjugates A into its rational
canonical form.
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Example 10.9. Find the rational canonical form of

B =

 9 4 5
−4 0 −3
−6 −4 −2


and find the matrix which conjugates it into its rational canonical form.

Proposition 10.10. If A and B are similar matrices, i.e. there is P ∈ GLn(k) such
that PAP−1 = B, then χA = χB.

Proof. Let P be such that B = PAP−1, and so it follows that XI −B = XI −PAP−1.
This means that det(XI − B) = det(XI − PAP−1) = det(PXIP−1 − PAP−1) =
det(P ) det(XI − A) det(P−1). It follows that

χB = det(XI −B) = det(P−1XIP − P−1BP ) = det(P−1(XI −B)P )

= det(P−1) det(XI −B) det(P ) = det(XI − A) = χA.

This says that the characteristic polynomial of a matrix is determined by it’s sim-
ilarity class. However, this does not say that the characteristic polynomial determines
the similarity class of a matrix. In effect, this means that knowing the characteristic
polynomial is not enough to determine its similarity class; however, the similarity class
is enough to determine it’s characteristic polynomial. This observation makes similar-
ity classes incredibly powerful in terms of characteristic polynomials. Given a matrix,
we can effectively “replace” it by a similar matrix which may be more computationally
tractable, using it to determine the original matrix’s characteristic polynomial. This
is incredibly useful since the characteristic polynomial holds the key to unlocking the
eigenvalues and eigenvectors of the matrix.

Theorem 10.11 (Cayley-Hamilton Theorem). Let T : V → V be a linear transfor-
mation of a finite-dimensional k-vector space V . If V is cyclic as a k[X]-module, then
µT |χT , i.e. the minimal polynomial divides the characteristic polynomial.

Proof. This follows immediately from the observation that χT is a product of the invari-
ant factors, of which µT is one such factor.

While this theorem is a straightforward consequence, this has a couple profound con-
sequences. First, this means that any matrix A ∈ Mn(k) satisfies its own characteristic
polynomial. Secondly, the minimal polynomial has degree at most n.

Definition 10.12 (Diagonalizable). Let V be a finite-dimensional k-vector space and
let T : V → V ; we say that T is diagonalizable if there is some basis B such that
[T ]BB = diag(λ1, λ2, . . . , λs). Note that we make no assumption that the λi are distinct.

Definition 10.13 (λ-Eigenspace). Let V be a finite-dimensional k-vector space and
T : V → V a linear transformation. The λ-eigenspace of V with respect to T is given
by (X−λ)V = {v ∈ V : (X − λ).v = 0} = {v ∈ V : T (v) = λv}.
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Proposition 10.14. Let T : V → V be a linear transformation of a finite-dimensional
k-vector space, then T is diagonalizable if and only if µT is a product of distinct linear
polynomials in k[X].

Proof. We will prove the forward direction first, so suppose T is diagonalizable, hence
there is a k-basis B such that A = [T ]BB is diagonal. Without loss of generality, assume
that elements along the diagonal are ordered according to their multiplicity, i.e. A =
diag(λ1, . . . , λ1, . . . , λs, . . . , λs). Let Li(X) = X − λi be a linear polynomial in k[X],
hence

L1(A) = diag(0, . . . , 0, λ2 − λ1, . . . , λ2 − λ1, . . . , λs − λ1, . . . , λs − λ1)

L2(A) = diag(λ1 − λ2, . . . , λ1 − λ2, 0, . . . , 0, . . . , λs − λ2, . . . , λs − λ2)
...

Define f(X) = L1(X)L2(X) · · ·Ls(X). We then observe that f(A) is the product of s
matrices, each of which contains a block of zeros of dimension equal to the multiplicity
of λi. This product is then equal to zero, hence f ∈ ann(V ), but ann(V ) is generated
by the minimal polynomial, hence µT divides f , and so µT has distinct linear factors.

Now, suppose µT is a product of distinct linear polynomials, hence

µT = (X − λ1)(X − λ2) · · · (X − λs)

for distinct λi’s in k. Since each λi is distinct, then each k[X]/(X − λi) is coprime. It
then follows by the Primary Decomposition Theorem (Theorem 8.8) that

V ∼= (X−λ1)V ⊕ · · · ⊕ (X−λs)V

as a k[X]-module.

11. Jordan Canonical Form

Definition 11.1 (Algebraic Closure). We say that a field k is algebraically closed if the
roots of any polynomial f ∈ k[X] are elements in k.

For example, the complex numbers are algebraically closed; however, the real num-
bers are not.

Recall the definition of a p-primary module (Definition 8.7) which described Z-
modules of the form (

Z
pZ

)r1
⊕ · · · ⊕

(
Z
pnZ

)rn
.

Throughout this section, we will consider the analogous k[X]-modules, appropriately
named (X − λ)-primary modules, of the form(

k[X]

(X − λ)

)r1
⊕ · · · ⊕

(
k[X]

(X − λ)n

)rn
.

In fact, we will even further simplify our discussion by considering only a single sum-
mand, k[X]/((X − λ)d) for some nonzero power d.
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Definition 11.2 (k-Algebra). Let k be a commutative ring and let A be a k-module. We
say that A is a k-algebra if A has a ring structure compatible with scalar multiplication.
This means that for all λ ∈ k, and for all a, b ∈ A, we have (λ.a).b = a.(λ.b) = λ.(ab).

Recall Proposition 10.3 in which we showed that {1, X, . . . , Xd−1} is a k[X]-basis of
k[X]/(f) where deg(f) = d. Furthermore, recall that k[X] is a k-module with a ring
structure, and therefore a k-algebra by the definition we just stated. In fact, there is
a k-algebra isomorphism ϕ : k[X] → k[X] given by X 7→ X − λ, wherein the reverse

direction is given by Y 7→ Y + λ. This means that there is a k-basis of k[X]
(X−λ)d

given by

{1, Y , . . . , Y d−1} = {1, X − λ, . . . , (X − λ)
d−1
}.

Similar to what we did in the case of the rational canonical form, let

β = {v1, v2, . . . , vd} where vi = X − λd−i.
Our goal will be to determine the form of the matrix[

T | k[X]

(X−λ)d

]β
β

.

To do this, we need only consider how X acts on the basis elements of β. We consider
X.vi:

X.vi = X.(X − λ)
d−i

= (X − λ+ λ).(X − λ)
d−1

= (X − λ)
d−i+1

+ λ(X − λ)
d−i

= (X − λ)
d−i+1

+ λvi.

For all i = 2, . . . , d, this means that X.vi = vi−1 +λvi; however, for i = 1, (X − λ)
d

= 0,
hence X.v1 = λv1. From these observations, we have

[
T | k[X]

(X−λ)d

]β
β

=


λ 1 0

λ 1
. . . . . .

λ 1
0 λ

 .
Theorem 11.3 (Jordan Canonical Form). Let k be algebraically closed, then every A ∈
Mn(k) is similar to a matrix in block diagonal form, where each diagonal block is of
the form as depicted above. We call each block a Jordan block with eigenvalue λ and
dimension r, denoted T (λ, r).

Proof. Let T : V → V be a linear operator whose representing matrix is A, and let V be a
k[X]-module via T . Express V as a k[X]-module in its elementary divisor decomposition.
Since k is algebraically closed, then V is isomorphic to a direct sum of (X − λ)-primary
modules. For each (X − λ)-primary module, determine the corresponding Jordan block
for each multiplicity of (X − λ) and use these to construct the block diagonal matrix

JA =


T (λ1, r1) 0

T (λ2, r2)
. . .

0 T (λn, rn)

 .
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where each (λi, ri) pair is distinct. By our construction of each block, this says that there
is a change-of-basis matrix P ∈ GLn(k) such that A = PJAP

−1, hence A ∼ JA.

This is a good time to consider an example.

Example 11.4. How many similarity classes in M4(C) have characteristic polynomial
χT = (X − 2)4?

Solution. To answer this question, we need to consider all possible minimal polynomials.
Recall that the Cayley-Hamilton Theorem tells us that µT divides χT , hence there are
only four possibilities for µT , we will consider each. The four cases are X − 2, (X − 2)2,
(X − 2)3, and (X − 2)4. If µT = X − 2, then M1’s invariant decomposition must be
f1 = f2 = f3 = f4 = X − 2. If µT = (X − 2)2, there are two possible invariant
decompositions. Let M2 have decomposition f1 = f2 = 1 and f3 = f4 = (X − 2)2; let
M3 have decomposition f1 = 1, f2 = f3 = X2, and f4 = (X − 2)2. If µT = (X − 3)2,
then M4 must have invariant decomposition f1 = f2 = 1, f3 = X−2, and f4 = (X−2)4.
Lastly, if µT = (X − 2)4, then M5 must have invariant decomposition f1 = f2 = f3 = 1
and f4 = (X − 4)4. These decompositions yield the following Jordan Canonical forms:

2
2

2
2




2
2

2 1
0 2




2 1
0 2

2 1
0 2




2
2 1 0
0 2 1
0 0 2




2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2


M1 M2 M3 M4 M5

Definition 11.5 (Field Extension). Let k be a field, then we say that K is a field
extension of k, denoted K/k (K over k), if K is a field and k ⊂ K.

A common example of this would be C/R, since R ⊂ C; with this in mind, we state
the following theorem:

Theorem 11.6. Let K/k be a field extension. Let A,B ∈Mn(k) ⊂Mn(K) and suppose
A ∼K B, i.e. there is P ∈ Mn(K) such that A = PBP−1. Then, A ∼k B, i.e. there is
Q ∈Mn(k) such that A = QBQ−1.

Proof. Let fA1 |fA2 | · · · |fAs be the invariant decomposition of A in k[X], and similarly
let fB1 |fB2 | · · · |fBt be the invariant decomposition of B in k[X]. Let FA

1 |FA
2 | · · · |FA

P

be the invariant decomposition of A in K[X], and let FB
1 |FB

2 | · · · |FB
q be the invariant

decomposition of B in K[X].
Since A ∼K B, then p = q and FA

i = FB
i for all i = 1, . . . , p by uniqueness of

invariant decompositions. Note that fAj ∈ k[X] ⊂ K[X] satisfies the condition of an
invariant decomposition, and so s = p and fAj = FA

j for all j = 1, . . . , p. Similarly,
fBj ∈ k[X] ⊂ K[X] satisfies the condition of an invariant decomposition, and so t = p
and fBj = FB

j for all j. It then follows that fAj = FA
j = FB

j = fBj , hence A ∼k B as
desired.

This theorem tells us that if we can show that two matrices are similar in a field
extension, then they are similar in the base field. For example, if A,B ∈ Mn(R), then
we need only show that A ∼C B to conclude that A ∼R B.



Algebra, Fall 2011 43

12. Dual Spaces

Lemma 12.1. Let k be a field and let V be a k-vector space, not necessarily finite-
dimensional, then Homk(k, V ) ∼= V .

Proof. This follows immediately from Theorem 1.11 since k is a field hence commutative,
and k-vector spaces are precisely k-modules.

Definition 12.2 (Dual Space). Let V be a k-vector space for some field k, then we say
that V ∗ := Homk(V, k) is the dual space of V .

This definition is fairly simple and innocent, but it will prove to be incredibly powerful
in practice. Furthermore, if V has a basis B = {ei}i, then we define ei ∈ V ∗ such that

ei(ej) = δij =

{
1, if i = j
0, if i 6= j

Lemma 12.3 (Dual Basis Expansion). Let V be a finite-dimensional k-vector space.
Let B = {e1, . . . , en} be a basis of V , and let B∗ = {e1, . . . , en} be a collection such that
ei(ej) = δij. Then, (1) B∗ is a basis of V ∗; (2) For all v ∈ V , v =

∑n
i=1 e

i(v)ei; and (3)
For all ϕ ∈ V ∗, ϕ =

∑n
i=1 ϕ(ei)e

i.

Proof. We’ll first prove (2), so let v =
∑

i aiei for some ai since B is a basis for V . It
then follows that

ej(v) = ej

(∑
i

aiei

)
=
∑
i

aie
j(ei) =

∑
i

aiδij = aj,

and so v =
∑

i aiei =
∑

i e
i(v)ei.

Now for (3), we can’t yet assume that B∗ is a basis for V ∗, we must show that the
equation in (3) holds for all v ∈ V . Let ϕ ∈ V ∗, and consider the following:(∑

i

ϕ(ei)e
i

)
(ej) =

∑
i

ϕ(ei)e
i(ej) =

∑
i

ϕ(ei)δij = ϕ(ej),

and so (3) holds.
Lastly, we note that (2) says that B∗ spans V ∗, and so we need only show linear

independence of B∗. Suppose 0 =
∑

i aie
i for some coefficients ai ∈ k, and so

0 =

(∑
i

aie
i

)
(ej) =

∑
i

aie
i(ej) =

∑
i

aiδij = aj,

hence ai = 0 for all i = 1, . . . , n, therefore (1) holds.

Definition 12.4 (Bilinear Form). Let V and W be k-vector spaces for some field k. A
bilinear form is a function B : V ×W → k such that for all v ∈ V , B(v, ·) : W → k is
linear and for all w ∈ W , B(·, w) : V → k is linear. We will, on occasion, denote B(·, ·)
by 〈·, ·〉. We will denote the collection of all such bilinear forms by Bilin(V ×W,k).
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Definition 12.5 (“Musical Maps”). Note that the maps B(·, w) and B(v, ·) from the
definition of Bilinear Forms are homomorphisms in V ∗ and W ∗. This means that we
have maps, which are whimsically called “musical maps” given by B[ : V → W ∗ by
v 7→ B(v, ·) and [B : W → V ∗ by w 7→ B(·, w).

We will be mostly interested in instances where V = W such that either B(v, w) =
B(w, v) or B(v, w) = −B(w, v). These cases are important enough to warrant actual
definitions.

Definition 12.6 (Symmetric and Skew-Symmetric). Let B : V × V → k be a bilinear
form for a k-vector space V . If B is such that B(v, w) = B(w, v), then B is said to
be symmetric. Similarly, if B is such that B(v, w) = −B(w, v), then B is said to be
skew-symmetric.

In the case that B is symmetric, it follows that [B = B[; and in the case that B is
skew-symmetric, it follows that [B = −B[.

Definition 12.7 (Nondegenerate and Nonsingular). Let B : V ×V → k be a symmetric

or skew-symmetric bilinear form, then B is said to be nondegenerate if V
[−→ V ∗ is

injective. Likewise, B is said to be nonsingular if V
[−→ V ∗ is surjective.

Corollary 12.8. In light of Definition 12.7, if V is a finite-dimensional k-vector space,

then B is nondegenerate if and only if B is nonsingular if and only if V
[−→ V ∗ is an

isomorphism.

Proof. This is a consequence of the Dual Basis Expansion (Lemma 12.3).

Definition 12.9 (Gram Matrix). Let B : V ×W → k be a bilinear form for k-vector
spaces V and W . Let B = {v1, . . . , vn} be a basis for V and let C = {w1, . . . , wm} be a
basis for W . The Gram Matrix of B is then given by

B[B]C = [〈vi, wj〉]ij =

 〈v1, w1〉 · · · 〈v1, wm〉
...

. . .
...

〈vn, w1〉 · · · 〈vn, wm〉


for all i = 1, . . . , n and all j = 1, . . . ,m.

Lemma 12.10. Let V and W be finite-dimensional k-vector spaces with basis B =
{v1, . . . , vn} and C = {w1, . . . , wm}, respectively. Then, for all v ∈ V and all w ∈ W ,
we have

〈v, w〉 = t[v]B · B[B]C · [w]C.

Proof. Let v ∈ V and w ∈ W , hence v =
∑n

i=1 aivi and w =
∑m

j=1 bjwj. It then follows
that

〈v, w〉 =

〈
n∑
i=1

aivi,
m∑
j=1

bjwj

〉

=
n∑
i=1

ai

〈
vi,

m∑
j=1

bjwj

〉

=
n∑
i=1

m∑
j=1

aibj〈vi, wj〉,
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and this is precisely t[v]B · B[B]C · [w]C.

Definition 12.11 (Cogredient/Congruent). Let k be a field, we say that A,B ∈Mn(k)
are cogredient/congruent if there is P ∈ GLn(k) such that B = tPAP .

Lemma 12.12. Let B : V × V → k be a bilinear form in V for some basis B, and let
C be another basis of V . Then, B[B]B and C[B]C are cogredient.

Proof. Let v, w ∈ V , then

t[v]C · C[B]C · [w]C = 〈v, w〉 = t[v]B · B[B]B · [w]B

= t([id]CB · [v]C) · B[B]B · [id]CB · [w]C

= t[v]C ·
(
t[id]CB · B[B]B · [id]CB

)
· [w]C,

and so C[B]C = t[id]CB · B[B]B · [id]CB.

Proposition 12.13. Let B : V × V → k be a symmetric bilinear form on a finite-
dimensional k-vector space V . Let B = {e1, . . . , en} be a basis of V and let B∗ =
{e1, . . . , en} be the dual basis of V ∗. Then,

[B[]BB∗ = B[B]B.

Proof. Let A = [B[]BB∗ = [aij]ij, hence B[(ej) =
∑

i aije
i. By Lemma 12.3, it follows that∑

i

aije
i = B[(ej) =

∑
i

(B[(ej))(ei)e
i =

∑
i

B(ej, ei)e
i.

This means that
∑

i (aij − B(ej, ei))e
i = 0, and since B∗ is a basis of V ∗, then aij =

B(ej, ei) = B(ei, ej), and our conclusion follows.

