
PMATH 940: HEIGHTS AND ARITHMETIC

HEESUNG YANG

1. September 14

This class will study heights and arithmetic. To put it simply, a height function measures
the ‘complexity’ of an algebraic number. In particular, we will explore the application
of height functions to Diophantine approximation. Pre-requisites include some algebraic
number theory; there shall be no text.

Definition 1. An algebraic number is the root of a non-zero irreducible polynomial with
integer coefficients. If it is the root of a non-zero monic irreducible with integer coefficients,
then it is said to be an algebraic integer.

Given an algebraic number α, we would like to measure the “complexity” of α. One such
measure is the height. In fact, there are several height functions.

Start with an integer a. The measure of complexity is |a|. How about rationals? Consider
a/b ∈ Q where a, b ∈ Z. A possible suggestion might be max(|a|, |b|). But this is not
well-defined; but this can be circumvented by stipulating that gcd(a, b) = 1.

Definition 2. Suppose f(x) ∈ Z[x]. Then the content of f is the greatest common divisor
(GCD) of the integer coefficients of f .

Now let’s try to generalize this for a general algebraic number α. For any α, we can
associate it with a minimal polynomial f over the integers where α is a root of f , f is of
minimal degree with this property, f has content 1, and the leading coefficient is positive.
This completely defines f . Say f(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0. Now we defined the

näıve height of α:

Definition 3. The “näıve height” of α, which we denote H0(α), is defined to be H0(α) :=
max(|ad|, . . . , |a0|).

Notice that if α = a/b with a and b coprime integers and b > 0, then the minimal
polynomial of a/b over the integers is f(x) = bx− a, so H0(a/b) = max(|a|, |b|).

Remark 1. Notice that there are only finitely many algebraic numbers of näıve height below
any given bound if we restrict the degree below another bound (special case of Northcott’s
theorem).

Definition 4. Let α be an algebraic number and let f be the minimal polynomial of α over
the integers. Suppose also that f factors over C as

f(x) = ad

d∏
i=1

(x− αi).
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We then define the Mahler measure M(α) by

M(α) = |ad| ·
d∏
i=1

max(1, |αi|).

Theorem 1 (Jensen’s formula, from Wikipedia). Suppose that f is an analytic function in
a region in the complex plane which contains the closed disk D of radius r about the origin,
a1, a2, · · · , an are the zeros of f in the interior of D repeated according to multiplicity, and
f(0) 6= 0. Then

log |f(0)| =
n∑
k=1

log

(
|ak|
r

)
+

1

2π

∫ 2π

0

log |f(reiθ)| dθ.

Remark 2. By Jensen’s formula, the Mahler measure can be written in a different manner:

M(α) = exp

(∫ 1

0

log |f(eiθ)| dθ
)
.

Definition 5. We define the absolute Weil height H(α) of α by

H(α) := (M(α))1/d.

The absolute logarithmic Weil height of α, denoted h(α), is defined by

h(α) := logH(α) =
1

d
logM(α).

The Weil height H(α) is more “natural” and has nicer properties than the näıve height.
How so? We will take a small detour to qualify this statement further.

One reason is that there is an alternative definition of the Weil height in terms of valuations
on the field k = Q(α).

Definition 6. An absolute value on a field k is a function | | : k → R≥0, satisfying
(i) |x| = 0⇔ x = 0
(ii) |xy| = |x| · |y| for all x, y ∈ k

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ k.
If property (iii) can be strengthened to the strong triangle inequality |x+ y| ≤ max(|x|, |y|),
then we say that this absolute value is non-Archimedean. Otherwise, it is said to be
Archimedean.

For any absolute value | | on a field k, we can introduce a distance function d(x, y) that
measure the distance between x and y, by putting d(x, y) := |x− y| for all x, y ∈ k, making
k a metric space under d, thereby inducing a topology.

Definition 7. Any absolute values that induce the same topology are said to be equivalent.

Definition 8. For the sake of completeness (even though this is totally an uninteresting
absolute value): on any field k we have the trivial absolute value | |0 given by

|x|0 :=

{
1 (x 6= 0)

0 (x = 0).

2



On Q the ordinary absolute value | | is an absolute value. Further, for each prime p we can
define an absolute | |p in the following way. For each non-zero integer a, we define ordp a to
be the exact power of p dividing a. We extend the order function to the rationals by putting

ordp

(a
b

)
= ordp a− ordp b.

Further, we define | |p on Q by

|x|p = p− ordp x

for x 6= 0 and |0|p = 0. Then | |p is an absolute value.

Definition 9. The | |p as defined above is said to be the p-adic absolute value.

Theorem 2 (Ostrowski’s theorem). Every non-trivial valuation on Q is equivalent to the
ordinary absolute value or to | |p for some prime p.

2. September 16

Recall Ostrowski’s theorem: every non-trivial absolute value on Q is equivalent to the
ordinary absolute value or to a p-adic absolute value | |p for some prime p. We have the
product formula in Q: for each non-zero x in Q, i.e.,

|x|
∏

p prime

|x|p = 1.

Notice that if x = a/b with a and b coprime integers with b > 0 then

H(x) = max(|b|, |a|) = |b|max

(
1,
|a|
|b|

)
= max

(
1,
|a|
|b|

)
·
∏
p

max

(
1,
∣∣∣a
b

∣∣∣
p

)
=
∏
ν

max(1, |x|ν),

where v runs over the set of normalized inequivalent valuations ν on Q. So

H(x) =
∏
ν

max(1, |x|ν)

for x 6= 0. Now let’s turn our attention to algebraic numbers. Let k be a finite extension of
Q so k = Q(α) for some algebraic number α. Suppose that [k : Q] = d and there are r real
embeddings of k in C and s pairs of non-real embeddings of k in C. We have d = r + 2s.
We define r+ s valuation ν on k which are related to the ordinary absolute value on Q. Let
σ be an embedding of k in C which maps into R. We then define the valuation ν on k by

|β|ν := |σ(β)|1/d

for any β ∈ k. Similarly, if σ is a non-real embedding we defined ν by

|β|ν = |σ(β)|2/d

for any β ∈ k. Up to equivalence, there are no other Archimedean valuations that are non-
trivial (though the trivial one is non-Archimedean). What about non-Archimedean absolute
values ν?
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For each prime p we can ask how the principal ideal generated by p in the ring of alge-
braic integers Ok of k factors. Say (p) = pe11 · · · pett with p1, . . . , pt prime ideals of Ok and
e1, e2, . . . , et ∈ Z+. For any ideal A in Ok let N(A) denote the norm of A. Then

pd = N((p)) =
t∏
i=1

N(pi)
ei = pe1f1+···+etft

for appropriate f1, . . . , ft ∈ Z+. For any non-zero ideal A in Ok and any prime ideal p
we define ordpA to be the exact power of p dividing A. By considering the principal ideal
generated by x in Ok we define ordp x for x ∈ Ok. By taking differences and considering
fractional ideals we can extend ordp to all x ∈ k∗ := k \ {0}.

Definition 10. We define a valuation ν associated with a prime ideal p by

|β|ν = N(p)−
ordp β

d .

Again, it can be shown that this defines a non-Archimedean valuation on k. This gives
all the non-trivial non-Archimedean valuations up to equivalence. By our normalizations we
once again have the product formula∏

ν

|x|ν =

{
1 if x 6= 0;

0 if x = 0.

Here, the product is taken over normalized inequivalent valuations ν. Further, we have for
x ∈ k that

H(x) =
∏
ν

max(1, |x|ν). (1)

By our construction, the height function is properly defined not just on a fixed field k, but
it is invariant under finite extensions and so is well-defined on Q (the algebraic closure of Q)
also. Thus H : Q → R. Note that all algebraic closures of Q are isomorphic. We therefore
see from (1) that for any positive integer n and any algebraic number β we have

H(βn) = H(β)n.

By the product formula, it follows

H(β) =
∏
ν

max(1, |β|ν) =
∏
ν

max(1, |β−1|ν) = H(β−1).

Therefore, for every integer n we have H(βn) = H(β)|n|. Notice that if ζn is an n-th root
of unity then H(ζn) = 1. In fact, if β is a non-zero algebraic number which is not a root of
unity then H(β) > 1. This was proved by Kronecker in 1857.

3. September 18

Recall that if β is a root of unity or β = 0 then H(β) = 1.

Theorem 3. If β is a non-zero algebraic number with H(β) = 1 then β is a root of unity.

Proof. Suppose that β is a non-zero algebraic number with H(β) = 1. Let

f(x) = adx
d + · · ·+ a1x+ a0
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be the minimal polynomial of β over the integers. Suppose

f(x) = ad

d∏
i=1

(x− βi),

where β = β1, . . . , βd are the conjugates of β. Since H(β) = 1 then we see that ad = 1. Thus
β is an algebraic integer. Also, indeed |βi| ≤ 1 for all i = 1, 2, . . . , d. We now consider the
algebraic integers β, β2, . . . , βt, . . . . Note that βt is a root of the polynomial ft(x), where

ft(x) :=
d∏
i=1

(x− βti).

Notice that the conjugates βt are in the collection βt1, . . . , β
t
d, perhaps with repetition. In

particular we see that ft(x) ∈ Z[x]. The integer coefficients of tt are elementary symmetric
polynomials in βt1, . . . , β

t
d. Since |βi| ≤ 1 we have |βti | ≤ 1 for i = 1, . . . , d. Thus the

coefficients of ft are at most 2d in absolute value. Further each polynomial has at most d
roots. Therefore there are positive integers t1 and t2 with t1 < t2 for which βt1 = βt2 . Note
β 6= 0 so βt2−t1 = 1. Therefore β is a root of unity. �

Another proof. On noting that the powers of β, β2, β3, . . . of β lie in the unit disc, we can
find two powers t1 and t2 with t2 > t1 such that |βt1−βt2| < 2−d. Notice that the conjugates
βt1i − β

t2
i of βt1 − βt2 satisfy |βt1i − β

t2
i | ≤ 2. But β = β1 and

d∏
i=1

(βt1i − β
t2
i ) (2)

is an integer. Note also that the absolute value of (2) is less than 1, so (2) is equal to 0.
Hence βt1 = βt2 and so either β = 0 or β is a root of unity. �

If β is an algebraic number with β 6= 0 and β not a roof of unity then H(β) > 1. So the
natural question: is there a real number ε > 0 such that if β is an algebraic number and
H(β) < 1 + ε then H(β) = 1? The answer is no; for this, we need a sequence of numbers
whose height approaches 1. Take β = 21/n. Then each of the conjugates βi of β satisfy
|βi| = 21/n. There are n such conjugates, i.e., the degree of β is n. Thus

H(β) =

(
n∏
i=1

max(1, 21/n)

)1/n

= 21/n,

and 21/n → 1 as n → ∞. However, if we ask the same question for the Mahler measure
M(β) we don’t know the answer. This is known as Lehmer’s question. He posed it in 1933.
Recall that M(β) = H(β)d where d is the degree of β. Also we have M(β) = cM(f) where
f is the minimal polynomial of β. So Lehmer’s question can be stated as follows: Does
there exists ε0 > 0 such that M(f) < 1 + ε0 implies M(f) = 1, or if M(β) < 1 + ε0 then
M(β) = 1?

Lehmer gave an example of an algebraic number with Mahler measure larger than 1 but
small. His example: let β be the largest real root of f(x) where f(x) = x10 + x9− x7− x6−
x5 − x4 − x3 + x+ 1. f is irreducible over Q and M(f) =M(β) = β = 1.17628081 . . . .
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4. September 21

Recall Lehmer’s question from 1933: is there a positive number ε0 such that if f ∈
Z[x] with M(f) < 1 + ε0 then M(f) = 1? Lehmer gave a possible candidate for ε0 =
.17628081 . . . .

Definition 11. A reciprocal polynomial is a polynomial f of degree d for which f(x) is
identically equal to xdf(x−1). Equivalently, for each root α of f , α−1 is also a root of f .

In 1971, C. Smyth proved that Lehmer’s question has a positive answer if we restrict
f to be a polynomial which is not reciprocal. In particular, Smyth proved that if f is a
non-reciprocal polynomial which does not have 0 or 1 as a root, then

M(f) ≥ β0,

where β0 is the real root of x3 − x− 1. In this case, we have β0 = 1.3247 . . . .

Theorem 4 (Smyth). Let f ∈ Z[x] be a non-reciprocal polynomial which does not have 0 or

1 as a root. Then M(f) ≥
√

5
2

.

Proof. We may suppose that M(f) < 2 since the result is true otherwise, and thus f is a
monic polynomial. Further, since M(f1f2) = M(f1)M(f2), since M(f) ≥ 1 for f ∈ Z[x]
and since the product of reciprocal polynomials is reciprocal, we may suppose that f is
irreducible. Suppose that f is of degree n and that α1, . . . , αn are the roots of f . Put
r(x) = xnf(x−1). Since f is non-reciprocal and does not have 0 or 1 as a root, f(x)/r(x) is
not a constant. We can expand f(x)/r(x) as a power series, say

f(z)

r(z)
= a0 + akz

k + alz
l + · · · (3)

where the coefficients a0, ak, al are non-zero integers. The coefficients are integers since the
constant coefficient of r(z) is equal to 1; recall this follows since M(f) < 2 hence is monic.
Further f(0) = a0r(0) and so |a0| = 1. We now remark that f has no roots on the unit circle.
For suppose α is a root of f on the unit circle. Then αᾱ = 1. But then for any conjugate αi
of α also satisfies αiαi = 1.

But for every root α of f , α−1 is also a root hence f is reciprocal or has 1 as a root. We
may not put

g(z) =
∏
|αj |<1

(
z − αj
1− αjz

)
= c+ c1z + c2z

2 + · · · (4)

and put

h(z) =
∏
|αj |>1

(
1− αjz
z − αj

)
= d+ d1z + d2z

2 + · · · . (5)

Observe that f(z)
r(z)

= g(z)
h(z)

. Upon comparing (3), (4), and (5) we find that akd+ a0dk = ck so

akd+ dk = ck. Since ak is a non-zero integer with |ak| ≥ 1, it follows that

max(|dk|, |ck|) ≥
|d|
2
. (6)
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Both g and h have no poles on or inside the unit circle and so they are holomorphic in an
open set containing the unit disc. By Parseval’s inequality, it follows

1

2π

∫ 2π

0

|g(eiθ)|2 dθ = |c|2 + |c1|2 + |c2|2 + · · · .

