
MATH GRT: ADVANCED ALGEBRA II (GROUP THEORY)

HEESUNG YANG

Abstract. This notes cover group theory aspect of the second half of Dalhousie’s algebra
comprehensive exam syllabus which is not covered in Advanced Algebra II (MATH 5055).
This notes will cover the following sections of Dummit & Foote: Chapter I, Chapter II,
Chapter III.1, Chapter III.2, Chapter III.3, Chapter IV.5, and Chapter IV.6 (statement
only – An is simple for any n ≥ 5.). Some propositions and lemmas are from the past
comprehensive exams; the proofs of those lemmas and propositions are also included in this
note.

1. Chapter I: Introduction to Groups

Definition 1.1. A group is an ordered pair (G, ∗) where G is a set, and ∗ is a binary
associative operation satisfying the following axioms, for any a, b ∈ G:

• (Non-emptiness of G, or the existence of an identity) There exists e ∈ G such that
e ∗ a = a ∗ e = a for all a ∈ G. Such e is said to be an identity of (G, ∗).
• (Existence of an inverse) For any a ∈ G there exists z ∈ G such that a∗z = z ∗a = e.
z is called an inverse of a, and we denote z = a−1.
• (Closure under ∗) a ∗ b ∈ G,

Definition 1.2. If #G <∞, then G is a finite group.

Definition 1.3. Suppose that for any a, b ∈ G we have a ∗ b = b ∗ a. Then G is an abelian
group.

Proposition 1.1. If G is a group under operation ∗, then:

(1) the identity e of G is unique.
(2) for any a ∈ G, the inverse of a is unique.
(3) (a−1)−1 = a for all a ∈ G
(4) (a ∗ b)−1 = (b−1) ∗ (a−1)
(5) (Generalized associativity) For any a1, a2, . . . , an, the value of a1 ∗ a2 ∗ · · · ∗ an is

independent of how the expression is bracketed.

Proof. Suppose that e and e′ are both identities. Then we have e′ ∗ e = e, by letting a = e′

and b = e. Similarly, we can let a = e and b = e′ so that e ∗ e′ = e′. Therefore e = e′, as
required.

For the second part, suppose that both z and z′ are inverses of a, i.e., a ∗ z = z′ ∗ a = e.
Hence,

z′ = z′ ∗ e (∵ e is the identity of G)

= z′ ∗ (a ∗ z) = (z′ ∗ a) ∗ z (∵ associativity of ∗)
= e ∗ z = z.
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Thus z′ = z as required.
Let z = a−1, i.e., z ∗ a = a ∗ z = e. Then z−1 is the inverse of z, which is a. Now replace

z with a−1; the claim follows.
As for the fourth part, note (b−1)∗(a−1)∗(a∗b) = (b−1)∗((a−1)∗a)∗b = b−1∗e∗b = b−1∗b = e,

so the claim follows.
The last claim can be proved by induction on n. �

Now we shall introduce some examples of groups. Before doing so, we shall introduce
a mathematical structure called field here, though field theory will not be explored until
Chapters XIII and XIV of the textbook (see the main MATH 5055 notes for this) as we need
fields to introduce some example of groups.

Definition 1.4. A field is a set F with operations called + (addition) and · (multiplication)
such that:

(1) (F,+) is an abelian group
(2) (F×, ·) is an abelian group, where F× := F \ {0}. In other words, every non-zero

element in F has a unique multiplicative inverse.
(3) The distributive law a · (b+ c) = (a · b) + (a · c) holds for any a, b, c ∈ F .

Definition 1.5. The characteristic of a field F is the smallest n such that 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

=

0, and we write that charF = n. If no such n exists, then charF = 0. If charF > 0, then
charF can only be a prime number.

Example. Let GLn(F ) be the set of n-by-n matrices with entries from F whose determinant
is non-zero. GLn(F ) is a group under multiplication – note that the identity matrix In ∈
GLn(F ) since det(In) = 1F . Every matrix with non-zero matrix determinant has a unique
inverse (i.e., for any A there exists a unique B such that AB = BA = In). Finally, since
det(AB) = det(A) · det(B), for any A,B ∈ GLn(F ), AB ∈ GLn(F ) since det(AB) 6= 0 also.
The matrix multiplication is not commutative, so GLn(F ) is a non-abelian multiplicative
group.

From this point on, we shall drop the notation ∗ for the group notation. The multiplication
shall denote a general group notation, unless a group notation is specified (e.g. addition,
subtraction, etc).

Proposition 1.2 (Cancellation laws). The left cancellation and the right cancellation both
hold in G, i.e., for any a, b, u, v ∈ G,

(1) if au = av, then u = v;
(2) if ub = vb, then u = v.

Proof. The left cancellation follows upon multiplying a−1 on both sides on the left, i.e.,
a−1(au) = a−1(av) ⇔ (a−1a)u = (a−1a)v, so u = v. The right cancellation can be proved
similarly. �

Corollary 1.1. Let G be a group where a, b ∈ G. Then each equation ax = b and ya = b
has a unique solution for x, y ∈ G.

Proof. Using the left cancellation, we see that a−1(ax) = (a−1a)x = x = a−1b; and since
a−1 is unique for each a, so is x. The second equation can be solved by applying the right
cancellation rule, i.e., (ya)a−1 = y(aa−1) = y = ba−1. �
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Definition 1.6. For any x ∈ G where G is a group, the order of x is the smallest integer
d such that xd = 1. If no such d exists, then the order of x is said to be infinite. We shall
denote it by ord (x).

Remark. The only element in G to have order 1 is the identity element.

Example. Let p be a prime. For any additive group (Z/pZ,+), the order of 1 is p. In fact,
Z/pZ is a field also. (In fact, in Chapter XIV.3, we will prove that any field with finitely
many elements must be of prime power order.) so charZ/pZ = p. Q,R, and C are other
examples of fields. In all of these cases, under addition, we have ord (1) = ∞ in Q,R, and
C. Therefore charQ = charR = charC = 0.