Lemma 12.14. Let k be a field. Let C be the category of k-vector spaces and let D be
the category of k-dual spaces. Let V and W be k-vector spaces and let T : V → W be
a linear transformation. Define T ∗ : W ∗ → V ∗ by ψ 7→ ψ ◦ T . Define F : C → D on
objects by V 7→ V ∗ and and arrows by T 7→ T ∗. Then, F is a contravariant functor.

Proof. Let V,W,U be k-vector spaces and let T : V → W and R : W → U be linear
transformations. For all ψ ∈ U∗, we have

(R ◦ T )∗(ψ) = ψ ◦R ◦ T = R∗(ψ) ◦ T = (T ∗ ◦R∗)(ψ),

hence F(R ◦ T ) = F(T ) ◦ F(R). Lastly, F(idV ) = id∗V = idV ∗ = idF(V ), and so F is a
contravariant functor.

Proposition 12.15. Let T : V → W be a linear transformation of k-vector spaces,
and let B = {v1, . . . , vn} and C = {w1, . . . , wm} bases of V and W , respectively. Then
[T ∗]C

∗
B∗ = t[T ]BC .
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Proof. Let A = [T ]BC = [aij]ij and let B = [T ∗]C
∗
B∗ = [bij]ij. Then, T (vs) =

∑
r arswr and

T ∗(wj) =
∑

i bijv
i. We also have

T ∗(wj) =
∑
i

(T ∗(wj))(vi)v
i =

∑
i

(wj ◦ T )(vi)v
i =

∑
i

wj(T (vi))v
i

=
∑
i

wj

(∑
r

ariwr

)
vi =

∑
i

∑
r

ariw
j(wr)v

i =
∑
i

∑
r

ariδrjv
i

=
∑
i

ajiv
i.

This implies that bij = aji, hence B = tA, so [T ∗]C
∗
B∗ = t[T ]BC .

Definition 12.16 (Quadratic Space). A quadratic space is a vector space equipped with
a bilinear form, i.e. (V,B) where B : V × V → k.

Definition 12.17 (Orthogonal Sum). Let (V,BV ) and (W,BW ) be two quadratic spaces,
then V �W is called an orthogonal sum.

It turns out that V � W = V ⊕ W as vector spaces, hence the Gram Matrix for
V �W is block diagonal, of the form[ B[B]B 0

0 C[B]C

]
where B and C are bases of V and W , respectively.

13. Quadratic Forms

Definition 13.1 (Quadratic Form). Let V be a finite-dimensional k-vector space and
let B : V × V → k be a symmetric bilinear form. The associated quadratic form is the
function Q : V → k given by Q(v) = 〈v, v〉.

It follows immediately from this definition that if Q is a quadratic form, then Q(av) =
〈av, av〉 = a2〈v, v〉 = a2Q(v).

Lemma 13.2 (Polarization). Let k be a field such that char(k) 6= 2. Let Q : V → k be
a quadratic form on V . Then we can recover the bilinear form B = 〈·, ·〉 : V × V → k.

Proof. Let v, w ∈ V and consider

1

2

(
Q(v + w)−Q(v)−Q(w)

)
=

1

2

(
〈v + w, v + w〉 − 〈v, v〉 − 〈w,w〉

)
=

1

2

(
〈v, v〉+ 2〈v, w〉+ 〈w,w〉 − 〈v, v〉 − 〈w,w〉

)
= 〈v, w〉.

We now look at two different approaches to diagonalize a quadratic form.
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Theorem 13.3. Let 〈·, ·〉 be a symmetric bilinear form on a finite-dimensional k-vector
space V such that char(k) 6= 2. Then, there exists a basis B of V such that B[〈·, ·〉]B is
diagonal, i.e. B is an orthogonal basis.

Proof. If the associated quadratic form Q(v) = 〈v, v〉 = 0 for all v ∈ V , then we’re
done by Lemma 13.2. Otherwise, choose v1 ∈ V such that Q(v1) = 〈v1, v1〉 6= 0. Let
W = span{v1} and let W⊥ = {w ∈ V : 〈w, v1〉 = 0}. We claim that V = W �W⊥,
and so we must show that V = W + W⊥ and W ∩W⊥ = 0. First, let v ∈ W ∩W⊥,
then v = λv1 for some λ ∈ k and 〈v, v1〉 = 0. This means that 0 = 〈v, v1〉 = 〈λv1, v1〉 =
λ〈v1, v1〉 = λQ(v1), but since Q(v1) 6= 0, then λ = 0, and so v = 0. Let v ∈ V and let

λ = 〈v1,v〉
〈v1,v1〉 . We then have that 〈v1, v−λv1〉 = 〈v1, v〉−λ〈v1, v1〉 = 0, and so v−λv1 ∈ W⊥.

It then follows that v = λv1 + (v − λv1) ∈ W +W⊥.
Now, suppose B = {v1, . . . , vn} is a linearly independent set such that 〈vi, vj〉 =

0 whenever i 6= j. Let W = span(B) and choose some vn+1 ∈ W⊥ = {w ∈ V :
〈w, vi〉 for all i = 1, . . . , n} such that Q(vn+1) 6= 0. If no such element exists, we’re done.
Otherwise, let B′ = B ∪ {vn+1}, let W ′ = span{B′}, and let W ′⊥ = {w ∈ V : 〈w, vi〉 =
0 for all i = 1, . . . , n + 1}. Again, we want to show that V = W ′ � W ′⊥, and so let
v ∈ W ′ �W ′⊥, hence

v =
n+1∑
i=1

λivi and 〈v, vj〉 = 0 for all j = 1, . . . , n+ 1.

It then follows for arbitrary j that

0 = 〈v, vj〉 =

〈
n+1∑
i=1

λivi, vj

〉
=

n+1∑
i=1

λi〈vi, vj〉 =

{
λjQ(vj), if i = j
0, if i 6= j

,

and so λj = 0 and v = 0. Lastly, let v ∈ V and let λi = 〈vi,v〉
〈vi,vi〉 for all i = 1, . . . , n + 1.

We then have that〈
vj, v −

n+1∑
i=1

λivi

〉
= 〈vj, v〉 −

n+1∑
i=1

λi〈vj, vi〉 = 〈vj, v〉 − λj〈vj, vj〉 = 0,

and so

v −
n+1∑
i=1

λivi ∈ W ′⊥.

It then follows that v ∈ W ′ +W ′⊥, completing the proof.

This approach is very similar to that of the Gram-Schmidt process, with the exception
that we cannot yet require the basis to be normalized. However, this is incredibly
important, as it says that we can find an orthogonal basis for any symmetric bilinear
form over any field of characteristic other than 2.

We now consider a similar theorem from a bit more of an abstract viewpoint.

Theorem 13.4. Let 〈·, ·〉 : V × V → k be a symmetric bilinear form on a finite-
dimensional k-vector space V with char(k) 6= 2. Let W ⊂ V be a nondegenerate subspace,
i.e. 〈·, ·〉|W : W ×W → k is nondegenerate. Then,
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(1) dim(W ) + dim(W⊥) = dim(V );

(2) V ∼= W �W⊥; and

(3) if V itself was nondegenerate, then W⊥ is also nondegenerate.

Proof. Consider the exact sequence

0→ W⊥ ↪→ V
β−→ W ∗ → 0

where β is given by v 7→ 〈v, ·〉|W . This sequence has a section since we can define a
map s : W ∗ → V by ei 7→ ei where {e1, . . . , em} is a basis for W . By Theorem 2.8,
this means that V ∼= W⊥ ⊕ W ∗, hence dim(V ) = dim(W⊥) + dim(W ∗). Since W is
nondegenerate, then W ∼= W ∗ by Corollary 12.8, and so dim(W ∗) = dim(W ). It then
follows that dim(V ) = dim(W ) + dim(W⊥) and so (1) holds. Furthermore, since W is
nondegenerate, then W ∩W⊥ = 0, hence dim(W ∩W⊥) = 0. Then, dim(W + W⊥) =
dim(W ) + dim(W⊥) − dim(W⊥ ∩ W ) = dim(W ) + dim(W⊥) = dim(V ), and so (2)
follows. Part (3) isn’t exactly clear in my notes, so I’ll fill this in later.

Definition 13.5 (Inner Product). For V a real vector space, a symmetric bilinear form
〈·, ·〉 on V is an inner product if it is positive definite, i.e. for all v ∈ V , 〈v, v〉 ≥ 0 with
equality if and only if v = 0.

Corollary 13.6 (Orthonormalization). Let 〈·, ·〉 be a symmetric bilinear form on an n-
dimensional R-vector space. Then there exists a basis E of V such that the Gram Matrix
has the form

E [〈·, ·〉]E = diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0)

where there are t ones, s negative ones, and n− s− t zeros.

Proof. Theorem 13.3 tells us that there is a basis B = {v1, . . . , vn} of V such that

B[〈·, ·〉]B = diag(a1, . . . , ar, 0, . . . , 0)

where ai 6= 0. We then define a new basis E = {e1, . . . , en} such that

ej =

{
1√
|〈vj ,vj〉|

vj, if j ≤ r

vj, if j > r
.

When j > r, then Q(ej) = 〈vj, vj〉 = 0; however, when j ≤ r, then

Q(ej) = Q

(
1√
|〈vj, vj〉|

vj

)
=

1

|〈vj, vj〉|
Q(vj) =

aj
|aj|

= ±1.

Definition 13.7 (Rank/Signature). In light of Corollary 13.6, the rank of V is given
by the value r; and the signature of V is given by the value of s.
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14. More Linear Algebra!

14.1 Adjoint Transformations

For a given linear transformation T : V → W where V and W are nondegenerate k-
vector spaces, we know by contravariant functoriality of dual spaces that T induces a
map T ∗ : W ∗ → V ∗. This requires us to work in dual spaces, which may not always be
desirable, so can we induce a similar map W → V ? To answer this question, we consider
the following diagram:

W ∗ V ∗

W V

T ∗

[W [V

and our definition then follows.

Definition 14.1 (Adjoint Transformation). Let V and W be nondegenerate finite-
dimensional k-vector spaces with associated symmetric bilinear forms, and let T : V →
W be a linear transformation. The map tT : W → V given by tT = [−1

V ◦ T ∗ ◦ [W is
called the adjoint transformation of T where [ is given by Definition 12.5.

Note that we are only allowed to make this definition if V and W are nondegenerate
and finite-dimensional, hence [V and [W define isomorphisms between duals.

Definition 14.2 (Symmetric Transformation). Given a linear transformation T : V →
V , we say that T is symmetric if tT = T .

Corollary 14.3. Let V and W be as described above with T : V → W and tT : W → V
as defined. Then,

〈·, tT (w)〉V = 〈T (·), w〉W .

Proof. Note that as an immediate consequence of the above definition, we have that

[V ◦ tT = T ∗ ◦ [W

as maps W → V ∗. Let w ∈ W and note that

([V ◦ tT )(w) = [V (tT (w)) = 〈·, tT (w)〉V

and
(T ∗ ◦ [W )(w) = T ∗([W (w)) = T ∗(〈·, w〉W ) = 〈·, w〉W ◦ T = 〈T (·), w〉W .

The conclusion follows immediately.

Corollary 14.4. Let B and C be bases of V and W , respectively, where the conditions
on V and W are given by the previous corollary. Then,

[tT ]CB = G−1
V ·

t[T ]BC ·GW

where GV and GW denote the associated Gram matrices. In particular, if B and C are
orthonormal bases, then [tT ]CB = t[T ]BC .
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Proof.

[tT ]CB = [[−1
V ◦ T

∗ ◦ [W ]CB
= [[−1

V ]B
∗

B · [T ∗]C
∗

B∗ · [[W ]CC∗

= G−1
V · [T

∗]C
∗

B∗ ·GW (Proposition 12.13)

= G−1
V ·

t[T ]BC ·GW (Proposition 12.15).

If B and C are orthonormal, then GW and GV are both identity matrices.

14.2 Sesequilinear Forms and Hermitian Inner Products

Our goal now will be to define an inner product on C-vector spaces. We might naively
try to define one such inner product by

〈 z1
...
zn

 ,
 w1

...
wn

〉 = z1w1 + · · ·+ znwn,

but we would quickly find this not to be a positive definite bilinear form, e.g.

〈(i, 0), (i, 0)〉 = i2 = −1.

Fortunately, this is easily repaired by defining 〈·, ·〉 : Cn → Cn → C by

〈 z1
...
zn

 ,
 w1

...
wn

〉 = z1w1 + · · ·+ znwn,

where z is the complex conjugate of z. In particular, when zi = wi, then the inner
product just defined yields

z1z1 + · · ·+ znzn = |z1|2 + · · ·+ |zn|2 ≥ 0

and this therefore positive definite.
We also note that this inner product ceases to be a bilinear form, since we are

only linear in the second variable. In the first variable, we are semilinear, since we must
conjugate any scalar we wish to “pull out” of the inner product. This is called semilinear,
since if the scalar is real-valued, then this acts exactly as it would if the first variable
were linear, which is clearly not the case for scalars with nonzero imaginary parts. A
form of this type is said to be a sesquilinear form.

Definition 14.5 (Hermitian Inner Product). A Hermitian inner product on a C-vector
space V is a sesquilinear form V × V → C which is conjugate symmetric, i.e. 〈w, v〉 =
〈v, w〉, and positive definite.

Definition 14.6 (Hermitian Transpose). Let A ∈ Mn(C) and define the Hermitian
transpose of A to be the conjugate transpose of A, denoted HA = tA.



Algebra, Fall 2011 51

Lemma 14.7. Let V be a finite-dimensional C-vector space, then for all v, w ∈ V , we
have

〈v, w〉 = H [v]B · B[B]C · [w]C.

Proof. Following the proof of Lemma 12.10, we have

〈v, w〉 = t[v]B · B[B]B · [w]B,

but since HA = tA, then our conclusion follows.

Recall Definition 14.1, which gave us a way to define an adjoint transformation given
a linear transformation. In particular, we considered the diagram

W ∗ V ∗

W V

T ∗

[W [V

where [V and [W linear. In the context of sesequilinear forms, however, these are maps
both semilinear when V and W are C-vector spaces with Hermitian inner products. We
can likewise induce a similar map, which we now define.

Definition 14.8 (Hermitian Adjoint). Let V and W be C-vector spaces with Hermitian
inner products and let T : V → W be a linear transformation. We then define HT =
[−1
V ◦ T ∗ ◦ [W : W → V , called the Hermitian adjoint of T .

As it turns out, since we are factoring elements in W through [W and [−1
V , then HT

becomes a linear transformation (since z = z). We also obtain results similar to those
found in Corollaries 14.3 and 14.4, namely that

〈T (v), w〉W = 〈v,HT (w)〉V

and
[HT ]CB = H [T ]BC when B and C are orthonormal bases.

Definition 14.9 (Self-Adjoint/Hermitian Transformation). Let T : V → W be a linear
transformation of C-vector spaces with Hermitian inner products. We say that T is
self-adjoint (or Hermitian) if HT = T . In particular, if B and C are orthonormal bases,
respectively, then T is self-adjoint if and only if A := [T ]BC satisfies HA = A, i.e. A is
its own conjugate transpose.

Definition 14.10 (Unity Transformation). Let V be a finite-dimensional C-vector space
with Hermitian inner product. A linear transformation T : V → V is unitary if for all
v, w ∈ V , we have 〈T (v), T (w)〉 = 〈v, w〉.
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15. Spectral Theorem

Our goal in section will be to prove the Spectral Theorem for two classes of transforma-
tions. This will provide us with criteria in which these classes can be diagonalized.

Lemma 15.1. Let V be a finite-dimensional C-vector space and let T : V → V be a
linear transformation. Then, T has a nonzero eigenvector.

Proof. Recall that eigenvalues of T are the roots of the characteristic polynomial χT ∈
C[X]. Since C is algebraically closed, then χT has a root, i.e. T has an eigenvalue, hence
a nonzero eigenvector.

Lemma 15.2. Let T : V → V be a Hermitian linear transformation on a Hermitian
vector space V . Then, (1) all eigenvalues of T are real; and (2) if v is a λ-eigenvector
of T , and w is a µ-eigenvector of T such that λ 6= µ, then 〈v, w〉 = 0.

Proof. Since T is Hermitian, then HT = T by Definition 14.9. Furthermore, Lemma 15.1
provides the existence of a nonzero eigenvector, so let v ∈ V be one such eigenvector
with associated eigenvalue λ. Note that 〈v, v〉 > 0 and consider

λ〈v, v〉 = 〈v, λv〉 = 〈v, T (v)〉 = 〈v,HT (v)〉 = 〈T (v), v〉 = 〈λv, v〉 = λ〈v, v〉.

This means that λ = λ, hence λ ∈ R, and so (1) follows.
Next, let v and w be as in (2), and then

µ〈v, w〉 = 〈v, µw〉 = 〈v, Tw〉 = 〈v,HTw〉 = 〈Tv, w〉 = 〈λv, w〉 = λ〈v, w〉.

This means that (µ− λ)〈v, w〉 = 0, and since λ 6= µ, then 〈v, w〉 = 0, so (2) holds.

Lemma 15.3. Let V be a finite-dimensional Hermitian inner product space, and let
T : V → V be a linear transformation. Suppose W ⊂ V is a T -invariant subspace, i.e.
Im(T |W ) = W , then W⊥ is an HT -invariant subspace.

