PMATH 940: HEIGHTS AND ARITHMETIC

HEESUNG YANG

1. SEPTEMBER 14

This class will study heights and arithmetic. To put it simply, a height function measures
the ‘complexity’ of an algebraic number. In particular, we will explore the application
of height functions to Diophantine approximation. Pre-requisites include some algebraic
number theory; there shall be no text.

Definition 1. An algebraic number is the root of a non-zero irreducible polynomial with
integer coefficients. If it is the root of a non-zero monic irreducible with integer coefficients,
then it is said to be an algebraic integer.

Given an algebraic number «, we would like to measure the “complexity” of a. One such
measure is the height. In fact, there are several height functions.

Start with an integer a. The measure of complexity is |a|. How about rationals? Consider
a/b € Q where a,b € Z. A possible suggestion might be max(|al,|b]). But this is not
well-defined; but this can be circumvented by stipulating that ged(a,b) = 1.

Definition 2. Suppose f(x) € Z[z|. Then the content of f is the greatest common divisor
(GCD) of the integer coefficients of f.

Now let’s try to generalize this for a general algebraic number «. For any «, we can
associate it with a minimal polynomial f over the integers where « is a root of f, f is of
minimal degree with this property, f has content 1, and the leading coefficient is positive.
This completely defines f. Say f(z) = agr? +ag_ 1241 + -+ -+ a2+ ag. Now we defined the
naive height of a:

Definition 3. The “naive height” of a, which we denote Hy(«), is defined to be Hy(a) :=
max(|agl, . . ., |ao|).

Notice that if &« = a/b with a and b coprime integers and b > 0, then the minimal
polynomial of a/b over the integers is f(x) = bz — a, so Hy(a/b) = max(|al, |b]).

Remark 1. Notice that there are only finitely many algebraic numbers of naive height below
any given bound if we restrict the degree below another bound (special case of Northcott’s
theorem).

Definition 4. Let a be an algebraic number and let f be the minimal polynomial of « over
the integers. Suppose also that f factors over C as

f(z) =aq H(z — ).
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We then define the Mahler measure M(«) by
d
M(a) = [a| - [ max(1, |ad]).
i=1

Theorem 1 (Jensen’s formula, from Wikipedia). Suppose that f is an analytic function in
a region in the complex plane which contains the closed disk D of radius r about the origin,

ai,as, -+ ,a, are the zeros of f in the interior of D repeated according to multiplicity, and
f(0) #0. Then

N - ‘ak‘ 1 o i0
log | £(0)] = ;bg <7) +%/O log | f(re®)| d6.

Remark 2. By Jensen’s formula, the Mahler measure can be written in a different manner:

Mia) = exp ( [ log | (e ).

Definition 5. We define the absolute Weil height H(«) of o by
H(a) == (M(a))¥?,
The absolute logarithmic Weil height of c, denoted h(«), is defined by

1
h(a) :=log H(a) = alog/\/l(a).
The Weil height H(«) is more “natural” and has nicer properties than the naive height.
How so? We will take a small detour to qualify this statement further.

One reason is that there is an alternative definition of the Weil height in terms of valuations
on the field £ = Q(a).

Definition 6. An absolute value on a field k is a function || : k£ — Rx, satisfying
(i) x| =02 =0
(ii) |zy| = |z| - |y| for all z,y € k
(iii) |z +y| < |z + |y| for all z,y € k.
If property (iii) can be strengthened to the strong triangle inequality |z + y| < max(|z|, |y]|),
then we say that this absolute value is mon-Archimedean. Otherwise, it is said to be
Archimedean.

For any absolute value |_| on a field k, we can introduce a distance function d(x,y) that
measure the distance between z and y, by putting d(z,y) := |x — y| for all x,y € k, making
k a metric space under d, thereby inducing a topology.

Definition 7. Any absolute values that induce the same topology are said to be equivalent.

Definition 8. For the sake of completeness (even though this is totally an uninteresting
absolute value): on any field k& we have the trivial absolute value |_|o given by

]y i {1 (v #0)
10 (z=0).
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On Q the ordinary absolute value |_| is an absolute value. Further, for each prime p we can
define an absolute |_|, in the following way. For each non-zero integer a, we define ord, a to
be the exact power of p dividing a. We extend the order function to the rationals by putting

a

ord, <b) = ord, a — ord, b.

Further, we define |_|, on Q by
|I’p — pfordpx

for x # 0 and |0], = 0. Then ||, is an absolute value.
Definition 9. The |_|, as defined above is said to be the p-adic absolute value.

Theorem 2 (Ostrowski’s theorem). Every non-trivial valuation on Q is equivalent to the
ordinary absolute value or to |_|, for some prime p.

2. SEPTEMBER 16

Recall Ostrowski’s theorem: every non-trivial absolute value on Q is equivalent to the
ordinary absolute value or to a p-adic absolute value |_|, for some prime p. We have the
product formula in QQ: for each non-zero x in Q, i.e.,

ol T lal=1.

p prime

Notice that if z = a/b with a and b coprime integers with b > 0 then

H(z) = max(|b|, |a]) = |b| max (1, %) = max <1, ||ib||> H max (1, ‘%’ ) = Hmax(l, lz],),
p P v
where v runs over the set of normalized inequivalent valuations v on Q. So
H(z) = | [ max(1, |z[,)

for x # 0. Now let’s turn our attention to algebraic numbers. Let k& be a finite extension of
Q so k = Q(«) for some algebraic number «. Suppose that [k : Q] = d and there are r real
embeddings of £ in C and s pairs of non-real embeddings of £ in C. We have d = r + 2s.
We define r + s valuation v on k which are related to the ordinary absolute value on Q. Let
o be an embedding of k in C which maps into R. We then define the valuation v on k by

1Bl = lo(B)]"
for any [ € k. Similarly, if ¢ is a non-real embedding we defined v by
1Bl = o (B

for any 8 € k. Up to equivalence, there are no other Archimedean valuations that are non-
trivial (though the trivial one is non-Archimedean). What about non-Archimedean absolute

values v?
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For each prime p we can ask how the principal ideal generated by p in the ring of alge-
braic integers Oy of k factors. Say (p) = p{'---py* with py,...,p; prime ideals of Oy and
e1,€s,...,6 € Z,. For any ideal A in Oy let N(A) denote the norm of A. Then

t
P =N((p) = [[N(pi)e = pr /et
i=1
for appropriate fi,...,f; € Z,. For any non-zero ideal A in O and any prime ideal p
we define ord, A to be the exact power of p dividing A. By considering the principal ideal
generated by z in Oy we define ord, x for x € Oy. By taking differences and considering
fractional ideals we can extend ord, to all x € k* :=k \ {0}.

Definition 10. We define a valuation v associated with a prime ideal p by

ordp B

’6|V = N(p) 4o

Again, it can be shown that this defines a non-Archimedean valuation on k. This gives
all the non-trivial non-Archimedean valuations up to equivalence. By our normalizations we
once again have the product formula

1 ifx #0;
[Tl =5, .
» 0 ifxz=0.
Here, the product is taken over normalized inequivalent valuations v. Further, we have for
x € k that
H(z) = [ [ max(1, |z[,). (1)

By our construction, the height function is properly defined not just on a fixed field k, but
it is invariant under finite extensions and so is well-defined on @ (the algebraic closure of Q)
also. Thus H : Q — R. Note that all algebraic closures of Q are isomorphic. We therefore
see from that for any positive integer n and any algebraic number 5 we have

H(p") = H(B)".

By the product formula, it follows
H(B) = [ [max(1,18],) = [ [ max(1,57",) = H(B™).

Therefore, for every integer n we have H(5") = H(B)!". Notice that if ¢, is an n-th root
of unity then H((,) = 1. In fact, if 8 is a non-zero algebraic number which is not a root of
unity then H(f3) > 1. This was proved by Kronecker in 1857.
3. SEPTEMBER 18
Recall that if £ is a root of unity or g = 0 then H(5) = 1.
Theorem 3. If 5 is a non-zero algebraic number with H(B) = 1 then 8 is a root of unity.
Proof. Suppose that 3 is a non-zero algebraic number with H(5) = 1. Let

f(z) = agz® + - 4+ ayx + ag
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be the minimal polynomial of § over the integers. Suppose

d
fla)=as]J(@-py),
i=1
where 8 = f31,..., B4 are the conjugates of 5. Since H(f) = 1 then we see that ay = 1. Thus
[ is an algebraic integer. Also, indeed |f;| < 1 for all i = 1,2,...,d. We now consider the
algebraic integers 3, 3%, ..., 3%, .... Note that 3! is a root of the polynomial f;(z), where

d

fi(x) =[]~ 5)).

=1

Notice that the conjugates 8* are in the collection S, ..., %, perhaps with repetition. In
particular we see that f;(x) € Z[z]. The integer coefficients of ¢; are elementary symmetric
polynomials in 8%,... 35 Since |B;| < 1 we have |8f < 1 for i = 1,...,d. Thus the
coefficients of f; are at most 2¢ in absolute value. Further each polynomial has at most d
roots. Therefore there are positive integers t; and ¢, with ¢; < ¢, for which " = 2. Note
B # 0 so 27 = 1. Therefore 3 is a root of unity. O

Another proof. On noting that the powers of 3,32, 5%,... of 3 lie in the unit disc, we can
find two powers ¢; and ty with ¢5 > ¢; such that |8 — 52| < 2~ Notice that the conjugates
Bt — B2 of Bt — B2 satisfy |B)* — 82| < 2. But 8 = 3, and

)

d
[16 -6 (2)
i=1

is an integer. Note also that the absolute value of is less than 1, so is equal to 0.

Hence "' = 2 and so either 8 =0 or 3 is a root of unity. O

If £ is an algebraic number with § # 0 and § not a roof of unity then H(5) > 1. So the
natural question: is there a real number € > 0 such that if 5 is an algebraic number and
H(B) <1+ ¢ then H(B) = 1?7 The answer is no; for this, we need a sequence of numbers
whose height approaches 1. Take f = 2'/". Then each of the conjugates 3; of (3 satisfy
|B8i| = 2/, There are n such conjugates, i.e., the degree of 3 is n. Thus

n 1/n
H(3) = <H max(1, 2“%)) = 2/
=1

and 2" — 1 as n — oo. However, if we ask the same question for the Mahler measure
M(5) we don’t know the answer. This is known as Lehmer’s question. He posed it in 1933.
Recall that M(8) = H(B)? where d is the degree of 3. Also we have M(3) = cM(f) where
f is the minimal polynomial of 8. So Lehmer’s question can be stated as follows: Does
there exists €y > 0 such that M(f) < 1 + gy implies M(f) = 1, or if M(f) < 1 + & then
M(B) =17

Lehmer gave an example of an algebraic number with Mahler measure larger than 1 but
small. His example: let 3 be the largest real root of f(x) where f(z) = 2! + 2% — 27 — 25 —

25—zt — 23 + 2+ 1. f is irreducible over Q and M(f) = M(B) = = 1.17628081....
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4. SEPTEMBER 21

Recall Lehmer’s question from 1933: is there a positive number ¢, such that if f €
Z[z] with M(f) < 1+ &g then M(f) = 17 Lehmer gave a possible candidate for ¢y =
17628081 . ...

Definition 11. A reciprocal polynomial is a polynomial f of degree d for which f(x) is
identically equal to z?f(z~1). Equivalently, for each root « of f, a~! is also a root of f.

In 1971, C. Smyth proved that Lehmer’s question has a positive answer if we restrict
f to be a polynomial which is not reciprocal. In particular, Smyth proved that if f is a
non-reciprocal polynomial which does not have 0 or 1 as a root, then

M(f) = Bo,

where 3, is the real root of 3 — 2 — 1. In this case, we have By = 1.3247 .. ..