Definition 1.7. Let G be a group, and S ⊆ G a subset of G (N.B. S need not be a group).
If every element in G can be written as a (finite) product of elements of S and their inverses,
then we say that the elements in S are the generators of G, and write G = 〈S〉. If #S = 1,
then G is said to be a cyclic group.

Definition 1.8. Let (G, ?) and (H, ◦) be groups, and let ϕ : G→ H satisfying

ϕ(x ? y) = ϕ(x) ◦ ϕ(y)

for all x, y ∈ G. Then ϕ is a group homomorphism.

Definition 1.9. If there is a bijective homomorphism ϕ between G and H, then G and H
are said to be isomorphic, and ϕ is said to be an isomorphism. If G and H are isomorphic,
we write G ∼= H.

Remark. The best way to show that two groups are isomorphic is displaying an explicit
isomorphism map; to show that they are not isomorphic, pick up a property that G and H
don’t share – for example, try to show that two groups have different number of elements of
a certain order.

Proposition 1.3. Suppose ϕ : G→ H is an isomorphism. Then

(1) #G = #H
(2) G is abelian if and only if H is abelian
(3) ord (x) = ord (ϕ(x)) for any x ∈ G.

Now we shall explore some special groups – symmetric group and dihedral group.

1.1. Dihedral groups and the presentation of groups

Dihedral group D2n is a group consisting of reflection s and rotation r (by 2π/n radian)
of the regular n-gon. In this chapter we will also talk about the presentation of groups
using the dihedral groups as a median. While the group can be visualized, it is advisable to
“graduate” from that perspective as soon as possible, and observe it as an abstract group
in and of itself. The goal of this subsection is to show that D2n is indeed generated by r
and s, examine some group presentations similar to that of dihedral groups, and make a
commentary on them. First, we lay down some properties of dihedral groups whose proof
shall be left as an exercise.

Proposition 1.4 (Properties of a dihedral group). Let D2n be the dihedral group of order
2n; let r and s be as defined above.
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(1) ord (r) = n; that is, n is the smallest integer such that rn = 1, and that 1, r, . . . , rn−1

are all distinct.
(2) ord (s) = 2.
(3) s 6= ri for any i.
(4) sri 6= srj for any 0 ≤ i 6= j ≤ n − 1. Therefore, D2n has exactly 2n elements, and

that each element of

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}
can be uniquely written of the form skrm where k ∈ {0, 1} and m ∈ {0, . . . , n− 1}.

(5) rs = sr−1. Therefore, ris = sr−i for all 0 ≤ i ≤ n.

We will define what relations and presentations are before proceeding to write down the
presentation of D2n.

Definition 1.10. Relations in G are any equations in a group G that the generators satisfy.
If G is generated by a subset S, and there is a collection of relations from which one can de-
duce the relation amongst the elements of S, then such collection of relations and generators
is called a presentation of G.

Example. The quaternion group, Q8 is defined by

Q8 = {±1,±i,±j,±k},
where

(1) (−1)2 = 1
(2) i2 = j2 = k2 = −1
(3) i · j = k, j · k = i, k · i = j. Therefore, j · i = −k, k · j = i, i · k = −j.
(4) (−1) · a = a · (−1) = −a and 1 · a = 1 · a = a for all a ∈ Q8.

One can verify that one possible presentation of Q8 is

Q8 = 〈x, y : x4 = 1, x2 = y2, y−1xy = x−1〉.
(Hint: Take i = x, j = y, k = xy, and start from there.)

Therefore, we see that D2n is generated by r and s such that s2 = 1, rn = 1, and rs = sr−1.
Thus the set of generators of D2n is {r, s} and the relations are rn = 1, s2 = 1, rs = sr−1.
Thus the presentation of D2n is

D2n = 〈r, s : rn = 1, s2 = 1, rs = sr−1〉.
We conclude the section with further commentaries on group presentation. While presenta-
tions with generators give one an easy way to characterize the group, such convenience comes
with cautiousness when using them due to subtleties involved. For instance, two seemingly
similar presentations may in fact refer to completely different groups. The presentation in
and of itself does not give any hint on some important properties of a group – such as whether
the group is finite or infinite. Furthermore, it also may not give any insights on whether
the two elements expressed in terms of generators are in fact equal or not. Consider the
following example.

Example. It is not hard to see that 〈x1, y1 : x2
1 = y2

1 = (x1y1)2 = 1〉 is a presentation of
the group of order 4 (in fact it is equal to D4), but 〈x2, y2 : x3

1 = y3
1 = (x1y1)3 = 1〉 is a

presentation of an infinite group. A deceptively simple change in presentation resulted in a
rather big change in this case.
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Another caution is that the relations may not give any hints on where unexpected “col-
lapsing” may occur.

Example. Consider the following presentation of G which at first sight seems awfully similar
to the presentation of D2n:

X2n := 〈x, y : xn = y2 = 1, xy = yx2〉.
It seems that x behaves like the r in D2n, and y like the s in D2n. Since xn = 1, it may seem
that x has order n; thus X2n has order 2n. But in fact this is not so: since y2 = 1, we have
xy2 = x. Now applying the commutation relation (xy = yx2),

x = xy2 = (xy)y = (yx2)y = (yx)(xy) = (yx)(yx2) = y(xy)x2 = y(yx2)x2 = y2x4 = x4.

Therefore x4 has order at most 3. Therefore X2n is a group whose order is at most 6. In
fact, one can deduce that X2n is precisely D6 for any n = 3k; if 3 - n, then X2n is just the
cyclic group of order 2 since x = 1.

Example. Consider the group presentation

H = 〈x, y : x4 = y3 = 1, xy = y2x2〉.
It may seem at first sight that #H = 12, but this is in fact the trivial group (group of order
1).