Proof. Let x ∈ W⊥, we must show that HT (x) ∈ W⊥. So, let w ∈ W and consider
〈w,HT (x)〉 = 〈T (w), x〉. Since W is T -invariant, then 〈T (w), x〉 = 0, and so W⊥ is
HT -invariant as desired.

These three lemmas then allow us to prove the following theorem.

Theorem 15.4 (Unitary Triangulability). Let V be a finite-dimensional Hermitian in-
ner product space with T : V → V a linear transformation. Then, there exists an
orthonormal basis B of V such that [T ]BB is upper triangular.

Proof. Consider HT : V → V . Lemma 15.1 provides us a nonzero eigenvector v, which
we can further assume to be normalized, i.e. 〈v, v〉 = 1. Let W = span{v}, and so W
is HT -invariant. Lemma 15.3 then tells us that W⊥ is HHT -invariant, but HHT = T ,
hence W⊥ is T -invariant. By induction, there exists an orthonormal basis {v1, . . . , vn−1}
of W⊥. Then, B = {v1, . . . , vn−1, v} is an orthonormal basis of V , and [T ]BB is upper
triangular. Need to fill in the details...
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Theorem 15.5 (Spectral Theorem for Self-Adjoint Operators). Let V be a finite-
dimensional Hermitian inner product space and let T : V → V be self-adjoint. Then,
there is an orthonormal basis B of V such that [T ]BB is diagonal. Furthermore, if
A ∈ Mn(C) such that HA = A, then there exists a unitary matrix P such that PAP−1

is diagonal.

Proof. Theorem 15.4 provides us an orthonormal basis B such that [T ]BB is upper trian-
gular. Since T is self-adjoint, then HT = T , and since B is orthonomal, then HA = A
by Definition 14.9. We then have

HA =

 a11 0
. . .

∗ ann

 =

 a11 ∗
. . .

0 ann

 = A,

hence ∗ = 0, and aii = aii. This means that

A =

 a11

. . .

ann

 ,
where aii ∈ R.

Lastly, as a corollary to the Spectral Theorem for Self-Adjoint Operators, we state
the following theorem without proof.

Theorem 15.6 (Spectral Theorem for Symmetric Transformations). Let V be a finite-
dimensional real inner product space with T : V → V a symmetric linear transformation.
Then, there is an orthonormal basis B of V such that [T ]BB is diagonal. Furthermore, if
A ∈ Mn(R) such that tA = A, then there is an orthogonal P ∈ GLn(R), i.e. tP = P−1,
such that PAP−1 is diagonal.

Lemma 15.7. There is an isomorphism C ∼= R[X]/(X2 + 1).

Proof. Let ϕ : {X} → C be a set map given by X 7→ i. This map induces ϕ̃ : R[X]→ C
such that ϕ̃(X) = i. Let g ∈ Ker(ϕ̃) and let g = q(X2 +1)+r by the division algorithm,
such that deg(r) < 2. Then 0 = ϕ̃(g) = ϕ̃(q · (X2 + 1) + r) = ϕ̃(q)ϕ̃(X2 + 1) + ϕ̃(r) =
ϕ̃(q)(i2+1)+ϕ̃(r) = ϕ̃(r). Since deg(r) < 2, then r = r0+r1X, hence 0 = ϕ̃(r) = r0+r1i,
so r = 0. It then follows that Ker(ϕ̃) is a principal ideal generated by X2 + 1. By the

First Isomorphism Theorem, this implies that C ∼= R[X]
(X2+1)

.

Definition 15.8 (Complexification). Let V be a finite-dimensional R-vector space. The
complexification of V is a C-vector space VC equipped with an R-linear map ι : V → VC
which is universal: i.e. for all C-vector spaces W and all R-linear maps T : V → W ,
there is a unique C-linear map T̃ : VC → W such that the diagram

V VC

W

ι

T
T̃

commutes.
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As with all universal mapping properties, we need only construct such an object
and uniqueness follows immediately. To construct such an object, define a map J :
V ⊕ V → V ⊕ V by (v, w) 7→ (−w, v), and define εJ : R[X]→ End(V ⊕ V ) by X 7→ J .
It then follows that εJ(X2) = J(−w, v) = (−v,−w), hence εJ(X2 + 1) = 0, and so
(X2 + 1) ⊂ Ker(εJ). The fundamental theorem on homomorphisms then induces a
unique map R[X]/(X2 +1)→ End(V ⊕V ). Lemma 15.7 then implies that V ⊕V can be
viewed as a C-module, and so we define VC = V ⊕V . This means that VC is a C-module
(i.e. C-vector space) with the following module structure:

C× VC → VC given by (a+ bi, (v, w)) 7→ (av − bw, aw + bv).

Lemma 15.9. Let V be a finite-dimensional R-vector space, then the complexification
of V is given by the C-vector space VC just constructed with universal R-linear map
ι : V → VC given by v 7→ (v, 0).

Proof. Let W be a C-vector space and let T : V → W be R-linear. We then define
T̃ : VC → W by (v, w) 7→ T (v) + iT (w), and so T̃ ι(v) = T̃ (v, 0) = T (v) as desired. It is
clear that T̃ (v1 + v2, w1 + w2) = T̃ (v1, w1) + T̃ (v2, w2) is evident. Furthermore, we have

T̃
(
(a+ bi).(v, w)

)
= T̃ (av − bw, aw + bv) = T (av − bw) + iT (aw + bv)

= a(T (v) + iT (w)) + b(iT (v)− T (w))

= aT̃ (v, w) + bi(T (v) + iT (w))

= (a+ bi)T̃ (v, w),

and so T̃ is C-linear. Lastly, suppose there is T̂ : VC → W such that T = T̂ ◦ ι. Then,
we observe that

T̂ (v, w) = T̂ (v, 0) + iT̂ (w, 0) = T̃ (v, 0) + iT̃ (w, 0) = T̃ (v, w),

hence T̃ is unique.

16. Group Actions

Definition 16.1 (G-Sets #1). Let G be a group. A G-set is a set X equipped with
a scalar multiplication G × X → X satisfying the axioms (1) g.(h.x) = (gh).x for all
g, h ∈ G and all x ∈ X; and 1.x = x for all x ∈ X. Alternatively, we can view a

Definition 16.2 (G-Sets #2). A G-set is a set X equipped with a group homomorphism
ϕ : G→ S(X) where S(X) is the set of permutations of X.

Theorem 16.3. Definition 16.1 and Definition 16.2 are equivalent.

Proof. Given a group homomorphism ϕ : G → S(X), we simply define G × X → X
by (g, x) 7→ ϕ(g)(x). The two axioms hold by virtue of the way permutation composi-
tion is defined in addition to the fact that the identity in G must map to the identity
permutation in S(X), hence Definition 16.2 implies 16.1.

On the other hand, suppose we have G × X → X such that the two axioms are
satisfied. We then define ϕ : G → S(X) by

(
ϕ(g)

)
(x) = g.x. We must verify that
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ϕ(g) ∈ S(X) as well as that ϕ defines a group homomorphism. First, we need to show
that ϕ(g) ◦ ϕ(g−1) = id = ϕ(g−1) ◦ ϕ(g). Let x ∈ X and consider

ϕ(g)
(
ϕ(g−1)(x)

)
= ϕ(g)

(
g−1.x

)
= g.(g−1.x) = (gg−1).x = 1.x = x,

hence ϕ(g) ◦ ϕ(g−1) = id and the opposite composition holds as well. This means that
ϕ(g) ∈ S(X). Lastly, let g, h ∈ G and x ∈ X, we then have

ϕ(gh)(x) = (gh).x = g.(h.x) = g.ϕ(h)(x) = (ϕ(g) ◦ ϕ(h))(x),

and so ϕ is a group homomorphism.

We now have two separate ways to think of G-sets, either as a scalar multiplication
or as a group homomophism into the group of permutations on X. If X is a finite set
and n = |X| is the number of elements of X, then our second definition tells us that we
are effectively mapping G into Sn, the symmetric group on n elements. This can tell us
a lot about the structure of certain groups as the following example will demonstrate.

Proposition 16.4. Denote the field of p elements by Fp, and denote the sets of invertible
n×n matrices over Fp by GLn(Fp). In particular, when n = 2 and p = 2, then GL2(Fp) ∼=
S3.

Proof. Let X be the set of non-zero vectors in F2
2 and define a group action GL2(F2)×

X → X by (A, x) 7→ Ax. This means that there is a group homomorphism ϕ :
GL2(F2)→ S(X) ∼= S3 given by (ϕ(A))(x) = Ax. Suppose ϕ(A) = ϕ(B), then Ax = Bx
for all x ∈ X, and so B−1Ax = x. Since this equality is true for x = 0 as well, then it
follows that B−1A = I, therefore A = B and ϕ is injective. Lastly, it is easily seen that
|GL2(F2)| = 6 and so ϕ is surjective, hence GL2(F2) ∼= S3 as desired.

Definition 16.5 (Stabilizer/Isotropy Subroup). Let G be a group and let X be a G-set.
Fix x ∈ X. We define the stabilizer (or isotropy subgroup) of x by Gx = {g ∈ G : g.x =
x}.

We provided an alternative name for the stabilizer of an element x ∈ G, called the
isotropy subgroup of x, so it would be appropriate to actually prove this is a subgroup
of G.

Proposition 16.6. Let X be a G-set and let x ∈ X, then Gx ≤ G.

Proof. Let g, h ∈ Gx, and note that h.x = x, hence h−1.x = h−1.(h.x) = (h−1h).x =
1.x = x, and so h−1 ∈ Gx. We then have (gh−1).x = g.(h−1.x) = g.x = x, and so
gh−1 ∈ Gx, so Gx is a subgroup of G.

There are some canonical examples that will be important to consider in the coming
pages, which we will now describe.

Example 16.7 (Left-Translation). When X = G, we say that G acts by left-translation,
i.e. G×G→ G given by (g, x) 7→ g.x = gx.

Example 16.8 (Coset Action). Let H be a subgroup of G and let X = G/H. We then
define a left-translation action G×G/H → G/H given by (g, xH) 7→ g.xH = gxH.
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We must verify that this action is well-defined. Suppose xH = yH, hence y−1xH =
H, and so y−1x ∈ H. Then, y−1x = y−1g−1gx = (gy)−1gx ∈ H, hence gxH = gyH, so
our group action is well-defined.

Moreover, let xH ∈ X and let g ∈ GxH , so that gxH = g.xH = xH, hence x−1gx ∈
H, so g ∈ xHx−1. Since the reverse direction follows in the same manner, we conclude
that GxH = gHg−1.

Example 16.9 (Action by Conjugation). Let X = G and define the group action G×
G→ G by (g, x) 7→ g.x = gxg−1.

For a fixed g ∈ G, we can vary x ∈ G, which in turn defines an inner automorphism.
This means that we are mapping G into the set of automorphisms on G, hence ϕ : G→
Aut(G) ⊂ S(G). In fact, for a fixed x ∈ X, it is easily seen that Gx = {g ∈ G : g.x =
gxg−1 = x} = CG(x), the centralizer of x in G.

Example 16.10 (Action on Subgroups). Let X be the set of subgroups of G, we then
define an action G×X → X by conjugation, i.e. (g,H) 7→ gHg−1.

For a fixed subgroup H ≤ G, the stabilizer of H is the set of all g ∈ G such that
gHg−1 = H, hence GH = NG(H), the normalizer of H in G.

Theorem 16.11. Let X be a G-set defined by translation, i.e. G × X → X given by
(g, x) 7→ g.x. Then, the group homomorphism ϕ : G→ S(X) is such that

Ker(ϕ) =
⋂
x∈X

Gx.

Proof. Fix h ∈ Ker(ϕ), and so ϕ(h) is the identity permutation. This means that
(ϕ(h))(x) = h.x = x for all x ∈ X, which says that h ∈ Gx for all x ∈ X. It then follows
that

Ker(ϕ) ⊂
⋂
x∈X

Gx,

and the converse is easily seen to hold by reversing the same process.

Theorem 16.12. Let G be a finite group with H ≤ G a subgroup such that |G| - [G : H]!.
Then, there exists a normal subgroup K CG such that 1 6= K ⊂ H.

Proof. By Example 16.8, there is a group action on G/H defined by (g, xH) 7→ gxH.
This in turn defines a homomorphism ϕ : G → S(G/H), but |S(G/H)| = [G : H]!.
However, since |G| - [G : H]!, then ϕ cannot be an injection by Lagrange’s Theorem. This
means that Ker(ϕ) 6= 1, and so there must be a normal subgroup K = Ker(ϕ) 6= 1. Since
the given group action is given by translation, then Lemma 16.11 and our observation
after Example 16.8 tell us that

K =
⋂

xH∈G/H

GxH =
⋂

xH∈G/H

xHx−1 ⊂ H.
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Theorem 16.13. Let G be a finite group and let 1 6= H ≤ G be a subgroup such that
[G : H] = p where p is the smallest prime dividing |G|, then H CG.

Proof. Let G×G/H → G/H be given by left translation, so there is a homomorphism
ϕ : G → S(G/H). Theorem 16.11 tells us that Ker(ϕ) is the intersection of isotropy
subgroups GxH for all xH ∈ G/H. This means that Ker(ϕ) ⊂ G1H = H, hence
|Ker(ϕ)| ≤ |H|. We know that |G| = |Im(ϕ)| · |Ker(ϕ)|, and so |Im(ϕ)| must divide |G|.
Moreover, we know that |Im(ϕ)| divides p! since Im(ϕ) ≤ Sp, and so either |Im(ϕ)| = p
or ϕ is the trivial homomorphism. In the latter case, we have that Ker(ϕ) = G, but
Ker(ϕ) ⊂ H, so G = H, hence [G : H] = 1, a contradiction. This means that |Im(ϕ)| =
p, and so |Ker(ϕ)| = |G|/p = |H|. Since Ker(ϕ) ⊂ H and they have the same order,
then H = Ker(ϕ)CG, as desired.

Proposition 16.14 (Equivalence Relation on G-Sets). Let X be a G-set, we then define
∼ such that x ∼ y if there exists g ∈ G such that g.x = y. Then, ∼ is an equivalence
relation.

Proof. Reflexivity follows by the second axiom of G-sets. Now, let x ∼ y, so there is
g ∈ G such that g.x = y, then g−1.y = g−1.(g.x) = (g−1g).x = 1.x = x, and so y ∼ x.
Lastly, suppose x ∼ y and y ∼ z, so there is g, h ∈ G such that g.x = y and h.y = z. It
then follows that (hg).x = h.(g.x) = h.y = z, hence x ∼ z.

Definition 16.15 (Orbit). Let ∼ be the equivalence relation just defined, the equivalence
classes induced by ∼ are then called orbits. We denote the orbit of x ∈ X by

Ox = {g.x : g ∈ G}.

It is easily seen by this definition that x ∼ y if and only if Ox = Oy.

Definition 16.16 (Transitive Class). Let X be a G-set, we say that X is transitive if
there is only one orbit, i.e. Ox = X for any x ∈ X. In particular, individual orbits are
transitive G-sets.

Recall Example 16.7, in which G acted on itself by left-translation. Let x, y ∈ G,
then (yx−1)x = y(x−1x) = y, and so this group action is transitive.

Furthermore, consider Example 16.8, where we acted upon cosets of G/H for some
subgroup H ≤ G. Let xH, yH ∈ G/H, then (yx−1).xH = y.(x−1xH) = yH, hence this
group action is also transitive.

Lastly, consider Example 16.10. An orbit in this case is given by Ox = {g.x =
gxg−1 : g ∈ G} where x ∈ G, and so the orbits via this group action provide us with the
conjugacy class containing x ∈ G.

Definition 16.17 (G-Set Maps). Let X and Y be G-sets. A G-set map f : X → Y is
a function satisfying f(g.x) = g.f(x) for all x, y ∈ X, g ∈ G. In particular, if f is a
bijection, then f is said to be a G-set isomorphism.

Theorem 16.18 (Structure Theorem for G-Sets). (1) Any G-set X is a disjoint union
of transitive G-sets, and (2) any transitive G-set is isomorphic to G/H as a G-set for
some H ≤ G.
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Proof. Let X be a G-set, then the equivalence relation partitions X into disjoint orbits,
which are transitive by definition, and so (1) holds. Now, suppose X is a transitive G-set
and let x ∈ X, hence H = Gx by definition of transitivity. Our claim is that X ∼= G/H
as G-sets. Define a map f : G/H → X by f(gH) = g.x, we must show that this is well-
defined and that it is a G-set isomorphism. First, suppose g1H = g2H, then g−1

2 g1H =
H, so g−1

2 g1 ∈ H = Gx. This means that (g−1
2 g1).x = x, hence g1.x = g2.x, and so f is

well-defined. We then consider f(k.gH) = f(kgH) = (kg).x = k.(g.x) = k.f(gH), so
f is a G-set map. Suppose f(g1H) = f(g2H), then g1.x = g2.x, so g−1

2 g1.x = x, hence
g−1

2 g1 ∈ Gx = H and it follows that g2H = g1H. Lastly, since X is assumed to be
transitive, then f is surjective, and therefore X ∼= G/H as G-sets.

Corollary 16.19. Let X be a G-set with G finite, and let Ox be the orbit of x ∈ X.
Then, |G| = |Ox| · |Gx|.

Proof. Since Ox is a transitive G-set, then Ox ∼= G/H where we can take H = Gx by
the proof of Theorem 16.18. Given that G is finite, this means that |Ox| = |G|/|Gx|,
and so |G| = |Ox| · |Gx| as claimed.