Theorem 4 (Smyth). Let f € Z[z| be a non-reciprocal polynomial which does not have 0 or
1 as a root. Then M(f) > ‘/75

Proof. We may suppose that M(f) < 2 since the result is true otherwise, and thus f is a
monic polynomial. Further, since M(f1f2) = M(fi)M(f2), since M(f) > 1 for f € Z[z]
and since the product of reciprocal polynomials is reciprocal, we may suppose that f is
irreducible. Suppose that f is of degree n and that ay,...,a, are the roots of f. Put
r(z) = 2™ f(x~1). Since f is non-reciprocal and does not have 0 or 1 as a root, f(x)/r(z) is
not a constant. We can expand f(z)/r(x) as a power series, say
M:a0+akzk+a52l+--- (3)
r(z)
where the coefficients ag, ax, a; are non-zero integers. The coefficients are integers since the
constant coefficient of r(z) is equal to 1; recall this follows since M(f) < 2 hence is monic.
Further f(0) = aor(0) and so |ag| = 1. We now remark that f has no roots on the unit circle.
For suppose « is a root of f on the unit circle. Then aa = 1. But then for any conjugate «;
of «v also satisfies o;a; = 1.
But for every root a of f, a~! is also a root hence f is reciprocal or has 1 as a root. We
may not put

9z =TI (z_ﬁi):c+clz+c222+--~ (4)

and put

hz)= ] (1_05_]'2):d+d1z+d2z2+-~. (5)

. T
loj|>1

Observe that f(j)) = 28 Upon comparing (3)), (4), and we find that apd + aod, = ¢ so

r(

ard + dy = cg. Since ay is a non-zero integer with |ax| > 1, it follows that

|d|

max(|di], |ex[) = - (6)
6



Both g and A have no poles on or inside the unit circle and so they are holomorphic in an
open set containing the unit disc. By Parseval’s inequality, it follows

1 2w )
o | 9P do =P + e + e + -
2m Jo
Since g has absolute value 1 on the unit circle, we have 1 = |c|* + |¢;|*> + ---. Hence

lcx|> < 1 —|c|?. Similarly we find that |di|? < 1 —|d|*>. But ¢ = d = M(f)~!. Therefore
from @ we see that

IN
—_
I
=
[\

as desired. 0

5. SEPTEMBER 23

Recall Smyth’s theorem which states that if f € Z[z] is non-reciprocal and doesn’t have 0
or 1 as a root then M(f) > By where S, is the real root of 23 —x — 1. 3y is an example of a
Pisot or Pisot-Vijayaraghavan number (P.V. for short).

Definition 12. A real algebraic integer [ is said to be a Pisot number if 5 > 1 and all other
conjugates of 8 have absolute value less than 1.

The set of such numbers is usually denoted by S. It is a closed set (in the usual topology
embedded in R; note that this is not obvious, and it will be fairly difficult to prove.). It
contains all the integers larger than 1. The Pisot numbers were first studied by Thue in 1912
and by Hardy in 1919.

Observe that if § is a Pisot number then M(3) = (. Further, 5 is a root of a non-
reciprocal polynomial if the degree of 8 exceeds 2. It then follows from Smyth’s result that
Bo is the smallest Pisot number. This fact was first proved by Siegel in 1944. The smallest
non-isolated limit point of S was shown by Dufresnay and Pisot in 1955 to be %5

For any real number z let ||x|| denote the distance from x to the nearest integer. Let
A be a real number with A > 1. We can consider the sequence (||A"]|)5,. In general we
would expect the sequence to be uniformly distributed in (0,1). However if A is a Pisot
number then [[A\"]| — 0 as n — oo. To see this let A = A\j, Ao, ..., Ag be the conjugates of
A. Since A € S we see that |\;| < 1 fori=2,...,d. But tr(\") for n € Z is an integer so
A"+ A5+ -+ + A2 = 0. It then follows from Smyth’s result that 5y is the smallest Pisot

number. This fact was first proved by Siegel in 1944. Thus
A< [l 4 -+ "
and
Ao + -+ A" =0
as n — oo.

Hence a natural question (still open!): are the Pisot numbers the only real numbers greater

than 1 with this property? However it is known that if A € R and A > 1 and X is algebraic
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then ||A"|] — 0 implies A € S. Further, Pisot proved in 1939 that if A > 1 is a real number

and .
D OIIN < o0
n=1

then X is a Pisot number. The Pisot numbers arise in several settings.

Definition 13. A subset T of unit circle is said to be a set of uniqueness if any trigonometric

expansion
oo

Z C(n)eitn

n=—oo
which converges to zero for all ¢ on the unit circle with ¢ ¢ T' converges to zero everywhere
on the unit circle.

Salem and Zygmund proved that if 7" is a Cantor set of constant ratio of dissection 6 on
the unit circle then P is a set of uniqueness if and only if #=! is a Pisot number.

Definition 14. A Salem number « is a real algebraic integer with o > 1 which has all its
other conjugates on or inside the unit circle.

In fact, this implies that o has one real conjugate which is a~! and the other conjugates
come in complex conjugate pairs and lie on the unit circle and at least one on the unit circle.

. . D<

d

The left diagram describes the Pisot number and the right diagram describes the Salem
number.

6. SEPTEMBER 25

The set of Salem numbers is not so well understood. It is known that every Pisot number
is a limit, both from above and below, of a sequence of Salem numbers.

It is not known if this is a smallest Salem number. In 1977 Boyd gave a way to produce all
Salem numbers. He found four Salem numbers smaller than 1.22 and conjectured that they
are the four smallest. Two of them are of degree 14 and of degree 18. Lehmer’s example is
of degree 10.

Back to Lehmer’s questino: in 1971 Blanksby and Montogomery used Fourier analysis to

prove that if # is a non-zero algebraic number of degree d which is not a root of unity then
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M) > 1+ m. In 1978 Stewart found an argument from transcendency theory that
gave, under the same assumptions, for d > 1, M(0) > 1 + m. In 1979 Dobrovolski

extended this approach to prove that if 6 is a non-zero algebraic number with degree d and
6 is not a root of unity then for each ¢ > 0,

loglogd\*

for d sufficiently large in terms of €. This is the best result as a function of d known to date.
For the transcendence apporach, we require a result on solutions of systems of linear
equations known as Siegel’s lemma. We will prove the following version of Siegel’s lemma.

Lemma 1 (Siegel’s lemma). Let b;;(1 <i < N,1 < j < M) be algebraic integers in a field K
and suppose that for each j with 1 < j < M not all the b;;’s zero. Suppose that [K : Q] =d
and let oy, ...,04 be the embeddings of K into C. If N > 2dM then the system of equations

N
=1

for 3 =1,..., M, has a solution in rational integers x1,...,xn not all of which are zero,
where absolute values are at most

V2N (,inax ; <max |ak(bij)\)> l/d. (7)

1<i<N

Proof. Let o1, ...,0, be the real embeddings of K in C and let 0,1,...,0, be the non-real
embeddings of K in C with

Ori+ro+i = Ori+i

fori=1,...,r9, where d = ry + 2ry.
Put
o; forl1 <i<r
7, = < Re(oy) forry <i<ri+mr

Im(o;) forr;+mry <i<d.

Here Re denotes the real part of a complex number and Im the imaginary part. Define Y
to be the integer part of expression ([7]). For any pair of integers (k,j) with 1 < k£ < d and
1 <j < M,the (Y + 1)V different N-tuples (y1,...,yn) with 0 < 3;Y for 1 <i < N give

N
Tk (Z bijyz)
i=1

and observe that L is a non-zero integer, since the b;;’s are algebraic integers which are not
all zero. Since N > 2dM and L < (Y + 1)?, we have

LM < (Y + 1)V,
Therefore by the pigeonhole principle, two of the N-tuples (y1,...,yn) and (yi,...,YN)

satisfy
N N
Tk (Z bijyi> — Tk (Z bijyé)
i=1 i=1
9

rise to the numbers

which are at most NY max |7k (bij)|. Put L =Y (Y +1)

NY
< max \Tk(bij)\T (8)

— I<i<N




fork=1,2,...,dand j=1,..., M. Put x; =y; —y. fori=1,..., N. Thenlglg}%\xﬂgif

and not all the x;’s are zero. So it remains to show that

N
i=1

fory=1,..., M. From , we deduce that

N
O (Z b”IL‘Z)
i=1
for k=1,...,r and that

N N
Ok (Z bijxi> Ok+rg (Z bijxi>
i=1 i=1

NY
< g I b)l =

< { max (Re ox(b;;))* + max (Im Uk(bij))}2 (%)2

1<i<N 1<i<N

NY\?
< 2 max |0k (bi;)Tktry (bij)]| (_)

1<i<N L

for k=r;+1,...,71 + ry. Therefore

d N
H Ok (Z bUIZ>
k=1 i=1

for j = 1,... M. Notice that the above inequality is just

g (Y(YL+ 1)>d: .

and since it is

N
NK/Q (Z bijxi)
=1

N
less than 1 it is necessarily 0. Thus > b;;2; =0 for j =1,..., M as required. 0
i=1

7. SEPTEMBER 28 & 30

Theorem 5. If a is a non-zero algebraic integer of degree d > 1 with
M(a) <1+ (10*dlogd)™
then « is a root of unity.

Proof. 1t is easy to check that this holds for d = 2,3. So we may assume that d > 4. Let

a = qaq,...,qq be the conjugates of . We may assume without loss of generality that
Put
K :=2U, where U = [70dlogd] .
We now choose K positive integers r; < ro < --- < 1 from the first 13K positive integers
so that 5
™
Ts) __ Tt < —.
 Jnax {[Im(log ™) — Im(loga™)[} < 7= (10)

Here Im(z) denotes the imaginary part of z for z € C, and log z denotes the principal branch
of the logarithm function where —7 < Im(logz) < w. Such a choice is possible by the
pigeonhole principle. Put 6; = 1£ni<nK Im(loga’™) and put § = 6, + 5.

SIS

10



We now construct a function f(z) where

K d
f(2) = exp(—ifz) Z ax jo’ exp((log a'*)z),

k=1 j=1

[y

and where the ay ;’s are rational integers (not all zero) which are chosen so that f(u) =0
foru=1,2,...,U. Notice that this in equivalent to solving

K d
E E ak,ja]+rku = 07

k=1 j=1
foru=1,...,U. Since Kd, the number of unknowns, is 2d - U, the number of equations, we
may apply Siegel’s lemma to get a non-trivial solution in rational integers a; ; with
max layj| < V2KdMPBPEU+ (11)
7-]

where

1/d

M = (H maX(LIU(Oé)I)) = (M(a)"4;
o€eS

S denotes the set of embeddings of Q(«) in C.

We now define f in terms of the a;;’s. We shall now show that f has more zeros. In
particular, we prove by induction that f(u) = 0 for all positive integers u. Accordingly
suppose that f(u) =0 foru=1,2,...,J with J > U. And we will prove that f(J+1) =0.
Since f is an entire function so is F', where

f(z)
z=1)(z=2)--(2—J)

F(z):=
By the maximum modulus principle,
F(J +1)| < max|F(2)],

ze

where
I'={z:2€C,|z| =2J +1}.
Thus

zel

|lf(J+1)] < J'max (H(z —u)) max | f(z)]

<2J)' zel
e < (* B £ 12
fT+DI={ ;) max|[f(z)] (12)
We now estimate max | /(2)]. On recalling (9)) and we see that
max |f(2)| < V2(Kd)?M"* U o] exp(A(2] + 1)) (13)
zE
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- L,
where A 12}%}%|log(a ) —i6]. By (L0]), we see that

m
&l
Since |a| > |ay| for i = 1,...,d we may use the fact that 1 < |a| < M(a) our assumption
that 1 < M(a) < 1+ (10'dlogd)™" and the inequality that log(1 + z) < z for x > 0 to
conclude that 0 < log |a| < (10*dlogd)~!. Now since K = 2U and U = |70dlogd], we see
that 0 < 13K log|a| < 5; and so A < %, whence A(2J + 1) < J(log2).

Recall that

A< )13Klog|a\+z'

K d
f(2) = exp(—ifz) Z Z ax jo exp((log a'*)z).
k=1 j=1
We chose the ay ;’s to be integers which are not too large so that f(u) =0foru=1,2,...,U.
We are now proving by induction that f(u) = 0 for all positive integers u. We then have

from ([12]) and (13) that
2\ !
1f(J+1)] < (J) 27V2(K d)? MBEU+ |4,

2J

J
J) > ;‘—J we have

Since (
F(T+ )| < 27 - 27/V2(Kd)2 MKV o),
SO
If(J+1)| < J27 K MRV, (14)

Our next step is to show that |f(J + 1)| is so small that it must be zero.