Since g has absolute value 1 on the unit circle, we have 1 = |c|2 + |c1|2 + · · · . Hence
|ck|2 ≤ 1 − |c|2. Similarly we find that |dk|2 ≤ 1 − |d|2. But c = d = M(f)−1. Therefore
from (6) we see that

|d|2

4
≤ 1− |d|2

⇒5

4
≤ |d|−2 =M(f)−2

⇒M(f) ≥
√

5

2
,

as desired. �

5. September 23

Recall Smyth’s theorem which states that if f ∈ Z[x] is non-reciprocal and doesn’t have 0
or 1 as a root thenM(f) ≥ β0 where β0 is the real root of x3− x− 1. β0 is an example of a
Pisot or Pisot-Vijayaraghavan number (P.V. for short).

Definition 12. A real algebraic integer β is said to be a Pisot number if β > 1 and all other
conjugates of β have absolute value less than 1.

The set of such numbers is usually denoted by S. It is a closed set (in the usual topology
embedded in R; note that this is not obvious, and it will be fairly difficult to prove.). It
contains all the integers larger than 1. The Pisot numbers were first studied by Thue in 1912
and by Hardy in 1919.

Observe that if β is a Pisot number then M(β) = β. Further, β is a root of a non-
reciprocal polynomial if the degree of β exceeds 2. It then follows from Smyth’s result that
β0 is the smallest Pisot number. This fact was first proved by Siegel in 1944. The smallest

non-isolated limit point of S was shown by Dufresnay and Pisot in 1955 to be 1+
√

5
2

.
For any real number x let ‖x‖ denote the distance from x to the nearest integer. Let

λ be a real number with λ > 1. We can consider the sequence (‖λn‖)∞n=1. In general we
would expect the sequence to be uniformly distributed in (0, 1). However if λ is a Pisot
number then ‖λn‖ → 0 as n → ∞. To see this let λ = λ1, λ2, . . . , λd be the conjugates of
λ. Since λ ∈ S we see that |λi| < 1 for i = 2, . . . , d. But tr(λn) for n ∈ Z is an integer so
‖λn + λn2 + · · · + λnd‖ = 0. It then follows from Smyth’s result that β0 is the smallest Pisot
number. This fact was first proved by Siegel in 1944. Thus

‖λn‖ ≤ |λ2|n + · · ·+ |λd|n

and
|λ2|n + · · ·+ |λd|n → 0

as n→∞.
Hence a natural question (still open!): are the Pisot numbers the only real numbers greater

than 1 with this property? However it is known that if λ ∈ R and λ > 1 and λ is algebraic
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then ‖λn‖ → 0 implies λ ∈ S. Further, Pisot proved in 1939 that if λ > 1 is a real number
and

∞∑
n=1

‖λn‖ <∞

then λ is a Pisot number. The Pisot numbers arise in several settings.

Definition 13. A subset T of unit circle is said to be a set of uniqueness if any trigonometric
expansion

∞∑
n=−∞

c(n)eitn

which converges to zero for all t on the unit circle with t /∈ T converges to zero everywhere
on the unit circle.

Salem and Zygmund proved that if T is a Cantor set of constant ratio of dissection θ on
the unit circle then P is a set of uniqueness if and only if θ−1 is a Pisot number.

Definition 14. A Salem number α is a real algebraic integer with α > 1 which has all its
other conjugates on or inside the unit circle.

In fact, this implies that α has one real conjugate which is α−1 and the other conjugates
come in complex conjugate pairs and lie on the unit circle and at least one on the unit circle.

The left diagram describes the Pisot number and the right diagram describes the Salem
number.

6. September 25

The set of Salem numbers is not so well understood. It is known that every Pisot number
is a limit, both from above and below, of a sequence of Salem numbers.

It is not known if this is a smallest Salem number. In 1977 Boyd gave a way to produce all
Salem numbers. He found four Salem numbers smaller than 1.22 and conjectured that they
are the four smallest. Two of them are of degree 14 and of degree 18. Lehmer’s example is
of degree 10.

Back to Lehmer’s questino: in 1971 Blanksby and Montogomery used Fourier analysis to
prove that if θ is a non-zero algebraic number of degree d which is not a root of unity then
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M(θ) ≥ 1 + 1
52d log 6d

. In 1978 Stewart found an argument from transcendency theory that

gave, under the same assumptions, for d > 1, M(θ) ≥ 1 + 1
104d log d

. In 1979 Dobrovolski

extended this approach to prove that if θ is a non-zero algebraic number with degree d and
θ is not a root of unity then for each ε > 0,

M(θ) ≥ 1 + (1− ε)
(

log log d

log d

)3

for d sufficiently large in terms of ε. This is the best result as a function of d known to date.
For the transcendence apporach, we require a result on solutions of systems of linear

equations known as Siegel’s lemma. We will prove the following version of Siegel’s lemma.

Lemma 1 (Siegel’s lemma). Let bij(1 ≤ i ≤ N, 1 ≤ j ≤M) be algebraic integers in a field K
and suppose that for each j with 1 ≤ j ≤M not all the bij’s zero. Suppose that [K : Q] = d
and let σ1, . . . , σd be the embeddings of K into C. If N ≥ 2dM then the system of equations

N∑
i=1

bijxi = 0

for j = 1, . . . ,M , has a solution in rational integers x1, . . . , xN not all of which are zero,
where absolute values are at most

√
2N

(
max
i≤j≤M

d∏
k=1

(
max

1≤i≤N
|σk(bij)|

))1/d

. (7)

Proof. Let σ1, . . . , σr be the real embeddings of K in C and let σr+1, . . . , σd be the non-real
embeddings of K in C with

σr1+r2+i = σr1+i

for i = 1, . . . , r2, where d = r1 + 2r2.
Put

τi =


σi for 1 ≤ i ≤ r

Re(σi) for r1 < i ≤ r1 + r2

Im(σi) for r1 + r2 < i ≤ d.

Here Re denotes the real part of a complex number and Im the imaginary part. Define Y
to be the integer part of expression (7). For any pair of integers (k, j) with 1 ≤ k ≤ d and
1 ≤ j ≤ M , the (Y + 1)N different N -tuples (y1, . . . , yN) with 0 ≤ yi‘Y for 1 ≤ i ≤ N give

rise to the numbers

∣∣∣∣τk ( N∑
i=1

bijyi

)∣∣∣∣ which are at most NY max
1≤i≤N

|τk(bij)|. Put L := Y (Y + 1)

and observe that L is a non-zero integer, since the bij’s are algebraic integers which are not
all zero. Since N ≥ 2dM and L ≤ (Y + 1)2, we have

LMd < (Y + 1)N .

Therefore by the pigeonhole principle, two of the N -tuples (y1, . . . , yN) and (y′1, . . . , y
′
N)

satisfy ∣∣∣∣∣τk
(

N∑
i=1

bijyi

)
− τk

(
N∑
i=1

bijy
′
i

)∣∣∣∣∣ ≤ max
1≤i≤N

|τk(bij)|
NY

L
(8)
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for k = 1, 2, . . . , d and j = 1, . . . ,M . Put xi = yi − y′i for i = 1, . . . , N . Then max
1≤i≤N

|xi| ≤ Y

and not all the xi’s are zero. So it remains to show that

N∑
i=1

bijxi = 0

for j = 1, . . . ,M . From (8), we deduce that∣∣∣∣∣σk
(

N∑
i=1

bijxi

)∣∣∣∣∣ ≤ max
1≤i≤N

|σk(bij)|
NY

L

for k = 1, . . . , r and that∣∣∣∣∣σk
(

N∑
i=1

bijxi

)
σk+r2

(
N∑
i=1

bijxi

)∣∣∣∣∣ ≤
{

max
1≤i≤N

(Re σk(bij))
2 + max

1≤i≤N
(Im σk(bij))

}2(
NY

L

)2

≤ 2 max
1≤i≤N

|σk(bij)σk+r2(bij)|
(
NY

L

)2

for k = r1 + 1, . . . , r1 + r2. Therefore∣∣∣∣∣
d∏

k=1

σk

(
N∑
i=1

bijxi

)∣∣∣∣∣ <
(
Y (Y + 1)

L

)d
= 1

for j = 1, . . .M . Notice that the above inequality is just

∣∣∣∣NK/Q

(
N∑
i=1

bijxi

)∣∣∣∣ and since it is

less than 1 it is necessarily 0. Thus
N∑
i=1

bijxi = 0 for j = 1, . . . ,M as required. �

7. September 28 & 30

Theorem 5. If α is a non-zero algebraic integer of degree d > 1 with

M(α) < 1 + (104d log d)−1

then α is a root of unity.

Proof. It is easy to check that this holds for d = 2, 3. So we may assume that d ≥ 4. Let
α = α1, . . . , αd be the conjugates of α. We may assume without loss of generality that

|α| ≥ |αi| (i = 1, . . . , d). (9)

Put
K := 2U, where U = b70d log dc .

We now choose K positive integers r1 < r2 < · · · < rk from the first 13K positive integers
so that

max
1≤s≤t≤K

{|Im(logαrs)− Im(logαrt)|} ≤ 2π

13
. (10)

Here Im(z) denotes the imaginary part of z for z ∈ C, and log z denotes the principal branch
of the logarithm function where −π < Im(log z) ≤ π. Such a choice is possible by the
pigeonhole principle. Put θ1 = min

1≤j≤K
Im(logαrj) and put θ = θ1 + π

13
.
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We now construct a function f(z) where

f(z) = exp(−iθz)
K∑
k=1

d∑
j=1

ak,jα
j exp((logαrk)z),

and where the ak,j’s are rational integers (not all zero) which are chosen so that f(u) = 0
for u = 1, 2, . . . , U . Notice that this in equivalent to solving

K∑
k=1

d∑
j=1

ak,jα
j+rku = 0,

for u = 1, . . . , U . Since Kd, the number of unknowns, is 2d ·U , the number of equations, we
may apply Siegel’s lemma to get a non-trivial solution in rational integers ak,j with

max
k,j
|ak,j| ≤

√
2KdM13KU+d. (11)

where

M =

(∏
σ∈S

max(1, |σ(α)|)

)1/d

= (M(α))1/d;

S denotes the set of embeddings of Q(α) in C.
We now define f in terms of the ak,j’s. We shall now show that f has more zeros. In

particular, we prove by induction that f(u) = 0 for all positive integers u. Accordingly
suppose that f(u) = 0 for u = 1, 2, . . . , J with J ≥ U . And we will prove that f(J + 1) = 0.
Since f is an entire function so is F , where

F (z) :=
f(z)

(z − 1)(z − 2) · · · (z − J)
.

By the maximum modulus principle,

|F (J + 1)| ≤ max
z∈Γ
|F (z)|,

where

Γ = {z : z ∈ C, |z| = 2J + 1}.
Thus

|f(J + 1)| ≤ J ! max
z∈Γ

(
J∏
j=1

(z − u)

)−1

max
z∈Γ
|f(z)|

|f(J + 1)| ≤ J !J !

(2J)!
max
z∈Γ
|f(z)|

|f(J + 1)| ≤
(

2J

J

)−1

max
z∈Γ
|f(z)|. (12)

We now estimate max
z∈Γ
|f(z)|. On recalling (9) and (11) we see that

max
z∈Γ
|f(z)| ≤

√
2(Kd)2M13KU+d|α|d exp(∆(2J + 1)) (13)

11



where ∆ = max
1≤k≤K

| log(αrk)− iθ|. By (10), we see that

∆ ≤
∣∣∣13K log |α|+ i

π

13

∣∣∣ .
Since |α| ≥ |αi| for i = 1, . . . , d we may use the fact that 1 ≤ |α| ≤ M(α) our assumption
that 1 ≤ M(α) ≤ 1 + (104d log d)−1 and the inequality that log(1 + x) ≤ x for x ≥ 0 to
conclude that 0 ≤ log |α| ≤ (104d log d)−1. Now since K = 2U and U = b70d log dc, we see

that 0 ≤ 13K log |α| ≤ π
13

; and so ∆ ≤
√

2π
13

, whence ∆(2J + 1) ≤ J(log 2).
Recall that

f(z) = exp(−iθz)
K∑
k=1

d∑
j=1

ak,jα
j exp((logαrk)z).

We chose the ak,j’s to be integers which are not too large so that f(u) = 0 for u = 1, 2, . . . , U .
We are now proving by induction that f(u) = 0 for all positive integers u. We then have

from (12) and (13) that

|f(J + 1)| ≤
(

2J

J

)−1

2J
√

2(Kd)2M13KU+d|α|d.

Since
(

2J
J

)
≥ 4J

2J
we have

|f(J + 1)| ≤ 2J · 2−J
√

2(Kd)2M13KU+d|α|d,
so

|f(J + 1)| ≤ J2−JK4M26KU . (14)

Our next step is to show that |f(J + 1)| is so small that it must be zero.
We now estimate |f(J + 1)| from below. Put β = f(J + 1) exp(iθ(J + 1)) and notice that

β is an algebraic integer in Q(α). Therefore either β = 0 in which case f(J + 1) = 0 or
|NQ(α)/Q(β)| is a positive integer hence

|f(J + 1)| = |β| ≥

(∏
σ∈S′
|σ(B)|

)−1

(15)

where S ′ is the set of embeddings S ′ of Q(α) in C minus the identity embedding. Notice
that for all σ ∈ S we have

|σ(B)| ≤
√

2(Kd)2M13KU+d max
(
1, |σ(α)|13K(J+1)+d

)
. (16)

Since |α| ≥ |αi| for i = 1, 2, . . . , d, we have

∏
σ∈S′

max(1, |σ(α)|) ≤

(∏
σ∈S

max(1, |σ(α)|)

) d−1
d

= Md−1.

So now by (15) and (16), we find that

|f(J + 1)| ≥ (K4M26K(J+1))−d+1.

We compare this estimate with (14) to get

2J ≤ JK4M26KU(K4M26K(J+1))d−1.
12



so

2J ≤ JK4dM26K(J+1)d.