Theorem 16.20 (Cauchy). Let G be a finite group and let p divide |G| where p is prime,
then there is an element in G with order p.

Proof. Let C = {1, σ, σ2, . . . , σp−1} be the cyclic group of order p. Let

X = {(g1, . . . , gp) ∈ G× · · · ×G : g1 · · · gp = 1}

be a C-set where C ×X → X is given by (σ, x) = σ.x = σ.(g1, . . . , gp) = (g2, . . . , gp, g1).
This action is well-defined, since g1 · · · gp = 1 implies that g2 · · · gp = g−1

1 , and so
g2 · · · gpg1 = 1. Theorem 16.18 says that transitive sets are isomorphic to C/H for
some H ≤ C, and since C is cyclic order p, then the only possible transitive C-sets are
C/1 and C/C; the former has order p and the latter has order 1. In particular, this says
that

X = O1 t · · · t Or t O′1 t · · · t O′s
where |Oi| = 1 and |O′j| = p for appropriate values of i and j. Since the orbits are
disjoint (hence the usage of t), this says that |X| = r + ps ≡ r (mod p). Furthermore,
by the way X was defined, we have p− 1 degrees of freedom, i.e. we are free to choose
any of the |G| elements to fill the first p − 1 entries in X; however, we are forced to
make the last choice by the relation g1 · · · gp = 1. This means that |X| = |G|p−1 and
since p divides |G|, then |X| ≡ 0 (mod p). It then follows that r ≡ 0 (mod p), and so
we must show that r 6= 0 by providing the existence of a singleton orbit, i.e. (x, . . . , x)
such that xp = 1. Clearly (1, . . . , 1) is a singleton orbit, and so it follows that r 6= 0,
hence r ≥ p ≥ 2, and so there must be some other element in G with order p.

Definition 16.21 (p-Groups). Let G be a group such that all g ∈ G have order pk for
some k ≥ 0; we then say that G is a p-group.

Definition 16.22 (Fixed-Point Set). Let X be a G-set, then the fixed-point set of X
with respect to G is denoted XG = {x ∈ X : g.x = x for all g ∈ G}.
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Theorem 16.23 (Class Equation). Let G be a finite p-group and let X be a G-set. Then
|XG| ≡ |X| (mod p).

Proof. A transitive set must be isomorphic to G/H as a G-set where H ≤ G such that
|G/H| = [G : H] = pk for some k ≥ 0. It then follows that

X = O1 t · · · t Or t O′1 t · · · t O′s

where |Oi| = 1, and p divides |O′j|. Let x ∈ XG, hence g.x = x for all g ∈ G, and so
Ox = {g.x : g ∈ G} = {x}. This means that the elements of XG are exactly those which
constitute the singleton orbits of X, and so |XG| = r. It then follows that |XG| ≡ |X|
(mod p) since all larger orbits have cardinality divisible p.

Corollary 16.24. Let G be a finite p-group, then Z(G), the center of G, is non-trivial.

Proof. Let G act on itself by conjugation, i.e. g.x = gxg−1, then Theorem 16.23 tells us
that |GG| ≡ |G| (mod p). We then observe that

GG = {x ∈ G : g.x = x for all g ∈ G}
= {x ∈ G : gxg−1 = x for all g ∈ G}
= {x ∈ G : gx = xg for all g ∈ G} = Z(G).

We then note that |G| = pk for some k ≥ 1, hence |G| ≡ 0 (mod p), and so |Z(G)| ≡ 0
(mod p). However, 1 ∈ Z(G), so |Z(G)| ≥ p, therefore Z(G) is non-trivial.

Lemma 16.25. Let G be a finite group, then G/Z(G) cannot be a non-trivial cyclic
group.

Proof. Let Z = Z(G) and suppose G/Z is cyclic, and so G/Z = {Z, gZ, g2Z, . . . , gn−1Z}
for some g ∈ G. Moreover, this means that any element in G is of the form gkz for
some z ∈ Z. It then follows that (gkz)(gqz′) = gk(zgq)z′ = gk(gqz)z′ = (gkgq)(zz′) =
(gqgk)(z′z) = gq(gkz′)z = gq(z′gk)z = (gqz′)(gkz), and so G is abelian. It then follows
that Z = G, hence G/Z = 1.

This lemma says that if G is a finite group such that G/Z(G) is cyclic, then G must
be an abelian group.

Corollary 16.26. Any group of order p2 with p prime is abelian.

Proof. Let G have order p2 and note that G is a p-group, hence Z(G) is non-trivial by
Corollary 16.24. If |Z(G)| = p, then |G/Z(G)| = p and must therefore by cyclic order
p; however, this contradicts Lemma 16.25. We must therefore have that |Z(G)| = p2,
hence Z(G) = G and so G is abelian.

Corollary 16.27. Let G be a p-group, then there is K CG such that |K| = p.

Proof. Since G is a p-group, it has non-trivial center, and so there is some z ∈ Z(G) such
that z 6= 1 where zp = 1. Let K = 〈z〉; it then follows that K CG since z ∈ Z(G).

Corollary 16.28. Let G be a p-group, i.e. |G| = pn, and let m ≤ n. Then, there is
K CG such that |K| = pm.
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Proof. Lemma 16.27 tells us that there is some K ′ C G such that |K ′| = p. Define
π : G → G/K ′ as the canonical projection map, hence |G/K ′| = pn−1, and so G/K ′

is a p-group as well. By induction on Corollary 16.27 it follows that there is some
K CG/K ′ such that |K| = pm−1. Now, let K = π−1(K), and since K CG/K ′ and π is
a homomorphism, then K CG; furthermore, |K| = pm.

Lemma 16.29. Let G be a group and let H ≤ G and K ≤ G. Define HK = {hk : h ∈
H, k ∈ K} and suppose that HK = KH, then HK ≤ G.

Proof. A subgroup must contain the identity of G, must be closed under operation and
under inverse. Clearly, 1 ∈ HK, and we then observe that (HK)(HK) = H(KH)K =
H(HK)K = (HH)(KK) = HK. Similarly, (HK)−1 = K−1H−1 = KH = HK, and
therefore HK ≤ G.

Theorem 16.30 (Second Isomorphism Theorem). Let G be a group, let H ≤ G and
K CG. Then, (1) HK ≤ G; (2) H ∩K CG; and (3)

H

H ∩K
∼=
HK

K
.

Proof. First, we observe that

HK =
⋃
h∈H

hK =
⋃
h∈H

Kh = KH

and so Lemma 16.29 tells us that (1) holds. Now, define π : G→ G/K as the canonical
projection map, and so the following diagram

G G/K

H π(H)

π

π|H

commutes. Note that the canonical projection map acts by g 7→ gK, hence π|H maps
h 7→ hK. This means that π(H) = {hK : h ∈ H} = {hkK : h ∈ H, k ∈ K} = HK/K.
We further observe that for an element to be in Ker(π|H), it must be in the intersection
of H and K, hence Ker(π|H) = H∩K, and so H∩KCG. Lastly, The First Isomorphism
Theorem then tells us that

H

Ker(π|H)
=

H

H ∩K
∼=
HK

K
.

17. Sylow Theorem

Definition 17.1 (p-Sylow). Let G be a group, a p-Sylow subgroup P ≤ G is a p-group
such that |P | completely divides |G|, i.e. |P | = pk is the largest power of p dividing |G|.
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Before we continue, we quickly revisit the Correspondence Theorem (Theorem 4.1).
Given a normal subgroup K CG, there is a bijection between the sets

{H ≤ G : K ⊂ H ⊂ G} ←→ {H ≤ G/K}.

The bijection can be given explicitly by H ↔ H/K. This observation then says that
every subgroup of G/K is of the form H/K for a unique subgroup such that K ≤ H ≤ G.
Similarly, this also says that H CG if and only if H/K CG/K.

Lemma 17.2. Let G be a finite group with P ≤ G a p-Sylow subgroup and let H ≤
NG(P ) be a p-group, then H ⊂ P .

Proof. Let k be such that |P | = pk. Now, since H ≤ NG(P ), then H C P , which means
that HP = PH and so HP ≤ G by Lemma 16.29. The Second Isomorphism Theorem
for NG(P ) (with P C NG(P ) and H ≤ P ) tells us that H

H∩P
∼= HP

P
. Suppose p divides

HP/P , then Theorem 16.20 tells us there is an element aP ∈ HP/P with order p. Since
〈aP 〉 ≤ HP/P , then the Correspondence Theorem tells us that S∗ := 〈aP 〉 = S/P such
that P ≤ S ≤ HP . It then follows that |S∗| = |S|/|P |, hence |S| = |S∗| · |P | = pk+1,
but this contradicts the fact that P is a p-Sylow subgroup. It must then be the case
that p - [HP : P ]. However, since H

H∩P is a p-group and [H : H ∩ P ] = [HP : P ], then
H

H∩P = 1, so H = (H ∩ P ) ⊂ P .

Theorem 17.3 (Sylow Theorem). Let G be a finite group, let p be prime, and define
Sp = {p-Sylow subgroups of G}. Then, (1) G has a p-Sylow subgroup, i.e. Sp 6= ∅; (2)
All p-Sylow subgroups are conjugate, i.e. Sp is a transitive G-set; (3) for all P ∈ Sp,
then np := |Sp| = [G : NG(P )]; and (4) np ≡ 1 (mod p).

Proof. Let |G| = pkm such that p - m, i.e. pk completely divides |G|, and let G act on
itself by conjugation. We then have

G = Z t Ox1 t · · · t Oxs

where Z is the union of singleton orbits and Oxi denotes the non-singleton orbits of G.
Suppose p - |Z|, then since p divides |G| there must be some j such that p - |Oxj |.

Corollary 16.19 tells us that |G| = |Oxj | · |Gxj |, and so pk divides |Gxj |. Since p divides
|Gxj | there is an element q ∈ Gxj with order p, and since Gxj = CG(xj) by our observa-
tions about G acting by conjugation, this means that 〈q〉 C Gxj . By induction, we can
therefore produce a subgroup P ≤ Gxj ≤ G such that |P | = pk, hence P is a p-Sylow
subgroup of G.

Suppose p divides |Z|, and since Z is the center of G, then by Cauchy, there is z ∈ Z
such that z has order p. It then follows that P := 〈z〉 C Z since z is central, and so
|G/P | = pk−1m. By induction, there is P ≤ G such that P = pk, and so P is a p-Sylow
subgroup of G, hence (1) holds.

Now, let G act on Sp by conjugation, hence G × Sp → Sp given by (g, P ) 7→ g.P =
gPg−1. Let O be a G-orbit in the decomposition of Sp and let P ∈ O. Define a group
action P × O → O by (p,A) 7→ p.A = pAp−1. Clearly {P} is a singleton P -orbit for
this group action, we will show that it is the only one. Let Q ∈ O such that {Q} is a
singleton P -orbit, and so P ∈ NP (Q). Lemma 17.2 then says that P ⊂ Q, and since



Algebra, Fall 2011 62

they are both p-Sylow subgroups then they have the same cardinality, so P = Q, and
{P} is the only singleton P -orbit. Decomposing O into P -orbits, we have

O = {P} t O′1 t · · · t O′s

where p divides |O′j| for all j, and so |O| ≡ 1 (mod p).
Now, let P ′ ∈ Sp − O and define a group action P ′ × O → O by conjugation and

decompose O into P ′-orbits. Let {Q} be a singleton P ′-orbit, and so by the same
reasoning as in the previous paragraph, it follows that P ′ ≤ NP ′(Q), hence P ′ = Q;
however, P ′ 6∈ O and Q ∈ O, a contradiction. This means there are no singleton P ′-
orbits, hence |O| ≡ 0 (mod p), a contradiction. We therefore conclude that Sp−O = ∅,
hence Sp is transitive and np = |Sp| = |O| ≡ 1 (mod p), so (2) and (4) hold.

Lastly, recall that GP , the stabilizer of P ≤ G, for a group action defined by conjuga-
tion on subsets is given by NG(P ). Corollary 16.19 then tells us that |G| = |O| · |GP | =
|Sp| · |NG(P )|. It then immediately follows that np = |Sp| = [G : NG(P )], and so (3)
holds.

Corollary 17.4. Let G be a finite group such that p divides |G|. If np = 1, then P CG
where P is p-Sylow.

Proof. Since np = 1, then there is a unique p-Sylow subgroup of G, let P be this
subgroup. Furthermore, since 1 = np = [G : NG(P )] = |G|/|NG(P )|, then |NG(P )| =
|G|, hence NG(P ) = G and so P CG.

Proposition 17.5. There are no simple groups of order 12.

Proof. Let G be a group such that |G| = 12 = 22 ·3, and suppose that G is simple. Since
2 and 3 are the only prime divisors of |G| and G is simple, then n2 6= 1 and n3 6= 1.
Let P2 and P3 be 2- and 3-Sylow subgroups, respectively, hence |P2| = 4 and |P3| = 3.
Furthermore, since np = [G : NG(Pp)] = |G|/|NG(Pp)|, then np divides |G|. This means
that n2 = 3 and n3 = 4. Since there are four distinct 3-Sylow subgroups, then these
groups contribute (3− 1)× 4 = 8 non-identity elements to G. Moreover, since |P2| = 4,
then P2

∼= Z4 or P2
∼= Z2 × Z2. If P2

∼= Z4, then the 2-Sylow subgroups contribute
an additional 1 + (4 − 1) × 3 = 10 elements, but then |G| = 18, a contradiction. If
P2
∼= Z2 × Z2, then there are at least five distinct elements amongst the four 2-Sylow

groups, hence |G| ≥ 13. Since both cases lead to contradictions, we conclude that there
are no simple groups of order 12.

18. Solvable Groups

This is a very brief section that does not contain many deep results. I added this
section simply as a potluck of definitions and simple lemmas regarding the basic theory
of solvability.

Definition 18.1 (Commutator Subgroup). Let G be a group and let [G,G] be the sub-
group generated by all elements of the form [a, b] := aba−1b−1. This subgroup, as you
might have guessed, is called the commutator subgroup of G.
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This definition yields some immediate trivial consequences. Namely, it is evident
that [a, b] = 1 if and only if a commutes with b. Furthermore, [a, b]−1 = [b, a].

Definition 18.2 (Characteristic Subgroups). A subgroup K ≤ G is said to be charac-
teristic if it is invariant under all automorphisms of G. This means that for ϕ : G→ G
an automorphism, ϕ(K) = K.

In particular, if K is a characteristic subgroup of G, then K is normal, since normality
follows from invariance via inner automorphisms.

Lemma 18.3. The commutator subgroup [G,G] is characteristic in G, hence [G,G]CG.

Proof. Let ϕ : G → G be an automorphism, and let [a, b] be a generator of [G,G]. It
then follows that ϕ([a, b]) = ϕ(aba−1b−1) = ϕ(a)ϕ(b)ϕ(a)−1ϕ(b)−1 = [ϕ(a), ϕ(b)], hence
ϕ([G,G]) ⊂ [G,G]. In the other direction, since ϕ is an automorphism, we identify
x, y ∈ G such that ϕ(x) = a and ϕ(y) = b, hence ϕ([x, y]) = [a, b]. It then follows that
ϕ([G,G]) = [G,G], therefore [G,G] is characteristic in G.

Lemma 18.4. A group G is abelian if and only if [G,G] = 1.

Proof. If G is abelian, then ab = ba, hence [a, b] = 1 for all a, b ∈ G, so [G,G] is generated
by 1. On the other hand, suppose [G,G] = 1 and let a, b ∈ G. Since [a, b] is a generator
of [G,G], then 1 = [a, b] = aba−1b−1, hence ab = ba, therefore G is abelian.

Definition 18.5 (Abelianization). The quotient G/[G,G] is said to be the abelianization
of G; it is denoted Gab.

Lemma 18.6. If G is nonabelian and simple, then [G,G] = G, hence Gab = 1.

Proof. Since [G,G]CG by Lemma 18.3 and G is simple, it must follow that [G,G] = G
or [G,G] = 1; however, since G is nonabelian, then [G,G] = G.

Definition 18.7 (Derived Subgroups). For i ≥ 0, define G(i) inductively by G(0) = G
and G(i) = [G(i−1), G(i−1)] for i ≥ 1. We call G(i) the i-th derived subgroup of G, hence
G(1) = [G,G], the commutator of G.

Definition 18.8 (Solvable Groups). A group G is said to be solvable if G(k) = 1 for
some k ≥ 0.

Lemma 18.9. Every abelian group is solvable. Furthermore, simple groups are solvable
if and only if they are abelian.

Proof. Lemma 18.4 immediately implies that all abelian groups are solvable. If G is
simple, then [G,G] = G or [G,G] = 1; however, since G is solvable, it must follow that
[G,G] = 1, hence G is abelian.
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19. Semidirect Products

We will motivate this section by considering the group of rigid motions in Rn, which we
now define.

Definition 19.1 (Rigid Motion). A rigid motion is any map A : Rn → Rn which
preserves distances, i.e. for all x, y ∈ Rn, dist(Ax,Ay) = dist(x, y). We denote the set
of these actions by E(n); this set defines a group with composition as its group operation.

Lemma 19.2. Any origin preserving rigid motion is an orthogonal transformation, i.e.
if A ∈ E(n) such that A(0) = 0, then A is linear, hence A ∈ O(n).