We now estimate |f(J + 1)| from below. Put 8 = f(J + 1) exp(if#(J + 1)) and notice that
[ is an algebraic integer in Q(«). Therefore either § = 0 in which case f(J + 1) = 0 or
| No(ay,0(B3)| is a positive integer hence

IF(T+ D] =18l = (H IO(B)|> (15)

oes’

where S’ is the set of embeddings S’ of Q(«) in C minus the identity embedding. Notice
that for all o € S we have

0(B)| < V2(Kd)> MU+ max (1, |o(a)[BEITDH) (16)
Since |a| > |ay| for i = 1,2,...,d, we have
%
T max(t, o(a)) < (H ma(1, |a<a>r>> e,
oces’! oces

So now by and , we find that
|f(J + 1)| > (K4M26K(J+1))_d+1.
We compare this estimate with to get

2J < JK4M26KU<K4M26K(J+1)>CI_1.
12



SO

2J < JK4dM26K(J+1)d.

Taking logarithms and estimating % from above by g—g we find
1 4dlog K
log 2 < Oij + Sg + 27K dlog M.

Thus, upon recalling that cM(a) = M¢ K = 2U and J > a, we have

logU n 4dlog 2U
U U

Since U = |70dlogd| and d > 4, we find that

log2 <

+ 54U log(M(a)). (17)

logU  4dlog2U
og n og

< 3L
U U

Thus by ,
(log2 — 0.31) < 54U log(M(«)).

But log(1 + z) < x for x > 0 and so

54U

log2 — 31 < — 22
©8 = 10%dlog d

Hence

log2 — 0.31)10%d1
(log 024)0d0gd§U:L70dlong.

Contradiction! This is false and so f(J + 1) = 0. Therefore by induction f(u) = 0 for
u=1,23,....

d .
Let us put Ay := > ajjo’. Then

7=1
K
f(u) exp(ifu) =~ Ay(a”)*) =0
k=1
for u = 1,2,.... Notice that since o has degree d, Ay is zero if and only if a;; = 0 for
Jj = 1,...,d. Since not all of the a; ;s are zero we see that not all of the A;’s are zero.
K
Thus g(z) = > Agz™ is a non-zero polynomial. But oV is a root of g(z) for u = 1,2,....
k=1
Since a # 0 we see that o/t = a2 for some distinct positive integers and as « is a root of

unity. 0

Remark 3. We briefly get back to Pisot for a bit. He proved in 1938 that if A is a real number
with A > 1 and Y ||\"]|* < oo, then X is a Pisot number.
n=1

13



8. OCTOBER 2

Let a be a real number and suppose that « is irrational.
Question 1 (Basic question). How well can we approximate « by rationals?

Answer 1. Since QQ is dense in R we can approximate « to within ¢ for any ¢ > 0. A
better question would be to ask how well we can approximate « in terms of the size of the
denominator of the rationals?

Theorem 6 (Dirichlet). If « € R\ Q, then there exist infinitely many p/q with p,q € Z,q >

0,(p,q) =1 for which ’a— 5‘ > qig.

So one may naturally ask if this result is sharp. In fact, it turns out that Dirichlet’s
result is indeed sharp: there exist C' > 0 such that for uncountably many o € R, we have

)a — 5‘ > q% for all rationals %,q >0,(p,q) =1.

One more natural question:
Question 2. What happens if we restrict a to be algebraic?
The first interesting response to this question was given by Liouville in 1844.

Theorem 7 (Liouville). Let o be algebraic of degree d > 2. Then there exists C(a) > 0
such that for all p/q € Q with (p,q) = 1,q > 0, we have

_p|_ ¢l
q ¢4

This result gives us a recipe for constructing transcendental numbers since we need only
find an o € R with a sequence (p;/¢;)32; € Q with

; 1
‘Oé — & < —]
45 4q;
for 5 = 1,2,.... This is how Liouville constructed the first real number known to be

transcendental. The partial sums
J
P _ 1
give the required sequence.
Can we improve on Liouville’s result when d > 37 Yes, but even very small improvements

seem very difficult to achieve. Thus in 1909 was the first to make an improvement, followed
by Siegel in 1921, Dyson in 1947, and finally by Roth in 1955.

Theorem 8 (Roth). Let a be algebraic of degree d > 2. Let ¢ > 0. Then there exists a
constant C(a,€) > 0 (i.e., a constant depending on « and €) such that

p| _ Clae)
a—= .
q q2+6
However, there is a big flaw in this extraordinary theorem. The proof does not give a
means to compute C(a,e) > 0 explicitly given o and e. Thus the result is said to be

ineffective and it is a major open problem to make it effective.

In general, how do we find the “good” rational approximations to an a € R?
14




a—Ll <4,
q q

Definition 15. We say an approximation § is good if

It turns out that there is a very efficient algorithm to find these approximations known
as the continued fraction algorithm. There is also a method known as the hypergeometric
method which gives effective improvement of Liouville’s result for certain algebraic numbers

such as /2. The idea is to consider sequence g’;(é)) of polynomials of degree at most n which
1/3

approximate (1 — z)'/? and then specialize.

9. OCTOBER 5

We consider the function of the N-th variables aq, ..., ay:

Definition 16. We define the partial fraction

1
[ao,...,aN] = a0+—1
a1 a2+~~~+$
We call aqg, . ..,an partial coefficients.
From the definition we have
. o 1 . agaq + 1 . 1 . asa1ag + G2 + ag
lao] = ag, [ag, a1] = a1 + a a lao, a1, a9) = ay + o é = iy + 1 .
We also have
[a(]?"'7an] = a07a17"'7a’n71+_
an
lag, . .., a,) = [ag, [a1, ..., a,]]
More generally, [ag, ..., a,] = [ag, -\ Gm_1, [@m, - - -, as]].

Definition 17. We call [ag, ..., a,](0 < n < N) the n-th convergent to [ag, ..., ay].

Theorem 9. If p, and q, are defined by

~— —

Po = o, p1 = 109 + 1, Dy, = pPn—1 + Pr—2 (n>2
QO:LQI:a17~--aQn:(INQn—1+QR—2 (TLZQ

S

n

Then [ag, . ..,a,] =

Q

n

Proof. We prove with induction. Clearly, we have [ao] = ap = % = 2 and [ay, a;] = 24+ =

0 ay
Z—i. Suppose it is true for n < m < N. Then

b}

lag, ..., am] = Em — GmPm-1F P2
7 o qm Amfdm—1 + dm—2
15




AlSo, Prm—1,Pm—2, Gm-1, ¢m—2 depend on ag, aq, ..., a,_1. We have

1
[CLU,(Il, e ,am+1] = |:(Io,a1, vy Uy +
Am+1

(am + ;> Pm—1 + Pm—2

Om+1

(am + ! ) Gm—1 + Gm—2

aAm+1
a’erl(ampmfl + pm72) + Pm—1
am+1<aQOfl + qm—2 + dm—1
Um1Pm + Pm—1 _ Pm+t1

Am+1Gm + dm—1 gm+1

Theorem 10. p,¢, 1 — Pn_1Gn = (—1)""'. Equivalently,
P Par (=D

G Q-1 GnQn-1

Proof. Pnfn=1 = Pn-1Gn = GnPn-1 + P2 — Pn—1(an@n-1 + Gn-2) = —(Pn-1¢n—2 — Pn—2qn-1) =
(1)1, O

Theorem 11. p,q,—2 + prn—2¢, = (—1)"a,, or
& . DPn—2 o <_1)nan

dn qn—2 qndn—2

Proof. Exercise. 0
From now on, we shall assume that ay € Z and aq,as,...,€ N. Also, let z, = 2—: and

x = xy be the N-th convergent.

Theorem 12. xy < 1o < xy < -+ and x1 > T3 > x5 > - -.

Proof. This follows from Theorem |11} O

Theorem 13. every odd convergent i greater than any even convergent. That is, Topm11 > Tay
where 2p,2m +1 < N.

Proof. From Theorem , we have Topmi1 > Top. If 1 < m, then 2oy, > 9, 50 Tomi1 > Tay.
If > m, then s, < To,q1; since Topp1 > Ty it follows xop 11 > 29, OJ

Theorem 14. x = xzy s greater than any even convergent and less than any odd convergent.

Let a be a real number. We construct a continued fraction associated with «, using
following steps:

Step 1: Define ag := |a]. If @ = ap then a = [ag]. Otherwise, then a@ = ag + a% for
appropriate aj.

Step 2: Let a1 = |ay]. If oy = a; then a = ag + a—ll = [ao, a1].

We repeat this procedure. If this stops after a finite number of steps then o = [ay, . . . , an].
Otherwise, then oo = [ag, a1, .. .|, an infinite continued fraction.

Remark 4. « has a finite continued fraction if and only if « is a rational number.

Proposition 1. The sequence (|g1a — p1|, |gacv — pa|, ... ) is a strictly decreasing sequence.
16



— _ Qny1PntPn-—1
PT'OOf. Let oo = [a(), A1y ...y Qp, Oén+1]. Then o = m. AAISO7

PnOn+1 + Pn—1
dn — Pn
nQin41 + Gn—1

— Iann—l _ann—1’ — 1
|Qnan+1 + Qn—1| GnQn41 + Gn—1
QnOnt+1 + Qn-1 > Qn + Qn—1 > AnQn—1 + Qn—2 + qn—1
Z (CLn + 1)Qn—l + Gn—2 > Qndn—1 + Qn—2.

|Qna _pn| =

So
| | Y | |
qn® — Pn| = = |dn—-1& — Pn—1|-
nQm—1 + qn—1 qn—1Cn + qn—2
Thus the sequence is strictly decreasing. 0

10. OCTOBER 7

1

. . _ p_,n/ b
Proposition 2. 0 s < ‘a PR

1
an+1+2)qn qn

Proof. From the proof of Prop [I], we have

1
Qn(an—i-IQn + %—1) ’

‘ Pn
a —_ —
Gn

for appropriate a,1 < ayy1 < an1 + 1. Recall that ¢, > ¢,—1. Thus

An+19n > Apn+41Qn + dn—1 < (an—i—l + 2>Qn7
so we are done. O

Remark 5. If 0 < ¢ < ¢y41, then |ga — p| > |gna0 — p,|. Also,

det |: Pn Pn+1 :| — (_1)n—|—17
dn  Gn+1

so there exist integers u, v such that

P = Upp + UPnt1, ¢ = UGn + Vny1,

with v > 0 and w, v having different signs. Hence,

|qa - p| - ‘a(UQn + UQn—H) - (Upn + Upn+1)|
= |u(agn — pn) + v(QGni1 — Pnt1)]
> |u+v||QnO‘ _pn| > |Qn05pn|-

1

< 3

Proposition 3. Let p/q € Q and o € R. If ‘Oz -2 then & = P2 (n-th convergent)

for some n.

17



Proof. For some n, we have ¢, < ¢ < g,y1. Also,

q an q qn
1 1
< —[ga — p| + —l|gna — pnl
q qn
1 1
< |-+ —)lga—p|
q dn
2 1 1
<= =
n 29  q¢n
So if § =+ %, then |2 — % > ﬁ, a contradiction. The claim follows. O
Definition 18. A continued fraction [ag, a1, ...] is ultimately periodic if a,y; = a, for all

n > m for some m and k. A continued fraction is purely periodic if a, . = a, for all n > 0
and some k.

Theorem 15 (Lagrange‘s theorem). A real number « is a quadratic irrational if and only
if its continued fraction is ultimately periodic.

Proof. (=) Suppose that ax? + bx + ¢ be the minimal polynomial of . Note that b* —

4ac > 0. Thus we can let a = [ag, a1, ..., a,_1, @], or equivalently o = %. Since
n— n n—

ac® + ba + ¢ = 0, there exist appropriate A,, B, C, such that A,a? + B,a, + C,, = 0.
Specifically,

An = api_l + bpn—lQn—l + Cq121_1
Bn = 2apn71qn72 + b(Pn71Qn72 + pananl) + 2anflqan
Cn = ap72172 + bpananZ + Cq72172 = Anfl-
We will show that A, B, C, are bounded. That is, there exist n{, ns, ng such that
(A, B,C) = (An,, Bn,, Cp)) <
= (Anzv Bn2> an) < Qpy
- (ATL37 Bn37 Cng) S Qg
At least two of ay,,ay,,a,, are the same. Without loss of generality, lets say o,, =

ap_2(ny < ng). Then a,irp = a, for all n > ny and k = ny — ny. Define a,, = |ay, |
and a,, := |y, |. Since

1
Oy = Qp, +
CY’n,1+1
Ay, = An, + )
ang-{-l

we have a,,+1 = Qpyt1-
18



Note that A, # 0: otherwise, az® + bx + ¢ = 0 has a rational root. Furthermore, B> —
4A,C, = b*> —4dac > 0. And if o — 5—: = %, then |s,| < 1. Substitution gives

2
Sn— Sp—
fLL::a (qn—la'_' 1) *’b (qn—la'_'q 1) Qn—14‘CQZ_1

n—1 n—1
2
2 2 —1
= (aa” +ba +¢)q, | — 2a08,_1 + a—5— — bs,_y
n—1

2
Snfl
2

—

= —2a08,_1 + a — bs,,_1.