1.2. Symmetric groups

Definition 1.11. Let Ω be a non-empty set, and let SΩ be the set of bijections of Ω to itself.
Then under the usual function composition operation, SΩ is a group. We call this group the
symmetric group on the set Ω. In particular, if Ω = {1, 2, . . . , n}, then we write SΩ = Sn,
and we call Sn the symmetric group of degree n.

Proposition 1.5. #Sn = n!.

Proof. Count how many bijections there are from {1, 2, . . . , n} to itself. Note that it suffices
to find how many injective functions there are since {1, 2, . . . , n} is a finite set. �

Definition 1.12. A cycle is a string of integers used to represent an element in Sn which
cyclically permutes these integers (and fixing the integers not in the string). The cycle
(a1a2 · · · an) is the permutation sending ai to ai+1 for each of i = 1, 2, . . . , n − 1, and an to
a1. The cycle (a1a2 . . . at) is a cycle of length t; such cycle is called a t-cycle. If two cycles
share no number in common, then the two cycles are said to be disjoint. Each element of
Sn be written as a product of disjoint cycles; such decomposition is the cycle decomposition
of that permutation.

Proposition 1.6. Any element in Sn can be uniquely expressed as a product of disjoint
cycles, up to the order of the disjoint cycles and up to cyclical permutation of the numbers
within each cycle.

Remark. If the disjoint condition is removed, then the uniqueness property no longer holds.
For example, (123) = (13)(132)(13) = (12)(23) in S3.

Proposition 1.7. For any n ≥ 3, Sn is non-abelian.

Proof. Note that (13), (12) ∈ Sn, but (13)(12) = (123) while (12)(13) = (132). �

Remark. Any two disjoint cycles commute in Sn.
5



2. Chapter I.7: Group actions

One way to analyze the structure of groups is via “group actions”, by examining how a
group acts on a set. In the next chapter, for instance, one sees that it is possible to prove
that a subset is actually a subgroup by recognizing that it is a stabilizer or a kernel of some
group action.

Definition 2.1. A group action of a group G on a set A is a map · : G×A→ A such that

(1) g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G and a ∈ A, and
(2) 1 · a = a for all a ∈ A.

Proposition 2.1. Let G be a group acting on a set A. Suppose that, for each fixed g ∈ G,
we define a map σg : A→ A by σg(a) := g · a.

(1) For each fixed g ∈ G, σg is a permutation of A, and
(2) the map from G to SA (the group of permutations of A) defined by g 7→ σg is a homo-

morphism. This homomorphism is called the permutation representation associated
to the group action ·.

Remark. The above proposition shows that a group action of G on a set A acts as a permu-
tation on A while being consistent with the group operations in G.

Definition 2.2. Let G be a group acting on a set A. For any a ∈ A, the orbit of a is the set

Oa := {b ∈ A : ∃g ∈ G such that g · a = b} = G · a.

3. Chapter II: Subgroups

Definition 3.1. Let G be a group. If H is a non-empty subset of G such that xy ∈ H and
x−1 ∈ H for any x, y ∈ H, then H is a subgroup of G, and we denote H ≤ G.

Theorem 3.1 (One-step subgroup test). A non-empty subset H is a subgroup of G if and
only if xy−1 ∈ H for any x, y ∈ H.

3.1. Cyclic groups and cyclic subgroups

As defined in one of the previous chapters, a group is cyclic if every element in that group
is generated by a single element. One immediate consequence of G being cyclic is that G is
abelian also. Thus the cyclic condition is a stronger condition than the abelian condition.

Proposition 3.1. Suppose that G = 〈x〉 is cyclic. If #G = n is finite, then xn = 1, and
xm 6= 1 for any 1 ≤ m ≤ n− 1; therefore, each of x, x2, . . . , xn−1 are distinct. If #G = ∞,
then no n can satisfy xn = 1, and xa = xb if and only if a = b in Z.

Proposition 3.2. If G is an arbitrary group with x ∈ G such that xn = xm = 1 for two
distinct n and m, then xd = 1 where d := gcd(m,n). Therefore, ord (x) |m if xm = 1.

Proposition 3.3. If G and H are two cyclic groups of the same order, then G ∼= H.
Particularly, if G = 〈x〉 and H = 〈y〉, then

(1) ϕ : G→ H defined by xk 7→ yk is a well-defined group isomorphism.
(2) ϕ : Z → G defined by k 7→ xk is a well-defined group isomorphism, provided that

ord (x) =∞, i.e., #G =∞.

Proposition 3.4. Let G be a group; let x ∈ G, and let a be a non-zero integer.
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(1) if ord (x) =∞, then ord (xa) =∞ also.
(2) if ord (x) = n <∞, then ord (xa) = n/ gcd(n, a).

Corollary 3.1. If a |n and ord (x) = n, then ord (xa) = n/a.

Proposition 3.5. Suppose that G = 〈x〉.
(1) If G is infinite, then G = 〈xa〉 if and only if a = ±1.
(2) If #G = n < ∞, then G = 〈xa〉 if and only if gcd(a, n) = 1. Therefore, there are

precisely ϕ(n) generators of H.

Example. For any prime p, the group of units Gp := (Z/pZ)× is cyclic (under multiplication).
In fact, (Z/nZ)× is cyclic if and only if n is prime. There are precisely ϕ(p) = p−1 elements
in Gp, so there are ϕ(ϕ(p)) = ϕ(p − 1) elements that generate Gp. For instance, if p = 7,
then we see that G7 = 〈3〉. Then 32 = 2, and indeed ord (2) = 6/ gcd(6, 2) = 3. One can
confirm this by noticing that 23 ≡ 1 (mod 7). Therefore 2 cannot be a generator. However,
35 = 243 ≡ 5 (mod 7), and indeed ord (5) = 6/ gcd(6, 5) = 6. Since 53 ≡ −1 (mod 7), we
know that ord (5) is indeed 6.