Proof. Let A be one such rigid motion and note that in Rn with the Euclidean inner
product, ||x||, the norm of x, is given by ||x|| = dist(x, 0); furthermore, dist(x, y) =
dist(x − y, 0). It then follows that ||Ax|| = dist(Ax, 0) = dist(x, 0) = ||x||, hence A
preserves norms. Next, we observe that ||A(x − y)|| = ||x − y|| = dist(x − y, 0) =
dist(x, y) = dist(Ax,Ay) = dist(Ax−Ay, 0) = ||Ax−Ay||, and so A is “linear in norm”.
It then follows that

〈Ax− Ay,Ax− Ay〉 = ||Ax− Ay||2 = ||A(x− y)||2 = ||x− y||2 = 〈x− y, x− y〉,

and so we

〈Ax,Ax〉 − 2〈Ax,Ay〉+ 〈Ay,Ay〉 = 〈x, x〉 − 2〈x, y〉+ 〈y, y〉.

Since 〈Ax,Ax〉 = ||Ax||2 = ||x||2 = 〈x, x〉, then this implies that 〈Ax,Ay〉 = 〈x, y〉, and
so A preserves inner products.

Lastly, let B = {e1, . . . , en} be the standard basis of Rn and note that since A pre-
serves inner products, then 〈Aei, Aej〉 = 〈ei, ej〉 = δij. This means that {Ae1, . . . , Aen}
forms a basis of A as well. Let v, w ∈ Rn and then

A(av + bw) =
n∑
i=1

〈A(av + bw), Aei〉Aei =
n∑
i=1

〈av + bw, ei〉Aei

= a ·
n∑
i=1

〈v, ei〉Aei + b ·
n∑
j=1

〈w, ej〉Aej

= a ·
n∑
i=1

〈Av,Aei〉Aei + b ·
n∑
j=1

〈Aw,Aej〉Aej

= aAv + bAw,

and so A is linear, hence A is an orthogonal transformation.

Corollary 19.3. Any A ∈ E(n) can be written uniquely as A = Ta ◦S for some a ∈ Rn

and some S ∈ O(n) where Ta is defined by v 7→ v + a.

Proof. Let S = T−A(0) ◦ A, hence S(0) = 0, and so S ∈ O(n); it is easily seen that
TA(0) ◦ S = A. Now, suppose there is some other a′ ∈ Rn and S ′ ∈ O(n) such that
TA(0) ◦ S = Ta′ ◦ S ′. It then follows that S ′ ◦ S−1 = T−a′ ◦ TA(0) = T−a′+A(0). However,
(S ′◦S−1)(0) = 0, and so T−a′+A(0)(0) = 0, henceA(0) = a′. This means that S ′◦S−1 = id,
so S ′ = S.
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The uniqueness criterion of the previous corollary immediately implies that there is
a set bijection E(n)←→ Rn ×O(n) given by Ta ◦ S ←→ (a, S).

Corollary 19.4. Let (a, S), (a′, S ′) ∈ Rn×O(n), then (a, S)◦(a′, S ′) = (a+S(a′), S◦S ′).

Proof. This is a straightforward calculation:(
(a, S) ◦ (a′, S ′)

)
(v) = (Ta ◦ S ◦ Ta′ ◦ S ′)(v)

= (Ta ◦ S ◦ Ta′)(S ′(v))

= a+ S(a′ + S ′(v))

= a+ S(a′) + (S ◦ S ′)(v)

= Ta+S(a′) ◦ (S ◦ S ′)(v),

and so (a, S) ◦ (a′, S ′) = (a+ S(a′), S ◦ S ′).

We stated on the outset that rigid motion would be the model for which we develop
the concept of semidirect products, and so we now make some observations regarding
these groups.

Denote the set of translations by T = {Ta ∈ E(n) : a ∈ R}. It then follows that
T C E(n), since for A ∈ E(n) and Ta ∈ T , it is easily seen that A ◦ Ta ◦ A−1 = TS(a)

where A = Ta′ ◦ S. Furthermore, O(n) is clearly a subgroup of E(n); the intersection of
O(n) and T is the identity; and E(n) = T ·O(n).

Lemma 19.5. Let G be any group, and let K CG and H ≤ G such that HK = G and
H ∩ K = 1. Then g ∈ G can be written uniquely as g = kh for k ∈ K and h ∈ H.
Furthermore, there is a set bijection G ←→ K ×H given by g ↔ (k, h), and the group
operation in G is given by (k, h) · (k′, h′) = (k · hk′, h · h′) where hk = hkh−1.

Proof. Let g ∈ G, then since G = HK, there are h ∈ H and k ∈ K such that g = hk.
Suppose there are h1 ∈ H and k1 ∈ K such that h1k1 = g = hk, then h−1h1 = kk−1

1 ∈
H ∩ K = 1. Therefore h = h1 and k = k1, hence uniqueness, and so the claimed set
bijection immediately follows. We then observe that

(k, h) · (k′, h′) = khk′h′ = khk′(h−1h)h′ = k(hk′)hh′ = (k · hk′, h · h′).

This follows based on the assumption that K CG, hence hk ∈ K.

The key observation to make in the above lemma is that we end up defining the
group operation in G in terms of an action by H on K. Namely, H acts on K by inner
automorphism. Explicity, there is a group action H ×K → K given by (h, k) 7→ h.k =
hkh−1; this group action yields a group homomorphism ϕ : H → Aut(K) ⊂ S(K). We
can then generalize this action by considering the group of automorphisms on K, instead
of limiting ourselves to the inner automorphisms.

Definition 19.6 (Semidirect Product). Let K and H be groups and let α : H → Aut(K)
be an action of H on K by automorphism. Then the semidirect product of K and H is
denoted by K oαH such that K oαH = K ×H as sets. Furthermore, multiplication in
K oα H is given by (k, h) · (k′, h′) = (k · hk, h · h′) where hk = (α(h))(k′).
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Proposition 19.7. A semidirect product is a group.

Proof. It is easy to show that (1, 1) is the identity of K oα H for K and H groups and
α : H → Aut(K).

Next, let (k, h) ∈ K oα H and let k′ ∈ K be the unique element such that k−1 =
(α(h))(k′). Then, (k, h) · (k′, h−1) = (k · hk′, hh−1) = (k · (α(h))(k′), 1) = (kk−1, 1) =
(1, 1). Now, let ϕ = α(h), and so ϕ(k′) = k−1, hence ϕ−1(k−1) = k′. This means
that (ϕ−1(k))−1 = k′, which implies that (α(h))−1(k) = (k′)−1. Furthermore, since 1 =
α(hh−1) = α(h) ◦ α(h−1), so (α(h))−1 = α(h−1). We have that (α(h−1))(k) = (k′)−1. It
then follows that (k′, h−1)·(k, h) = (k′·h−1

k, hh−1) = (k′·(α(h−1))(k), 1) = (k′(k′)−1, 1) =
(1, 1), and so (k, h) has an inverse.

Lastly, associativity is left as an easy, yet tedious, exercise.

Corollary 19.8. If K oα H is a semidirect product and α is the trivial action, then
K oα H ∼= K ×H.

Proof. To say that α is the trivial action is to say that α maps to the identity auto-
morphism, hence (α(h))(k) = k for all h ∈ H and all k ∈ K. We then observe that
(k, h) · (k′, h′) = (k · hk′, hh′) = (k · (α(h))(k′), hh′) = (kk′, hh′), therefore our conclusion
follows.

Before we continue, we quickly verify that the inclusion maps K ↪→ KoαH ←↩ H are
actually group homomorphisms; this will allow us to begin talking about exact sequences.
It suffices to see that (1, h) · (1, h′) = (1 · h1, h · h′) = (1 · (α(h))(1), hh′) = (1, hh′), and
(k, 1) · (k′, 1) = (k · 1k′, 1) = (k · (α(1))(k′), 1) = (kk′, 1).

Lemma 19.9. Let 1 → K
i−→ G

p−→ H → 1 be an exact sequence of groups such that
i has a retraction r, then G ∼= K ×H.

Proof. We will use the universal property of products to induce a map ϕ : G→ K ×H
such that the diagram

K K ×H H

G

πK πH

r p
ϕ

commutes, and show that ϕ is an isomorphism. Let g ∈ Ker(ϕ), hence ϕ(g) = (1, 1) =
(r(g), p(g)), so r(g) = 1 and p(g) = 1. This means that g ∈ Ker(p) = Im(i), and so
there is k ∈ K such that i(k) = g. Since r is a retraction, then 1 = r(g) = ri(k) = k,
and since i is an injection, it follows that g = 1.

Next, let (k, h) ∈ K×H and since p is surjective, there is x ∈ G such that p(x) = h.
To determine the element which maps onto (k, h) we first note that (k, 1) · (1, h) = (k, h)
since we are dealing with direct products. This reduces our problem down to finding
elements which map to (k, 1) and (1, h). To find such elements, we will assume that
such an element exists, deduce its form in terms of elements we already know a priori,
then show that it in fact maps via ϕ as desired.



Algebra, Fall 2011 67

First, assume there is g ∈ G such that r(g) = k and p(g) = 1, hence g ∈ Ker(p) =
Im(i). This means there is k′ ∈ K such that i(k′) = g, hence k′ = ri(k′) = r(g) = k. We
then verify that ϕ(i(k)) =

(
ri(k), pi(k)

)
= (k, 1).

Next, assume there is g ∈ G such that r(g) = 1 and p(g) = h. Recall that there
is x ∈ G such that p(x) = h, then p(g) = p(x), so p(gx−1) = 1. This means that
gx−1 ∈ Ker(p) = Im(i), and so there is k′ ∈ K such that i(k′) = gx−1, hence g = i(k′) ·x.
Furthermore, we have k′ = ri(k′) = r(g)·r(x−1) = r(x−1), and so g = ir(x−1)·x. We then
verify that ϕ(ir(x−1) ·x) =

(
rir(x−1) ·r(x), pir(x−1 ·p(x)

)
= (r(x−1) ·r(x), p(x)

)
= (1, h).

Lastly, it then follows that ϕ
(
i(k)·ir(x−1)·x) = ϕ(i(k))·ϕ

(
ir(x−1)·x

)
= (k, 1)·(1, h) =

(k, h) and therefore ϕ is an isomorphism.

Lemma 19.10. Let 1→ K
i−→ G

p−→ H → 1 be an exact sequence of groups such that
p has a section s, then G ∼= K oα H where α : H → Aut(K) is given by α(h)(k) =
s(h) · k · s(h)−1.

Proof. Our goal will be to use Lemma 19.5. Let K = Im(i) = Ker(p), hence K C G,
and let H = Im(s). Now, let g ∈ K ∩ H, so g ∈ Ker(p) ∩ Im(s). This means that
p(g) = 1 and there is h ∈ H such that s(h) = g, so h = ps(h) = p(g) = 1, thus
g = s(1) = 1, therefore K ∩H = 1. Next, let g ∈ G, and let h = p(g). It then follows
that p(g · s(h−1)) = p(g) · ps(h−1) = hh−1 = 1, so g · s(h−1) ∈ Ker(p) = Im(i). Then,
there is k ∈ K such that i(k) = g ·s(h)−1, so g = i(k)s(h), and it follows that G = H ·K.

Applying the desired lemma, we have that G ∼= K oα H where α(ĥ)(k) = ĥk = ĥkĥ−1.
Since ĥ ∈ H = Im(s), there is h ∈ H such that s(h) = ĥ, so α(h)(k) = s(h) · k · s(h)−1,
as desired.

Example 19.11. Dihedral groups are semidirect products.

Solution. Recall that the dihedral group on n elements is denoted by D2n = 〈s, t : sn =
t2 = 1, tst−1 = s−1〉. This means that H = 〈t〉 ∼= Z2 and K = 〈s〉 ∼= Zn, and the relation
tst−1 = s−1 implies that K C D2n. We then note that H ∩ K = 1 and D2n = HK,
so we can immediately recognize D2n as a semidirect product K oα H given by some
inner automorphism α, i.e. α(h)(k) = hkh−1. In particular, let’s look at how α acts
on the generators of D2n; we have α(t)(s) = tst−1 = s−1. This means that α(t) is the
automorphism on K which inverts elements, i.e. sk 7→ s−k. Furthermore, we observe
that

Aut(K) = Aut(Zn) = End(Zn)× = HomZn(Zn,Zn)× ∼= Z×n
as Zn-modules by Theorem 1.11. In particular, this means we can view α as a map
Z2 → Z×n such that 1 7→ −1.

Moving along, we consider a slight modification to Lemma 19.5.

Lemma 19.12. Let G be a group with K C G and H C G such that G = KH and
H ∩K = 1, then G ∼= K ×H.

Proof. Define µ : K×H → G by (k, h) 7→ kh, we must show that µ is a homomorphism.
Let h ∈ H and let k ∈ K, and observe that hkh−1 ∈ K and kh−1k−1 ∈ H by normality of
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H and K. It then follows that (hkh−1)k ∈ K and h(kh−1k−1) ∈ H, hence hkh−1k−1 = 1,
so hk = kh. Then,

µ
(
(k, h) · (k′, h′)

)
= µ(kk′, hh′) = kk′hh′ = khk′h′ = µ(k, h) · µ(k′, h′),

and so µ is a homomorphism. Lastly, let (k, h) ∈ Ker(µ), hence 1 = µ(k, h) = kh, and
so k = h−1 ∈ K ∩ H = 1, thus k = h = 1 and µ is injective. Let g ∈ G, and since
G = KH, then g = kh for some k ∈ K and h ∈ H, and so µ(k, h) = kh = g, therefore
µ is an isomorphism.

Proposition 19.13. Let K and H be groups and let G be any group such that ϕ : K → G
and ψ : H → G are group homomorphisms satisfying ψ(h)ϕ(k) = ϕ(k)ψ(h). Then, there
exists a unique induced map γ : K ×H → G such that the diagram

K K ×H H

G

i s

ϕ ψ
γ

commutes.

Proof. Define γ : K×H → G by (k, h) 7→ ϕ(k)ψ(h). The fact that γ is a homomorphism,
it makes the diagram commute, and is unique, are straightforward verifications.

Proposition 19.14. Let K and H be groups and let α : H → Aut(K) be an action
by automorphisms. Let G be any group and let ϕ : K → G and ψ : H → G be group
homomorphisms such that ψ(h)ϕ(k) = ϕ(α(h)(k))ψ(h). Then, there exists a unique
group homomorphism γ : K oα H → G such that the diagram

K K oα H H

G

i s

ϕ ψ
γ

commutes.

Proof. Define γ : K oαH → G by (k, h) 7→ ϕ(k)ψ(h). First, we verify that γ is a group
homomorphism, and so

γ
(
(k, h) · (k′, h′)

)
= γ

(
k · α(h)(k′), hh′) = ϕ(k)ϕ

(
α(h)(k′)

)
ψ(h)ψ(h′)

= ϕ(k)ψ(h)ϕ(k′)ψ(h′) = γ(k, h) · γ(k′, h′)

We then observe that γ(i(k)) = γ(k, 1) = ϕ(k)ψ(1) = ϕ(k) and γ(s(h)) = γ(1, h) =
ϕ(1)ψ(h) = ψ(h), hence γ ◦ i = ϕ and γ ◦s = ψ. Uniqueness is then an easy verification.
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Lemma 19.15. Let β : H → H ′ be an isomorphism. Let α : H ′ → Aut(K) be an action
by automorphisms of H ′ on K. Then, H acts on K by automorphism via α ◦ β : H →
Aut(K) and K oα H

′ ∼= K oα◦β H.

Proof. Let ϕ : K → K oα H
′ and s′ : H ′ → K oα H

′ be canonical inclusion maps, and
define ψ = s′ ◦ β. Likewise, let i : K → K oα◦β H and s : H → K oα◦β H be canonical
inclusions. We will show that ϕ and ψ satisfy the hypothesis of Proposition 19.14 and
hence we induce a map γ such that the diagram

K K oα◦β H H

K oα H
′ H ′

i s

ϕ ψ
β

s′

γ

commutes. We then observe that

ψ(h)ϕ(k) = (1, β(h)) · (k, 1) =
(
(α ◦ β)(h)(k), β(h)

)
= ϕ

(
(α ◦ β)(h)(k)

)
ψ(h),

and so there is a unique γ such that the above diagram commutes. Furthermore, γ is
given by (k, h) 7→ ϕ(k)ψ(h) = (k, 1) · (1, β(h)) = (k, β(h)). This map is clearly injective,
since (k, β(h)) = (1, 1) implies that k = 1 and β(h) = 1, hence h = 1. Likewise, this
map is clearly surjective, since for all h′ ∈ H ′ there is h ∈ H such that β(h) = h′. It
then follows that γ(k, h) = (k, β(h)) = (k, h′), therefore γ is an isomorphism.

Proposition 19.16. Let K and H be groups and α : H → Aut(K) an action by auto-
morphisms. Let λ : K → K ′ be an isomorphism. Then H acts on K ′ by automorphism
and λ induces an isomorphism cλ : Aut(K) → Aut(K ′) given by λ ◦ a ◦ λ−1 for all
a ∈ Aut(K).

Proof. This proof is similar to the proof in Lemma 19.15, with the following diagram:

K K oα H H

K ′ K ocλ◦α H

i s

ϕ ψ
λ

i′

γ

The point of these two lemmas is to demonstrate that the structure of a semidirect
product is unique up to isomorphism on both groups. We can replace the groups on
which the semidirect product is constructed by groups which are isomorphic to the
original and the semidirect product does not care. This observation affords us the
convenience of working with groups which may be more computational tractable than
our original group.