1
So |A,| < |2aal + |a| + |b| and |B,| = |44,C, + b* — 4ac| < |4A,C,| + [b* — 4ac|. Note
C,, = A,,_1 so all three are bounded.

(<) Write a = [ag, a1, ...,0n_1,0n, Gpi1,-- -, Gnrk_1), Where the bar indicates periodicity.
Let 0 := [@y, Gnt1,-- 5 Gnko1) € R\ Q. Let uj/v; be the j-th convergent to #. Then

_ _ ug—104ug_o 2 _
0 —-[an,an+1,...,an+k,1,9L or 0 = ok 10+vr 2 Hence Uk,19 +-(Uk,2'— Uk,1>9'— Uk—2 = 0.
But since 6 ¢ Q, it follows that @ is a quadratic irrational. Now since o = [aq, . . ., a,_1, 0],
10+ . . . .
we have a = Zie—igz. « is a real quadratic rational as required. O
n— n—

11. OCTOBER 9

Proposition 4. The continued fraction of « is purely periodic if and only if o > 1 and its
conjugate satisfies B satisfies —1 < 8 < 0.

Proof. (<) We first prove this claim:
Claim. —1 < 3, < 0 where (,, is the conjugate of «,,.

We prove by induction on n. Suppose a,, > 1 and —1 < 8, < 0. Note that if

Qp = Ay + s
&n+1
then
B = tn+ —
=a .
n n Bn+1
Thus we have
! B < —1
=0, —a, < —1.
ﬁn+1
so indeed —1 < (3,11 < 0, as desired.
Since .
(07% ::£% - )
6n+1
it follows

oo 9

Since « is quadratic irrational, there exist m,n € Z, (m > n) such that a,, = a,,. In this
case B, = Bp. This implies a,—1 = a;y—1 (by ) SO i,—1 = ;1. Repeating this argument
yields ag = ay,—r. So the given continued fraction is purely periodic, as required.

19



(=) Suppose that the continued fraction of « is purely periodic. Then « = [ag, ay, . . ., ay, @]
for some n. So there exist p, and ¢, such that

Pncx + Pn—-1
o=—
qn& + qn—1
or equivalently, we have
40 + (Gn-1 = D) — pn1 = 0.

Let fo(2) = ¢u2® + (g1 — Pn)T — Pp_1. Then f,(0) = —p,_1 <0, and f,(=1) = ¢, + pn —
1 — Pn1 = (@ — @u_1) + (Pn — pn_1) > 0, since both ¢, — ¢ —n —1 and p, — p,_1 are
positive. Note that p,,q, > 0 and p,, ¢, are increasing sequences. Thus there exists a root
p € (—1,0), and so § is a conjugate of a as desired. O

Remark 6. Suppose that d is not a perfect square, and that

1
o0 =—7——>1

V- | Vil

Its conjugate is thus

5= 1 B 1
~Vd- |va| Vit |V
We have —1 < 8 < 0, so the continued fraction of « is purely periodic.
Consider the rational a = [ay, ..., a,], and let % (1 < i < n) be convergents of . We
state the following claims; we will only prove the first one.

Claim. We have

(1) [an7 p—1,Apn—2,...,0a1, ao] — p:il
(2) [an7 An—1,--- 7a1] — q;l_il

Proof. We start from the fact that p, = a,pn_1 + pn_2. From which it follows

Pn 1
= Qn + Pn—1
Pn-1 P2
. 1
== an _—
1
p—1+ Pz
Pn—3
. 1
— i e . — an
1
U1+ =4+ 2¢

P

o

so the claim follows upon observing i—é = ag. The proof of the second part follows in a similar
manner. [

Proposition 5. Let o be a quadratic irrational with o > 1 and —1 < 8 < 0. Then we have

a = [ag, ar, .-, ay)
1
_B - [anaanflv s 7a’17a0]'

20



Proof. Let 0 = [y, Gy—1,-..,a1, 0] = [@n,Qn_1, ..., a1, 00,0, and let 2= be the convergents
to 6. That is, we have

o une + Up—1
- Une + Up—1 ‘

Let flﬁ be the convergents of a. Note that by the first claim of the above remark, we have

tm o= pp—’il. Since (pn, Pn—1) = (tn,v,) = 1, we have u, = p, and v, = p,_1. Also, by the
second claim of the above remark, z::i = qZ—jl. Thus u,_1 = ¢, and v,,_1 = ¢,_1. That is,
we have
0= g,
Pn—1

and equivalently

n (-%)2 + (Gn-1 = Pn) <—%) —Pn1 = 0.

Since « is also a root of ¢,22 + (¢u—1 — Pn)T — pp_1 = 0, indeed —% = [ is a conjugate of a.
Hence 6 = —%3. 0
Claim. Vd = |ag, ay, -, an, 2a0).

Proof. Let a = Vd + L\/EJ Then its conjugate 3 is 8 = —V/d + L\/ZZJ Since —1 < <0
and

a =2 {\/EJ A1, A2, ..., Q] = [2a0,a1, ..., a,),

By Prop [f], we get
1 1

—— = [ap, Qp_1,...,a1,2aq] = m_—w

We have

f—{x@:%%:m !

_\/Eft\/aj [anaanfla--wahzao]

= [O,an,an,l, RN ,a1,2a0].

Thus

Vd = L\/EJ +[0, an, ap_1, - .., a1, 2ao)

——

=ag

= [CLO, Qpy Ap—1, - -+, A2, A1, 2%]

a=Vd+ {\/QJ = [2a9, a1, a9, . . . , ayp).

21




Recall that 2a5 = 2 L\/EZJ, SO

Vid = — {\/EJ + [2a9, a1, as, . .., a,]

. 1

i

a _—
L
an+m
= [ao, ay,as, ... ,2(10].

Note that this gives us v/d = [ag, a1, - - - , n, 2a9] = [0, Gn, Gn_1, - - -, (1, 2G0], SO A1 = Uy, Ay =
Un_1,.... Hence \/d = [ag, a1, ag, . . . , 4z, ay, 2ag). O

12. OCTOBER 14
Let d € N,d > 1, not a square. The equation
2 —dy? =1

in integers z and y is known as the Pell equation. Fermat conjectured that the equation
always has a non-trivial solution i.e., different from (x,y) = (£1,0). This was first proved

by Lagrange in 1768.
Let us consider the equations

2 —dy* =1
2 — dy? = —1.
Suppose that (x,y) is a nontrivial positive solution to and . Then
x> /dy? —1>yvd— 1.

Thus we have
1 1
< a0

1
<
|z + Vdy| \/Ey<1+,/1—%l) 2y
since vVd ++/d—1 > 2 for d > 2. Thus

Vi %
Yy

o — Vay| =

< 1
292

z

Therefore x|y is a convergent to Vd, ie., v = % for some n > 0. Then

\/a _ PrnCpnit1 + Pn—1
GnQin41 + Gn—1

SO
(pn - qn\/a)an+1 = \/3%4 — Pn—1
(P2 — 2 d)ani1 = (Vdgn—1 — pn_1)(pn + ¢uVd)
(£1)an1 = VA(PoGn-1 — Po1Gn) — Pn-1Pn + Gn-1Gnd

— Vd(=1)"*' + h for h € Z.
22



The convergents of even index are smaller than v/d and the convergents of odd index are
larger than v/d. Therefore, by (21)), we have that n — 1 is even if p2 — dg? = 1, and n — 1 is
odd if p? —dg> = —1.

Consider the first possibility. Then

1 = Vd(=1)"" + h = Vd + h.

Thus oy, = ay. But \/d = [ag, @1, Gz, .-, Gm] where m is the minimal length of the period
of the continued-fraction expansion of Vd. We have then a; = Qa1 = Qopmyr = -+, and
ap # «ap for k # 1 (mod m) since m is the minimal period. Thus m | (n + 2) — 1 hence
n = {m —1 for some [ € Z,. In this case we have n — 1 even so Im is even. In the case when
2% — dy? = —1 we find that Im is odd so

—Qp1 = —Vd+h, or app = Vd—h.

In particular, if the minimal period m is even, the equation has 2?2 — dy?> = —1 has no
non-trivial solution.

Theorem 16. Let d be a squarefree integer with d > 1. Let m be the minimal period of the
continue-fraction (CF) expansion of \/d. (x,y) is the solution of

v —dy? =1

with z,y € N iff £ = pp,y = qn for some convergent p,/q, to Vd and where n =Ilm —1,1 >
0,lm even. Also, (z,y) is a solution of

v —dy? = —1
with x,y € N iff xt = p,,y — qn,lm is odd, | > 0,n =1m — 1.

Proof. The above discussion already established (=).
(<) Suppose that n = lm — 1. Then by periodicity a; = 42 SO

\/C_Z _ Prn+10n+2 + Pn _ Pn+101 +pn
An+1%m+2 + Gn  Gni1001 + qp

But oy = ﬂ+% and so

(Qn-H + Qn(\/c_i - aO))\/C_Z = Pn+1 +pn<\/a - (10).

From this, we have ¢ni1 — ¢nao = Pp and ¢nd = pni1 — Prao since Vd ¢ Q. Eliminating ag
gives US Pplni1 — Pui1Gn = P2 — ¢2d, hence p2 — ¢2d = (—1)"*!. Thus if n is odd then we
have a non-trivial solution of 22 — dy? = 1 while if n is even we have a non-trivial solution
of 22 —dy? = —1. 0

13. OCTOBER 16 & 19

In general, not much is known about the continued fraction expansion of algebraic numbers
of degree greater than 2. No such number is known to have bounded partial quotients. For
certain non-algebraic numbers of interest we know more. For example,

e—1= [1>1727171747171,6,1,1,8,...].
23



As a consequence, we are able to show that there is a positive number ¢ such that for ¢ > 4,

we have
‘ p‘ cloglogq
6 - > 2—.
q q*logq

On the other hand, 7 is a mystery:
m=1[3,7,151,292,1,1,1,2,1,3,...].

i 22 333 355 103993
The initial convergents are 3, 2=, 152, 172, 53705 5 - - - - We have

22 1 355 1

m = m—— = .
7 (16.139...)72%’ 113 (293.57...)(113)2
22 - e 335
In fact, 5 is as good as %’ for any ¢ < 57; similarly, 373 is as good as § for ¢ < 16604.
Mahler in 1953 proved that there exists a positive number ¢ such that
P c
S

Also, there is a theorem by Salikhov

Theorem 17 (Salikhov, 2008). )7? -2

> W for q sufficiently large.

What does the continued fraction expansion of a “typical” real number look like? A
first question one might ask is: how does ¢, grow? For all irrational numbers « it grows
exponentially. To see this observe that ¢y = 1 and ¢; = a; and for n > 2 we have ¢, =
GnGn-1+ qn_2. Thus ¢, > u,1 forn =0,1,2,... where ug = 0,u; = 1 and u,, = Up_1 + Up_o
for n > 2. But (u,)52, is the Fibonacci sequence and

() ()
Vb

Theorem 18. There exists a positive number ¢ such that for all real numbers «, except a
set of Lebesgque measure zero, we have

Up =

In = qn(a) < ™.