Taking logarithms and estimating J+1
J

from above by 27
26

we find

log 2 ≤ log J

J
+

4d logK

J
+ 27Kd logM.

Thus, upon recalling that cM(α) = Md, K = 2U and J ≥ a, we have

log 2 ≤ logU

U
+

4d log 2U

U
+ 54U log(M(α)). (17)

Since U = b70d log dc and d ≥ 4, we find that

logU

U
+

4d log 2U

U
< .31.

Thus by (17),

(log 2− 0.31) ≤ 54U log(M(α)).

But log(1 + x) ≤ x for x ≥ 0 and so

log 2− .31 ≤ 54U

104d log d
.

Hence

(log 2− 0.31)104d log d

54
≤ U = b70d log dc .

Contradiction! This is false and so f(J + 1) = 0. Therefore by induction f(u) = 0 for
u = 1, 2, 3, . . . .

Let us put Ak :=
d∑
j=1

ak,jα
j. Then

f(u) exp(iθu) =
K∑
k=1

Ak(α
U)rk) = 0

for u = 1, 2, . . . . Notice that since α has degree d, Ak is zero if and only if ak,j = 0 for
j = 1, . . . , d. Since not all of the ak,j’s are zero we see that not all of the Ak’s are zero.

Thus g(x) =
K∑
k=1

Akx
rk is a non-zero polynomial. But αU is a root of g(x) for u = 1, 2, . . . .

Since α 6= 0 we see that αU1 = αU2 for some distinct positive integers and as α is a root of
unity. �

Remark 3. We briefly get back to Pisot for a bit. He proved in 1938 that if λ is a real number

with λ > 1 and
∞∑
n=1

‖λn‖2 <∞, then λ is a Pisot number.

13



8. October 2

Let α be a real number and suppose that α is irrational.

Question 1 (Basic question). How well can we approximate α by rationals?

Answer 1. Since Q is dense in R we can approximate α to within ε for any ε > 0. A
better question would be to ask how well we can approximate α in terms of the size of the
denominator of the rationals?

Theorem 6 (Dirichlet). If α ∈ R\Q, then there exist infinitely many p/q with p, q ∈ Z, q >
0, (p, q) = 1 for which

∣∣∣α− p
q

∣∣∣ > 1
q2

.

So one may naturally ask if this result is sharp. In fact, it turns out that Dirichlet’s
result is indeed sharp: there exist C > 0 such that for uncountably many α ∈ R, we have∣∣∣α− p

q

∣∣∣ > c
q2

for all rationals p
q
, q > 0, (p, q) = 1.

One more natural question:

Question 2. What happens if we restrict α to be algebraic?

The first interesting response to this question was given by Liouville in 1844.

Theorem 7 (Liouville). Let α be algebraic of degree d ≥ 2. Then there exists C(α) > 0
such that for all p/q ∈ Q with (p, q) = 1, q > 0, we have∣∣∣∣α− p

q

∣∣∣∣ > C(α)

qd
.

This result gives us a recipe for constructing transcendental numbers since we need only
find an α ∈ R with a sequence (pi/qi)

∞
i=1 ∈ Q with∣∣∣∣α− pj

qj

∣∣∣∣ < 1

qjj

for j = 1, 2, . . . . This is how Liouville constructed the first real number known to be
transcendental. The partial sums

pj
qj

=

j∑
k=1

1

10k!

give the required sequence.
Can we improve on Liouville’s result when d ≥ 3? Yes, but even very small improvements

seem very difficult to achieve. Thus in 1909 was the first to make an improvement, followed
by Siegel in 1921, Dyson in 1947, and finally by Roth in 1955.

Theorem 8 (Roth). Let α be algebraic of degree d ≥ 2. Let ε > 0. Then there exists a
constant C(α, ε) > 0 (i.e., a constant depending on α and ε) such that∣∣∣∣α− p

q

∣∣∣∣ > C(α, ε)

q2+ε
.

However, there is a big flaw in this extraordinary theorem. The proof does not give a
means to compute C(α, ε) > 0 explicitly given α and ε. Thus the result is said to be
ineffective and it is a major open problem to make it effective.

In general, how do we find the “good” rational approximations to an α ∈ R?
14



Definition 15. We say an approximation p
q

is good if
∣∣∣α− p

q

∣∣∣ < 1
q2

.

It turns out that there is a very efficient algorithm to find these approximations known
as the continued fraction algorithm. There is also a method known as the hypergeometric
method which gives effective improvement of Liouville’s result for certain algebraic numbers

such as 3
√

2. The idea is to consider sequence Pn(x)
Qn(x)

of polynomials of degree at most n which

approximate (1− x)1/3 and then specialize.

9. October 5

We consider the function of the N -th variables a0, . . . , aN :

Definition 16. We define the partial fraction

[a0, . . . , aN ] := a0 +
1

a1 + 1
a2+···+ 1

aN

.

We call a0, . . . , aN partial coefficients.

From the definition we have

[a0] = a0, [a0, a1] = a1 +
1

a1

=
a0a1 + 1

a1

, [a0, a1, a2] = a1 +
1

a1 + 1
a2

=
a2a1a0 + a2 + a0

a2a1 + 1
.

We also have

[a0, . . . , an] =

[
a0, a1, . . . , an−1 +

1

an

]
[a0, . . . , an] = [a0, [a1, . . . , an]].

More generally, [a0, . . . , an] = [a0, . . . , am−1, [am, . . . , an]].

Definition 17. We call [a0, . . . , an](0 ≤ n ≤ N) the n-th convergent to [a0, . . . , aN ].

Theorem 9. If pn and qn are defined by{
p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (n ≥ 2)

q0 = 1, q1 = a1, . . . , qn = anqn−1 + qn−2 (n ≥ 2).

Then [a0, . . . , an] = pn
qn

.

Proof. We prove with induction. Clearly, we have [a0] = a0 = a0
1

= p0
q0

and [a0, a1] = a0a1+1
a1

=
p1
q1

. Suppose it is true for n ≤ m < N . Then

[a0, . . . , am] =
pm
qm

=
ampm−1 + pm−2

amqm−1 + qm−2

.

15



Also, pm−1, pm−2, qm−1, qm−2 depend on a0, a1, . . . , am−1. We have

[a0, a1, . . . , am+1] =

[
a0, a1, . . . , am +

1

am+1

]

=

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1
am+1

)
qm−1 + qm−2

=
am+1(ampm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2 + qm−1

=
am+1pm + pm−1

am+1qm + qm−1

=
pm+1

qm+1

. �

Theorem 10. pnqn−1 − pn−1qn = (−1)n−1. Equivalently,

pn
qn
− pn−1

qn−1

=
(−1)n−1

qnqn−1

.

Proof. pnqn−1 − pn−1qn = anpn−1 + pn−2 − pn−1(anqn−1 + qn−2) = −(pn−1qn−2 − pn−2qn−1) =
(−1)n−1. �

Theorem 11. pnqn−2 + pn−2qn = (−1)nan, or

pn
qn
− pn−2

qn−2

=
(−1)nan
qnqn−2

.

Proof. Exercise. �

From now on, we shall assume that a0 ∈ Z and a1, a2, . . . ,∈ N. Also, let xn = pn
qn

and

x = xN be the N -th convergent.

Theorem 12. x0 < x2 < x4 < · · · and x1 > x3 > x5 > · · · .

Proof. This follows from Theorem 11. �

Theorem 13. every odd convergent i greater than any even convergent. That is, x2m+1 > x2µ

where 2µ, 2m+ 1 ≤ N .

Proof. From Theorem 10, we have x2m+1 > x2m. If µ ≤ m, then x2m > x2µ so x2m+1 > x2µ.
If µ > m, then x2µ < x2µ+1; since x2m+1 > x2µ+1 it follows x2m+1 > x2µ. �

Theorem 14. x = xN is greater than any even convergent and less than any odd convergent.

Let α be a real number. We construct a continued fraction associated with α, using
following steps:

Step 1: Define a0 := bαc. If α = a0 then α = [a0]. Otherwise, then α = a0 + 1
α1

for
appropriate α1.

Step 2: Let a1 = bα1c. If α1 = a1 then α = a0 + 1
a1

= [a0, a1].

We repeat this procedure. If this stops after a finite number of steps then α = [a0, . . . , aN ].
Otherwise, then α = [a0, a1, . . . ], an infinite continued fraction.

Remark 4. α has a finite continued fraction if and only if α is a rational number.

Proposition 1. The sequence (|q1α− p1|, |q2α− p2|, . . . ) is a strictly decreasing sequence.
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Proof. Let α = [a0, a1, . . . , an, αn+1]. Then α = αn+1pn+pn−1

αn+1qn+qn−1
. Also,

|qnα− pn| =
∣∣∣∣qn(pnαn+1 + pn−1

qnαn+1 + qn−1

)
− pn

∣∣∣∣
=
|qnpn−1 − pnqn−1|
|qnαn+1 + qn−1|

=
1

qnαn+1 + qn−1

qnαn+1 + qn−1 ≥ qn + qn−1 ≥ anqn−1 + qn−2 + qn−1

≥ (an + 1)qn−1 + qn−2 > αnqn−1 + qn−2.

So

|qnα− pn| =
1

qnαm−1 + qn−1

<
1

qn−1αn + qn−2

= |qn−1α− pn−1|.

Thus the sequence is strictly decreasing. �

10. October 7

Proposition 2. 1
(an+1+2)q2n

<
∣∣∣α− pn

qn

∣∣∣ < 1
an+1q2n

.

Proof. From the proof of Prop 1, we have∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)
,

for appropriate an+1 ≤ αn+1 < an+1 + 1. Recall that qn ≥ qn−1. Thus

an+1qn > αn+1qn + qn−1 < (an+1 + 2)qn,

so we are done. �

Remark 5. If 0 < q < qn+1, then |qα− p| ≥ |qnα− pn|. Also,

det

[
pn pn+1

qn qn+1

]
= (−1)n+1,

so there exist integers u, v such that

p = upn + vpn+1, q = uqn + vqn+1,

with u ≥ 0 and u, v having different signs. Hence,

|qα− p| = |α(uqn + vqn+1)− (upn + vpn+1)|
= |u(αqn − pn) + v(αqn+1 − pn+1)|
≥ |u+ v||qnα− pn| ≥ |qnαpn|.

Proposition 3. Let p/q ∈ Q and α ∈ R. If
∣∣∣α− p

q

∣∣∣ < 1
2q2

, then p
q

= pn
qn

(n-th convergent)

for some n.
17



Proof. For some n, we have qn ≤ q < qn+1. Also,∣∣∣∣pq − pn
qn

∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣+

∣∣∣∣α− pn
qn

∣∣∣∣
≤ 1

q
|qα− p|+ 1

qn
|qnα− pn|

≤
(

1

q
+

1

qn

)
|qα− p|

<
2

qn
· 1

2q
=

1

qqn
.

So if p
q
6= pn

qn
, then

∣∣∣pq − pn
qn

∣∣∣ ≥ 1
qqn

, a contradiction. The claim follows. �

Definition 18. A continued fraction [a0, a1, . . . ] is ultimately periodic if an+k = an for all
n ≥ m for some m and k. A continued fraction is purely periodic if an+k = an for all n ≥ 0
and some k.

Theorem 15 (Lagrange‘s theorem). A real number α is a quadratic irrational if and only
if its continued fraction is ultimately periodic.

Proof. (⇒) Suppose that ax2 + bx + c be the minimal polynomial of α. Note that b2 −
4ac > 0. Thus we can let α = [a0, a1, . . . , an−1, αn], or equivalently α = pn−1αn+pn−2

qn−1αn+qn−2
. Since

aα2 + bα + c = 0, there exist appropriate An, Bn, Cn such that Anα
2
n + Bnαn + Cn = 0.

Specifically,

An = ap2
n−1 + bpn−1qn−1 + cq2

n−1

Bn = 2apn−1qn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2

Cn = ap2
n−2 + bpn−2qn−2 + cq2

n−2 = An−1.

We will show that An, Bn, Cn are bounded. That is, there exist n1, n2, n3 such that

(A,B,C) = (An1 , Bn1 , Cn1)← αn1

= (An2 , Bn2 , Cn2)← αn2

= (An3 , Bn3 , Cn3)← αn3

At least two of αn1 , αn2 , αn3 are the same. Without loss of generality, lets say αn1 =
αn−2(n1 < n2). Then an+k = an for all n ≥ n1 and k = n2 − n1. Define an1 := bαn1c
and an2 := bαn2c. Since

αn1 = an1 +
1

αn1+1

αn2 = an2 +
1

αn2+1

,

we have an1+1 = an2+1.
18



Note that An 6= 0: otherwise, ax2 + bx + c = 0 has a rational root. Furthermore, B2
n −

4AnCn = b2 − 4ac > 0. And if α− pn
qn

= sn
q2n

, then |sn| ≤ 1. Substitution gives

An = a

(
qn−1α−

sn−1

qn−1

)2

+ b

(
qn−1α−

sn−1

qn−1

)
qn−1 + cq2

n−1

= (aα2 + bα + c)q2
n−1 − 2aαsn−1 + a

s2
n−1

q2
n−1

− bsn−1

= −2aαsn−1 + a
s2
n−1

q2
n−1

− bsn−1.

So |An| ≤ |2aα| + |a| + |b| and |Bn| = |4AnCn + b2 − 4ac| ≤ |4AnCn| + |b2 − 4ac|. Note
Cn = An−1 so all three are bounded.

(⇐) Write α = [a0, a1, . . . , an−1, an, an+1, . . . , an+k−1], where the bar indicates periodicity.
Let θ := [an, an+1, . . . , an+k−1] ∈ R \ Q. Let uj/vj be the j-th convergent to θ. Then

θ = [an, an+1, . . . , an+k−1, θ], or θ = uk−1θ+uk−2

vk−1θ+vk−2
. Hence vk−1θ

2 + (vk−2 − uk−1)θ − uk−2 = 0.

But since θ /∈ Q, it follows that θ is a quadratic irrational. Now since α = [a0, . . . , an−1, θ],

we have α = pn−1θ+pn−2

qn−1θ+qn−2
. α is a real quadratic rational as required. �

11. October 9

Proposition 4. The continued fraction of α is purely periodic if and only if α > 1 and its
conjugate satisfies β satisfies −1 < β < 0.