Example 19.17. Determine all groups of order pq where p and q are both prime.
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Solution. Let G be a group such that |G| = pq where q < p and both are prime. Cauchy’s
Theorem tells us that there exist elements h, k ∈ G such that ord(k) = p and ord(h) = q.
Define K = 〈k〉 ∼= Zp and define H = 〈h〉 ∼= Zq. Since [G : K] = |G|/|K| = pq/p = q,
the smallest prime dividing |G|, then KCG by Theorem 16.13. Furthermore, H∩K = 1,
since gcd(p, q) = 1, and the Second Isomorphism Theorem tells us that HK ≤ G and
H

H∩K
∼= HK

K
. This means that |G| = pq = |K| · |H| = |HK| · |H ∩ K| = |HK|, hence

G = HK. It then follows that G ∼= KoH, and the results from our previous two lemmas
then say thatG ∼= ZqoAut(Zp). However, we further observe that Aut(Zp) ∼= Z×p ∼= Zp−1

and so G ∼= Zq oα Zp where α : Zq → Zp−1.
In order to classify all groups of order pq, we consider two separate cases. First,

suppose q - (p− 1) and suppose α is a nontrivial map, hence α must be injective since q
is prime. However, Lagrange’s Theorem then implies that q divides p−1, a contradiction;
therefore α must be a trivial action, and so G ∼= Zq × Zp ∼= Zpq by Corollary 19.8 and
Lemma 8.6.

Now, suppose q divides p − 1, and let α be a nontrivial map, hence injective. This
means that G ∼= Zq oα Zp... pretty anticlimactic, huh? Well, what about the action α?
We’ve shown that the structure of a semidirect product does not change by replacing
the groups that construct it with isomorphic copies; however, the action can (and in
general does) alter the structure of the group. So how do we classify all groups of order
pq?

First, we note that Zp−1 has a unique subgroup of order q, hence if α′ is another non-
trivial action (i.e. injection), then Im(α) = Im(α′). We can then define an isomorphism
β : Zq → Zq given by β = α−1 ◦ α′. It then follows that

Zp oα Zq ∼= Zp oα◦β Zq = Zp oα′ Zq

since α◦β = α′. This means that any nontrivial action we define will uniquely determine
the semidirect product structure of G up to isomorphism.

We can further generalize our result in the last paragraph by observing that as long
as two actions α and α′ are such that Im(α) ∼= Im(α′), then the semidirect product
cannot distinguish between them. In this way, we are allowed to choose an action which
is most convenient.

Example 19.18 (Groups of order 12). Classify all groups of order 12.

Proof. We showed in Proposition 17.5 that there are no simple groups of order 12, and
so it follows that either n2 = 1 or n3 = 1. This means that P3

∼= Z3 and either P2
∼= Z4

or P2
∼= Z2 × Z2.

Suppose that n2 = 1, hence P2 CG. Consider the short exact sequence

1→ P2 → G
π−→ G/P2 → 1.

Since |G/P2| = 3, then π|P3 : P3 → G/P2 is an isomorphism, and so π has a section.
Then, by Lemma 19.10 it follows that G ∼= P2 oα P3 such that α : P3 → Aut(P2).

Suppose P2
∼= Z4, then Aut(Z4) ∼= (Z4)× = {±1}, and so α must be trivial, hence

G ∼= Z4 × Z3
∼= Z12.

Now, suppose P2
∼= Z2 × Z2, then it is clear that Aut(Z2 × Z2) ∼= GL2(F2) ∼= S3 by

Proposition 16.4. Our action can be viewed as α : Z3 → S3, and so α is either trivial
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or injective. If α is trivial, then G ∼= Z2 × Z2 × Z3. If α is injective, then Im(α) is the
unique 3-Sylow subgroup of S3. In fact, α must be given by 1 7→ (1 2 3) or by 1 7→ (1 3 2);
however, both cases yield the same image in S3, so it doesn’t matter which mapping

we choose. To make this isomorphism explicit, we fix

[
0 1
1 1

]
∈ GL2(F2) which sends

(1, 0) to (0, 1) to (1, 1) to (1, 0). Then, we have G ∼= (Z2 × Z2) oα Z3 where

α : Z3 → Aut(Z2 × Z2) given by 1→
[

0 1
1 1

]
.

Now, suppose n3 = 1 and so P3 CG, and consider the exact sequence

1→ P3 → G
π−→ G/P3 → 1.

Since P3 ∩ P2 = 1, then π|P2 : P2 → G/P3 is an isomorphism, and so π has a section.
As before, this means that G ∼= P3 oα P2 where α : P2 → Aut(P3). Since P3

∼= Z3, then
Aut(P3) ∼= Aut(Z3) ∼= Z2, and so we have α : P2 → Z2 = {±1}.

Suppose P2
∼= Z4. If α is trivial, then G ∼= Z12; however, if α is nontrivial, then

α must be given by 1 7→ −1. This means that G ∼= Z3 oα Z4 where (s, t) · (s′, t′) =
(s+ (−1)ts′, t+ t′).

Suppose P2
∼= Z2×Z2, then G ∼= Z3 oα (Z2×Z2) for some α : Z2×Z2 → Aut(Z3) ∼=

Z2 = {±1}. If α is trivial, then G ∼= Z3 × Z2 × Z2. Otherwise, if α is nontrivial, then
all such maps have identical images, and so we fix an element (1, 0) ∈ Z2 × Z2. It then
follows that G ∼= Z3 oα (Z2 × Z2) where

(s, (t, u)) · (s′, (t′, u′)) = (s+ (−1)ts′, (t+ t′, u+ u′)).

Therefore all groups of order 12 are of the form

Z12, Z4 × Z3, Z2 × Z2 × Z3, (Z2 × Z2) o Z3, Z3 o Z4, Z3 o (Z2 × Z2).

20. Tensor Products

In this section we will need to distinguish between left R-modules and right R-modules.
We will do so by adopting the following notation: MR denotes a right R-module, i.e.
the ring action occurs on the right, and RM denotes a left R-module, i.e. the ring action
occurs on the left.

Definition 20.1 (Biadditive/R-Balanced). Let MR and RN be modules and A a Z-
module. A function µ : M ×N → A is biadditive if µ(m1 +m2, n) = µ(m1, n)+µ(m2, n)
and µ(m,n1 + n2) = µ(m,n1) + µ(m,n2). Additionally, µ is said to be R-balanced if
µ(m.r, n) = µ(m, r.n).

Our first goal will be to construct the tensor product as a universal biadditive, R-
balanced map ⊗ : M ×N → M ⊗N for modules MR and RN . To construct this map,
we begin by letting F (M ×N) denote the free Z-module generated by M ×N . Define
e(m,n) := ι(m,n) and let J be the Z-submodule of F (M ×N) generated by all elements
of the form
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• e(m1+m2,n) − e(m1,n) − e(m2,n);

• e(m,n1+n2) − e(m,n1) − e(m,n2); and

• e(m.r,n) − e(m,r.n)

for all appropriately chosen elements. We then define M ⊗RN := F (M ×N)/J and let
⊗ = π ◦ ι where π is the canonical projection map determined by J .

We will now show that the tensor product has a universal mapping property for
biadditive, R-balanced maps.

Lemma 20.2 (Universality of the Tensor Product). Let MR and RN be modules and let
⊗ : M ×N →M ⊗RN be given as in the construction just provided. The tensor product
has a universal mapping property: i.e., for all abelian groups A and all biadditive, R-
balanced maps µ : M ×N → A, there is a unique map µ̃ : M ⊗R N → A such that the
diagram

M ×N M ⊗R N

A

⊗

µ
µ̃

commutes.

Proof. Recall that Definition 3.1 induces a unique map µ : F (M × N) → A such that
µ = µ ◦ ι. If we can show that µ vanishes on the generators of J , then µ vanishes on all
of J , and so J ≤ Ker(µ). This would then induce a unique map µ̃ : M ⊗R N → A such
that µ = µ̃ ◦ π where π is the canonical projection determined by J .

We will only demonstrate µ vanishing on one generator, as follows:

µ(e(m1+m2,n) − e(m1,n) − e(m2,n)) = µ(ι(m1 +m2, n))− µ(ι(m1, n))− µ(ι(m2, n))

= µ(m1 +m2, n)− µ(m1, n)− µ(m2, n) = 0,

since µ is biadditive; the remaining verifications are just as straightforward. This means
that µ = µ ◦ ι = µ̃ ◦ π ◦ ι = µ̃ ◦ ⊗, and uniqueness is given.

Definition 20.3 (Simple Tensor). The element ⊗(m,n) is called a simple tensor and
is denoted by m⊗ n.

By the way that M ⊗R N and ⊗ were defined, it is easy to see that ⊗ is biadditive
and R-balanced. After all, J was generated by elements which force these conditions.
We then make the following observation

0⊗ n = (0 + 0)⊗ n = 0⊗ n+ 0⊗ n and m⊗ 0 = m⊗ (0 + 0) = m⊗ 0 +m⊗ 0,

and so 0⊗ n = 0 and m⊗ 0 = 0.
At this point it’s appropriate to address two common problems encountered when

dealing with tensor products.
First, it is generally very difficult to define a map out of a tensor product by virtue of

the fact that we are dealing with a quotient group of a free module. In fact, an arbitrary



Algebra, Fall 2011 73

element of M⊗RN need not be a simple tensor. Furthermore, to define such a map, one
would need to show that the map is well-defined. Instead, it is usually best to determine
some way to utilize the universal mapping properties of tensor products to induce a map
out of a tensor product. In this way, we are guaranteed that the map is well-defined,
and as a bonus, has many desired properties which would be otherwise troublesome to
verify.

Second, although an arbitrary element is not necessarily a simple tensor, the tensor
product is generated by simple tensors. This means that an arbitrary element of a tensor
product is a finite sum of simple tensors, which may not necessarily be unique. In some
circumstances it will be necessary to evaluate a map out of a tensor product; the fact
that the simple tensors generate the tensor product implies that we will often need only
perform such tasks on the simple tensors.

Proposition 20.4. Let R be a ring and let RN be a left R-module, then R⊗R N ∼= N .

Proof. We can define a biadditive R-balanced map µ : R×N → N given by (r, n) 7→ r.n.
This follows by observing that

µ(r1 + r2, n) = (r1 + r2).n = r1.n+ r2.n = µ(r1, n) + µ(r2, n);
µ(r, n1 + n2) = r.(n1 + n2) = r.n1 + r.n2 = µ(r, n1) + µ(r, n2); and

µ(r1r2, n) = (r1r2).n = r1.(r2.n) = µ(r1, r2.n).

We then induce a map µ̃ : R ⊗N N → N by the universal property of tensor products
such that the diagram

R×N R⊗R N

N

⊗

µ
µ̃

commutes. The structure on a tensor product is, in general, far too complex to make a
standard injectivity/surjectivity argument to prove that µ̃ is an isomorphism. Instead,
we will construct an inverse map. Define ρ : N → R ⊗R N by n 7→ 1 ⊗ n. This is a
homomorphism by the observation that ρ(n1 + n2) = 1⊗ (n1 + n2) = 1⊗ n1 + 1⊗ n2 =
ρ(n1) + ρ(n2). Lastly, we have

(ρ ◦ µ̃)(r ⊗ n) = ρµ̃⊗ (r, n) = ρµ(r, n) = ρ(r.n) = 1⊗ (r.n) = r ⊗ n,

and
(µ̃ ◦ ρ)(n) = µ̃(1⊗ n) = µ(1, n) = 1.n = n,

therefore µ̃ is an isomorphism.

Proposition 20.5. Let R be a ring with ideal I C R, and let RN be a left R-module.
Then R/I is a right R-module, and R/I ⊗R N ∼= N/IN .

Proof. Fix n ∈ N and define fn : R → N/IN by fn(r) = r.n. For i ∈ I, it follows that
fn(i) = i.n = 0, and so I ≤ Ker(fn). The fundamental theorem on homomorphisms
then induces a unique map fn : R/I → N/IN such that fn = fn ◦π where π : R→ R/I.
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Now, define µ : R/I ×N → N/IN by (r, n) 7→ fn(r) = fn(r) = r.n. We now verify that
µ is biadditive

µ(r1 + r2, n) = (r1 + r2).n = r1.n+ r2.n = µ(r1, n) + µ(r2, n)

and
µ(r, n1 + n2) = r.(n1 + n2) = r.n1 + r.n2 = µ(r, n1) + µ(r, n2);

as well as R-balanced

µ(r1.r2, n) = (r1r2).n = r1.(r2.n) = µ(r1, r2.n).

We then induce a unique map µ̃ : R/I ⊗R N → N/IN such that the diagram

R/I ×N R/I ⊗R N

N/IN

⊗

µ
µ̃

commutes, and it is easily seen that µ̃(r ⊗ n) = r.n on generators. Now, define h :
N → R/I ⊗R N by n 7→ 1 ⊗ n. Clearly, h is a homomorphism, since h(n1 + n2) =
1 ⊗ (n1 + n2) = 1 ⊗ n1 + 1 ⊗ n2 = h(n1) + h(n2). Then, for i.n ∈ IN , we observe that
h(i.n) = 1⊗ i.n = 1.i⊗n = i⊗n = 0⊗n = 0, so IN ≤ Ker(h). We then induce a unique
homomorphism h : N/IN → R/I ⊗R N such that h = h ◦ π where π : N → N/IN ; we
note that h(n) = 1⊗n by this relationship. Lastly, we verify that h is indeed an inverse
to µ̃. Observe that

(h ◦ µ̃)(r ⊗ n) = h(r.n) = 1⊗ r.n = 1.r ⊗ n = r ⊗ n

and
(µ̃ ◦ h)(n) = µ̃(1⊗ n) = 1.n = n;

we therefore conclude that µ̃ is an isomorphism.

Corollary 20.6. Let d = gcd(m,n), then Zn ⊗Z Zm ∼= Zd; in particular, if d = 1, then
the tensor product is zero.

Proof. This is a straightforward calculation:

Zn ⊗Z Zm ∼=
Z/mZ

nZ(Z/mZ)
=

Z/mZ
(mZ + nZ)/mZ

∼=
Z

mZ + nZ
= Zd.

If gcd(m,n) = d = 1, then Zd = 0.

Lemma 20.7. Let RM and RN be R-modules and let g : N → N ′ be a left R-module map.
Then, there is a unique map 1⊗g : M⊗RN →M⊗′RN ′ such that (1⊗g)◦⊗ = ⊗′◦(1×g).
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Proof. The map 1 × g : M × N → M × N ′ is given by (m,n) 7→ (m, g(n)). Then,
⊗′ ◦ (1 × g) : M × N → M ⊗′R N is given by (m,n) 7→ m ⊗′ g(n), which is clearly
biadditive and R-balanced. This induces a unique map 1 ⊗ g : M ⊗R N → M ⊗′R N ′
such that the diagram

M ×N M ⊗R N

M ⊗′R N

⊗

⊗′ ◦ (1× g)
1⊗ g

commutes.

There is, of course, an analogous lemma for inducing a map f ⊗ 1 from a right
R-module map f : M → M ′. Likewise, given maps f and g, we can induce a map
f ⊗ g : M ⊗R N →M ′ ⊗′R N ′ such that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

Theorem 20.8 (Left Functoriality of the Tensor Product). Let R be a ring and let M
be a right R-module. Let L be the category of left R-modules, and let D be the category
of abelian groups, i.e Z-modules. Define M ⊗R (·) : L → D by N 7→M ⊗RN on objects,
and g 7→ 1⊗ g on arrows. Then, M ⊗R (·) is a functor.

Proof. Let g : N → N ′ and h : N ′ → N ′′ be left R-module maps, and consider the
diagram:

M ×N M ×N ′ M ×N ′′

M ⊗R N M ⊗′R N ′ M ⊗′′R N ′′

1× g 1× h

⊗ ⊗′ ⊗′′

1⊗ g 1⊗′ h

.

We then consider the analogous diagram on h ◦ g, and note that

(1⊗ (h ◦ g)) ◦ ⊗ = ⊗′′ ◦ (1× (h ◦ g)) = ⊗′′ ◦ (1× h) ◦ (1× g)

= (1⊗ h) ◦ ⊗′ ◦ (1× g) = (1⊗′ h) ◦ (1⊗ g) ◦ ⊗.

Uniqueness of 1⊗ (h ◦ g) then implies that 1⊗ (h ◦ g) = (1⊗′ h) ◦ (1⊗ g). Preservation
of the identity map follows trivially, therefore M ⊗R (·) is a functor.

Theorem 20.9 (Right Functoriality of the Tensor Product). Let R be a ring and let N
be a left R-module. Let R be the category of right R-modules and let D be the category
of abelian groups. Define (·)⊗RN : R → D by M 7→M ⊗RN on objects, and g 7→ g⊗1
on arrows. Then, (·)⊗R N is a functor.

Proof. Similar to Theorem 20.8.

Definition 20.10. Let S and R be rings. An S-R-bimodule is an abelian group M
which is a left S-module and a right R-module, such that the two module actions are
compatible, i.e. (s.m).r = s.(m.r).