Proof (Khintchine). We first remark that we can restrict our attention to o in (0, 1) since the
countable union of sets of measure zero is a set of measure zero. Let E,(g) forn > 1,9 > 1

be the set of real numbers in (0,1) for which a;...a, > g where ay,...,a, are the initial
partial quotients of «.
For any fixed sequence (ay, ..., a,) we will determine the measure of the set of a’s in (0, 1)
whose first n + 1 partial quotients are 0,a4,...,a,. Thus
a=1[0,a1,...,0,, pyi1].
Then

Pnlini1 + Pn—1
qnQn+1 + Gn—-1
and o,y varies from 1 to oo. This gives an interval with endpoints
Pn +pn—1 and &;

dn + Gn—1 qn
24




observe that
. & _ PnQnt1 + Pn—1 N ]ﬁ - (_1)71

dn GnQin41 + Gn—1 An B Qn(QnarH»l + anl)
is a monotone function of a,,;1. The length of the interval is

pn + pnfl N Zﬁ _ 1
G+ -1 | @G+ )
and
1 1 1

GG + 1) @ (a1...0a,)
since ¢, > a,q,_1 hence q, > a, - --a,. Thus the measure

Note that

‘”“ antl d.fCld.fL'g .dx,
x2 '

dry...dx,
Jn(9) :/RQ—Q

xy... x5

Put

where R is the region z; > 1 fort=1,...,n and xy---x, > g. Thus

#(En(9)) < 2" Ju(g)-
It remains to evaluate J,(g). If ¢ <1 then

R={(xy,...,zp) :x; > 1fori=1,...,n}

In(g) = ([mi—f)nzl.

We now prove by induction on n that for g > 1,

and so

1
g “= 7!

(22)

For n =1 we have Jy(g) = [7° % = é as expected. Now assume the result for n = k. Then

g a2

> dx
Jnt1(9) = / 2k+1 S ( J ) :
1 Thyr Th1

25




Apply the change of variables

Thus

This completes the induction argument. We now put g = e“™ where A > 1 is to be chosen.
We now find that

n—1 ;
2" Q”A” n' 2m A"
H(En(e em 2; ,2; il < eAn

Now choose A so that 1+ 1log2 +1log A — A < 0, from which it follows

i :un(eAn) <00
n=1

Thus, by Borel-Cantelli, every number «, apart from a set of measure zero, belongs to only
finitely many of the sets E,(e"). Thus for almost all o € (0, 1), there exists N(a) such
that for n > N(a), we have a;...a, < e". But ¢, = @,¢u-1 + Gn_2 < 2a,¢u_1, hence
Gn < @103 ...a,. Thus for almost all a and for n sufficiently large in terms of a, we indeed
have ¢, < e(At1982)" a5 required. O

el — 6(1—&—log; 2+log A—A)n‘

In 1935, Paul Lévy proved that for almost all « in the sense of Lebesgue measure we have

72

lim (g, (a))Y" = et2ioez
n—oo

He used probability theory. We will prove this using ergodic theory instead. Consider
the probability space (X, B, i) consisting of a space X, a o-algebra B and a non-negative,
countably additive measure p on X with p(X) = 1. We say that T' is a measure-preserving
transformation of (X, B,u) if T: X — X, u(T~Y(B)) = u(B) for all B € B, and B € B =
T~Y(B) € B. Let L consist of the measurable functions f : X — R which are integrable.
Then if T' is measure-preserving and f € £’ then [ fdu= [ foT dpu.

Definition 19. Let T be a measure-preserving transformation on a probability space (X, B, ).
Then T is said to be ergodic if whenever B € B and T~'B C B then pu(B) =0 or u(B) = 1.
26



Theorem 19 (Ergodic theorem). Suppose f € L' and T is ergodic. Then, for almost all
x € X, we have

1 .
- o) =
lim =% | f(T7x) —/ fdp
=0
Proof. The proof can be found in a book on ergodic theory. O

14. OCTOBER 21

Let X = (0,1). Let B be the o-algebra of Lebesgue measurable sets on (0,1) and let
be the Lebesgue measure on (0,1). Let T : X — X by T'(z) = 1 — |1|. Note that T is not
measure-preserving with respect to p and so we modify p. We define 1 to be the measure

for which for all f € £/,

1 [t f(2)
= dx. 23
i (f) log2 J, 1+a € (23)
Observe that X is a probability space with respect to pq since
p(lx) = 1.

Note that determines p;. We claim that 7' is measure-preserving with respect to ;.
instead of all measurable sets on X, it suffices to check that T is measure-preserving with
respect to each interval (a,b). We have

01 1
~1 i
g <a’b)_U<b+n’a+n>’

n=1

since if z is in (35, =) then Tz is in (a,b). In particular, T'(1/(b+n),1/(a +n)) = (a,b)

for all n € Z,. Further, there is no longer set sent to (a,b) by T'. Certainly, the set

G 1 1
~“ \b+n'a+n

n=

is measurable. Further,

(T~ (a, b Z‘“ (b—}l—n a+n) logQZ/W




But

ilo atn+1) | (bintl _ilo atntl | (atn
— S\ a+n S\ brn _n:1 S\brn+1 \bo+n
| a+ N +1 | a+1
= o — ) —1lo .
S\brN+1 S\bvr1)
and as N — o0, this tends to log (Z*Ti) Therefore

B 1 b+1 1 b dx
(T 1<a,b>>=10g210g( ) [~ mlan),

at+1) log2 ), 1+
Thus p; is invariant with respect to 7. This was understood by Gauss in 1812.
Note that o, = a,, + al+1, forn=20,1,2,.... Further a; > 1 fori=1,2,...,
1 1
T(—) =, — |la,| = o, —a, =
[67% Apt1
forn = 1,2,.... It can be proved that T is ergodic. Thus we can take k to be a positive

integer and f to be the characteristic function of ((k+1)~1, k~1). We now apply the Ergodic
theorem to deduce that for almost all x in the sense of Lebesgue measure,

n—1 1

1 , 1 kodx
lim — Tiz)y= [ fdu =
Y 2 S(T7) forim=g [, 15

k+1

L (og(14+3) —tog (14 2 L oo (4D
log2 \ B\ Tk S\ TR log2 ® \k(k +2)

This tells us that for “almost all” real numbers « the frequency with which the n-th partial
quotient of « is k exists and is equal to

w2 (1773

Gauss conjectured this fact, and it was first proved by Kuzmin in the 1920’s. The Gauss-
Kuzmin theorem tells us that for almost all « in the sense of Lebesgue measure the frequency
of 1’s is .41503..., of 2’s is .169925..., 3’s is .0931 ..., 4’s is .0588..., and 5’s .0406....
The expected frequency of odd partial quotients is

1l (25)?
0= joga 210 ((zj Dt 1>>

Jj=1

and the frequency of even partial quotients for almost all o is 1 — 6. But 6 > % and this
contrasts with the fact that for almost all real numbers « in the sense of Lebesgue measure
the frequency of even decimal digits in the base-10 expansion of « is % as is the frequency of
odd decimal digits. The frequency with which a partial quotient of « is at least k is

— (54 1)
o3 21 (j(j T 2))

Jj=k

for all real numbers « except on a set of measure zero.
28
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Observe that if @ = ag € (0,1) then ap = a; . Thus
1 1 1

T(a)=— — L—J =a;— o] =—.

&%) (&%) (%)

So T(a) = T(a™t) = ay'. More generally, we have T"(a) = T"(a;") = a;,1; for n > 0.
Further, let a,, = |, for n > 0. Thus

a1l -y = VLT()(O‘)_IJ LT1(04)_1J . LTn—l(a)—w’

n—1 n—1
1 1 1
— loga; = — log<{,—J).
n jz_; ) ]Z_; Ti(cv)

Take f(x) = log |z~ '] and apply the Ergodic theorem to deduce that for almost all x in
(0,1) in the sense of Lebesgue measure we have

JﬂnZMW___/ {Jxﬂ
n dx

= 1
10g2;/i1 Ogna:—irl

= logn
= log(1
;logZ og(1 + )

and so

3=

or equivalently,
logn

M——aﬁn(”+%)“.

(n+2
First note that for o in (0,1) with the first n + 1 partial quotients 0, ay,...a, we have

0,a1,...,a,] = p” 0 [ay, ..., a,] = g” We now note that

Gn = a1, ..., anllag, ..., an] - [an]
since if [a;,...,a,) = £ then [aj41,...,a,] = 2. So we have a telescoping product with first
term 2 and last term 4. (Aside: since ¢j/¢j—1 = [aj,...,ai] for j > 1 and so we have
Gn = [an, ..., a1][an—1,...,a1] -+ [aq].) So it follows

P\ (o () P\

o = <_n) T (_n> e <_n) |

an an dn

We will now prove that if the first n + 1 partial quotients of « are 0, aq,...,a, then

< 277(77, i— 1)+1 (24)

log T" () — long( ">

dn
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it suffices to prove for ¢ = 0 by induction on n. Since « is in an interval with endpoints

Pnand 22tPn=t - Hepce
a pn+pn—1
log ( )‘ < |log —q"J;i"’l .
pn/Qn q_n

dn qn+qn—1

But
Gn PntPo-1 Pol@nt )| 1
Pn Gnt o1 Pulln+ @) Pal@n + @)
Thus log (pno/‘qn> = log(1+t) where |t]| < m. Now |log(1—x)| < 2z and |log(1+z)| <
xfor0<x§%. Thus
Pn 2
loga —log—| < ————
wl Puldn + Gn-1)
forn=1,2,.... Since ¢, > 2%(”*1), it follows
n 2
1oga—logp— < —
dn 2
forn =1,2,..., as required. This proves . Therefore
n n—1
7 i [ Pn -1 n—i—1)
logT"(a) —log T (—)) <2) 273l
/1Y 2 2v/2
§2Z<—) - = V2 Gsp..<7
=0 V2 -7 v2-1
Since )
—loggy, = > logT" (lﬁ) ,
=0 n
we have

1 1

- 7
- "Llog T a) + log g, -,
n (Sumz o 108 ( ) 0gq. ) < o

and so for all irrational o we have
n—1
.1 i —1 _
Jim (EO log(T" ()™ — log qn) =0.

Thus by the Ergodic theorem with f(x) = log% for almost all z in the sense of Lebesgue
measure it follows

n—1 1
.1 : N | 1\ dx
tim oo = Jim Sty = o [ios (1) S5

Equivalently,
lim gi/n = ez Jo o835

n— o0
for all o except at a set of measure zero. To obtain Lévy’s theorem, it suffices to prove that

/11 1 dx w2

og [ — = —.

o B\Z) a1 T 12
30




And we shall continue next Monday.

16. OCTOBER 26

Let f(X) =1logz so f'(x) =27, Let g(z) = log(1 + ) hence ¢'(z) = (x + 1)~'. Thus we
have

/0 (f(@)g () + 9(x) f'(2)) dz = g(x) f ()]}

Thus it follows that

s log(1
/ ( 8T | og( —HE)) dx = lin%logxlog(l—l—a:)—lir%logxlog(qux) =0-0=0.
0 z— r—

r+1 x
dx e (D) de
1 1 e
i og( —I—x)x /0 (Z ; "

Hence we have

/1 (1) dx
log | —
0 x :B~|—1

\

h=1

1 o0 _1 h..h oo 1 _1h h
:/Z(h—)f“:Z/ Cl

0 p—o + h=0 "0 +
_i (- 1 L1
— . -

£ (h+1) 22 " 3

<1 =1 2
p— ——2 —_ —_—

;hQ ;(2@2 12’

as we wanted.
Dobrowolski in 1979 proved that if € > 0 and « is a non-zero algebraic number of degree

d with ;
log log d
14 (1
o) <1+ (14 2) (L)

then for d sufficiently large in terms of €, the number « is a root of unity. He needed three
new ingredients. The first is a sharper version of Siegel’s lemma. The proof is essentially
along the same lines. We need the estimate for the size of the coefficients to improve if the
number of variables is more than 2d times the number of unknowns. This feature goes back
to Siegel.

Theorem 20 (Siegel’s lemma II). Let b;;,1 <i < N,1 < j < M, be algebraic integers in a

field K such that for each J not all of the b;;’s zero. Let [K : Q] :=d and let 01,...,04q be
the embeddings of K in C. If N > dM then the system of equations

N
ZbijxiZO,lﬁjSM

Jj=1
has a solution in rational integers xq,...,xn, not all 0, whose absolute values are at most
1 amM
v N—dM
N—I— 1) HHmax|ak i)
j=1k=1
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Proof. Similar to the previous version! O
The sharpest form of Siegel’s lemma known is due to Bombieri and Vaaler.