Proof. (⇐) We first prove this claim:

Claim. −1 < βn < 0 where βn is the conjugate of αn.

We prove by induction on n. Suppose an > 1 and −1 < βn < 0. Note that if

αn = an +
1

αn+1

,

then

βn = an +
1

βn+1

.

Thus we have
1

βn+1

= βn − an < −1.

so indeed −1 < βn+1 < 0, as desired.
Since

an = βn −
1

βn+1

,

it follows

an =

⌊
− 1

βn+1

⌋
. (18)

Since α is quadratic irrational, there exist m,n ∈ Z+ (m > n) such that αm = αn. In this
case βm = βn. This implies an−1 = am−1 (by (18)) so αn−1 = αm−1. Repeating this argument
yields α0 = αm−n. So the given continued fraction is purely periodic, as required.
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(⇒) Suppose that the continued fraction of α is purely periodic. Then α = [a0, a1, . . . , an, α]
for some n. So there exist pn and qn such that

α =
pnα + pn−1

qnα + qn−1

,

or equivalently, we have

qnα
2 + (qn−1 − pn)α− pn−1 = 0.

Let fn(x) := qnx
2 + (qn−1 − pn)x− pn−1. Then fn(0) = −pn−1 < 0, and fn(−1) = qn + pn −

qn−1 − pn−1 = (qn − qn−1) + (pn − pn−1) > 0, since both qn − q − n− 1 and pn − pn−1 are
positive. Note that pn, qn > 0 and pn, qn are increasing sequences. Thus there exists a root
β ∈ (−1, 0), and so β is a conjugate of α as desired. �

Remark 6. Suppose that d is not a perfect square, and that

α =
1

√
d−

⌊√
d
⌋ > 1.

Its conjugate is thus

β =
1

−
√
d−

⌊√
d
⌋ = − 1

√
d+

⌊√
d
⌋ .

We have −1 < β < 0, so the continued fraction of α is purely periodic.
Consider the rational α = [a0, . . . , an], and let pi

qi
(1 ≤ i ≤ n) be convergents of α. We

state the following claims; we will only prove the first one.

Claim. We have

(1) [an, an−1, an−2, . . . , a1, a0] = pn
pn−1

(2) [an, an−1, . . . , a1] = qn
qn−1

.

Proof. We start from the fact that pn = anpn−1 + pn−2. From which it follows

pn
pn−1

= an +
1

pn−1

pn−2

= an +
1

an−1 + 1
pn−2
pn−3

= · · · = an +
1

an−1 + 1
an−2

+ · · ·+ 1
p1
p0

,

so the claim follows upon observing p1
p0

= a0. The proof of the second part follows in a similar
manner. �

Proposition 5. Let α be a quadratic irrational with α > 1 and −1 < β < 0. Then we have

α = [a0, a1, . . . , an]

− 1

β
= [an, an−1, . . . , a1, a0].
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Proof. Let θ = [an, an−1, . . . , a1, a0] = [an, an−1, . . . , a1, a0, θ], and let un
vn

be the convergents
to θ. That is, we have

θ =
unθ + un−1

vnθ + vn−1

.

Let pn
qn

be the convergents of α. Note that by the first claim of the above remark, we have
un
vn

= pn
pn−1

. Since (pn, pn−1) = (un, vn) = 1, we have un = pn and vn = pn−1. Also, by the

second claim of the above remark, un−1

vn−1
= qn

qn−1
. Thus un−1 = qn and vn−1 = qn−1. That is,

we have

θ =
pnθ + qn
pn−1

θ + qn−1,

and equivalently

qn

(
−1

θ

)2

+ (qn−1 − pn)

(
−1

θ

)
− pn−1 = 0.

Since α is also a root of qnx
2 + (qn−1 − pn)x− pn−1 = 0, indeed −1

θ
= β is a conjugate of α.

Hence θ = − 1
β
. �

Claim.
√
d = [a0, a1, . . . , an, 2a0].

Proof. Let α =
√
d +

⌊√
d
⌋
. Then its conjugate β is β = −

√
d +

⌊√
d
⌋
. Since −1 < β < 0

and

α = [2
⌊√

d
⌋
, a1, a2, . . . , an] = [2a0, a1, . . . , an],

By Prop 5, we get

− 1

β
= [an, an−1, . . . , a1, 2a0] =

1
√
d−

⌊√
d
⌋ .

We have

√
d−

⌊√
d
⌋

= 0 +
1
1√

d−b√dc
= 0 +

1

[an, an−1, . . . , a1, 2a0]

= [0, an, an−1, . . . , a1, 2a0].

Thus

√
d =

⌊√
d
⌋

︸ ︷︷ ︸
=a0

+[0, an, an−1, . . . , a1, 2a0]

= [a0, an, an−1, . . . , a2, a1, 2a0]

α =
√
d+

⌊√
d
⌋

= [2a0, a1, a2, . . . , an].
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Recall that 2a0 = 2
⌊√

d
⌋
, so

√
d = −

⌊√
d
⌋

+ [2a0, a1, a2, . . . , an]

= a0 +
1

a1 + 1
a2+···+ 1

an+ 1
2a0

= [a0, a1, a2, . . . , 2a0].

Note that this gives us
√
d = [a0, a1, . . . , an, 2a0] = [a0, an, an−1, . . . , a1, 2a0], so a1 = an, a2 =

an−1, . . . . Hence
√
d = [a0, a1, a2, . . . , a2, a1, 2a0]. �

12. October 14

Let d ∈ N, d > 1, not a square. The equation

x2 − dy2 = 1

in integers x and y is known as the Pell equation. Fermat conjectured that the equation
always has a non-trivial solution i.e., different from (x, y) = (±1, 0). This was first proved
by Lagrange in 1768.

Let us consider the equations

x2 − dy2 = 1 (19)

x2 − dy2 = −1. (20)

Suppose that (x, y) is a nontrivial positive solution to (19) and (20). Then

x ≥
√
dy2 − 1 ≥ y

√
d− 1.

Thus we have

|x−
√
dy| = 1

|x+
√
dy|
≤ 1
√
dy
(

1 +
√

1− 1
d

) < 1

2y
,

since
√
d+
√
d− 1 > 2 for d ≥ 2. Thus∣∣∣∣√d− x

y

∣∣∣∣ < 1

2y2
.

Therefore x |y is a convergent to
√
d, i.e., x

y
= pn

qn
for some n ≥ 0. Then

√
d =

pnαn+1 + pn−1

qnαn+1 + qn−1

.

so

(pn − qn
√
d)αn+1 =

√
dqn−1 − pn−1

(p2
n − q2

nd)αn+1 = (
√
dqn−1 − pn−1)(pn + qn

√
d) (21)

(±1)αn+1 =
√
d(pnqn−1 − pn−1qn)− pn−1pn + qn−1qnd

=
√
d(−1)n+1 + h for h ∈ Z.
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The convergents of even index are smaller than
√
d and the convergents of odd index are

larger than
√
d. Therefore, by (21), we have that n− 1 is even if p2

n − dq2
n = 1, and n− 1 is

odd if p2
n − dq2

n = −1.
Consider the first possibility. Then

αn+1 =
√
d(−1)n+1 + h =

√
d+ h.

Thus αn+2 = α1. But
√
d = [a0, a1, a2, . . . , am] where m is the minimal length of the period

of the continued-fraction expansion of
√
d. We have then α1 = αm+1 = α2m+1 = · · · , and

αk 6= α1 for k 6≡ 1 (mod m) since m is the minimal period. Thus m | (n + 2) − 1 hence
n = lm− 1 for some l ∈ Z+. In this case we have n− 1 even so lm is even. In the case when
x2 − dy2 = −1 we find that lm is odd so

−αn+1 = −
√
d+ h, or αn+1 =

√
d− h.

In particular, if the minimal period m is even, the equation has x2 − dy2 = −1 has no
non-trivial solution.

Theorem 16. Let d be a squarefree integer with d > 1. Let m be the minimal period of the
continue-fraction (CF) expansion of

√
d. (x, y) is the solution of

x2 − dy2 = 1

with x, y ∈ N iff x = pn, y = qn for some convergent pn/qn to
√
d and where n = lm− 1, l ≥

0, lm even. Also, (x, y) is a solution of

x2 − dy2 = −1

with x, y ∈ N iff x = pn, y − qn, lm is odd, l > 0, n = lm− 1.

Proof. The above discussion already established (⇒).
(⇐) Suppose that n = lm− 1. Then by periodicity α1 = αn+2 so

√
d =

pn+1αn+2 + pn
qn+1αn+2 + qn

=
pn+1α1 + pn
qn+1α1 + qn

.

But α1 = 1√
d−a0

and so

(qn+1 + qn(
√
d− a0))

√
d = pn+1 + pn(

√
d− a0).

From this, we have qn+1 − qna0 = pn and qnd = pn+1 − pna0 since
√
d /∈ Q. Eliminating a0

gives us pnqn+1 − pn+1qn = p2
n − q2

nd, hence p2
n − q2

nd = (−1)n+1. Thus if n is odd then we
have a non-trivial solution of x2 − dy2 = 1 while if n is even we have a non-trivial solution
of x2 − dy2 = −1. �

13. October 16 & 19

In general, not much is known about the continued fraction expansion of algebraic numbers
of degree greater than 2. No such number is known to have bounded partial quotients. For
certain non-algebraic numbers of interest we know more. For example,

e− 1 = [1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].
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As a consequence, we are able to show that there is a positive number c such that for q > 4,
we have ∣∣∣∣e− p

q

∣∣∣∣ > c log log q

q2 log q
.

On the other hand, π is a mystery:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . ].

The initial convergents are 3, 22
7
, 333

106
, 355

113
, 103993

33102
, . . . . We have∣∣∣∣π − 22

7

∣∣∣∣ =
1

(16.139 . . . )72
,

∣∣∣∣π − 355

113

∣∣∣∣ =
1

(293.57 . . . )(113)2
.

In fact, 22
7

is as good as p
q

for any q < 57; similarly, 335
113

is as good as p
q

for q < 16604.

Mahler in 1953 proved that there exists a positive number c such that∣∣∣∣π − p

q

∣∣∣∣ > c

q42
.

Also, there is a theorem by Salikhov

Theorem 17 (Salikhov, 2008).
∣∣∣π − p

q

∣∣∣ > 1
q7.6063...

for q sufficiently large.

What does the continued fraction expansion of a “typical” real number look like? A
first question one might ask is: how does qn grow? For all irrational numbers α it grows
exponentially. To see this observe that q0 = 1 and q1 = a1 and for n ≥ 2 we have qn =
anqn−1 + qn−2. Thus qn ≥ un+1 for n = 0, 1, 2, . . . where u0 = 0, u1 = 1 and un = un−1 +un−2

for n ≥ 2. But (un)∞n=0 is the Fibonacci sequence and

un =

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n
√

5
.

Theorem 18. There exists a positive number c such that for all real numbers α, except a
set of Lebesgue measure zero, we have

qn = qn(α) < ecn.

Proof (Khintchine). We first remark that we can restrict our attention to α in (0, 1) since the
countable union of sets of measure zero is a set of measure zero. Let En(g) for n ≥ 1, g ≥ 1
be the set of real numbers in (0, 1) for which a1 . . . an ≥ g where a1, . . . , an are the initial
partial quotients of α.

For any fixed sequence (a1, . . . , an) we will determine the measure of the set of α’s in (0, 1)
whose first n+ 1 partial quotients are 0, a1, . . . , an. Thus

α = [0, a1, . . . , an, αn+1].

Then
pnαn+1 + pn−1

qnαn+1 + qn−1

and αn+1 varies from 1 to ∞. This gives an interval with endpoints

pn + pn−1

qn + qn−1

and
pn
qn

;
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observe that

α− pn
qn

=
pnαn+1 + pn−1

qnαn+1 + qn−1

− pn
qn

=
(−1)n

qn(qnαn+1 + qn−1)

is a monotone function of αn+1. The length of the interval is∣∣∣∣pn + pn−1

qn + qn−1

− pn
qn

∣∣∣∣ =
1

qn(qn + qn−1)
.

and
1

qn(qn + qn−1)
<

1

q2
n

<
1

(a1 . . . an)2

since qn > anqn−1 hence qn > an · · · a1. Thus the measure

µ(En(g)) <
∑

a1...an≥g

1

(a1 . . . an)2
.

Note that
n∏
i=1

1

a2
i

=
n∏
i=1

(
1 +

1

ai

)
· 1

ai(ai + 1)

≤ 2n
n∏
i=1

1

ai(ai + 1)

= 2n
n∏
i=1

∫ ai+1

ai

dxi
x2
i

= 2n
∫ a1+1

a1

· · ·
∫ an+1

an

dx1dx2 . . . dxn
x2

1 . . . x
2
n

.

Put

Jn(g) =

∫
R

dx1 . . . dxn
x2

1 . . . x
2
n

where R is the region xi ≥ 1 for i = 1, . . . , n and x1 · · ·xn ≥ g. Thus

µ(En(g)) < 2nJn(g).

It remains to evaluate Jn(g). If g ≤ 1 then

R = {(x1, . . . , xn) : xi ≥ 1 for i = 1, . . . , n}
and so

Jn(g) =

(∫ ∞
1

dx

x2

)n
= 1.

We now prove by induction on n that for g > 1,

Jn(g) =
1

g

n−1∑
i=0

(log g)i

i!
. (22)

For n = 1 we have J1(g) =
∫∞
g

dx
x2

= 1
g

as expected. Now assume the result for n = k. Then

Jn+1(g) =

∫ ∞
1

dxk+1

x2
k+1

Jk

(
g

xk+1

)
.
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Apply the change of variables

u =
g

xk+1

so du = − g

x2
k+1

dxk+1.

Thus

Jk+1(g) =
1

g

∫ g

0

Jk(u) du

=
1

g

(∫ 1

0

Jk(u) du+

∫ g

1

J(u) du

)
=

1

g

(
1 +

∫ g

1

1

u

k−1∑
i=0

(log u)i

i!
du

)

=
1

g

(
1 +

k−1∑
i=0

(log u)i+1

(i+ 1)!