Theorem 3.2. If G = 〈x〉 is cyclic, then any subgroup H of G is also cyclic.

(1) If d is the smallest integer such that xd ∈ H, then H = 〈xd〉. If there is no such
integer, then H = {1}.

(2) If G is an infinite cyclic group, then 〈xa〉 = 〈xb〉 if and only if a = ±b in Z. Therefore,
there is a bijection between N and X := {〈xa〉 : a ∈ N} (just map a 7→ 〈xa〉).

(3) If #G = n < ∞, and a |n, then 〈xn/a〉 is a (cyclic) subgroup of G. More generally,
〈xm〉 = 〈xgcd(m,n)〉, so in this case there is a bijection between the positive divisors of
n and Y := {〈xa〉 : a |n} (map a 7→ 〈xn/a〉).

3.2. Subgroups generated by subsets of a group

Note that the cyclic case is a special case of a group generated by a single element, which
in turn results in every subgroup being generated by a single element. We can generalize
this notion to consider subgroups that are not necessarily generated by a single element, but
many elements.

Definition 3.2. Let G be a group, and A a subset (not necessarily a subgroup) of G. Then
the subgroup generated by A is the smallest subgroup generated by the elements in A. To
put it another way, if

H :=
⋂
A⊆Z
Z≤G

Z,

then H is the subgroup generated by A, and we write H = 〈A〉. If #A < ∞, then we say
that 〈A〉 is finitely generated.

Remark. Being finitely generated does not imply finiteness. Note that (Z,+) is finitely
generated since Z = 〈1〉, but #Z =∞.

Example. Any symmetric group, Sn is finitely generated, since

Sn = 〈(12), (123 . . . n)〉.
However, while ord ((12) = 2 and ord ((123 . . . n)) = n, note that #Sn = n!. Any dihedral
group, D2n is another finitely generated group, so any subgroup is also finitely generated.
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At this point, one may want to verify if the H as defined above is really a subgroup.

Proposition 3.6. Let A be any non-empty collection of subgroups of G. Then the intersec-
tion of all members of A is also a subgroup of G.

Also, the following proposition gives ideas on how to construct an element of a group
generated by elements of A. Note that we do not assume that A is not countable (i.e., A
need not be countably infinite or finite).

Proposition 3.7. Let A be a subset (which may be uncountable) of a group G. Define

A := {ae11 · · · aenn : n ∈ N ∪ {0}, ai ∈ A, ei = ±1 for each i}.
(if A = ∅, let A = {1}. Also, the ai need not be distinct.) The set A is therefore the set
of words of elements of A and the inverses of elements of A. Then A is a subgroup of G.
Furthermore, A = 〈A〉.

We shall finish this section by discussing a celebrated result on finitely generated abelian
groups. To do so, we shall introduce the following definition first.

Definition 3.3. Write Zr := Z× Z× · · · × Z︸ ︷︷ ︸
r times

. If r = 0, then Z0 = 1. Then this group Zr is

called the free abelian group of rank r.

Theorem 3.3 (Fundamental theorem of finitely-generated abelian groups). Let G be a
finitely-generated abelian group. Then

G ∼= Zr ⊕ Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nsZ
for some r ≥ 0 and n1, . . . , ns ∈ N>1 such that nk+1 | nk for all 1 ≤ k ≤ s − 1. Further-
more, such decomposition of G is unique. Zr is sometimes called the torsion-free part of the
decomposition of G, and the remaining portion the torsion portion.

Corollary 3.2 (Fundamental theorem of finite abelian groups). If G is a finite abelian group,
then there exist n1, n2, . . . , ns such that

G ∼= Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nsZ,
where each ni is a prime power.

Proof. Every finite abelian group is finitely generated; the claim follows upon noting that r
needs to be 0. �

Corollary 3.3 (Chinese remainder theorem). Z/mnZ ∼= Z/mZ ⊕ Z/nZ if and only if
gcd(m,n) = 1.

3.3. Centralizers, normalizers, stabilizers, and kernels

Definition 3.4. Let G be a group, and write gAg−1 = {gag−1 : a ∈ A} where g ∈ G. Then
the normalizer of A in G is NG(A) := {g ∈ G : gAg−1 = A}.

If we take A = N , and if it happens that NG(N) = G, then we have the following definition.

Definition 3.5. The element gng−1 is the conjugate of n ∈ N by g ∈ G. The set gNg−1 =
{gng−1 : n ∈ N} is called the conjugate of N by g. The element g normalizes N if gNg−1 =
N . If gNg−1 = N for any g ∈ G, then N is the normal subgroup of G.
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We introduce a special case of a normalizer.

Definition 3.6. Suppose that A is a non-empty subset of G. Then the centralizer of G
CG(A) is the set of elements in G that commutes with every element in A.

CG(A) := {g ∈ G : ga = ag for all a ∈ A}.

If we let A = G, we get the following definition.

Definition 3.7. The centre of G Z(G) is the set of elements that commute with every
element in G. In other words,

Z(G) = {z ∈ G : gz = zg for all g ∈ G}.

Remark. G is abelian if and only if Z(G) = G. In fact, showing that Z(G) = G is one way
to show that G is abelian.

Proposition 3.8. CG(A) is a subgroup of G. Therefore, Z(G) is a subgroup of G.

Proposition 3.9. Suppose that p is prime. Then any group of order p2 is abelian.