Lemma 2. If a is an algebraic number of degree d and P = {p prime : deg(a?) < d} then
log d

|P| < :
log 2

Proof. Let aq,...,aq be the conjugates of a. For integers s and j with 1 < 57 < d we put
I(s,j) = {i:aj = aj}. We first note that
[1(s,7)| = [ (s,1)] (25)

for 1 <t <d,1<j<d, since there is an element A € Gal(Q(ay,...,aq)/Q) which sends
a; to oy and induces a permutation on the remaining roots. This remark also tells us that

if I(s,j) # I(s,t) then

I(s,j)N1I(s,t)=0. (26)
Next we prove that if » and s are coprime then
(i) N I(s,5)] < 1. (27)

To see this, suppose that k,l € I(r,i) N 1(s,7). Then

(af =aj) AN(of =) = o = o]
and

(a =al) A (o] = ozg) = ) = q.
Therefore

al(f’s) = ozl(r’s) = ar=0q=>k=1,

as required. Next we observe that if (r,s) = 1 then

[L(rs, )| = [ (r, g)| - (s, 7). (28)

By each of the I(s, k)’s have the same cardinality and by , we see that follows.
But then since

27 < T H(p.i) < |1 (Hp, z) <d,
peP peP
it follows that
P < 8e
log 2
as desired. O

17. OCTOBER 28 & OCTOBER 30

Remark 7. In the proof of Lemma [2| we needed coprimality to ensure every term in the
union occurs at most one time.

The next lemma that we need is the crucial new ingredient in Dobrowolski’s argument. It
allows us to replace the lower bound of 1 for the absolute value of the norm of an algebraic

integer with something much longer based on a congruence argument.
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Lemma 3. Let a be a non-zero algebraic integer of degree d with conjugates o = v, . .., ayq.
Let f be the minimal polynomial of av over the integers. Suppose that o is not a root of unity.
Then for integers r and s with 1 < s < r, we have

a; #aj for 1 <i,j <d.

Further, we have

Proof. 1f o = af then o is a conjugate of af. Thus there exists an element o € Gal(Q(ay, . . ., ,)/Q)
such that o(al) = af. Let k be the order of v in Gal(Q(av, .. ., a,)/Q). Thus o = id. Then

af =o*(af") = ("))
E—1/ r*=T\\s sk
= (0" (o ))=-=qaf.
Since «; is non-zero it is a root of unity.
For the second claim, we put
d
H r—af
=1
Then f(z) := f,(z) + pg(z) with f, and g € Z[z] by Fermat’s little theorem. Further,
d d
[T 7@)| = [I1(f(a?) +pg(al)
i=1 =1
d
=p"|[J9(e?)
i=1

Since « is not a root of unity by the first part of the lemma,

d

[T @) #0
and so

[T gt

=1
d

is non-zero. But [] g(o;) is an integer and so at least one in absolute value and the result
i=1

follows. O

Theorem 21 (Dobrowolski). There exists a positive number ¢ such that if o is an algebraic
number of degree d > 3 and « is not a root of unity then

log log d) 5

M(oz)>1+c( log d
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Proof. We first construct by means of Siegel’s lemma and the assumption that

1 [loglogd 5
I+ —=—= . 29
Mie) < +200( log d ) 29)
Let F be a polynomial with small integer coefficients which is divided by a high power of f.
Put
2
N d 4logd
log log d
and

A — 4logd |
log log d

and suppose that d is large enough so that

log d
> 1.
log log d
The result is immediate if a is not an algebraic integer so we may suppose that « is an
algebraic integer. Suppose that a = ay, ..., a4 are the conjugates of o and that
d

f(z) =] - )

i=1

is the minimal polynomial of a. Put

N
F(zx) = Z a;x’,
i=1

and consider the M equations

FO ()= Y i(i—1)(i—2)-- (i — M + 2)a;a' M = 0.

i=m—1

We apply Siegel’s lemma II to find integers aq,...,ay not all zero for which holds
satisfying

max |a;] < (2\/§(N + 1)(N<1+2+---+M>dM(a>NM>rhf> | etz

100/99

< (2\/§(N+1)M;-1M<a)%>w’
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and since 2v/2(N + 1) < N3/2 for d sufficiently large, we have

M+4 dlogd

max |a;| < (NTM( )*> " Lloglong
< Nll/ZOM(a)Slogd/loglogd‘

Recalling we see that for d sufficiently large we have max|a;| < N3°. We let F be

defined by the a; so that f(z)™|F(z). We will show that F has many other zeroes. In fact,
too many! Let p be a prime with

1 2 2
ogd e 40(log d) .
log log d

Then F(z) = f(z)Mg(z) with g € Z[z]. We claim that a? is a root of F. To see this, note

that
d
H F(a?
i=1

where Y 1= N?/3M(q)bled/loglogd  On the other hand, by Lemma

d
I1f
i=1
provided that « is not a root of unity. Assume that « is not a root of unity. Then since
F(x) = f(x)Mg(x), either a” is a root of F or

| Noayq Fa?) = p™. (31)
Comparing and we find that
p™ < (NY)IM(a)N?

| No/e F(e?)] = < (NY) "M (a)™?, (30)

so we have N
p < N¥SM(a)a?
ogd

But pM > ('8 lgd(itia) — g4 for d sufficiently large, whereas N%° < d? for d sufficiently
large. Therefore

PM/2 < M( )%
But then

M N
—logp < —plog M(«),
2 d

SO

2N p
< 20
— dMlogp
8logd 99 log d
~ loglogd log log d

log M(«)

2
) log M (o)
for d sufficiently large. Therefore

1 [loglogd\®
— (=220 < .
176 ( log d > < log M(«) (32)
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But by and the inequality log(1 + x) < z for > 0. We see that
1 (loglogd ’
1 < —
og Mla) < 355 ( log d ) ’

which contradicts . Therefore, since d is not a root of unity, o is a root of F. But
then of, ..., o) are roots of F. Further, by Lemma , for distinct primes p; and p, we have
ot # af? for all i and j. Further by Lemma , af, ..., ol are distinct for all but iig primes.
The number of primes which contribute d distinct roots is at least

40(log d)*\? logd \” log d
| —— ) —7| | ——— —
loglog d loglog d log 2
which by the prime number theorem is at least
3 log d 2
log log d

for d sufficiently large. On the other hand, we have

1 2
N < 16d [ 84
log log d

which is a contradiction. Thus the result holds for d sufficiently large and so for d > 3. [

18. NOVEMBER 2

Remark 8. Ideas of the proof goes as follows:

(1) Construct a polynomial F' € Z[z] with “small” coefficients divisible by a large power
of the minimal polynomial of «.

(2) Show that F' has zero at o® for primes p “not too large”.

(3) Show that these give many new zeroes of F.

(4) Then we get too many new zeroes if « is not a root of unity.

(5) Note that all steps under the assumption that M(«) is “small”.

Time to return to the approximation of algebraic numbers by rationals.

Theorem 22. Let o be an algebraic number of degree d > 1. This is an effectively computable
positive number C(«), which depends on «, such that
C
‘oz P > (a)
q q

for every rational p/q with q¢ > 0.

Proof. Let f be the minimal polynomial of a over the integers. We may assume that « is
real since otherwise we can take

C(o) = min |a — z|.
rzeR

Then, since « is not rational, f(p/q) # 0. Thus by the mean value theorem, we have

L<lr(2) :'ﬂa) s (g)\ < a—§‘|f’(9)| (3)

¢




where 6 is a real number between 2 and a.. Note that the results holds if [a —£| > 1 so we may
assume that [a—£| < 1. Suppose f(z) = agr®+- - -+ajr+ag. Then f'(x) = dagr® '+ +a
and so

O] < dlaal(la] + 1) + -+ ad]
and by the results holds with C'(a™!) equal to d|ag|(|af + 1)Tt + -+ + |ay]. O

As we mentioned previously, an immediate consequence is that

v = i 10
n=1

is transcendental. To see this, take

k
pr = 10") 107", g, = 10",

n=1

Then ) )

Pk

‘7_ a < 10(+1D)! < ql’z+1' (%)
If ~ is algebraic of degree d then
C
’ Lol (3)
qk qx

for some C(#) > 0. But then by () we have ¢it'~? < 2C(v)~!. This gives contradiction for
sufficiently large k.

19. NOVEMBER 4

Let a be an algebraic number of degree d > 1. Consider the inequality

a-Pl< L

qf q*
Liouville’s result showed that has only finitely many solutions § with © > d. Thue in
1908/1909 showed that has finitely many solutions § with p > g + 1. Siegel in 1921
improved it to [L(Q\/E). Dyson showed the same result for 4 > v/2d. Roth in 1955 showed
that the result holds for p > 2. However, none of the proven results are effective.

(34)

Theorem 23 (Roth’s theorem). Let a be an algebraic number and let § be a positive real
number. There are only finitely many distinct rationals § with ¢ > 0 for which

P 1
o — 5 < F (*)
Motivated by the typical behaviour of approximation to a real number one might conjec-
ture — an indeed Lang has — that holds with (12% replaced by W. However there

has been no improvement on obtained yet. Notice that Roth’s theorem tells us something

about the growth of the partial quotient of a. In particular, a,,; < ¢2, for all but finitely

many n’s. Note that ¢o = 1,¢1 = a1q0 + 1,...,¢n = anqu-1 + @n_o. Thus for n > 2, we

have g, < (a; +1) -+ (a, + 1), and so a, < ((a; +1)(ag +1) -+ (a, + 1))%, for n sufficiently

large. It follows from this observation that loglog g, < Ci(a)n for a positive number C ().
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In 1955, Davenport and Roth did slightly better. They proved that for all real algebraic

irrationals we have
n

Viegn'

Perhaps the most important consequence of Roth’s theorem is its use in the study of Dio-
phantine equations. Let m be a positive integer and let

loglog ¢, < Co(a)

F(:C, y) = adxd + ad,lxd”y 4+ aoyd
be a binary form of degree d > 2 with non-zero discriminant. The equation
F(:L‘7 y) =m

in integers x and y is known as a Thue equation. For example, 23—2y3 = 6 is a Thue equation.
Over C we can factor F' in the following manner: F(z,y) = Li(z,y)La(z,y) . .. La(x,y) where
Li(z,y) = vix + d;y for i = 1, ..., d. Factor with the ; and ¢;’s algebraic numbers. Since F’
has non-zero discriminant, any two linear forms L; and L; with ¢ # j are linearly independent
over C. Let (z,y) be a solution of F(z,y) = m. We may order the linear forms so that

0 < |Li(z,y)| < |La(z,y)| < -+ < |Lalz,y)|.

(Since m # 0, |Ly(x,y :)] > 0.) Now if 94 = 0 or dy/v; is in Q, then |L;(z,y)| > ¢; for some
positive constant ¢;. If 91 # 0 and y = 0 then |Li(x,y)| = |y1|(Jz| + |y|). Finally, if 1 # 0,
01/ is irrational and y # 0 then

x
Li(z,y) = ny (— - a)
Y
where
01
o
For every € > 0 we have, by Roth’s theorem, that

o =

1 —1—¢
Ealy)l 2 Colas €) i 2 Cola ) (el + [yl) e

Since L, and Ly are linearly independent over C, we have

1
|La(z,y)| 2 5 ([La(2, y)| + [La(z, y)l) 2 C(|a] + Jy))-
Thus
|F(z,y)| > Ca(ev, £)C5 (|| + [y (|| + Jy]) ™"
> Cula,e)(lz| + y|"2 .

Therefore if F' is a binary form with integer coefficients and with non-zero discriminant and
with degree d > 3, then there are only finitely many integer pairs (z,y) with

0 < [F(z,y)] < (Jz| +ly])’

where 6 is a real number with 0 < 6 < d — 2. In particular, the Thue equation has only

finitely many solutions.
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20. NOVEMBER 6

A vast generalization of Roth’s theorem is Schmidt’s subspace theorem. To se the stage
for it we first state, without proof, a generalization of Liouville’s theorem.

Theorem 24. Suppose that 1,aq, ..., «, are real algebraic numbers which are linearly inde-
pendent over Q and the degree Q(av, ..., a,) over Q is d. Then there is a positive number
¢ such that

lagr + -+ + g — pl > cg”
for all integers qi, ..., q, and p with q := max |g;| > 0. Notice that if n = 1 then we recover
Liouwville’s theorem.

Theorem 25 (Schmidt). Let 1,aq,...,a, be real algebraic numbers which are linearly in-
dependent over Q. Let 6 > 0. Then there are only finitely many n-tuple of non-zero integers
qiy---,Qn with

|2 ol lloag + -+ angnl| < 1.

Apply Theorem [25 to all the non-empty subsets of {ay, ..., a,} Schmidt obtained.