∣∣∣∣∣
g

1

)

=
1

g

(
1 +

k−1∑
i=0

(log g)i+1

(i+ 1)!

)
=

1

g

k∑
i=0

(log g)i

i!
.

This completes the induction argument. We now put g = eAn where A > 1 is to be chosen.
We now find that

µ(En(eAn)) <
2n

eAn

n−1∑
i=0

(An)i

i!
<

2nAn

eAn

n−1∑
i=0

ni

i!
<

2nAn

eAn
en = e(1+log 2+logA−A)n.

Now choose A so that 1 + log 2 + logA− A < 0, from which it follows
∞∑
n=1

µn(eAn) <∞.

Thus, by Borel-Cantelli, every number α, apart from a set of measure zero, belongs to only
finitely many of the sets En(eAn). Thus for almost all α ∈ (0, 1), there exists N(α) such
that for n > N(α), we have a1 . . . an < eAn. But qn = anqn−1 + qn−2 < 2anqn−1, hence
qn < a1a2 . . . an. Thus for almost all α and for n sufficiently large in terms of α, we indeed
have qn < e(A+log 2)n as required. �

In 1935, Paul Lévy proved that for almost all α in the sense of Lebesgue measure we have

lim
n→∞

(qn(α))1/n = e
π2

12 log 2 .

He used probability theory. We will prove this using ergodic theory instead. Consider
the probability space (X,B, µ) consisting of a space X, a σ-algebra B and a non-negative,
countably additive measure µ on X with µ(X) = 1. We say that T is a measure-preserving
transformation of (X,B, µ) if T : X → X, µ(T−1(B)) = µ(B) for all B ∈ B, and B ∈ B ⇒
T−1(B) ∈ B. Let L′ consist of the measurable functions f : X → R which are integrable.
Then if T is measure-preserving and f ∈ L′ then

∫
f dµ =

∫
f ◦ T dµ.

Definition 19. Let T be a measure-preserving transformation on a probability space (X,B, µ).
Then T is said to be ergodic if whenever B ∈ B and T−1B ⊆ B then µ(B) = 0 or µ(B) = 1.
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Theorem 19 (Ergodic theorem). Suppose f ∈ L′ and T is ergodic. Then, for almost all
x ∈ X, we have

lim
n→∞

1

n

n−1∑
j=0

f(T jx) =

∫
X

f dµ.

Proof. The proof can be found in a book on ergodic theory. �

14. October 21

Let X = (0, 1). Let B be the σ-algebra of Lebesgue measurable sets on (0, 1) and let µ
be the Lebesgue measure on (0, 1). Let T : X → X by T (x) = 1

x
−
⌊

1
x

⌋
. Note that T is not

measure-preserving with respect to µ and so we modify µ. We define µ1 to be the measure
for which for all f ∈ L′,

µ1(f) :=
1

log 2

∫ 1

0

f(x)

1 + x
dx. (23)

Observe that X is a probability space with respect to µ1 since

µ1(1X) = 1.

Note that (23) determines µ1. We claim that T is measure-preserving with respect to µ1.
instead of all measurable sets on X, it suffices to check that T is measure-preserving with
respect to each interval (a, b). We have

T−1(a, b) =
∞⋃
n=1

(
1

b+ n
,

1

a+ n

)
,

since if x is in
(

1
b+n

, 1
a+n

)
then Tx is in (a, b). In particular, T (1/(b+ n), 1/(a+ n)) = (a, b)

for all n ∈ Z+. Further, there is no longer set sent to (a, b) by T . Certainly, the set
∞⋃
n=1

(
1

b+ n
,

1

a+ n

)
is measurable. Further,

µ1(T−1(a, b)) =
∞∑
n=1

µ1

(
1

b+ n
,

1

a+ n

)
=

1

log 2

∞∑
n=1

∫ 1
a+n

1
b+n

dx

1 + x

=
1

log 2

∞∑
n=1

log(1 + x)

∣∣∣∣∣
1

a+n

1
b+n

=
1

log 2

∞∑
n=1

(
log

(
1 +

1

a+ n

)
− log

(
1 +

1

b+ n

))

=
1

log 2

∞∑
n=1

(
log

(
a+ n+ 1

a+ n

)
− log

(
b+ n+ 1

b+ n

))

=
1

log 2

∞∑
n=1

(
log

(
a+ n+ 1

b+ n+ 1

)
− log

(
a+ n

b+ n

))
.
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But
N∑
n=1

log

(
a+ n+ 1

a+ n

)
− log

(
b+ n+ 1

b+ n

)
=

N∑
n=1

log

(
a+ n+ 1

b+ n+ 1

)
− log

(
a+ n

b+ n

)
= log

(
a+N + 1

b+N + 1

)
− log

(
a+ 1

b+ 1

)
;

and as N →∞, this tends to log
(
b+1
a+1

)
. Therefore

µ1(T−1(a, b)) =
1

log 2
log

(
b+ 1

a+ 1

)
=

1

log 2

∫ b

a

dx

1 + x
= µ1(a, b).

Thus µ1 is invariant with respect to T . This was understood by Gauss in 1812.
Note that αn = an + 1

αn+1
, for n = 0, 1, 2, . . . . Further αi ≥ 1 for i = 1, 2, . . . ,

T

(
1

αn

)
= αn − bαnc = αn − an =

1

αn+1

for n = 1, 2, . . . . It can be proved that T is ergodic. Thus we can take k to be a positive
integer and f to be the characteristic function of ((k+1)−1, k−1). We now apply the Ergodic
theorem to deduce that for almost all x in the sense of Lebesgue measure,

lim
n→∞

1

n

n−1∑
j=0

f(T jx) =

∫
X

f dµ1 =
1

log 2

∫ 1
k

1
k+1

dx

1 + x

=
1

log 2

(
log

(
1 +

1

k

)
− log

(
1 +

1

k + 1

))
=

1

log 2
log

(
(k + 1)2

k(k + 2)

)
.

This tells us that for “almost all” real numbers α the frequency with which the n-th partial
quotient of α is k exists and is equal to

1

log 2
log

(
(k + 1)2

k(k + 2)

)
.

Gauss conjectured this fact, and it was first proved by Kuzmin in the 1920’s. The Gauss-
Kuzmin theorem tells us that for almost all α in the sense of Lebesgue measure the frequency
of 1’s is .41503 . . . , of 2’s is .169925 . . . , 3’s is .0931 . . . , 4’s is .0588 . . . , and 5’s .0406 . . . .
The expected frequency of odd partial quotients is

θ =
1

log 2

∞∑
j=1

log

(
(2j)2

(2j − 1)(2j + 1)

)
and the frequency of even partial quotients for almost all α is 1 − θ. But θ > 1

2
and this

contrasts with the fact that for almost all real numbers α in the sense of Lebesgue measure
the frequency of even decimal digits in the base-10 expansion of α is 1

2
as is the frequency of

odd decimal digits. The frequency with which a partial quotient of α is at least k is

1

log 2

∞∑
j=k

log

(
(j + 1)2

j(j + 2)

)
for all real numbers α except on a set of measure zero.
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15. October 23

Observe that if α = α0 ∈ (0, 1) then α0 = α−1
1 . Thus

T (α) =
1

α0

−
⌊

1

α0

⌋
= α1 − bα1c =

1

α2

.

So T (α) = T (α−1) = α−1
2 . More generally, we have T n(α) = T n(α−1

1 ) = α−1
n+1 for n ≥ 0.

Further, let an = bαnc for n ≥ 0. Thus

n
√
a1a2 · · · an = n

√
bT 0(α)−1c bT1(α)−1c · · · bT n−1(α)−1c,

and so

1

n

n−1∑
j=0

log aj =
1

n

n−1∑
j=0

log

(⌊
1

T j(α)

⌋)
.

Take f(x) = log bx−1c and apply the Ergodic theorem to deduce that for almost all x in
(0, 1) in the sense of Lebesgue measure we have

lim
n→∞

1

n

n∑
j=1

log ai =
1

log 2

∫ 1

0

log

⌊
1

x

⌋
dx

x+ 1

=
1

log 2

∞∑
n=1

∫ 1
n

1
n+1

log n
dx

x+ 1

=
∞∑
n=1

log n

log 2
log(1 + x)

∣∣∣∣∣
1
n

1
n+1

=
1

log 2

∞∑
n=1

log n log

(
(n+ 1)2

n(n+ 2)

)
,

or equivalently,

n
√
a1 · · · an →

∞∏
n=2

(
(n+ 1)2

n(n+ 2)

) logn
log 2

.

First note that for α in (0, 1) with the first n + 1 partial quotients 0, a1, . . . an we have
[0, a1, . . . , an] = pn

qn
so [a1, . . . , an] = qn

pn
. We now note that

qn = [a1, . . . , an][a2, . . . , an] · · · [an]

since if [aj, . . . , an] = x
b

then [aj+1, . . . , an] = b
c
. So we have a telescoping product with first

term qn
pn

and last term an
1

. (Aside: since qj/qj−1 = [aj, . . . , a1] for j ≥ 1 and so we have

qn = [an, . . . , a1][an−1, . . . , a1] · · · [a1].) So it follows

qn =

(
pn
qn

)−1
(
T

(
pn
qn

)−1
)
· · ·

(
T n−1

(
pn
qn

)−1
)
.

We will now prove that if the first n+ 1 partial quotients of α are 0, a1, . . . , an then∣∣∣∣log T i(α)− log T i
(
pn
qn

)∣∣∣∣ < 2−
1
2

(n−i−1)+1. (24)
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it suffices to prove (24) for i = 0 by induction on n. Since α is in an interval with endpoints
pn
qn

and pn+pn−1

qn+qn−1
. Hence ∣∣∣∣log

(
α

pn/qn

)∣∣∣∣ ≤
∣∣∣∣∣log

(
pn+pn−1

qn+qn−1

pn
qn

)∣∣∣∣∣ .
But ∣∣∣∣qnpn · pn + pn−1

qn + qn−1

− pn(qn + qn−1)

pn(qn + qn−1)

∣∣∣∣ =
1

pn(qn + qn−1)
.

Thus log
(

α
pn/qn

)
= log(1+t) where |t| < 1

pn(qn+qn−1)
. Now | log(1−x)| < 2x and | log(1+x)| <

x for 0 < x ≤ 1
2
. Thus ∣∣∣∣logα− log

pn
qn

∣∣∣∣ < 2

pn(qn + qn−1)

for n = 1, 2, . . . . Since qn ≥ 2
1
2

(n−1), it follows∣∣∣∣logα− log
pn
qn

∣∣∣∣ < 2

2
n−1
2

for n = 1, 2, . . . , as required. This proves (24). Therefore∣∣∣∣∣
n∑
i=0

(
log T i(α)− log T i

(
pn
qn

))∣∣∣∣∣ < 2
n−1∑
i=0

2−
1
2

(n−i−1)

≤ 2
∞∑
j=0

(
1√
2

)j
=

2

1− 1√
2

=
2
√

2√
2− 1

= 6.82 · · · < 7.

Since

− log qn =
n−1∑
i=0

log T i
(
pn
qn

)
,

we have ∣∣∣∣ 1n (sumn−1
i=0 log T i(α) + log qn

)∣∣∣∣ < 7

n
,

and so for all irrational α we have

lim
n→∞

1

n

(
n−1∑
i=0

log(T i(α))−1 − log qn

)
= 0.

Thus by the Ergodic theorem with f(x) = log 1
x

for almost all x in the sense of Lebesgue
measure it follows

lim
n→∞

1

n
log qn = lim

n→∞

n−1∑
i=0

log(T iα)−1 =
1

log 2

∫ 1

0

log

(
1

x

)
dx

x+ 1
.

Equivalently,

lim
n→∞

q1/n
n = e

1
log 2

∫ 1
0 log(x−1) dx

x+1

for all α except at a set of measure zero. To obtain Lévy’s theorem, it suffices to prove that∫ 1

0

log

(
1

x

)
dx

x+ 1
=
π2

12
.
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And we shall continue next Monday.

16. October 26

Let f(X) = log x so f ′(x) = x−1. Let g(x) = log(1 + x) hence g′(x) = (x+ 1)−1. Thus we
have ∫ 1

0

(f(x)g′(x) + g(x)f ′(x)) dx = g(x)f(x)|10 .

Thus it follows that∫ 1

0

(
log x

x+ 1
+

log(1 + x)

x

)
dx = lim

x→1
log x log(1 + x)− lim

x→0
log x log(1 + x) = 0− 0 = 0.

Hence we have∫ 1

0

log

(
1

x

)
dx

x+ 1
=

∫ 1

0

log(1 + x)
dx

x
=

∫ 1

0

(
∞∑
h=1

(−1)h−1xh

h

)
dx

x

=

∫ 1

0

∞∑
h=0

(−1)hxh

h+ 1
dx =

∞∑
h=0

∫ 1

0

(−1)hxh

h+ 1
dx

=
∞∑
h=0

(−1)h

(h+ 1)2
= 1− 1

22
+

1

32
− · · ·

=
∞∑
h=1

1

h2
− 2

∞∑
h=1

1

(2h)2
=
π2

12
,

as we wanted.
Dobrowolski in 1979 proved that if ε > 0 and α is a non-zero algebraic number of degree

d with

µ(α) < 1 + (1 + ε)

(
log log d

log d

)3

then for d sufficiently large in terms of ε, the number α is a root of unity. He needed three
new ingredients. The first is a sharper version of Siegel’s lemma. The proof is essentially
along the same lines. We need the estimate for the size of the coefficients to improve if the
number of variables is more than 2d times the number of unknowns. This feature goes back
to Siegel.

Theorem 20 (Siegel’s lemma II). Let bij, 1 ≤ i ≤ N, 1 ≤ j ≤ M , be algebraic integers in a
field K such that for each J not all of the bij’s zero. Let [K : Q] := d and let σ1, . . . , σd be
the embeddings of K in C. If N > dM then the system of equations

N∑
j=1

bijxi = 0, 1 ≤ j ≤M

has a solution in rational integers x1, . . . , xN , not all 0, whose absolute values are at most2
√

2(N + 1)

(
M∏
j=1

d∏
k=1

max
i
|σk(bij)|

) 1
dM


dM

N−dM

.
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Proof. Similar to the previous version! �

The sharpest form of Siegel’s lemma known is due to Bombieri and Vaaler.