Proof. Let #G = p2 where p is a prime. It suffices to show that G = Z(G). If G is cyclic (i.e.
there exists an element of order p2), then the proposition trivially follows, so assume that
every non-identity element has order p. Consider G/Z(G). Since Z(G) is a normal subgroup
of G, we have #Z(G) = 1, p, or p2. Suppose that #Z(G) = p. Then #(G/Z(G)) = p also,
so G/Z(G) is cyclic. But this means G/Z(G) is abelian, so this forces G = Z(G). So once we
prove that the centre of G cannot be trivial, we are done. Pick non-identity element x; then
〈x〉 has order p since #〈x〉 = ord (x). Note that 〈x〉 is normal, since both G/〈x〉 and 〈x〉 are
both abelian (the former is abelian since #(G/〈x〉) = p). Hence for any non-identity g ∈ G,

there is 1 ≤ r ≤ p − 1 so that gxg−1 = xr. Therefore gp−1xg−(p−1) = xr
p−1

. But then by
Fermat’s little theorem, we have rp−1 ≡ 1 (mod p), so gp−1xg−(p−1) = x, or gp−1x = xgp−1.
Therefore g−1x = xg−1, since the order of g is p. This implies that x ∈ Z(G). Since the
centre of G is non-trivial, #Z(G) = p2 = #G. Therefore G = Z(G) as required. �

Remark. Note that the above proof works because the order of a group happened to be prime
square. One can also use the class equation to prove the same result.

Theorem 3.4 (Class equation). Let G be a finite group, and let g1, g2, . . . , gr be the repre-
sentatives of the distinct conjugacy classes of G not contained in Z(G). Then

#G = #Z(G) +
r∑

i=1

#G

#CG(gi)
.

Remark. One can also write |G : CG(gi)| instead of #G/#CG(gi), but since G is a finite
group, |G : CG(gi)| = #G/#CG(gi). |G : CG(gi)| is said to be the index of CG(gi) in G, but
this notation becomes more important when G is an infinite group. See Chapter III.1 for
more information.
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Proposition 3.10. If G is a p-group (i.e., #G is a power of p), then G has a non-trivial
centre.

Proof. We shall use the class equation to solve this. If G = Z(G), then the statement is
true. So suppose that G 6= Z(G). Then the class equation implies

#G = #Z(G) +
r∑

i=1

#G

#CG(gi)
.

We may assume that gi /∈ Z(G) since otherwise gi will be “absorbed” by Z(G). Therefore
CG(gi) is a proper subgroup of G; and by Lagrange, the order of CG(gi) is a power of p;
therefore #G/#CG(gi) = pki is a power of p with ki > 0, hence a multiple of p. But then
#G is a power of p, so #Z(G) must be a multiple of p also. This shows #Z(G) > 1, so
Z(G) cannot be trivial. �

Proposition 3.11. Let G be a group of order pq, where p and q are distinct primes. Then
either G is abelian or G has the trivial centre.

We shall first prove the following lemma.

Lemma 3.1. If G/Z(G) is cyclic, then G is abelian.

Proof of Lemma 3.1. If G/Z(G) is cyclic, then there exists g ∈ G such that 〈gZ(G)〉 =
G/Z(G). Thus for any x ∈ G, there exists some a ≥ 0 so that (gZ(G))a = gaZ(G) = xZ(G).
Therefore gax−1 ∈ Z(G). Thus there exists z ∈ Z(G) such that g−ax = z, so x = gaz.
Hence any x ∈ G can be written in the form gaz where z ∈ Z(G) and a ≥ 0. So if
x = ga1z1, y = ga2z2 ∈ G, we have

xy = (ga1z1)(ga2z2) = ga1(z1g
a2)(z2) = ga1(ga2z1)z2 = ga1ga2(z2z1)

= ga2ga1z2z1 = ga2(z2g
a1)z1 = yx,

so G is abelian as required. �

Proof of Proposition 3.11. Since Z(G) is a subgroup of G, we see that #Z(G) = 1, p, q, or
pq. Suppose that #Z(G) = q. Then #(G/Z(G)) = p, so G/Z(G) is cyclic. Then by Lemma
3.1, G is abelian. The same argument holds if we assume #Z(G) = p. Thus #Z(G) = pq
or 1. If #Z(G) = pq, then G is abelian. Otherwise, #Z(G) must be 1. �

While one can directly verify that normalizers, centralizers, and centres are subgroup, one
can also prove this by considering group actions of G as a special case of general results on
group actions. This prompts us to introduce the stabilizer.

Definition 3.8. Let G be a group, and S be a set that G acts on. If s ∈ S, then the
stabilizer of s in G is the set

Gs := {g ∈ G : g · s = s}.
More specifically, the kernel of the action of G on S is

kerG S := {g ∈ G : g · s = s for all s ∈ S}.

Proposition 3.12. GS and kerG S are subgroups of G.

Proposition 3.13. Suppose that A is a subset of G. Then NG(A), CG(A), and Z(G) are all
subgroups of G.
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Proof. Let c be the conjugation group action on some B ⊆ G. In other words,

c : B → gBg−1,

where gBg−1 = {gbg−1 : b ∈ B}. Then it is a straightforward verification to see that NG(A)
is precisely the stabilizer Gs where s = A. Similarly, CG(A) is precisely equal to kerGA.
Finally, Z(G) is equal to kerGG. �

Theorem 3.5 (Orbit-stabilizer theorem). Suppose that G acts on a finite set S. Then
#Os ·#Gs = #G.

4. Chapter III.1: Quotient groups and homomorphism

Definition 4.1. The kernel of ϕ for a group homomorphism ϕ : G→ H is

kerϕ = {g ∈ G : ϕ(g) = 1H}.

Proposition 4.1. Let ϕ : G→ H be a group homomorphism. Then

(1) ϕ(1G) = 1H .
(2) ϕ(g−1) = ϕ(g)−1.
(3) ϕ(gn) = ϕ(g)n.
(4) kerϕ is a normal subgroup of G.
(5) imϕ is a subgroup of H.

Definition 4.2. Let ϕ : G→ H be a group homomorphism, and K = kerϕ. Then G/K is
the quotient group where each element in G/K is a “representative” with the group operation
defined for G. Namely, if a represents X, and b represents Y , then XY is represented by ab.