Corollary 1. Let 1,aq, ..., a, be real algebraic numbers which are linearly independent over
Q. Let § > 0. There are only finitely many (n + 1)-tuple of integers qi,...,q, and p with
q := max |q]| > 0 for which

laiqy + -+ angn — p| < v

Schmidt also proved the following result.

Theorem 26. Suppose a,...,a, are real algebraic numbers with 1,4, ..., ay, linearly in-
dependent over Q. Let 6 > 0. Then there are only finitely many positive integers q with

¢ gl langll < 1.

As an immediate consequence of Theorem [26| we have

Corollary 2. Let aq, ..., a, be real algebraic numbers with 1, aq, as, . .., oy, linearly indepen-
dent over Q and let 6 > 0. Then there are only finitely many rational n-tuples (%, e %)
with
Pi 1
&~ q| gt
fori=1,...,n.

Definition 20. We define the house of x (written [X]) as

X := max |z;|.
We will deduce Theorems [25] and [26] from a result proved by Schmidt in 1972.

Theorem 27 (Schmidt subspace theorem). Suppose Li(x), ..., L,(x) are linearly indepen-
dent linear forms in x := (x1,...,x,) with (real or complex) algebraic coefficients. Let § > 0.
There are finitely many proper subspaces Ty, ..., T, of R™ such that every integer point x
with x # 0 and
Ly (}) La(3) -+ Lo(x)| < 570
lies in one of these subspaces.
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Remark 9. A few remarks on the subspace theorem:

(1) The result is not effective and so one cannot determine the subspaces 11, ..., T, from
the proof.

(2) The integer points in a subspace T span a rational linear subspace. That is a subspace
defined by linear equations with rational coefficients. Thus 77, ...,7T5 may be taken
to be rational subspaces.

(3) The proof is difficult as it is a substantial generalization of Roth’s theorem.

21. NOVEMBER 9

Let us deduce Theorem [26| from the subspace theorem.
Proof of Theorem [26. Suppose ¢ is a positive integer fo which
¢ llaag] - amgl < 1.
Let p; be an integer for which ||a;q|| = |a;q — pi| for i = 1,...,n. Then put
(x) = (21,22, ..., Tpy1) = (D1, -+, Py Q)-

Let C, (Y, ... be positive numbers which depend on ¢ and ay, ..., «a,. Plainly we may take
C so that

Xl < Cgq.

We consider the linear forms

LZ(X) = Oéan+1 — Xz for 1 S 7 S n

and
L,i1(X) = Xpia-
Then
| L1(x) La(x) - -+ Lysa (%) = [laaglllleagll - - - llemallg,
SO

Li(x) - Lo ()] < ¢7° < =

for ¢ sufficiently large, as we may assume.
Then, by the subspace theorem, x lies in one of finitely many subspaces Ti,...,T,. A
typical subspace T is defined by

CiXi+ -+ Ch1 X1 =0
for C,...,Chy1 € @, not all zero. Then for x € T, we have
|Ci(ang = p1) + -+ + Culang = p)| = [(Cron + -+ + Cron)q — (Cipr + -+ - + Cpy)|
= |(Cray + - + Crap + Chya)q| > Cag,
since 1, ayq, ..., a, are Q-linearly independent. Thus we have
Coq < |Cyl[longl| + - - - + |Culllang|| < |Cif + -+ + |Cal,
hence ¢ is bounded as required. [l

Next we shall deduce Theorem [25| from the subspace theorem.
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Proof. We shall prove the result by induction on n. The result when n = 1 follows from
Theorem 26| Assume that qq, ..., g, satisfy the hypothesis of Theorem [25 Choose p to be
an integer so that

Halch + -+ anQn” = ‘QIQI +--+ Qndn _p|'

Write x = (21,...,Zn41) = (¢1,---,qn,p). Then there exists a positive number Cj which
depends on «aq, ..., a, and § only such that
Xl < C3q,

where ¢ = max |¢;|. Put

Li(X)=X;fori=1,...,n,

and
Lopi(X)=an Xy + -+, Xy, — Xy
Then
|L1(x) La(X) -+ - L (X)| = |1 - - - gullloagy + -+ - + g
S1)

1 1
[L1(x) -+ Lnya(x)] < 0] < =?°/2

for ¢ sufficiently large. Then by the subspace theorem x lies in one of finitely many rational
subspaces. Let T' be such a subspace containing x. Then 7' is defined by

Ole + -+ On+1Xn+1 = 07

with C4,...,C,y1 in Q and not all zero. Then either one of Ci,...,C,, is non-zero or
Ci,...,C, are all zero and C,, 1 # 0. In the first case, we may assume without loss of
generality that C), # 0. Let us now consider the firs case. Then

Cntn = —Ciq1 — -+ — Co1@n—1 — Crap,
SO
Crhongn = —Cranqgr — Cr10Gn—1 — Chai1ap,D.
Thus
Calloagr + -+ + angn — p| = [(Crhar — Cra)qr + -+ - + (Cran-1Cn—100)gn—1
- (Cn + Cn+1an)p|
= |y + Crprv) (%) G+t
Choop1 — Ch_q00p
< Cn+ Chiia, ) -1 —p‘
= [CoCrrram|loiqr + -+ + af_1Gn—1 — pl.
Threfore, there exists a positive number C4 which depends on «q, ..., a, and ¢ such that
! / Cy 1
|l + -+ al,_1qn] < g < 0t G [T
for g = max |g;| sufficiently large. To complete our induction we must check that 1,a4,...,a/,_;

are Q-linearly independent.
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WE now check that 1,a/),...,a/,_, are Q-linear independent. Observe that if \ja +-- -+
A1+ al,  +X =0withAeQfori=1,...,n. Then

)\I(Cnal - Clan) + -+ Anfl(cnanfl - Cnflan) + /\n(Cn + CnJrlan) =0.

Hence

MCrag + -+ A1 Cray—1 — (MCL+ -+ X21Ch1 + Crgn)ay, = 0,
But then \; = -+ = A\, = — and so 1,a},a},...,a,_1/ are linearly independent over
Q. Then in this case, by induction |¢|,...,|¢,| are bounded. It remains to consider the
possibility that C; = --- = C,, =0 and C},;1 # 0. Then C,,;1p = 0 hence p = 0 and in this
case

1o -+ gl PP lanqy + - angal < 1.

In this case

o Oy
‘ql"'Qn71‘1+6‘04n| (_1) Q1++ ( I)in_'_QTL < 1.
Qp an
Put o = o;/a,, fori=1,...,n — 1. Then
01g2 Gt [T ol qn 4+l gt +gn] < 1
for ¢ = max |g;| sufficiently large and the result again follows by induction. O

In a similar way we can deduce the following result from the subspace theorem:

Theorem 28. Let ay; be real algebraic numbers fori=1,...,n and j =1,...,m. Suppose
that 1,1, ...,y are Q-linearly independent for t = 1,...,n. Let 6 > 0. Then there are
only finitely many m-tuples of non-zero integers (qu,. .., qm) for which

|(J1 T (Jm|1+5 H ||ai1Q1 + - azQOH <L
=1

Instead of approximating algebraic numbers by rationals we can approximate by algebraic

numbers.

Theorem 29. Let n be a positive integer and € > 0. If a is an algebraic number of degree
greater than n then there are only finitely many algebraic numbers |beta of degree at most n
for which

oo = B < Ho(B) ™17~
Recall that Ho(B) denotes the naive height of (.
Proof. We take a; = o for j = 1,...,m where m is the degree of . Then 1,q,...,q;

are linearly independent over Q since m < n. Let P(z) = a,2™ + - - - 4+ ag be the minimal
polynomial of 5. We first note that if

P(z) = ap(z — B1) -+ (2 — Bm)
then

|P()] = lamlle = Bl - -+ o = P
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where 5 = ;. Thus

[P()] < | = fBl|am] H(QmaX(IOéI, 16i]))

< Ja = betal|ay,| ] [ 2(max(1, |af)) (max(1, |5]))

1=2
< lo = Bllam| (2max(1, |af))"~* ] [ max(1, |6])
=2
< |a = BICyHo(B), (35)

where (' is a positive number which depends on a and n.
On the other hand, by the corollary to Theorem [25 for each € > 0,

02 (047 n; E)
Pla)| > ————. 36
Pl)l> GG (36)
The result follows from (35 and (36)). O

This result can be contrasted with Leveque’s theorem.

Theorem 30 (Leveque). Let K be a finite extension over Q with [K : Q] = n and let o be
algebraic of degree d over K. Let € > 0. There are only finitely many B € K for which

o = B < Ho(B) "
Suppose that F' is an irreducible binary form of degree d over Q. Suppose the leading
coefficient of F'(x,1) is 1. Then
F(z,y) = (X —a1Y) - (X —agY),
and put K = Q(ay). Then F(X,Y) = Ng/g(X — oY),

22. NOVEMBER 13

Let K be an algebraic number field of degree d over Q. There are d isomorphic embeddings
©1,...,0q of K into C which fix Q. We denote the image of o in K under ¢; by a® for
1=1,...,d. Thus for a € K, we have

Given a linear form
M) =X+ + apn Xy,
with o; € K fort=1,...,n. We write
d d
NOM() = []MO) = [J@ X1+ +af X,).
i=1 i=1
Definition 21. A form F(x) with F/(X) = N(M(x)) for some linear form M with coefficients

in K is said to be a norm form.
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Thus for example if v/2 and M (X) = X; — v/2X, then N(M(x)) = X — 2X3, whereas if
M(x) = X1 4+ V2X, + V4X5,

then
N(M(x)) = X{ —2X3 +4X3 — 4X?X2 + 8X, X2 X3,

Note that a norm form is a homogeneous polynomial of degree [K : Q]. If the coefficients

aq, ..., a, of the linear form M (x) are algebraic integers then the coefficients of the norm
forms are integers. Let a be a non-zero integer. The equation

N(M(x)) = a (37)
in integers 1, ...,x, is known as a norm form equation. Put M = {M(x) : x € Z"}. M

is a Z-module since M is an additive abelian group; and for all » € Z and m € M we have
rm € M. And for all r,s € Z and m,n € M,

e r(m+n)=rm+rn

o (r+s)m=rm-+sm

e r(sm) = (rs)m.

el-m=m.
Thus we can view the norm form equation (37) equivalently as N(u) = a with p € M. We
will now show that a module M in K has a basis. That is a system of generators which
is Z-linearly independent, i.e., ajay + -+ + apa,, = 0 with a; € Z for + = 1,...,n then
a; =---=a, = 0. We will deduce this from the following result on abelian groups.

Theorem 31. If an abelian group has no non-zero element of finite order and it possesses
a finite system of generators then it possesses a basis.

Proof. Let aq, ..., a5 be a system of generators of the group M so M = (ay,...,as). Note
that for any k& € Z we have

M = (a1 + kag, ..., a0, ..., Qg),
since if @« € M and o) = a1 + kay then
a=ciog+ -+ o5 = 1o + (ca — key)ag + -+ + csa,
so « is an integer linear combination of o), ..., as. If ay,..., a, are Z-linearly independent
then they form a basis. If they are linearly dependent then
croq + -+ csas =0 (38)

with the ¢;’s integers and not all zero. Suppose, without loss of generality, that ¢; # 0 and
that ¢; has the smallest non-zero absolute value. Suppose that ¢; does not divide all the
other ¢;’s. Without loss of generality, we may suppose that ¢;1c. Then ¢y = gey + r with
0 < r < |e1]. We now consider the system of generators of = ay + qag, as, ..., as. Then
becomes

10 + rag + czaz + - - + csa = 0. (39)

Therefore the generators are linked by a relation with a coefficient which is non-zero and
smaller in absolute value then |c;|. We now repeat the argument. After at most |c;| steps
we must arrive at a system of generators i, ..., s and a relation

kifr+ -+ ksBs =0
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where ki, ..., ks are not all zero, ky # 0 and ky | k; for all i = 1,...,s. Thus 81 + 18+ -+ -+
ls6s = 0, where

k1
for i =1,..., s since 0 is the only element of finite order in the group. Thus we may express
p1 as an integer linear combination of fs,...,3s so M = (Ba,...,5s). We now repeat the
argument with S, ..., 35 if Ba, ..., s are not Z-linearly independent. Eventually, after a
finite number of steps, we eventually arrive at a basis. 0

23. NOVEMBER 18

Some remarks on the connection between the height and the naive height of an alge-
braic number a: Recall that a is of degree d with conjugates a; = o, ..., ay and minimal
polynomial f over the integers, say

f(z) = agz® + - 4+ ayx + ay,

then the naive height Hy(«) is given by Hy(a) = max(|aql, - .., |ao|) and the height H(«) is
given by the positive real number H(«) satisfying

d
H(o)* = M(f) = |aq| | [ max(1, |as)).
i=1
Recall from Jensen’s theorem that

i)' = exp ([ 10s17(647%) a0)

0

1
< exp (/ log(|ag| + -+ + |ao|t) dQ)
0

< explog(|aq| + |ag—1] + - - + |aol)
<lag| + -+ |ao|
< (d+ 1) Hya).