Lemma 2. If α is an algebraic number of degree d and P = {p prime : deg(αp) < d} then

|P | ≤ log d

log 2
.

Proof. Let α1, . . . , αd be the conjugates of α. For integers s and j with 1 ≤ j ≤ d we put
I(s, j) := {i : αsi = αsj}. We first note that

|I(s, j)| = |I(s, t)| (25)

for 1 ≤ t ≤ d, 1 ≤ j ≤ d, since there is an element λ ∈ Gal(Q(α1, . . . , αd)/Q) which sends
αj to αt and induces a permutation on the remaining roots. This remark also tells us that
if I(s, j) 6= I(s, t) then

I(s, j) ∩ I(s, t) = ∅. (26)

Next we prove that if r and s are coprime then

|I(r, i) ∩ I(s, j)| ≤ 1. (27)

To see this, suppose that k, l ∈ I(r, i) ∩ I(s, j). Then

(αsk = αsj) ∧ (αsl = αsj)⇒ αsk = αsl

and

(αrk = αrj) ∧ (αrl = αrj)⇒ αrk = αrl .

Therefore

α
(r,s)
k = α

(r,s)
l ⇒ αk = αl ⇒ k = 1,

as required. Next we observe that if (r, s) = 1 then

|I(rs, j)| ≥ |I(r, j)| · |I(s, j)|. (28)

By (25) each of the I(s, k)’s have the same cardinality and by (26), we see that (28) follows.
But then since

2|P | ≤
∏
p∈P

|I(p, i)| ≤

∣∣∣∣∣I
(∏
p∈P

p, i

)∣∣∣∣∣ ≤ d,

it follows that

|P | ≤ log d

log 2
,

as desired. �

17. October 28 & October 30

Remark 7. In the proof of Lemma 2, we needed coprimality to ensure every term in the
union occurs at most one time.

The next lemma that we need is the crucial new ingredient in Dobrowolski’s argument. It
allows us to replace the lower bound of 1 for the absolute value of the norm of an algebraic
integer with something much longer based on a congruence argument.

32



Lemma 3. Let α be a non-zero algebraic integer of degree d with conjugates α = α1, . . . , αd.
Let f be the minimal polynomial of α over the integers. Suppose that α is not a root of unity.
Then for integers r and s with 1 ≤ s < r, we have

αri 6= αsj for 1 ≤ i, j ≤ d.

Further, we have ∣∣∣∣∣
d∏
i=1

f(αpi )

∣∣∣∣∣ ≥ pd.

Proof. If αri = αsj then αsi is a conjugate of αri . Thus there exists an element σ ∈ Gal(Q(α1, . . . , αn)/Q)

such that σ(αri ) = αsi . Let k be the order of γ in Gal(Q(α1, . . . , αn)/Q). Thus σk = id. Then

αr
k

i = σk(αr
k

i ) = (σk(αri ))
rk−1

= (σk−1(αr
k−1

i ))s = · · · = αs
k

i .

Since αi is non-zero it is a root of unity.
For the second claim, we put

fp(x) :=
d∏
i=1

(x− αpi ).

Then f(x) := fp(x) + pg(x) with fp and g ∈ Z[x] by Fermat’s little theorem. Further,∣∣∣∣∣
d∏
i=1

f(αpi )

∣∣∣∣∣ =

∣∣∣∣∣
d∏
i=1

(fp(α
p
i ) + pg(αpi )

∣∣∣∣∣
= pd

∣∣∣∣∣
d∏
i=1

g(αpi )

∣∣∣∣∣ .
Since α is not a root of unity by the first part of the lemma,

d∏
i=1

f(αpi ) 6= 0

and so
d∏
i=1

g(αi)

is non-zero. But
d∏
i=1

g(αi) is an integer and so at least one in absolute value and the result

follows. �

Theorem 21 (Dobrowolski). There exists a positive number c such that if α is an algebraic
number of degree d > 3 and α is not a root of unity then

M(α) > 1 + c

(
log log d

log d

)3

.
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Proof. We first construct by means of Siegel’s lemma and the assumption that

M(α) < 1 +
1

200

(
log log d

log d

)3

. (29)

Let F be a polynomial with small integer coefficients which is divided by a high power of f .
Put

N = d

⌊
4 log d

log log d

⌋2

and

M =

⌊
4 log d

log log d

⌋
,

and suppose that d is large enough so that

log d

log log d
> 1.

The result is immediate if α is not an algebraic integer so we may suppose that α is an
algebraic integer. Suppose that α = α1, . . . , αd are the conjugates of α and that

f(x) =
d∏
i=1

(x− αi)

is the minimal polynomial of α. Put

F (x) =
N∑
i=1

aix
i,

and consider the M equations

F (α) =
N∑
i=1

aiα
i = 0

F 1(α) =
N∑
i=1

iaiα
i−1 = 0

...

F (m−1)(α) =
N∑

i=m−1

i(i− 1)(i− 2) · · · (i−M + 2)aiα
i−M+1 = 0.

(∗)

We apply Siegel’s lemma II to find integers a1, . . . , aN not all zero for which (∗) holds
satisfying

max
i
|ai| ≤

(
2
√

2(N + 1)(N (1+2+···+M)dM(α)NM)
1
dM

) db 4 log d
log log dc

99
100 db 4 log d

log log dc2

≤
(

2
√

2(N + 1)
M+1

2 M(α)
N
d

) 100/99
b4 log d/ log log dc

,
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and since 2
√

2(N + 1) < N3/2 for d sufficiently large, we have

max
i
|ai| <

(
N

M+4
2 M(α)

N
d

) 100
99
· 1

b 4 log d
log log dc

< N11/20M(α)5 log d/ log log d.

Recalling (29) we see that for d sufficiently large we have max
i
|ai| < N3/5. We let F be

defined by the ai so that f(x)M |F (x). We will show that F has many other zeroes. In fact,
too many! Let p be a prime with(

log d

log log d

)2

< p <
40(log d)2

log log d
.

Then F (x) = f(x)Mg(x) with g ∈ Z[x]. We claim that αp is a root of F . To see this, note
that

|NQ(α)/Q F (αp)| =

∣∣∣∣∣
d∏
i=1

F (αpi )

∣∣∣∣∣ ≤ (NY )dM(α)Np, (30)

where Y := N2/3M(α)6 log d/ log log d. On the other hand, by Lemma 3,∣∣∣∣∣
d∏
i=1

f(αpi )

∣∣∣∣∣ ≥ pd

provided that α is not a root of unity. Assume that α is not a root of unity. Then since
F (x) = f(x)Mg(x), either αp is a root of F or

|NQ(α)/Q F (αp) ≥ pdM . (31)

Comparing (30) and (31) we find that

pdM ≤ (NY )dM(α)Np,

so we have
p ≤ N8/5M(α)

N
d
p.

But pM ≥ elog log d( 4 log d
log log d) = d4 for d sufficiently large, whereas N8/5 < d2 for d sufficiently

large. Therefore

PM/2 ≤M(α)
N
d
p.

But then
M

2
log p ≤ N

d
p logM(α),

so

1 ≤ 2N

dM

p

log p
logM(α)

≤ 8 log d

log log d
· 22

(
log d

log log d

)2

logM(α)

for d sufficiently large. Therefore

1

176

(
log log d

log d

)3

≤ logM(α). (32)
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But by (29) and the inequality log(1 + x) < x for x > 0. We see that

logM(α) <
1

200

(
log log d

log d

)3

,

which contradicts (32). Therefore, since d is not a root of unity, αp is a root of F . But
then αp1, . . . , α

p
d are roots of F . Further, by Lemma 3, for distinct primes p1 and p2 we have

αp1i 6= αp2j for all i and j. Further by Lemma 2, αp1, . . . , α
p
d are distinct for all but log d

log 2
primes.

The number of primes which contribute d distinct roots is at least

π

(
40(log d)2

log log d

)2

− π

((
log d

log log d

)2
)
− log d

log 2

which by the prime number theorem is at least

18

(
log d

log log d

)2

for d sufficiently large. On the other hand, we have

N ≤ 16d

(
log d

log log d

)2

which is a contradiction. Thus the result holds for d sufficiently large and so for d > 3. �

18. November 2

Remark 8. Ideas of the proof goes as follows:

(1) Construct a polynomial F ∈ Z[x] with “small” coefficients divisible by a large power
of the minimal polynomial of α.

(2) Show that F has zero at αp for primes p “not too large”.
(3) Show that these give many new zeroes of F .
(4) Then we get too many new zeroes if α is not a root of unity.
(5) Note that all steps under the assumption that M(α) is “small”.

Time to return to the approximation of algebraic numbers by rationals.

Theorem 22. Let α be an algebraic number of degree d > 1. This is an effectively computable
positive number C(α), which depends on α, such that∣∣∣∣α− p

q

∣∣∣∣ > C(α)

qd
,

for every rational p/q with q > 0.

Proof. Let f be the minimal polynomial of α over the integers. We may assume that α is
real since otherwise we can take

C(α) = min
x∈R
|α− x|.

Then, since α is not rational, f(p/q) 6= 0. Thus by the mean value theorem, we have

1

qd
≤
∣∣∣∣f (pq

)∣∣∣∣ =

∣∣∣∣f(α)− f
(
p

q

)∣∣∣∣ ≤ ∣∣∣∣α− p

q

∣∣∣∣ |f ′(θ)| (33)
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where θ is a real number between p
q

and α. Note that the results holds if |α− p
q
| > 1 so we may

assume that |α− p
q
| ≤ 1. Suppose f(x) = adx

d+· · ·+a1x+a0. Then f ′(x) = dadx
d−1+· · ·+a1

and so
|f ′(θ)| ≤ d|ad|(|α|+ 1)d−1 + · · ·+ |a1|

and by (33) the results holds with C(α−1) equal to d|ad|(|α|+ 1)d−1 + · · ·+ |a1|. �

As we mentioned previously, an immediate consequence is that

γ :=
∞∑
n=1

10−n!

is transcendental. To see this, take

pk := 10k!

k∑
n=1

10−n!, qk = 10k!.

Then ∣∣∣∣γ − pk
qk

∣∣∣∣ < 2

10(k+1)!
<

2

qk+1
k

. (∗)

If γ is algebraic of degree d then ∣∣∣∣γ − pk
qk

∣∣∣∣ > C(γ)

qdk
for some C(θ) > 0. But then by (∗) we have qk+1−d

k < 2C(γ)−1. This gives contradiction for
sufficiently large k.

19. November 4

Let α be an algebraic number of degree d > 1. Consider the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
. (34)

Liouville’s result showed that (34) has only finitely many solutions p
q

with µ > d. Thue in

1908/1909 showed that (34) has finitely many solutions p
q

with µ > d
2

+ 1. Siegel in 1921

improved it to µ(2
√
d). Dyson showed the same result for µ >

√
2d. Roth in 1955 showed

that the result holds for µ > 2. However, none of the proven results are effective.

Theorem 23 (Roth’s theorem). Let α be an algebraic number and let δ be a positive real
number. There are only finitely many distinct rationals p

q
with q > 0 for which∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+δ
. (∗)

Motivated by the typical behaviour of approximation to a real number one might conjec-
ture – an indeed Lang has – that (∗) holds with 1

q2+δ
replaced by 1

q2(log q)1+δ
. However there

has been no improvement on (∗) obtained yet. Notice that Roth’s theorem tells us something
about the growth of the partial quotient of α. In particular, an+1 < qδn, for all but finitely
many n’s. Note that q0 = 1, q1 = a1q0 + 1, . . . , qn = anqn−1 + qn−2. Thus for n ≥ 2, we
have qn < (a1 + 1) · · · (an + 1), and so an < ((a1 + 1)(a2 + 1) · · · (an + 1))2δ, for n sufficiently
large. It follows from this observation that log log qn < C1(α)n for a positive number C1(α).
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In 1955, Davenport and Roth did slightly better. They proved that for all real algebraic
irrationals we have

log log qn < C2(α)
n√

log n
.

Perhaps the most important consequence of Roth’s theorem is its use in the study of Dio-
phantine equations. Let m be a positive integer and let

F (x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d

be a binary form of degree d > 2 with non-zero discriminant. The equation

F (x, y) = m

in integers x and y is known as a Thue equation. For example, x3−2y3 = 6 is a Thue equation.
Over C we can factor F in the following manner: F (x, y) = L1(x, y)L2(x, y) . . . Ld(x, y) where
Li(x, y) = γix+ δiy for i = 1, . . . , d. Factor with the γi and δi’s algebraic numbers. Since F
has non-zero discriminant, any two linear forms Li and Lj with i 6= j are linearly independent
over C. Let (x, y) be a solution of F (x, y) = m. We may order the linear forms so that

0 < |L1(x, y)| ≤ |L2(x, y)| ≤ · · · ≤ |Ld(x, y)|.

(Since m 6= 0, |L1(x, y :)| > 0.) Now if γ1 = 0 or δ1/γ1 is in Q, then |L1(x, y)| ≥ c1 for some
positive constant c1. If γ1 6= 0 and y = 0 then |L1(x, y)| = |γ1|(|x| + |y|). Finally, if γ1 6= 0,
δ1/γ1 is irrational and y 6= 0 then

L1(x, y) = γ1y

(
x

y
− α

)
where

α = − δ1

γ1

.

For every ε > 0 we have, by Roth’s theorem, that

|L1(x, y)| ≥ C2(a, ε)
1

|y|1+ε
≥ C2(α, ε)(|x|+ |y|)−1−ε.

Since L1 and L2 are linearly independent over C, we have

|L2(x, y)| ≥ 1

2
(|L1(x, y)|+ |L2(x, y)|) ≥ C3(|x|+ |y|).

Thus

|F (x, y)| ≥ C2(α, ε)Cd−1
3 (|x|+ |y|)d−1(|x|+ |y|)−1−ε

≥ C4(α, ε)(|x|+ |y|d−2−ε.