Proposition 4.2. Let ϕ : G→ H be a group homomorphism with kerϕ = K. If X ∈ G/K
and a represents X (i.e., a = ϕ(X), then

(1) For any u ∈ X, X = {uk : k ∈ K}
(2) For any u ∈ X, X = {ku : k ∈ K}.

Theorem 4.1. Let G be a group, and let K be the kernel of some homomorphism from G to
another group. Then the set of whose elements are the left cosets of K in G with operation
defined by

uK · vK = (uv)K

forms a group G/K. If u1 ∈ uK and v1 ∈ vK, then we have u1v1 ∈ uvK. Therefore
u1v1K = uvK, so this operation is well-defined. The same claim holds for right cosets.

Remark. Therefore, it does not matter which representative we choose for each of the cosets.

In fact, we can generalize this notion for any subgroup, not just the kernel of some ho-
momorphism. However, we shall see that the operation defined in the theorem above is not
well-defined unless that subgroup is the kernel of some homomorphism. In fact, gN may not
even form a subgroup of G.

Definition 4.3. Suppose N ≤ G. Then for any g, let

gN := {gn : n ∈ N} and Ng = {ng : n ∈ N}.
Then gN is the left coset of N in G, and Ng is called the right coset of N in G. Any element
in gN is called a representative for the coset.
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If N is the kernel, and g1, g ∈ N , then we have g1N = gN . Indeed this holds for any
subgroup N also.

Proposition 4.3. Let N ≤ G. Then the set of left cosets of N in G form a partition of G.
Furthermore, for all u, v ∈ G, uN = vN if and only if v−1u ∈ N . Therefore, uN = vN if
and only if u and v are representatives of the same coset.

Proposition 4.4. Let u, v ∈ G. Then the operation uN · vN = (uv)N is well-defined if and
only if N is a normal subgroup of G, i.e., gng−1 ∈ N for all g ∈ G and n ∈ N. Furthermore,
if such operation is well-defined, then the set of left cosets of N in G is a group whose identity
element is 1N , and the inverse is g−1N = (gN)−1.

At this point, we know that the induced group operation on the quotient group is well-
defined if and only if the subgroup we are taking the quotient of is normal. We also know that
the operation is well-defined also only when that subgroup is the kernel of some homomor-
phism. So the question arises: is every normal subgroup the kernel of some homomorphism?
The answer is affirmative, as shown in the upcoming theorem. Before getting into that
theorem, we first summarize the characterizations of normal subgroups.

Proposition 4.5. Let N be a subgroup of G. Then the following are equivalent.

(1) N is a normal subgroup of G.
(2) NG(N) = G
(3) gN = Ng for all g ∈ G.
(4) The operation · defined by uN · vN = (uv)N makes the set of left cosets into a group
(5) gNg−1 ⊆ N for all g ∈ G.

Theorem 4.2. A subgroup N of G is normal if and only if there exists a group homomor-
phism ϕ : G→ H such that kerϕ = N .

5. Chapter III.2: More on cosets

We shall present more useful results on cosets.

Definition 5.1. Let H,K ≤ G. Then we define

HK := {hk : h ∈ H, k ∈ K}.
Proposition 5.1. If H and K are finite subgroups of a group, then

#(HK) =
#H ·#K
#(H ∩K)

.

Proposition 5.2. If H and K are subgroups of G, then HK is a subgroup if and only if
HK = KH.

There is a neat corollary to the above proposition, but before this we need to introduce
what normalization means.

Definition 5.2. If A is any subset of NG(K) (resp. CG(K)), we say that A normalizes
(resp. centralizes) K.

Corollary 5.1. If H and K are subgroups of G, then HK is a subgroup if H (resp. K)
normalizes K (resp. H). Therefore, if K is a normal subgroup of G, then HK is a subgroup
for any subgroup H of G.
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6. Chapter III.2: Lagrange’s theorem

An important result we are going to cover here is Lagrange’s theorem. While simple and
straightforward, this is a very important result in group theory.

Theorem 6.1 (Lagrange’s theorem). If G is a finite group and H ≤ G, then #H |#G. The
number of left cosets of H in G is #G/#H.

There are some quick corollaries of Lagrange’s theorem.

Corollary 6.1. If G is finite and x ∈ G, then ord (x) | #G. Therefore x#G = 1 for all
x ∈ G.

Corollary 6.2. If G is a group of prime order p, then G is cyclic. In particular, G ∼= Z/pZ.

Note that Lagrange’s theorem is limited to finite groups. Lagrange’s theorem thus makes
little sense if #G =∞. However, we can generalize the notion of #G/#H with the following
definition.

Definition 6.1. If G is a group (possibly infinite) and H ≤ G, the index of H in G is the
number of left cosets of H in G, and we denote this by |G : H|.

Remark. Note that the converse of Lagrange’s theorem is not true. That is, even though
n | |G|, G need not have a subgroup of order n. To see this, let A be the group of symmetries
of a regular tetrahedron. One can verify that #A = 12, which is divisible by 6. Suppose
that H ≤ A is a subgroup of order 6. That means that there are two cosets, since |A :
H| = #A/#H = 12/6 = 2. Therefore, A/H ∼= Z/2Z. Thus A/H is abelian (in fact cyclic),
so H is a normal subgroup of A. Thus the square of every element in A/H is identity, so
(gH)2 = g2H = 1H. In other words, g2 ∈ H for any g ∈ A. Therefore if g is an element in
A of order 3, then g = (g2)2 ∈ H, so H must contain every element in A of order 3. But
this contradicts the fact that #H = 6 – it’s not hard to verify that there are 8 rotations of
order 3 in A.

Remark. Note, however, there are some partial converses of Lagrange’s theorem. But we
shall discuss this more in depth in Chapter IV.5: Sylow theorems.