Further, we have
Hy(a) < (2H(a))",

on noting that the a;’s are elementary symmetric functions in the conjugates of a. The j-th
such function has (j) terms, each smaller in absolute value than H(a)? Further we have
() <2

In 1900, Hilbert produced a list of 23 problems which he felt were of fundamental im-
portance for mathematics for the international congress in Paris. His tenth problem was
the following: can one find a universal method or algorithm for determining if a polynomial
equation f(xy,...,z,) =0 with f € Z[zq,...,x,] has a solution in integers z1,...,z,?

The answer is no, and this was proved by Matiyasevich in 1970 building on work of Davis,
Putnam, and Robinson.The same result has been obtained for certain rings of algebraic
integers in place of Z. However, the answer is not known if we replace Z with Q. One

consequence of Matiyasevich’s work was that one could produce polynomials which had the
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property that every prime occurred exactly one time as a positive value of the polynomial
and no other integers were positive values. Here is an example of such polynomial:

F(a,b,....,2)=(k+2)(1—(wz+h+j—9)°—2n+p+q+z—e)—(a 2y2—y2+1—x2)2
—({e* +2e* a4+ 1) +1 -0 — (16(k + 1)*(k +2)(n + 1) + 1 — f?)?
— ({(a+u* —vu?a)® — 1}{n +4dy}* + 1 — {z + cu}*)* — (az+k+1—l—z)
—({gk+g+Ek+1Hh+ 5} +h—2)?—(16r%y*{a® — 1} + 1 —u?)?
—(p—m+Ul{a—n—1}+b{2an +2a —n® —2n — 2}})?
— (z = pm + pla — p*l + t{2ap — p* — 1})?
—(g—z+yla—p—1)+s(2ap + 2a — p* — 2p — 2)*
— (@ -P+1-m»? - (n+1l+v—y)?).

One striking consequence is that one can give a certificate for a number of to be prime, i.e.,

values for a,b, ...,z which can be verified with only a fixed constant number of additions
and multiplications. Of course, the values a, ...,z may be large in terms of the size of the
prime.

24. NOVEMBER 20

Let K be a finite extension of Q. Since K has characteristic 0 there are no non-trivial
divisors of zero under addition. By Theorem [31] if M is a finitely-generated Z-module in
K then M has a basis. Further the maximum number of linearly independent terms of M
over Q is [K : Q]. Therefore every basis for a finitely-generated Z-module in K has at most
[K : Q] basis elements. The number of generators in a basis for such a module M is said to
be the rank of M. This is well-defined since any two bases for M have the same number of
elements. Notice that if o, ..., a,, and of, ..., ), are bases for M then one basis can be
transformed to another by an m x m unimodular matrix. In particular, by a matrix with
integer entries and determinant +1.

Definition 22. We say that a module M in K is full if its rank is equal to [K : Q).

Theorem 32. The norm form N(ay X1+ - -+ ap,X,,) is irreducible over the rationals if and

0nlyifK:Q<g_i’._. %)

) o

Proof. (=) We have K = Q(oy, ..., a,) and N(a; X7 + -+ + @, X;,) = Ngjg(an Xy + - +
anX,). Further,

N(Oéle + -+ OZan) = N(Ckl) N <X1 + %XQ + 4 _Xn) .
1
Put L:=Q (g—f, ey al) Then we have

(0% (7%
N(a1X1 4+ 4 Oann) = N(Oq) NK/Q <X1 + (1/—2)(2 + 4 _Xn)
1

o Q [K:L]
= N(a1)Nz/q (Xl + a—2X2 + —an) :
1
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Thus so if N(ay X7 + - - - + o, X,,) is irreducible over Q then [K : L] =1s0 K = L.
(<) On the other hand, if K = L then by the primitive element theorem we have K = Q(/5)
for some (8 with
f=ar’ Z iy,
i=2
where cg,..., ¢, € Q. Let [K : Q] = d. Then the degree of 3 over Q is d and so the binary
form N(X + BY') is irreducible over Q. Thus

N(X + BY) —N(X+CQ%Y+~--+cn%Y)
(&3]

:N(X1+%X2+...+%Xn>
(651
== N(Oéle + OéQXQ + -+ Oéan)
is irreducible over Q. 0

Definition 23. Let [K : Q] < co. A full Z-module M of K which contains land is a ring
is called an order of K.

The ring of algebraic integers of K is an order of K. Notice that if O is an order of K
and 1 € O then p € O for h a positive integer. For each Z-module M of K we can find
a non-zero integer ¢ such that cm is an algebraic integer for every m € M. Therefore take
such a ¢ for O and observe that cu” is an algebraic integer for h = 1,2,.... Therefore p is
an algebraic integer. Thus every order O of K is contained in the ring of algebraic integers
of K. For this reason we call the ring of algebraic integers of K the mazimal order of K.

The units in an order O are the divisors of 1. Note that if € is a unit in O then eg; = 1
with &1 € O. Further 1 = N(ee;) = N(¢) N(e1) and since € and ¢ are algebraic integers with
N(e) = £1. Further if N(¢) = £1 with € € O then ¢ is a root of its minimal polynomial over
Z, say x% + ag_127 1 + -+ + ag € Z[z]. Then N(g) = 4ay. Therefore

N(e
gdfl +ad71€d72 + e +@1 — i%,

which is in @. Thus 7! is in O and hence ¢ is a unit in @. Thus the units in @ are the
elements ¢ € O with N(g) = +1. The units in O form a group. In fact:

Proposition 6. Let O be an order in a finite extension K of Q. The group of units it
infinite except when K = Q or K is an tmaginary quadratic extension of Q.

Proof. This is an extension of Dirichlet’s unit theorem to orders — see, for instance, Bouvich
and Shafarevich. O

25. NOVEMBER 23

Proposition 7. Let M be a finitely-generated abelian group with no non-zero element of

finite order. All subgroups N of M have a finite number of generators and so possess a
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basis. Further, if wy, ..., w, is a basis for M then there is a basis vy, ...,vy of N of the form

V] = C1wy + -+ -+ CipWy

V9 = Co2W2 + -+ ConWnp,

Vi = CrpWg + * * + + CpnWy,
where the c;;’s are integers and c;; > 0 fori=1,... .k and k < m.
Proof. Standard argument. O

Thus submodule of a module of K is a module of K i.e., is a finitely-generated Z-module.
Given a full module M of K, let O, denote the set of A\ € K such that AM C M, i.e.,
A € M for all p € M. Oy is known as the stabilizer of M or the coefficient ring of M.

Proposition 8. Let [K : Q] < co. If M is a full module of K then Oxy is an order of K.

Proof. The set Oy, is a ring since it is a non-empty subset of K, contains 1 and if 61,6, € Oy
then 07 + 0y and 6160, are also in O,,. Next observe that O,; is a Z-module since it is an
abelian group under addition. In particular, for all » € Z and for all 6 € O,; we have
r8 € Op since 0Oy for all p € M, it follows rfu € Opg. Further parts (i), (ii), (iii), and
(iv) of the definition of a module hold. Thus O, is a module of K and is a ring with 1.
To prove that O, is an order we must show that O, is a full module in K. Let v € M
with v # 0. Then for all & € Oy we have ay € M hence yOpy € M. Thus 7vOu is a
subgroup of M which is a module and so by Theorem |31] it possesses a basis and is finitely
generated. Thus Oy = 7 1(yOyy) is finitely generated. Let [K : Q] = d. To show that O,
is full, it suffices to find d Q-linearly independent in O,,. Start with aq,..., a4 a basis for
K over Q. Let M = (p, ..., tq), and recall that M is a full module. To test whether « in

K is in O, it suffices to prove that au; is in M for ¢ = 1,...,d. Now we can write
d d
j=1 j=1

with a;; € Q since M is full. For each a we can take c to be the least common multiple of
the denominators of the a;;’s. Then ca;; € Z for 1 < i < d,1 < j < d and so caw € Opy.
Thus for each integer ¢ with 1 < i < d, there is a non-zero integer ¢; such that c;a; is in
Oxq. But then there are d Q-linearly independent terms in Oy so Oy is full and the result
follows. [

Let [K : Q] < co. Let M be a full module of K. Let Ups denote the group of units in
O with norm 1. Uy, is a subgroup of the group of units of Oy, of index 1 or 2, since the
norm of a unit is £1. Thus Uy, is infinite except when K is Q or an imaginary quadratic
extension of Q by Proposition [6| and Proposition[§l Now notice that if a is a non-zero integer
and pu € M is a solution to

N(p) = a, (40)
then for all € € Uy where ey € M and

N(ep) = N(e) N(p) = N(n) = a.
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Thus if M is a full module of K is not exceptional (so not Q or an imaginary quadratic
extension of Q) then has infinitely many solutions whenever it has one non-zero solution.

26. NOVEMBER 25: LAST LECTURE

Recall the norm form equation

N(w) = a, (41)
with © € M. Full modules in K are not the instances where we have infinitely many
solutions of . Suppose that L is a subfield of K and M, is a submodule of M which
is proportional to a full module in L. In other words, My = 7L where L is a module in L
and v € K with v non-zero. Now unless L is exceptional there will be infinitely many A € L
which satisfy

Nijg(A) =b

for some non-zero integer b. But then N(yA) = N(v) N(A) = N(v) (N g(\))FEH = N(v)plK:1) =
a for some a € Q,a # 0. Thus there are infinitely many solutions to for some a in this
situation also.

Definition 24. Let [K : Q] < co. A module M of K is said to be degenerate if it contains
a submodule which is proportional to a full module in some subfield L of K which is not Q
or an imaginary quadratic extension of Q.

We have shown that if M is degenerate then for certain values of a we have infinitely
many solutions to .

Theorem 33 (Schmidt norm form theorem). Let K be a finite extension of Q. Let M be a
module of K. Then the following are equivalent:

(1) there exists a non-zero a in Q for which the equation

N(p) =a

has infinitely many solutions in p in M.
(2) M is degenerate.

Proof. (<) This one is straightforward.

(=) Now this is the hard part — so hard that this proof is the beyond the scope of this
lecture. However we shall remark that this direction follows from the Schmidt subspace
theorem. The full proof will not be provided, however. ([l

Schmidt’s result is not effective. There are some effective methods for solving Diophantine
equations. One of the effective methods is based on estimates for linear forms in logarithms
of algebraic numbers. Gelfand treated the case of linear forms in two logarithms following
his work on Hilbert’s seventh problem. In 1934, Gelfand — and independently Schneider —
proved if a and 3 are algebraic then o # 0,1 and f3 is irrational then o is transcendental.
In 1966, Baker extended this work to the case of linear forms in n logarithms of algebraic
numbers with n > 2. As a consequence, he gave an effective procedure for solving Thue
equations.

With Baker we gave a streamlined version of the argument to treat

2 —ay® =n. (42)
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Theorem 34 (Baker and Stewart). Let a and n be positive integers with a not a perfect
cube. Then all solutions of in integers x and y satisfy

max(je], [yl) < (cin)
where

¢l = 8(501og log €)?
co = 102 loge,

and ¢ is the fundamental unit in the ring of algebraic integers of Q(3/2).

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, 200 UNIVERSITY AVENUE WEST,
WATERLOO, ON, CanADA N2L 3G1

E-mail address: hsyang@uwaterloo.ca

50



	1. September 14
	2. September 16
	3. September 18
	4. September 21
	5. September 23
	6. September 25
	7. September 28 & 30
	8. October 2
	9. October 5
	10. October 7
	11. October 9
	12. October 14
	13. October 16 & 19
	14. October 21
	15. October 23
	16. October 26
	17. October 28 & October 30
	18. November 2
	19. November 4
	20. November 6
	21. November 9
	22. November 13
	23. November 18
	24. November 20
	25. November 23
	26. November 25: Last lecture