Proposition 20.11. Let M be an S-R-bimodule and let N be a left R-module. Then,
M ⊗R N is a left S-module by s.(m⊗ n) = (s.m)⊗ n.
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Proof. Our goal will be to construct a ring map Φ : S → End(M ⊗R N), which by
Theorem 1.3 will demonstrate that M ⊗R N is a left S-module. By virtue of M being
a left S-module, we already have a ring map ϕ : S → End(M) given by ϕ(s)(m) = s.m;
however, we can view End(M) as the R-module endomorphisms of M (my notes aren’t
clear on this point, needs clarification). This means that for all s ∈ S, we have that
ϕ(s) : M → M is a map of right R-modules. Functoriality of (·) ⊗R N then induces a
map ϕ(s)⊗1 : M⊗RN →M⊗RN which is given by m⊗n 7→ ϕ(s)(m)⊗n = (s.m)⊗n.
Define Φ : S → End(M ⊗R N) by s → ϕ(s) ⊗ 1. We must verify that this, in fact,
defines a ring homomorphism. It then follows that

Φ(s1 + s2) = ϕ(s1 + s2)⊗ 1 = ϕ(s1)⊗ 1 + ϕ(s2)⊗ 1 = Φ(s1) + Φ(s2),

and

Φ(s1s2) = ϕ(s1s2)⊗ 1 = (ϕ(s1) ◦ ϕ(s2))⊗ 1 = (ϕ(s1)⊗ 1) ◦ (ϕ(s2)⊗ 1) = Φ(s1) ◦Φ(s2).

Lastly, we verify that Φ(1) = ϕ(1) ⊗ 1 = 1 ⊗ 1 = 1, and so Φ is a ring map, hence
M ⊗R N is a left S-module.

Definition 20.12 (Pullback Functor). Let R and S be rings and let ϕ : R→ S be a ring
map. Let S be the category of left S-modules and let R be the category of left R-modules.
Define the pullback functor U : S → R on objects by pullback (Lemma 5.10) and identity
on arrows.

Theorem 20.13 (Extension of Scalars). Let S and R be rings and let ϕ : R → S be a
ring map, and let M be a left R-module. Then, ι : M → S⊗RM given by m 7→ 1⊗m is
universal: i.e., for all left S-modules N and for all R-module map f : M → N where N
is viewed as an R-module by pullback, there is a unique S-module map f̃ : S⊗RM → N
such that the diagram

M S ⊗RM

N

ι

f
f̃

commutes. In other words, there is a natural bijection

HomR(M,U(N))←→ HomS(S ⊗RM,N),

i.e., S ⊗R (·) is left adjoint to U .

Proof. Define µ : S ×M → N by (s,m) 7→ s.f(m), we will show that µ is biadditive
and S-balanced. We then have µ(s1 + s2,m) = (s1 + s2).f(m) = s1.f(m) + s2.f(m) =
µ(s1,m)+µ(s2,m), and µ(s,m1 +m2) = s.f(m1 +m2) = s.(f(m1)+f(m2)) = s.f(m1)+
s.f(m2) = µ(s,m1) + µ(s,m2), so µ is biadditive. Furthermore,

µ(s.ϕ(r),m) = (s.ϕ(r)).f(m) = s.(ϕ(r).f(m)) = s.f(ϕ(r).m) = µ(s, ϕ(r).m),

so µ is S-balanced. Then, by Lemma 20.2 there is a unique map µ̃ : S ⊗RM → N such
that µ = µ̃ ◦⊗. It then follows that (µ̃ ◦ ι)(m) = µ̃(1⊗m) = µ(1,m) = 1.f(m) = f(m),
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hence µ̃ ◦ ι = f . Now, suppose there is a function f̃ : S ⊗R M → N such that
f̃ ◦ ι = f = µ̃ ◦ ι. Then,

µ̃(s⊗m) = µ(s,m) = s.f(m) = f(s.m) = f̃(ι(s.m)) = f̃(1⊗ (s.m)) = f̃(s⊗m),

and so µ̃ and f̃ agree on generators, therefore µ̃ is unique.

Example 20.14. We will prove the result from Proposition 20.4 using Theorem 20.13.
The identity id : R→ R induces an R-module map ĩd : R⊗RN → N such that id = ĩd◦ι.
Then, (ι ◦ ĩd)(r ⊗ n) = ι(r.n) = 1⊗ (r.n) = r ⊗ n, hence R⊗R N ∼= N .

This result tells us that extending scalars from a ring R to itself does not fundamen-
tally change the module structure of an R-module.

Example 20.15. Let R be a ring and let I C R be an ideal, then there is a ring map
ϕ : R → R/I. Let M be a left R-module, and let π : M → M/IM be the canonical
projection. Then Theorem 20.13 induces a unique map π̃ : R/I ⊗R M → M/IM . We
then define a map ψ : M/IM → R/I ⊗R M by m 7→ 1 ⊗m which is inverse to π̃. It
then follows that R/I ⊗RM ∼= M/IM as demonstrated in Proposition 20.5.

Proposition 20.16. Let R be a commutative ring, let S ⊂ R be a multiplicatively closed
set, and let ϕ : R→ S−1R be the ring of fractions map from Definition 5.2. Let M be a
left R-module, then S−1R⊗RM ∼= S−1M .

Proof. Let i : M → S−1M be the inclusion given by Theorem 5.12, then Theorem 20.13
induces a unique map ĩ : S−1R ⊗R M → S−1M such that i = ĩ ◦ ι where ι : M →
S−1R ⊗RM is given by m 7→ 1⊗m. Define ψ : S−1M → S−1R ⊗RM by m

s
7→ 1

s
⊗m,

which is clearly an R-module map. Then,

(ψ ◦ ĩ)
(r
s
⊗m

)
= ψ

(r
s
.̃i(1⊗m)

)
= ψ

(r
s
.i(m)

)
= ψ

(r.m
s

)
=

1

s
⊗ (r.m) =

r

s
⊗m,

and

(̃i ◦ ψ)
(m
s

)
= ĩ

(
1

s
⊗m

)
=

1

s
.̃i(1⊗m) =

1

s
.i(m) =

m

s
.

Therefore, ĩ is an isomorphism.

Theorem 20.17 (Tensor Product and Coproducts). Let M be a right R-module and let
{Nα}α be a collection of left R-modules. Then, M ⊗R (

∐
αNα) ∼=

∐
α(M ⊗R Nα).

Proof. For each α, the inclusion ια : Nα →
∐

αNα induces a unique map

1⊗ ια : M ⊗R Nα →M ⊗R

(∐
α

Nα

)

by Lemma 20.7. By Definition 1.15, the collection {1⊗ ια}α induce a unique map

Ψ :
∐
α

(M ⊗R Nα)→M ⊗R

(∐
α

Nα

)
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such that 1⊗ ια = Ψ◦fα for all α where fα : M ⊗RNα →
∐

α(M ⊗RNα) is the inclusion
map. Define ω : M × (

∐
αNα) →

∐
α(M ⊗R Nα) by (m, (nα)α) 7→ (m⊗ nα)α, which is

clearly biadditive and R-balanced. We then induce a unique map

Φ : M ⊗

(∐
α

Nα

)
→
∐
α

(M ⊗R Nα)

by Lemma 20.2 such that ω = Φ ◦ ⊗. All that remains to show is that ΦΨ = 1 and
ΨΦ = 1:

ΦΨ(mα ⊗ nα)α = ΦΨ(fα(mα ⊗ nα))α = Φ((1⊗ ια)(mα ⊗ nα))α = Φ(mα ⊗ ια(nα)α)

= ω(mα, (nα)α) = (mα ⊗ nα)α,

and

ΨΦ(m⊗ (nα)α) = Ψω(m, (nα)α) = Ψ(m⊗ nα)α = (Ψfα(m⊗ nα))α

= (1⊗ ια)(m⊗ nα)α = (m⊗ ια(nα))α = m⊗ (nα)α.

Therefore,
∐

α(M ⊗R Nα) ∼= M ⊗R (
∐

αNα).

The analogous theorem for arbitrary products will not be true in general. However,
for finite families of modules, it will be true, since in this instance coproducts and
products coincide, as discussed after Example 1.19.

Corollary 20.18 (Extension of Scalars for Free Modules). Let ϕ : R → S be a ring
map. If F is a free R-module on {eα}α, then S ⊗R F is a free S-module on {1⊗ eα}α.

Proof. Since F is a free R-module, then F ∼=
∐

αR by Theorem 3.2. Then,

S ⊗R F ∼= S ⊗

(∐
α

R

)
∼=
∐
α

(S ⊗R R) ∼=
∐
α

S,

hence S⊗RF is a free S-module. It then follows that 1⊗(eα)α 7→ (1⊗eα)α isomorphically,
therefore S ⊗R F is generated by {1⊗ eα}α.

Example 20.19. Let C/R be a field extension and let ϕ : R → C be a ring map by
inclusion. Let V be a finite-dimensional R-vector space, and let n = dim(V ), hence V
is a free R-module. In particular, V ∼=

∐n
i=1 R, which we denote by V ∼= Rn. Then, it

follows by Corollary 20.18 that

C⊗R V ∼= C⊗R Rn ∼= Cn.

Corollary 20.20. Let R be a commutative ring. If M is a free R-module on a basis
{eα}α and N is a free R-module on a basis {e′β}β, then M ⊗R N is free with basis
{eα ⊗ e′β}α,β.

Proof. Observe that

M ⊗R N ∼=

(∐
α

R

)
⊗

(∐
β

R

)
∼=
∐
β

((∐
α

R

)
⊗R R

)
∼=
∐
β

∐
α

R,

and so (eα)α⊗ (e′β)β 7→ ((eα)α⊗ e′β)β 7→ (eα⊗ e′β)α,β isomorphically. Therefore M ⊗RN
is a free R-module with the desired basis.
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Lastly, we state one last theorem regarding tensor products, without proof.

Theorem 20.21 (Associativity of Tensor Products). Let R and S be rings. Let M be
a right R-module, let N be an R-S-bimodule, and let P be a left S-module. Then,

M ⊗R (N ⊗S P ) ∼= (M ⊗R N)⊗S P.

21. Even More Linear Algebra!!

Now that we’ve developed the theory behind tensor products, it is time to take a look
back at Linear Algebra from a more sophisticated point of view.

Definition 21.1 (Natural Transformation). Let C and D be categories, and let F and
G be functors C → D. A natural transformation is a map τ : C → D consisting of a col-
lection of D-morphisms {τX : F(X)→ G(X)}X∈Ob(C) such that for all f ∈ HomC(X, Y ),
the following diagram

F(X) G(X)

F(Y ) G(Y )

τX

τY

F(f) G(f)

commutes. In addition, we say that τ is a natural isomorphism if each τX is a D-
isomorphism.

In order to show that something is a natural isomorphism, it suffices to choose an
arbitrary object X ∈ Ob(C) and show that τX is an isomorphism in the the category D.
This will be our approach in the following theorem.

Proposition 21.2. Let k be a field and let V and W be finite-dimensional k-vector
spaces. Then there is a natural isomorphism V ∗⊗kW ←→ Homk(V,W ) given by ϕ⊗w 7→
(v 7→ ϕ(v)w).

Proof. In lieu of Definition 21.1, we let C be the category of finite-dimensional k-vector
spaces with linear transformations as their morphisms; let D be the category of abelian
groups with homomorphisms as their morphisms; let F be the functor V ∗⊗k(·); and let G
be the functor Homk(V, ·). We will fix W ∈ Ob(C) and show that τW is an isomorphism
in the category of abelian groups as given by the statement of the Proposition, and
conclude that τ is a natural isomorphism.

Let ϕ ∈ V ∗ and let w ∈ W , and define ψϕ,w : V → W by v 7→ ϕ(v)w, which is clearly
a linear transformation. Define µ : V ∗ ×W → Homk(V,W ) by (ϕ,w) 7→ ψϕ,w, which
is also verified to be biadditive and k-balanced. This induces a map µ̃ : V ∗ ⊗k W →
Homk(V,W ) such that µ = µ̃ ◦ ⊗, which we intend to show is an isomorphism.

Recall that Theorem 1.22 tells us that there is an isomorphism between Homk(V,W )
and Mm×n(k) where n = dim(V ), m = dim(W ), and Mm×n(k) is the abelian group
(under addition) of m× n matrices over k. Let B = {v1, . . . , vn} be the basis of V and
let C = {w1, . . . , wm} be the basis of W . Similarly, let B∗ = {v1, . . . , vn} be the dual
basis of V ∗. Corollary 20.20 then provides us with a basis {vj ⊗ wi}ij for V ∗ ⊗k W .
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Let Eij denote the matrix consisting entirely of zeros, except for a one at position
(i, j), then it is clear that {Eij}ij is a basis for Mm×n(k). Note that µ̃(vj ⊗ wi)(vr) =
µ(vj, wi)(vr) = vj(vr)wi = δjrwi. It then follows that

[µ̃(vj ⊗ wi)]BC = [T (v1) · · · T (vr) · · · T (vn)] = Eij,

and so µ̃ maps the basis of V ∗ ⊗k W to the basis of Mm×n(k). Therefore µ̃ is an
isomorphism, and we’re done.

Definition 21.3 (Trace of a Matrix). Let A ∈ Mn×n(k) for some field k such that
A = [aij]ij for coefficients aij ∈ k, then the trace of A is denoted trace(A) =

∑
i aii, i.e.

the sum of the terms along the diagonal of A.

Corollary 21.4 (Trace Invariance). Let V be a finite-dimensional k-vector space and
let T : V → V be a linear transformation. Let B = {v1, . . . , vn} and C = {w1, . . . , wn}
be bases for V , and let B∗ and C∗ be corresponding dual bases for V ∗. Denote B = [T ]BB
and C = [T ]CC, then trace(B) = trace(C), i.e. trace is independent of choice of basis.

Proof. Denote B = [bij]ij and C = [cij]ij and so

T =
∑
ij

bijE
ij
B =

∑
ij

cijE
ij
C ,

where Eij is defined in Proposition 21.2 with respect to their respective bases. The
natural isomorphism from Proposition 21.2 maps vj ⊗ vi ↔ Eij

B and wj ⊗ wi ↔ Eij
C .

Now, define η : V ∗ ⊗k V → k on generators by ϕ⊗ v → ϕ(v), and so

Eij
B 7−→ vj ⊗ vi

η7−→ vj(vi) = δij and Eij
C 7−→ wj ⊗ wi

η7−→ wj(wi) = δij.

It then follows that

T 7→
∑
i,j

bijE
ij
B 7→

∑
i,j

bijδij =
∑
i

bii = trace(B),

and likewise for trace(C), hence trace(B) = trace(C).

Definition 21.5 (Trace of a Linear Transformation). Let V be a finite-dimensional k-
vector space and let T : V → V , by Corollary 21.4, we then define the trace of T by
trace(T ) = trace(A) where A is a representing matrix of T for any basis B of V .

Definition 21.6 (Tensor Product Duality). Let V and W be finite-dimensional k-vector
spaces and let 〈·, ·〉 : V ×W → k be a bilinear form. Since 〈·, ·〉 is biadditive and k-
balanced, then it induces a map by Proposition 20.2 such that the diagram

V ×W V ⊗k W

k

⊗

〈·, ·〉
〈·, ·〉

commutes. We then define (V ⊗k W )∗ = Homk(V ⊗k W,k).
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Proposition 21.7 (Tensor Duality). Let V and W be finite-dimensional k-vector spaces,
then

(V ⊗k W )∗ ∼= V ∗ ⊗k W ∗.

Proof. Proposition 20.4 yields an isomorphism µ : k ⊗k k → k given by x⊗ y 7→ xy on
generators. Now, let ϕ ∈ V ∗ and ψ ∈ W ∗, hence ϕ : V → k and ψ : W → k. We can
then induce a map ϕ⊗ψ : V ⊗kW → k⊗k k given by v⊗w 7→ ϕ(v)⊗ψ(w) by Lemma
20.7. Define a map ϕ⊗ψ = µ ◦ (ϕ ⊗ ψ) : V ⊗k W → k, hence ϕ⊗ψ ∈ (V ⊗k W )∗, and
the diagram

V ⊗k W k ⊗k k

k

ϕ⊗ ψ

ϕ⊗ψ
µ

commutes, i.e. (ϕ⊗ψ)(v⊗w) = µ(ϕ(v)⊗ψ(w)) = ϕ(v)ψ(w). Now, define τ : V ∗⊗kW ∗ →
(V ⊗k W )∗ on generators by ϕ⊗ ψ 7→ ϕ⊗ψ.

Let B = {v1, . . . , vn} be a basis of V and let C = {w1, . . . , wm} be a basis of W ,
and B∗ and C∗ be the associated dual bases for V ∗ and W ∗, respectively. By Corollary
20.20, it follows that {vi ⊗ wj}ij is a basis for V ⊗k W and {vi ⊗ wj}ij is a k-basis for
V ∗ ⊗k W ∗. Let {epr}pr be the dual basis of (V ⊗k W )∗ such that epr(vi ⊗ wj) = δpiδrj.
It then follows by Lemma 12.3 that

τ(vi ⊗ wj) =
∑
p,r

τ(vi ⊗ wj)(vp ⊗ wr)epr =
∑
p,r

(vi⊗wj)(vp ⊗ wr)epr

=
∑
p,r

vi(vp)w
j(wr)e

pr =
∑
p,r

δipδjre
pr = eij.

This means that τ maps basis elements of V ∗ ⊗k W ∗ to basis elements of (V ⊗k W )∗,
and is therefore an isomorphism.

Lemma 21.8. Let M be a left R-module and let A be an abelian group, i.e. a Z-module.
Then, HomZ(A,M) is a left R-module and HomZ(M,A) is a right R-module.