7. Chapter III.3: The four isomorphism theorems

Theorem 7.1 (First isomorphism theorem). Suppose that ϕ : G→ H is a group homomor-
phism. Then

G/ kerϕ ∼= imϕ,

and kerϕ is a normal subgroup of G.

Proof. Suppose k ∈ kerϕ. Then for any g ∈ G, we have ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g−1) =
ϕ(g)1ϕ(g−1) = ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(1) = 1, so kerϕ is a normal subgroup. Also,
imϕ is a subgroup of H. imϕ is non-empty since 1H = ϕ(1G). Also, for any h1, h2 ∈ imϕ
there exist g1 and g2 so that ϕ(g1) = h1 and ϕ(g2) = h2. Thus h1h

−1
2 = ϕ(g1)ϕ(g2)−1 =

ϕ(g1)ϕ(g−1
2 ) = ϕ(g1g

−1
2 ), so h1h

−1
2 ∈ imϕ as required.

Let ϕ : G/ kerϕ→ H be the map induced by ϕ. Suppose that g2 ∈ g1 kerϕ. Then g2g
−1
1 ∈

kerϕ. Thus ϕ(g2 kerϕ) = ϕ(g2) and ϕ(g1 kerϕ) = ϕ(g1); but ϕ(g2g
−1
1 ) = ϕ(g2)ϕ(g1)−1 = 1H ,
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so ϕ(g2) = ϕ(g1). Thus ϕ is well-defined. Therefore if ϕ(g1 kerϕ) = 1H , then g1 ∈ kerϕ.
Thus kerϕ = {1 kerϕ}. ϕ is homomorphism since for any g1 kerϕ, g2 kerϕ ∈ G/ kerϕ,

ϕ(g1 kerϕ · g2 kerϕ) = ϕ((g1g2) kerϕ) = ϕ(g1g2) = ϕ(g1)ϕ(g2) = ϕ(g1 kerϕ)ϕ(g2 kerϕ).

Finally, ϕ is surjective: for any h ∈ imϕ there exists g ∈ G such that ϕ(g) = h, so
ϕ(g kerϕ) = ϕ(g) = h. Therefore ϕ is an isomorphism from G/ kerϕ to imϕ as needed. �

Corollary 7.1. If ϕ : G → H is a group homomorphism, then ϕ is injective if and only if
kerϕ is trivial. Further, |G : kerϕ| = |ϕ(G)|.

Theorem 7.2 (Second isomorphism theorem). Suppose that G is a group, and that A,B ≤ G
such that A ≤ NG(B). Then

(1) AB is a subgroup of G.
(2) B is a normal subgroup of AB.
(3) A ∩B is a normal subgroup of A.
(4) AB/B ∼= A/(A ∩B).

Proof. A and B are both subgroups of G, so AB is also a subgroup of G. Since A ≤ NG(B)
and B ≤ NG(B), indeed AB ≤ NG(B). Thus B is a normal subgroup of AB.

Now let ϕ : A → AB/B defined by ϕ(a) = aB. Since AB/B is well-defined (as B
is a normal subgroup of AB), the group operation in AB/B i well-defined also. Then
ϕ(a1a2) = (a1a2)B = (a1B)(a2B) = ϕ(a1)ϕ(a2). Since abB = aB for any a ∈ A and b ∈ B,
it follows that ϕ is surjective. Finally, if ϕ(a) = 1B, then a ∈ B. Thus a ∈ A ∩ B, so
kerϕ = A ∩ B. Therefore A ∩ B is normal in A and A/(A ∩ B) ∼= AB/B by the first
isomorphism theorem. �

Theorem 7.3 (Third isomorphism theorem). Let G be a group, and let H and K be normal
subgroups of G with H ≤ K. Then K/H is a normal subgroup of G/H, and

(G/H)/(K/H) ∼= G/K.

Proof. We shall assume that K/H is a normal subgroup of G/H and prove this later. Let
ϕ : G/H → G/K defined by ϕ(gH) = gK. First, verify that ϕ is well-defined. If g1H = g2H,
then there is h ∈ H such that g1 = g2h. Thus g1 = g2h in K also. Therefore g1K = g2K, or
ϕ(g1H) = ϕ(g2H). So ϕ is surjective also, as ϕ(gH) = gK for any arbitrary g ∈ G. Finally,
if ϕ(gH) = 1K, then ϕ(gH) = gK = 1K. Therefore g ∈ K, so gH ∈ K/H also. Hence
kerϕ = K/H. (G/H)/(K/H) ∼= G/K by the first isomorphism theorem.

Now it remains to show that K/H is a normal subgroup of G/H. Let kH ∈ K/H (i.e.,
k ∈ K). Then for any g ∈ G, gkg−1 ∈ K, so gkg−1H ∈ K/H also. Thus K/H is normal in
G/H as required. �

Theorem 7.4 (Fourth isomorphism theorem). Let G be a group, and let N be a normal
subgroup of G. Then there is a one-to-one correspondence between the set of subgroups of
G containing N (say A) and the set of subgroups of the form A := A/N of G := G/N .
Therefore, every subgroup of G/N is of the form A/N where A is a subgroup of G containing
N . Also, this bijection satisfies the following properties:

(1) A ≤ B if and only if A ≤ B,
(2) if A ≤ B then #(B/A) = #(B/A),

(3) 〈A,B〉 = 〈A,B〉,
14



(4) A ∩B = A ∩B, and
(5) A is a normal subgroup of G if and only if A is normal in G.

8. Chapter IV.5: Sylow theorems

Definition 8.1. Let G be a group, and p a prime.

(1) If #G = pa for some a ≥ 0, then G is a p-group. If a subgroup of G satisfies this
property, then that subgroup is a p-subgroup.