Therefore if F is a binary form with integer coefficients and with non-zero discriminant and
with degree d ≥ 3, then there are only finitely many integer pairs (x, y) with

0 < |F (x, y)| < (|x|+ |y|)θ

where θ is a real number with 0 < δ < d − 2. In particular, the Thue equation has only
finitely many solutions.
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20. November 6

A vast generalization of Roth’s theorem is Schmidt’s subspace theorem. To se the stage
for it we first state, without proof, a generalization of Liouville’s theorem.

Theorem 24. Suppose that 1, α1, . . . , αn are real algebraic numbers which are linearly inde-
pendent over Q and the degree Q(α1, . . . , αn) over Q is d. Then there is a positive number
c such that

|α1q1 + · · ·+ αnqn − p| > cq−d+1,

for all integers q1, . . . , qn and p with q := max |qi| > 0. Notice that if n = 1 then we recover
Liouville’s theorem.

Theorem 25 (Schmidt). Let 1, α1, . . . , αn be real algebraic numbers which are linearly in-
dependent over Q. Let δ > 0. Then there are only finitely many n-tuple of non-zero integers
q1, . . . , qn with

|q1q2 · · · qn|1+δ‖α1q1 + · · ·+ αnqn‖ < 1.

Apply Theorem 25 to all the non-empty subsets of {α1, . . . , αn} Schmidt obtained.

Corollary 1. Let 1, α1, . . . , αn be real algebraic numbers which are linearly independent over
Q. Let δ > 0. There are only finitely many (n + 1)-tuple of integers q1, . . . , qn and p with
q := max |qi| > 0 for which

|α1q1 + · · ·+ αnqn − p| <
1

qn+δ
.

Schmidt also proved the following result.

Theorem 26. Suppose α1, . . . , αn are real algebraic numbers with 1, α1, . . . , αn linearly in-
dependent over Q. Let δ > 0. Then there are only finitely many positive integers q with

q1+δ‖α1q‖ · · · ‖αnq‖ < 1.

As an immediate consequence of Theorem 26 we have

Corollary 2. Let α1, . . . , αn be real algebraic numbers with 1, α1, α2, . . . , αn linearly indepen-

dent over Q and let δ > 0. Then there are only finitely many rational n-tuples
(
p1
q
, . . . , pn

q

)
with ∣∣∣∣αi − pi

q

∣∣∣∣ < 1

q1+n−1+δ

for i = 1, . . . , n.

Definition 20. We define the house of x (written x ) as

x := max
i
|xi|.

We will deduce Theorems 25 and 26 from a result proved by Schmidt in 1972.

Theorem 27 (Schmidt subspace theorem). Suppose L1(x), . . . , Ln(x) are linearly indepen-
dent linear forms in x := (x1, . . . , xn) with (real or complex) algebraic coefficients. Let δ > 0.
There are finitely many proper subspaces T1, . . . , Tw of Rn such that every integer point x
with x 6= 0 and

|L1(x)L2(x) · · ·Ln(x)| < x −δ

lies in one of these subspaces.
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Remark 9. A few remarks on the subspace theorem:

(1) The result is not effective and so one cannot determine the subspaces T1, . . . , Tw from
the proof.

(2) The integer points in a subspace T span a rational linear subspace. That is a subspace
defined by linear equations with rational coefficients. Thus T1, . . . , T2 may be taken
to be rational subspaces.

(3) The proof is difficult as it is a substantial generalization of Roth’s theorem.

21. November 9

Let us deduce Theorem 26 from the subspace theorem.

Proof of Theorem 26. Suppose q is a positive integer fo which

q1+δ‖α1q‖ · · · ‖αnq‖ < 1.

Let pi be an integer for which ‖αiq‖ = |αiq − pi| for i = 1, . . . , n. Then put

(x) = (x1, x2, . . . , xn+1) = (p1, . . . , pn, q).

Let C1, C2, . . . be positive numbers which depend on δ and α1, . . . , αn. Plainly we may take
C1 so that

x < C1q.

We consider the linear forms

Li(X) = αiXn+1 −Xi for 1 ≤ i ≤ n

and

Ln+1(X) = Xn+1.

Then

|L1(x)L2(x) · · ·Ln+1(x)| = ‖α1q‖‖α2q‖ · · · ‖αnq‖q,
so

|L1(x) · · ·Ln+1(x)| < q−δ < x δ/2

for q sufficiently large, as we may assume.
Then, by the subspace theorem, x lies in one of finitely many subspaces T1, . . . , Tw. A

typical subspace T is defined by

C1X1 + · · ·+ Cn+1Xn+1 = 0

for C1, . . . , Cn+1 ∈ Q, not all zero. Then for x ∈ T , we have

|C1(α1q − p1) + · · ·+ Cn(αnq − pn)| = |(C1α1 + · · ·+ Cnαn)q − (C1p1 + · · ·+ Cnpn)|
= |(C1α1 + · · ·+ Cnαn + Cn+1)q| > C2q,

since 1, α1, . . . , αn are Q-linearly independent. Thus we have

C2q ≤ |C1|‖α1q‖+ · · ·+ |Cn|‖αnq‖ ≤ |C1|+ · · ·+ |Cn|,

hence q is bounded as required. �

Next we shall deduce Theorem 25 from the subspace theorem.
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Proof. We shall prove the result by induction on n. The result when n = 1 follows from
Theorem 26. Assume that q1, . . . , qn satisfy the hypothesis of Theorem 25. Choose p to be
an integer so that

‖α1q1 + · · ·+ αnqn‖ = |α1q1 + · · ·+ αnqn − p|.
Write x = (x1, . . . , xn+1) = (q1, . . . , qn, p). Then there exists a positive number C3 which
depends on α1, . . . , αn and δ only such that

x < C3q,

where q = max
i
|qi|. Put

Li(X) = Xi for i = 1, . . . , n,

and

Ln+1(X) = α1X1 + · · ·+ αnXn −Xn+1.

Then

|L1(x)L2(x) · · ·Ln+1(x)| = |q1 . . . qn|‖α1q1 + · · ·+ αnqn‖
so

|L1(x) · · ·Ln+1(x)| < 1

|q1 . . . qn|δ
<

1

x δ/2
,

for q sufficiently large. Then by the subspace theorem x lies in one of finitely many rational
subspaces. Let T be such a subspace containing x. Then T is defined by

C1X1 + · · ·+ Cn+1Xn+1 = 0,

with C1, . . . , Cn+1 in Q and not all zero. Then either one of C1, . . . , Cn is non-zero or
C1, . . . , Cn are all zero and Cn+1 6= 0. In the first case, we may assume without loss of
generality that Cn 6= 0. Let us now consider the firs case. Then

Cnqn = −C1q1 − · · · − Cn−1qn−1 − Cn+1p,

so

Cnαnqn = −C1αnq1 − Cn−1αnqn−1 − Cn+1αnp.

Thus

|Cn||α1q1 + · · ·+ αnqn − p| = |(Cnα1 − C1αn)q1 + · · ·+ (Cnαn−1Cn−1αn)qn−1

− (Cn + Cn+1αn)p|

= |Cn + Cn+1αn|
∣∣∣∣(Cnα1 − C1αn
Cn + Cn+1αn

)
q1 + · · ·+(

Cnαn−1 − Cn−1αn
Cn + Cn+1αn

)
qn−1 − p

∣∣∣∣
= |CnCn+1αn||α′1q1 + · · ·+ α′n−1qn−1 − p|.

Threfore, there exists a positive number C4 which depends on α1, . . . , αn and δ such that

‖α′1q1 + · · ·+ α′n−1qn−1‖ <
C4

|q1 . . . qn|1+δ
<

1

|q1q2 . . . qn−1|1+δ/2
,

for q = max
i
|qi| sufficiently large. To complete our induction we must check that 1, α′1, . . . , α

′
n−1

are Q-linearly independent.
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WE now check that 1, α′1, . . . , α
′
n−1 are Q-linear independent. Observe that if λ1α

′
1 + · · ·+

λn−1 + α′n−1 + λn = 0 with λ ∈ Q for i = 1, . . . , n. Then

λ1(Cnα1 − C1αn) + · · ·+ λn−1(Cnαn−1 − Cn−1αn) + λn(Cn + Cn+1αn) = 0.

Hence

λ1Cnα1 + · · ·+ λn−1Cnαn−1 − (λ1C1 + · · ·+ λn−1Cn−1 + Cn+1)αn = 0.

But then λ1 = · · · = λn = − and so 1, α′1, α
′
2, . . . , αn−1/ are linearly independent over

Q. Then in this case, by induction |q1|, . . . , |qn| are bounded. It remains to consider the
possibility that C1 = · · · = Cn = 0 and Cn+1 6= 0. Then Cn+1p = 0 hence p = 0 and in this
case

|q1q2 · · · qn|1+δ|α1q1 + · · ·+ αnqn| < 1.

In this case

|q1 · · · qn−1|1+δ|αn|
∣∣∣∣(α1

αn

)
q1 + · · ·+

(
αn−1

αn

)
qn−1 + qn

∣∣∣∣ < 1.

Put α′i = αi/αn for i = 1, . . . , n− 1. Then

|q1q2 · · · qn−1|1+δ/2|α′1q1 + · · ·+ α′n−1qn−1 + qn| < 1

for q = max
i
|qi| sufficiently large and the result again follows by induction. �

In a similar way we can deduce the following result from the subspace theorem:

Theorem 28. Let αij be real algebraic numbers for i = 1, . . . , n and j = 1, . . . ,m. Suppose
that 1, αi1, . . . , αim are Q-linearly independent for i = 1, . . . , n. Let δ > 0. Then there are
only finitely many m-tuples of non-zero integers (q1, . . . , qm) for which

|q1 · · · qm|1+δ

n∏
i=1

‖αi1q1 + · · ·+ αimqm‖ < 1.

Instead of approximating algebraic numbers by rationals we can approximate by algebraic
numbers.

Theorem 29. Let n be a positive integer and ε > 0. If α is an algebraic number of degree
greater than n then there are only finitely many algebraic numbers |beta of degree at most n
for which

|α− β| < H0(β)−n−1−ε.

Recall that H0(β) denotes the näıve height of β.

Proof. We take αj = αj for j = 1, . . . ,m where m is the degree of β. Then 1, α1, . . . , αj
are linearly independent over Q since m ≤ n. Let P (x) = amx

m + · · · + a0 be the minimal
polynomial of β. We first note that if

P (x) = am(x− β1) · · · (x− βm)

then

|P (α)| = |am||α− β1| · · · |α− βm|
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where β = β1. Thus

|P (α)| ≤ |α− β||am|
m∏
i=2

(2 max(|α|, |βi|))

≤ |α− beta||am|
m∏
i=2

2(max(1, |α|))(max(1, |βi|))

≤ |α− β||am|(2 max(1, |α|))m−1

m∏
i=2

max(1, |βi|)

≤ |α− β|C1H0(β), (35)

where C1 is a positive number which depends on α and n.
On the other hand, by the corollary to Theorem 25, for each ε > 0,

|P (α)| > C2(α, n; ε)

H0(β)−n−ε
. (36)

The result follows from (35) and (36). �

This result can be contrasted with Leveque’s theorem.

Theorem 30 (Leveque). Let K be a finite extension over Q with [K : Q] = n and let α be
algebraic of degree d over K. Let ε > 0. There are only finitely many β ∈ K for which

|α− β| < H0(β)−2−ε.

Suppose that F is an irreducible binary form of degree d over Q. Suppose the leading
coefficient of F (x, 1) is 1. Then

F (x, y) = (X − α1Y ) · · · (X − αdY ),

and put K = Q(α1). Then F (X, Y ) = NK/Q(X − α1Y ).

22. November 13

Let K be an algebraic number field of degree d over Q. There are d isomorphic embeddings
ϕ1, . . . , ϕd of K into C which fix Q. We denote the image of α in K under ϕi by α(i) for
i = 1, . . . , d. Thus for α ∈ K, we have

NK/Q(α) = α(1) · · ·α(d).

Given a linear form

M(x) = α1X1 + · · ·+ αnXn,

with αi ∈ K for i = 1, . . . , n. We write

N(M(x)) =
d∏
i=1

M (i)(x) =
d∏
i=1

(α
(i)
1 X1 + · · ·+ α(i)

n Xn).

Definition 21. A form F (x) with F (X) = N(M(x)) for some linear formM with coefficients
in K is said to be a norm form.
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Thus for example if 4
√

2 and M(X) = X1 − 4
√

2X2 then N(M(x)) = X4
1 − 2X4

2 , whereas if

M(x) = X1 +
4
√

2X2 +
4
√

4X3,

then

N(M(x)) = X4
1 − 2X4

2 + 4X4
3 − 4X2

1X
2
3 + 8X1X

2
2X3.

Note that a norm form is a homogeneous polynomial of degree [K : Q]. If the coefficients
α1, . . . , αn of the linear form M(x) are algebraic integers then the coefficients of the norm
forms are integers. Let a be a non-zero integer. The equation

N(M(x)) = a (37)

in integers x1, . . . , xn is known as a norm form equation. Put M = {M(x) : x ∈ Zn}. M
is a Z-module since M is an additive abelian group; and for all r ∈ Z and m ∈ M we have
rm ∈M. And for all r, s ∈ Z and m,n ∈M,

• r(m+ n) = rm+ rn
• (r + s)m = rm+ sm
• r(sm) = (rs)m.
• 1 ·m = m.

Thus we can view the norm form equation (37) equivalently as N(µ) = a with µ ∈ M. We
will now show that a module M in K has a basis. That is a system of generators which
is Z-linearly independent, i.e., a1α1 + · · · + anαn = 0 with ai ∈ Z for i = 1, . . . , n then
a1 = · · · = an = 0. We will deduce this from the following result on abelian groups.

Theorem 31. If an abelian group has no non-zero element of finite order and it possesses
a finite system of generators then it possesses a basis.