Proof. Let f ∈ HomZ(A,M), let r ∈ R, and define (r.f) ∈ HomZ(A,M) by (r.f)(a) =
r.f(a). Since M is a left R-module, then we have a map ϕ : R → EndZ(M) given by
r 7→ (m 7→ r.m). Define Φ : R → EndZ(HomZ(A,M)) by r 7→ (f 7→ ϕ(r) ◦ f) = ϕ(r)∗,
which is clearly a ring map, hence HomZ(A,M) is a left R-module.

Now, let f ∈ HomZ(M,A), let r ∈ R, and define f.r ∈ HomZ(M,A) by (f.r)(m) =
f(r.m). We then define Φ : R → EndZ(HomZ(M,A)) by r 7→ (f 7→ f ◦ ϕ(r)) = ϕ(r)∗,
hence HomZ(M,A) is a right R-module.

Theorem 21.9 (Adjoint Isomorphism). Let R and S be rings, let M be a left R-module,
let N be an S-R-bimodule, and let P be a left S-module. Then, M⊗RN is a left S-module
by Proposition 20.11, and so

HomS(N ⊗RM,P ) ∼= HomR(M,HomS(N,P )).
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Proof. Let m ∈ M , let f ∈ HomS(M ⊗R N,P ), and define ϕf,m : N → P by n 7→
f(n ⊗ m), which is clearly a homomorphism. Furthermore, ϕf,m(s.n) = f((s.n) ⊗
m)f(s.(n⊗m)) = s.f(n⊗m) = s.ϕf,m(n), hence ϕf,m ∈ HomS(N,P ).

Now, define ϕf : M → HomS(N,P ) by m 7→ ϕf,m. Then, ϕf (m1 + m2)(n) =
ϕf,m1+m2(n) = f(n ⊗ (m1 + m2)) = f(n ⊗ m1) + f(n ⊗ m2) = ϕf,m1(n) + ϕf,m2(n) =
ϕf (m1)(n) + ϕf (m2)(n), so ϕ is a homomorphism. We then have that (ϕf (m).r)(n) =
ϕf (m)(n.r) = ϕf,m(n.r) = f((n.r)⊗m) = f(n⊗ (r.m)) = ϕf,r.m(n) = ϕf (r.m)(n), hence
ϕf (m).r = ϕf (r.m), and ϕf ∈ HomR(M,HomS(N,P )). Define Φ : HomS(N⊗RM,P )→
HomR(M,HomS(N,P )) by f 7→ ϕf , which is easily shown to be a homomorphism.

We now define a map in the reverse direction. Let g ∈ HomR(M,HomS(N,P ))
and define ψg : N ×M → P by (n,m) 7→ (g(m))(n), which is clearly biadditive. We
then observe that ψg(n.r,m) = g(m)(n.r) = (g(m).r)(n) = g(r.m)(n) = ψg(n, r.m)

since HomS(N,P ) is a right R-module. This induces a map ψ̂g : N ⊗R M → P such

that ψ̂g(n ⊗m) = g(m)(n) on generators. Now, define Ψ : HomR(M,HomS(N,P )) →
HomS(N ⊗RM,P ) by g 7→ ψ̂g, which is likewise easily shown to be a homomorphism.

Lastly, we observe that

ΨΦg(m)(n) = Ψφg(m)(n) = Ψφg,m(n) = Ψg(n⊗m) = ψ̂g(n⊗m) = g(m)(n)

and
ΦΨf(n⊗m) = Φψ̂f (n⊗m) = Φf(m)(n) = ϕf,m(n) = f(n⊗m),

therefore ΨΦ = 1 and ΦΨ = 1.

In the above theorem, let F = N ⊗R (·) and let G = HomS(N, ·) be shorthand for
the functors we are dealing with. This means that F : R → S and G : S → R where R
is the category of left R-modules, and S is the category of left S-modules. The adjoint
isomorphism then says that there is a natural bijection

HomS(F(M), P )←→ HomR(M,G(P ))

for any left R-module M and any left S-module P . This leads us to final definition of
this section.

Definition 21.10 (Adjoint Functors). Let C and D be categories, and let F : C → D
and G : D → C be covariant functors. We say that F and G are adjoint functors, if
there is a natural isomorphism τ : HomD(F(·), ·) → HomC(·,G(·)) where both of these
are viewed as functors Cop ×D → Sets where Sets is the category of sets.

22. Tensor Product of Algebras

We previously defined a k-algebra in Definition 11.2, and we will now give two additional
equivalent definitions.

Definition 22.1 (k-Algebra #2). A k-algebra is a ring A equipped with a ring map
η : k → Z(A), where Z(A) denotes the center of A.

Lemma 22.2. Definition 11.2 and Definition 22.1 are equivalent.
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Proof. We begin by assuming Definition 11.2. Define η : k → Z(A) by λ 7→ λ.1A, and
so we must show that η actually does map into Z(A). Let λ ∈ k and a ∈ A, then

aη(λ) = a.(λ.1A) = λ.(a · 1A) = λ.(1A · a) = (λ.1A).a = η(λ)a.

It is easy to verify that η is indeed a ring map.
Now, assume Definition 22.1 and note that A is a Z(A)-module by Z(A) × A →

A given by (z, a) 7→ z.a = za, which is easily verified. Since we have a ring map
η : k → Z(A), then Lemma 5.10 implies that A is a k-module by pullback given by
(λ, a) 7→ λ.a = η(λ)a. It then follows that (λ.a)b = (η(λ)a)b = η(λ)ab = λ.(ab), and
η(λ)ab = aη(λ)b = a.(λ.b), therefore Definition 11.2 holds.

In light of all the tensor product work we’ve done up to this point, it should come
as no surprise that our third equivalent definition involves tensor products.

Definition 22.3 (k-Algebra #3). A k-algebra is a k-module A equipped with k-module
maps η : k → A and µ : A⊗k A→ A such that the following three diagrams

A⊗k A A

k ⊗k A A

µ

η ⊗ 1 id

ιA

A⊗k A A

A⊗k k A

µ

1⊗ η id

ιA

A⊗k A⊗k A A⊗k A

A⊗k A A

µ⊗ 1

1⊗ µ µ

µ

commute, where µ is given by a⊗ b 7→ ab via Proposition 20.4.

Given a k-module A which satisfies Definition 22.3, the above diagrams imply pre-
cisely that A is a ring. By following the first two diagrams, we can then define the
multiplicative identity in A by 1A := η(1), and by following the third diagram tells us
that multiplication in A is associative. Explicitly, the first diagram says that η(1)a = a;
the second diagrams says that aη(1) = a; and the third diagram says that (ab)c = a(bc).

Lemma 22.4. Let A and B be k-algebras, then A⊗kB is a k-algebra by (a⊗b)·(a′⊗b′) =
(aa′)⊗ (bb′).

Proof. Let µA, µB, ηA, and ηB be the appropriate k-modules maps produced by Defi-
nition 22.3. Define η : k → A ⊗k B by 1 7→ ηA(1) ⊗ ηB(1) = 1A ⊗ 1B. It is easily seen
that

(A⊗k B)⊗k (A⊗k B) ∼= (A⊗k A)⊗k (B ⊗k B),

and so define µ : (A⊗k B)⊗k (A⊗k B)→ (A⊗k A)⊗k (B ⊗k B) on generators by

(a⊗ b)⊗ (a′ ⊗ b′) 7→ (µA ⊗ µB)((a⊗ a′)⊗ (b⊗ b′)) = (aa′)⊗ (bb′).

Verifying that the three diagrams commute is easily verified, albeit tedious.

Proposition 22.5 (Tensor Algebra Universality). Let A and B be k-algebras. For any
k-algebra C and any k-algebra maps ϕ : A → C and ψ : B → C such that ϕ(a)ψ(b) =
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ψ(b)ϕ(a) for all a ∈ A, b ∈ B, there is a unique k-algebra map γ : A ⊗k B → C such
that the diagram

A A⊗k B B

C

ιA

ϕ

ιB

ψ
γ̃

commutes.

Proof. Define γ : A × B → C by (a, b) 7→ ϕ(a)ψ(b), which is clearly biadditive and
k-balanced. We then induce a unique map γ̃ : A⊗kB → C such that the given diagram
commutes. On generators, it follows that γ̃(a ⊗ b) = ϕ(a)ψ(b), and so we need only
verify that it is a k-algebra map. So,

γ̃((a⊗ b) · (a′ ⊗ b′)) = γ̃(aa′ ⊗ bb′) = ϕ(aa′)ψ(bb′) = ϕ(a)ϕ(a′)ψ(b)ψ(b′),

and
γ̃(a⊗ b)γ̃(a′ ⊗ b′) = ϕ(a)ψ(b)ϕ(a′)ψ(b′) = ϕ(a)ϕ(a′)ψ(b)ψ(b′),

hence γ̃((a⊗ b) · (a′ ⊗ b′)) = γ̃(a⊗ b)γ̃(a′ ⊗ b′). Lastly, γ̃(1⊗ 1) = ϕ(1)ψ(1) = 1, and so
γ̃ is a k-algebra map.

Lemma 22.6. Let K be a commutative k-algebra and let B be a k-algebra, then K⊗kB
is a K-algebra.

Proof. By Lemma 22.4, we know that K ⊗k B is a k-algebra, and so K ⊗k B is a ring
by Definition 22.1. Define a map η : K → K ⊗k B by x 7→ x⊗ 1B, which is a ring map
since η(xy) = (xy)⊗ 1B = (x⊗ 1B) · (y⊗ 1B) = η(x)η(y) and η(x+ y) = (x+ y)⊗ 1B =
x⊗ 1B + y⊗ 1B = η(x) + η(y). To prove that K⊗kB is a K-algebra, we need only show
that x⊗ 1B ∈ Z(K ⊗k B). Let y ⊗ b be a simple tensor in K ⊗k B, then

(y ⊗ b) · (x⊗ 1B) = (yx)⊗ (b1B) = (xy)⊗ (1Bb) = (x⊗ 1B) · (y ⊗ b),

therefore K ⊗k B is a K-algebra.

Theorem 22.7. Let K be a field extension of k, i.e. K/k, then K ⊗k k[X] ∼= K[X] as
K-algebras.

Proof. Define a set map f : {X} → K ⊗k k[X] by X 7→ 1⊗X, and so there is a unique
K-algebra map ε : K[X] → K ⊗k k[X] such that f = ε ◦ ι. Furthermore, define maps
ϕ : K → K[X] and ψ : k[X] → K[X] by inclusion, then this induces a K-algebra map
γ : K ⊗k k[X]→ K[X] by Proposition 22.5 such that the diagram

K K ⊗k k[X] k[X]

K[X]

ι1

ϕ

ι2

ψ
γ
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commutes. At this point, we need only verify that εγ = 1 and γε = 1 to make the
desired conclusion.

First, however, we note that {1, X,X2, . . . } is a k-basis of k[X] and {1} is a K-basis
of K, and so by Corollary 20.20, it follows that {1⊗ 1, 1⊗X, 1⊗X2, . . . } is a K-basis
for K ⊗k k[X]. Moreover, we note that (1 ⊗X) · (1 ⊗X) = 1 ⊗X2, and by induction
{1 ⊗ 1, 1 ⊗ X, 1 ⊗ X2, . . . } = {(1 ⊗ X)i}∞i=0. This means that we need only concern
ourselves with 1⊗X to verify that εγ = 1. And so,

εγ(1⊗X) = ε(ϕ(1)ψ(X)) = ε(X) = 1⊗X,

and
γε(X) = γ(1⊗X) = ϕ(1)ψ(X) = X,

therefore K ⊗k k[X] ∼= K[X] as K-algebras.

Example 22.8. Let C/R be a field extension, then by Theorem 22.7, it follows that
C⊗R R[X] ∼= C[X].

Theorem 22.9. Let Y be an abelian group. If X ′
u−→ X

v−→ X ′′ → 0 is an exact

sequence of abelian groups, then 0 → Hom(X ′′, Y )
v∗−→ Hom(X, Y )

u∗−→ Hom(X ′, Y )
is exact. Furthermore, if the Hom sequence is exact for all abelian groups Y , then the
sequence of X’s is exact.

Proof. We will first prove the forward direction. Let f ∈ Ker(v∗), hence f ◦ v = 0, and
so Im(v) ⊂ Ker(f); however Im(v) = X ′′, thus Ker(f) = X ′′, therefore f = 0 and v∗ is
injective. Now, let f ∈ Im(v∗), so there is h ∈ Hom(X ′′, Y ) such that v∗(h) = f , hence
h ◦ v = f . Let x ∈ Im(u) = Ker(v), so v(x) = 0 and hv(x) = h(0) = 0, hence f(x) = 0,
so x ∈ Ker(f). This means that Im(u) ⊂ Ker(f), so 0 = f ◦ u = u∗(f) and f ∈ Ker(u∗),
thus Im(v∗) ⊂ Ker(u∗).

Now, let f ∈ Ker(u∗), hence u∗(f) = 0 so f ◦ u = 0. Define h : X ′′ → Y by
x′′ 7→ f(x) where v(x) = x′′ since v is surjective. To show that h is well-defined,
suppose x′′ = v(a) = v(b), then v(a − b) = 0, so a − b ∈ Ker(v) = Im(u), hence there
is x′ ∈ X ′ such that u(x′) = a − b. Then, 0 = fu(x′) = f(a − b) = f(a) − f(b), so
f(a) = f(b), and h is well-defined; likewise, h is clearly a homomorphism. It then follows
that v∗(h)(x) = hv(x) = f(x), therefore Ker(u∗) = Im(v∗).

(Not sure how to do the other direction...)

Theorem 22.10 (Right Exactness of Tensor Product). Let M be a left right R-module
and let N ′

u−→ N
v−→ N ′′ → 0 be an exact sequence of left R-modules. Then,

M ⊗R N ′
1⊗u−→M ⊗R N

1⊗v−→M ⊗R N ′′ → 0

is exact. In other words, M ⊗R (·) is right exact.

Proof. Let P be any Z-module. Then, since N ′ → N → N ′′ → 0 is exact, Theorem 22.9
tells us that

0→ HomR(N ′′,HomZ(M,P ))
v∗→ HomR(N,HomZ(M,P ))

u∗→ HomR(N ′,HomZ(M,P ))
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is exact. By the Adjoint Isomorphism Theorem (Theorem 21.9), it follows that

0→ HomZ(M ⊗R N ′′, P )
(1⊗v)∗−→ HomZ(M ⊗R N,P )

(1⊗u)∗−→ HomZ(M ⊗R N ′, P )

is exact. Lastly, since P was chosen arbitrarily, then again Theorem 22.9 tells us that

M ⊗R N ′
1⊗u−→M ⊗R N

1⊗v−→M ⊗R N ′′ → 0

is exact, as desired.

Definition 22.11 (Flat Modules). Analogous to Definition 7.4, for F a left R-module,
we say that F is flat if M ⊗R (·) is exact.

Corollary 22.12. Let K/k be a field extension and let f ∈ k[X], then K⊗k k[X]
(f)
∼= K[X]

(f)

as K-algebras.

Proof. We know that

k[X]
·f−→ k[X]

π−→ k[X]

(f)
→ 0

is exact. Then by Theorems 22.10 and 22.7, it follows that

K ⊗k k[X] K ⊗k k[X] K ⊗k k[X]
(f)

0

K[X] K[X]

1⊗ ·f 1⊗ π

∼ ∼

Since the first vertical isomorphism is given by 1 ⊗ 1 7→ 1 and the second vertical
isomorphism is given by 1⊗ f 7→ f , then exactness of

K[X]
·f−→ K[X] −→ K ⊗k

k[X]

(f)
→ 0

implies that K ⊗k k[X]
(f)
∼= K[X]

(f)
.

Example 22.13. Let C/R be a field extension, then C⊗R C ∼= C× C.

Proof. Let ϕ : {X} → C be a set map given by X 7→ i. This map induces ϕ̃ : R[X]→ C
such that ϕ̃(X) = i. Let g ∈ Ker(ϕ̃) and let g = q(X2 +1)+r by the division algorithm,
such that deg(r) < 2. Then 0 = ϕ̃(g) = ϕ̃(q · (X2 + 1) + r) = ϕ̃(q)ϕ̃(X2 + 1) + ϕ̃(r) =
ϕ̃(q)(i2+1)+ϕ̃(r) = ϕ̃(r). Since deg(r) < 2, then r = r0+r1X, hence 0 = ϕ̃(r) = r0+r1i,
so r = 0. It then follows that Ker(ϕ̃) is a principal ideal generated by X2 + 1. By the

First Isomorphism Theorem, this implies that C ∼= R[X]
(X2+1)

. We then have by Corollary
22.12 and the Chinese Remainder Theorem that

C⊗R C ∼= C⊗R
R[X]

(X2 + 1)
∼=

C[X]

(X2 + 1)
∼=

C[X]

(X + i)(X − i)
∼=

C[X]

(X − i)
× C[X]

(X + i)
∼= C×C.

By following 1⊗ 1 and 1⊗ i through each isomorphism, we observe that

1⊗ 1 7→ 1⊗ 1 7→ 1 7→ 1 7→ (1, 1) 7→ (1, 1)

and
1⊗ i 7→ 1⊗X 7→ X 7→ X 7→ (X,X) 7→ (i,−i),

hence the isomorphism is given by 1⊗ 1 7→ (1, 1) and 1⊗ i 7→ (i,−i).