(2) If #G = pam where gcd(p,m) = 1, then a subgroup of order pa is said to be a Sylow
p-subgroup or a p-Sylow subgroup of G.

(3) The set of Sylow p-subgroups of G will be denoted by Sylp(G), and np(G) shall denote
the number of p-Sylow subrgroups of G.

Lemma 8.1. If P is a Sylow p-subgroup, then Q∩NG(P ) = Q∩P where Q is any p-subgroup
of G.

Theorem 8.1 (Sylow’s first theorem). Let G be a group of order pam where p -m. Then
there exists a Sylow p-subgroup, i.e., Sylp(G) 6= ∅.

Theorem 8.2 (Sylow’s second theorem). Let G be a group of order pam where p -m. If P
is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists g ∈ G such that
Q ≤ gPg−1. Therefore, any two Sylow p-subgroups are conjugate of each other in G.

Theorem 8.3 (Sylow’s third theorem). Let G be a group of order pam where p -m. np ≡ 1
(mod p). Furthermore, np is the index of the normalizer NG(P ) for any Sylow p-subgroup
(np = [G : NG(P )]). Hence, np |m.

Corollary 8.1 (Cauchy’s theorem). If G is a finite group, and p |#G, then there exists an
element of order p in G. Therefore, G has a subgroup of order p.

Corollary 8.2. Any two Sylow p-subgroups (for the identical prime p) are isomorphic.

Corollary 8.3. The following are equivalent, for any P a Sylow p-subgroup of G.

(1) np = 1
(2) P is normal in G
(3) for any σ, an automorphism of G, σ(P ) = P .
(4) All subgroups generated by elements of p-power order are p-groups. In other words,

if X = {x ∈ G : ord (x) = pa for some a ≥ 1}, then 〈X〉 is a p-group.

Proof. ((1) ⇒ (2)) Suppose that np = 1, so let P be the unique Sylow p-subgroup. So if
q ∈ P (i.e., the order of q is some power of p) then for any g ∈ G, gqg−1 also has order pk

for some k. But since P is the unique Sylow p-subgroup, gqg−1 ∈ P also. Thus gPg−1 = P
as required.

((2) ⇒ (1)) Suppose that P is normal in G. Now, suppose that there is another Sylow
p-subgroup Q. So Sylow’s second theorem there exists g ∈ G such that Q ≤ gPg−1. But
since Q is another Sylow P -subgroup, and since gPg−1 = P , it follows that Q = P . Hence
np = 1 as desired.

The remaining implications are left as exercises. �
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8.1. Using Sylow theorems to prove that a group of certain order is not simple

Previously the notion of “normal subgroup” was introduced. Clearly, the trivial subgroup
{1} and the entire group G itself are normal in G. Some groups, however, have only those
as normal subgroups.

Definition 8.2. A group G is a simple group if G has no proper normal subgroups. In other
words, G only has {1} and G as its only normal subgroups.

Example. Any trivial group is (trivially) simple. Any alternating group An is non-abelian
and simple for all n ≥ 5. See Chapter IV.6 of Dummit & Foote for the proof of this theorem.
Note that A4 is not simple since n2(A4) = 1. A3 is simple and abelian.

We conclude the notes with an example where you can use Sylow theorems to prove that
a group of certain order can never be a simple group.

Example. We shall prove that any group of order 6545 = 5 · 7 · 11 · 17 is not simple. By the
third Sylow theorem, np ≡ 1 (mod p), and np |p1p2p3 where pi is the remaining three prime
factors of 6545 except for p, so

n5 ∈ {1, 11}, n7 ∈ {1, 85}, n11 ∈ {1, 595}, n17 ∈ {1, 35}.
If this group were simple, we would have n5 = 11, n7 = 85, n11 = 595, n17 = 35. By the
second Sylow theorem, any two Sylow p-subgroups of the same p is conjugate of each other,
so there are at least (5 − 1) · 11 = 44 elements of order 5, (7 − 1) · 85 = 510 elements of
order 7, (11− 1)595 = 5950 elements of order 11, and (17− 1)35 = 560 elements of order 17.
Thus this group has at least 44 + 510 + 5950 + 560 + 1 elements, but this is already greater
than 6545. Therefore at least one of n5, n7, n11, n17 must be 1. Therefore there is at least
one non-trivial normal subgroup, so this group cannot be simple.

Example. If G is a group of order 60 that has more than one Sylow 5-subgroup, then G is
simple. For the sake of contradiction, suppose that n5 > 1 and #G = 60, but that G is not
simple. Since n5 ≡ 1 (mod 5) and n5 |12, n5 can only be 1 or 6. But since n5 > 1, there are
six Sylow 5-subgroups. If P ∈ Syl5(G), then #NG(P ) = 10 since n5 = |G : NG(P )| = 6.

Suppose that H is a nontrivial normal subgroup of G. If #H is a multiple of 5, then H
must contain a Sylow 5-subgroup of G. In fact, since H is normal, it must contain all six
Sylow 5-subgroups. Therefore #H ≥ 1 + 6 · 4 = 25, so this forces #H = 30. Therefore
#H has a normal subgroup isomorphic to Z/15Z (see p143 of Section IV.5), which is a
contradiction.

If #H = 6 or 12, then H has a normal Sylow subgroup, which is also normal in G.
If needed, replaced H by this normal Sylow subgroup. Therefore we may assume that
#H = 2, 3, or 4. If G = G/H, then #G = 30, 20, or 15. In any of those cases, G has a
normal subgroup P = P/H of order 5. So if H1 is the complete pre-image of P in G, then
not only is H1 a proper normal subgroup of G, but 5 |#H1. However we just proved that
no non-trivial normal subgroup of G can have order divisible by 5. Thus G is simple as
required. One corollary to this is that A5 is simple, since both 〈(12345)〉 and 〈(13245)〉 are
distinct Sylow 5-subgroups of A5.
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