Proof. Let α1, . . . , αs be a system of generators of the group M so M = (α1, . . . , αs). Note
that for any k ∈ Z we have

M = (α1 + kα2, . . . , α2, . . . , αs),

since if α ∈M and α′1 = α1 + kα2 then

α = c1α1 + · · ·+ csαs = c1α
′
1 + (c2 − kc1)α2 + · · ·+ csαs,

so α is an integer linear combination of α′1, . . . , αs. If α1, . . . , αs are Z-linearly independent
then they form a basis. If they are linearly dependent then

c1α1 + · · ·+ csαs = 0 (38)

with the ci’s integers and not all zero. Suppose, without loss of generality, that c1 6= 0 and
that c1 has the smallest non-zero absolute value. Suppose that c1 does not divide all the
other ci’s. Without loss of generality, we may suppose that c1 - c2. Then c2 = qc1 + r with
0 < r < |c1|. We now consider the system of generators α′1 = α1 + qα2, α2, . . . , αs. Then
(38) becomes

c1α
′
1 + rα2 + c3α3 + · · ·+ csαs = 0. (39)

Therefore the generators are linked by a relation with a coefficient which is non-zero and
smaller in absolute value then |c1|. We now repeat the argument. After at most |c1| steps
we must arrive at a system of generators β1, . . . , βs and a relation

k1β1 + · · ·+ ksβs = 0
44



where k1, . . . , ks are not all zero, k1 6= 0 and k1 |ki for all i = 1, . . . , s. Thus β1 + l2β2 + · · ·+
lsβs = 0, where

li =
ki
k1

for i = 1, . . . , s since 0 is the only element of finite order in the group. Thus we may express
β1 as an integer linear combination of β2, . . . , βs so M = (β2, . . . , βs). We now repeat the
argument with β2, . . . , βs if β2, . . . , βs are not Z-linearly independent. Eventually, after a
finite number of steps, we eventually arrive at a basis. �

23. November 18

Some remarks on the connection between the height and the naive height of an alge-
braic number α: Recall that α is of degree d with conjugates α1 = α, . . . , αd and minimal
polynomial f over the integers, say

f(x) = adx
d + · · ·+ a1x+ a0,

then the naive height H0(α) is given by H0(α) = max(|ad|, . . . , |a0|) and the height H(α) is
given by the positive real number H(α) satisfying

H(α)d =M(f) = |ad|
d∏
i=1

max(1, |αi|).

Recall from Jensen’s theorem that

H(α)d = exp

(∫ 1

0

log |f(e2πiθ)| dθ
)

≤ exp

(∫ 1

0

log(|ad|+ · · ·+ |a0|t) dθ
)

≤ exp log(|ad|+ |ad−1|+ · · ·+ |a0|)
≤ |ad|+ · · ·+ |a0|
≤ (d+ 1)H0(α).

Further, we have

H0(α) ≤ (2H(α))d,

on noting that the aj’s are elementary symmetric functions in the conjugates of α. The j-th

such function has
(
d
j

)
terms, each smaller in absolute value than H(α)d. Further we have(

n
j

)
≤ 2d.

In 1900, Hilbert produced a list of 23 problems which he felt were of fundamental im-
portance for mathematics for the international congress in Paris. His tenth problem was
the following: can one find a universal method or algorithm for determining if a polynomial
equation f(x1, . . . , xn) = 0 with f ∈ Z[x1, . . . , xn] has a solution in integers x1, . . . , xn?

The answer is no, and this was proved by Matiyasevich in 1970 building on work of Davis,
Putnam, and Robinson.The same result has been obtained for certain rings of algebraic
integers in place of Z. However, the answer is not known if we replace Z with Q. One
consequence of Matiyasevich’s work was that one could produce polynomials which had the
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property that every prime occurred exactly one time as a positive value of the polynomial
and no other integers were positive values. Here is an example of such polynomial:

F (a, b, . . . , z) = (k + 2)(1− (wz + h+ j − g)2 − (2n+ p+ q + z − e)2 − (a2y2 − y2 + 1− x2)2

− ({e4 + 2e3}(a+ 1)2 + 1− o2)2 − (16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2)2

− ({(a+ u4 − u2a)2 − 1}{n+ 4dy}2 + 1− {x+ cu}2)2 − (ai+ k + 1− l − i)2

− ({gk + g + k + 1}{h+ j}+ h− z)2 − (16r2y4{a2 − 1}+ 1− u2)2

− (p−m+ l{a− n− 1}+ b{2an+ 2a− n2 − 2n− 2}})2

− (z − pm+ pla− p2l + t{2ap− p2 − 1})2

− (q − x+ y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)2

− (a2l2 − l2 + 1−m2)2 − (n+ l + v − y)2).

One striking consequence is that one can give a certificate for a number of to be prime, i.e.,
values for a, b, . . . , z which can be verified with only a fixed constant number of additions
and multiplications. Of course, the values a, . . . , z may be large in terms of the size of the
prime.

24. November 20

Let K be a finite extension of Q. Since K has characteristic 0 there are no non-trivial
divisors of zero under addition. By Theorem 31 if M is a finitely-generated Z-module in
K then M has a basis. Further the maximum number of linearly independent terms of M
over Q is [K : Q]. Therefore every basis for a finitely-generated Z-module in K has at most
[K : Q] basis elements. The number of generators in a basis for such a moduleM is said to
be the rank ofM. This is well-defined since any two bases forM have the same number of
elements. Notice that if α1, . . . , αm and α′1, . . . , α

′
m are bases for M then one basis can be

transformed to another by an m ×m unimodular matrix. In particular, by a matrix with
integer entries and determinant ±1.

Definition 22. We say that a module M in K is full if its rank is equal to [K : Q].

Theorem 32. The norm form N(α1X1 + · · ·+αnXn) is irreducible over the rationals if and

only if K = Q
(
α2

α1
, . . . , αn

α1

)
.

Proof. (⇒) We have K = Q(α1, . . . , αn) and N(α1X1 + · · · + αnXn) = NK/Q(α1X1 + · · · +
αnXn). Further,

N(α1X1 + · · ·+ αnXn) = N(α1) N

(
X1 +

α2

α1

X2 + · · ·+ αn
α1

Xn

)
.

Put L := Q
(
α2

α1
, . . . , αn

α1

)
. Then we have

N(α1X1 + · · ·+ αnXn) = N(α1) NK/Q

(
X1 +

α2

α1

X2 + · · ·+ αn
α1

Xn

)
= N(α1) NL/Q

(
X1 +

α2

α1

X2 + · · ·+ αn
α1

Xn

)[K:L]

.
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Thus so if N(α1X1 + · · ·+ αnXn) is irreducible over Q then [K : L] = 1 so K = L.
(⇐) On the other hand, ifK = L then by the primitive element theorem we haveK = Q(β)

for some β with

β = α−1
1

n∑
i=2

ciαi,

where c2, . . . , cn ∈ Q. Let [K : Q] = d. Then the degree of β over Q is d and so the binary
form N(X + βY ) is irreducible over Q. Thus

N(X + βY ) = N

(
X + c2

α2

α1

Y + · · ·+ cn
αn
α1

Y

)
= N

(
X1 +

α2

α1

X2 + · · ·+ αn
α1

Xn

)
= N(α1X1 + α2X2 + · · ·+ αnXn)

is irreducible over Q. �

Definition 23. Let [K : Q] < ∞. A full Z-module M of K which contains 1and is a ring
is called an order of K.

The ring of algebraic integers of K is an order of K. Notice that if O is an order of K
and µ ∈ O then µh ∈ O for h a positive integer. For each Z-module M of K we can find
a non-zero integer c such that cm is an algebraic integer for every m ∈ M. Therefore take
such a c for O and observe that cµh is an algebraic integer for h = 1, 2, . . . . Therefore µ is
an algebraic integer. Thus every order O of K is contained in the ring of algebraic integers
of K. For this reason we call the ring of algebraic integers of K the maximal order of K.

The units in an order O are the divisors of 1. Note that if ε is a unit in O then εε1 = 1
with ε1 ∈ O. Further 1 = N(εε1) = N(ε) N(ε1) and since ε and ε1 are algebraic integers with
N(ε) = ±1. Further if N(ε) = ±1 with ε ∈ O then ε is a root of its minimal polynomial over
Z, say xd + ad−1x

d−1 + · · ·+ a0 ∈ Z[x]. Then N(ε) = ±a0. Therefore

εd−1 + ad−1ε
d−2 + · · ·+ a1 = ±N(ε)

ε
,

which is in O. Thus ε−1 is in O and hence ε is a unit in O. Thus the units in O are the
elements ε ∈ O with N(ε) = ±1. The units in O form a group. In fact:

Proposition 6. Let O be an order in a finite extension K of Q. The group of units it
infinite except when K = Q or K is an imaginary quadratic extension of Q.

Proof. This is an extension of Dirichlet’s unit theorem to orders – see, for instance, Bouvich
and Shafarevich. �

25. November 23

Proposition 7. Let M be a finitely-generated abelian group with no non-zero element of
finite order. All subgroups N of M have a finite number of generators and so possess a
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basis. Further, if w1, . . . , wn is a basis for M then there is a basis ν1, . . . , νk of N of the form

ν1 = c11w1 + · · ·+ c1nwn

ν2 = c22w2 + · · ·+ c2nwn
...

νk = ckkwk + · · ·+ cknwn

where the cij’s are integers and cii > 0 for i = 1, . . . , k and k ≤ m.

Proof. Standard argument. �

Thus submodule of a module of K is a module of K, i.e., is a finitely-generated Z-module.
Given a full module M of K, let OM denote the set of λ ∈ K such that λM ⊆ M, i.e.,
λµ ∈M for all µ ∈M. OM is known as the stabilizer of M or the coefficient ring of M.

Proposition 8. Let [K : Q] <∞. If M is a full module of K then OM is an order of K.

Proof. The set OM is a ring since it is a non-empty subset of K, contains 1 and if θ1, θ2 ∈ OM
then θ1 + θ2 and θ1θ2 are also in OM. Next observe that OM is a Z-module since it is an
abelian group under addition. In particular, for all r ∈ Z and for all θ ∈ OM we have
rθ ∈ OM since θµOM for all µ ∈ M, it follows rθµ ∈ OM. Further parts (i), (ii), (iii), and
(iv) of the definition of a module hold. Thus OM is a module of K and is a ring with 1.

To prove that OM is an order we must show that OM is a full module in K. Let γ ∈ M
with γ 6= 0. Then for all α ∈ OM we have αγ ∈ M hence γOM ∈ M. Thus γOM is a
subgroup of M which is a module and so by Theorem 31 it possesses a basis and is finitely
generated. Thus OM = γ−1(γOM) is finitely generated. Let [K : Q] = d. To show that OM
is full, it suffices to find d Q-linearly independent in OM. Start with α1, . . . , αd a basis for
K over Q. Let M = (µ1, . . . , µd), and recall that M is a full module. To test whether α in
K is in OM it suffices to prove that αµi is in M for i = 1, . . . , d. Now we can write

αµi =
d∑
j=1

d∑
j=1

aijµj

with aij ∈ Q since M is full. For each α we can take c to be the least common multiple of
the denominators of the aij’s. Then caij ∈ Z for 1 ≤ i ≤ d, 1 ≤ j ≤ d and so cα ∈ OM.
Thus for each integer i with 1 ≤ i ≤ d, there is a non-zero integer ci such that ciαi is in
OM. But then there are d Q-linearly independent terms in OM so OM is full and the result
follows. �

Let [K : Q] < ∞. Let M be a full module of K. Let UM denote the group of units in
OM with norm 1. UM is a subgroup of the group of units of OM of index 1 or 2, since the
norm of a unit is ±1. Thus UM is infinite except when K is Q or an imaginary quadratic
extension of Q by Proposition 6 and Proposition 8. Now notice that if a is a non-zero integer
and µ ∈M is a solution to

N(µ) = a, (40)

then for all ε ∈ UM where εµ ∈M and

N(εµ) = N(ε) N(µ) = N(µ) = a.
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Thus if M is a full module of K is not exceptional (so not Q or an imaginary quadratic
extension of Q) then (40) has infinitely many solutions whenever it has one non-zero solution.

26. November 25: Last lecture

Recall the norm form equation

N(µ) = a, (41)

with µ ∈ M. Full modules in K are not the instances where we have infinitely many
solutions of (41). Suppose that L is a subfield of K and M0 is a submodule of M which
is proportional to a full module in L. In other words, M0 = γL where L is a module in L
and γ ∈ K with γ non-zero. Now unless L is exceptional there will be infinitely many λ ∈ L
which satisfy

NL/Q(λ) = b

for some non-zero integer b. But then N(γλ) = N(γ) N(λ) = N(γ)(NL/Q(λ))[K:L] = N(γ)b[K:L] =
a for some a ∈ Q, a 6= 0. Thus there are infinitely many solutions to (41) for some a in this
situation also.

Definition 24. Let [K : Q] <∞. A module M of K is said to be degenerate if it contains
a submodule which is proportional to a full module in some subfield L of K which is not Q
or an imaginary quadratic extension of Q.

We have shown that if M is degenerate then for certain values of a we have infinitely
many solutions to (41).

Theorem 33 (Schmidt norm form theorem). Let K be a finite extension of Q. Let M be a
module of K. Then the following are equivalent:

(1) there exists a non-zero a in Q for which the equation

N(µ) = a

has infinitely many solutions in µ in M.
(2) M is degenerate.

Proof. (⇐) This one is straightforward.
(⇒) Now this is the hard part – so hard that this proof is the beyond the scope of this

lecture. However we shall remark that this direction follows from the Schmidt subspace
theorem. The full proof will not be provided, however. �

Schmidt’s result is not effective. There are some effective methods for solving Diophantine
equations. One of the effective methods is based on estimates for linear forms in logarithms
of algebraic numbers. Gelfand treated the case of linear forms in two logarithms following
his work on Hilbert’s seventh problem. In 1934, Gelfand – and independently Schneider –
proved if α and β are algebraic then α 6= 0, 1 and β is irrational then αβ is transcendental.
In 1966, Baker extended this work to the case of linear forms in n logarithms of algebraic
numbers with n > 2. As a consequence, he gave an effective procedure for solving Thue
equations.

With Baker we gave a streamlined version of the argument to treat

x3 − ay3 = n. (42)
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Theorem 34 (Baker and Stewart). Let a and n be positive integers with a not a perfect
cube. Then all solutions of in integers x and y satisfy

max(|x|, |y|) < (c1n)c2

where

c1 = ε(50 log log ε)2

c2 = 1012 log ε,

and ε is the fundamental unit in the ring of algebraic integers of Q( 3
√

2).
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