
PMATH 763: INTRODUCTION TO LIE GROUPS AND LIE ALGEBRAS
NOTES

HEESUNG YANG

1. January 05: Introduction

1.1. Outline

(1) Weeks 1–3: Matrix Lie groups and Lie algebras (relations between them “Lie corre-
spondence”)

(2) Weeks 4–9/10: Representation theory of Lie groups and Lie algebras, both abstractly
and via explicit examples (like SL(2,C), SL(3,C))

(3) If time permits: additional topics such as Clifford algebras, exceptional Lie groups,
Spin groups, G2 (octonions), F4 (Jordan algebras)

(4) Prerequisites: group theory, linear algebra, point-set topology, some analysis. We
will focus more on the algebraic aspects of Lie groups and Lie algebras, so not much
analysis is needed. However, group theory and linear algebra are very important.
Manifold theory is not a prerequisite.

1.2. Moving on to the course itself

Definition 1.1. A Lie group is a group that is also a smooth manifold (i.e. locally Eu-
clidean).

Remark 1.1. We will focus on matrix Lie groups (or sometimes called matrix groups). All
matrix Lie groups are Lie groups. Most, but not all, Lie groups are matrix Lie groups. In
some sense, all the important ones are. See Appendix C of the textbook for examples of Lie
groups that are not matrix groups.

We will study the correspondence between G and g.

Date: 1 April 2015.
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Definition 1.2. We say GL(n,C) is the set of all invertible n×n matrices over C called the
general linear group over C. We can define a similar notion over R (write GL(n,R)). We
denote Mn(C) the set of all n× n matrices over C, and Mn(R) the set of all n× n matrices
over R.

Remark 1.2. Both are groups, and GL(n,R) is a subgroup of GL(n,C). Mn(C) resp. Mn(R)
are not groups but are algebras (over C resp. R). Recall that, as vector spaces, we have

Mn(R) ∼= Rn×n and Mn(C) ∼= Cn×n ∼= R2n2

.

(Mn(C) ∼= Cn×n as vector spaces over the field C and Cn×n ∼= R2n2
as vector spaces over R.)

Hence Mn(R) and Mn(C) inherit the natural Euclidean norm

A ∈ Mn(F), |A|2 =
∑
i,j

A2
ij,

inducing the usual topology. There exists other norms, such as operator norms. So a sequence
Am ∈ Mn(F) converges to A ∈ Mn(F) as m→∞ if and only if (Am)ij → Aij.

Definition 1.3. A matrix Lie group (or just a matrix group) G is a subgroup of GL(n,C)
that is closed in GL(n,C) in the topological sense. That is, if Am ∈ G for all m and
Am → A ∈ Mn(C), then either A /∈ GL(n,C) or A ∈ G (equivalently, a sequence in G that
converges in GL(n,C) has a limit in G).

Remark 1.3. Most interesting and important subgroups of GL(n,C) are closed in GL(n,C),
hence are matrix Lie groups. But not all are (see Assignment #1).

Example 1.4. In “some sense”, this list is “almost” exhaustive (we won’t make this hand-
wavy statement precise now):

(0) GL(n,C) trivially. GL(n,R) is a matrix Lie group also, since the sequence in R
converging in C has a limit in R.

(1) SL(n,C) = {A ∈ GL(n,C) : det(A) = 1} and SL(n,R) = {A ∈ GL(n,R) : det(A) =
1} are subgroups because det(AB) = det(A) det(B) and det(A−1) = (det(A))−1.
We know they are closed since det : Mn(C) → C is continuous: lim det(Am) =
det(limAm) = 1.

(2) Consider the following linear form on Rn: let 0 ≤ p, q ≤ n with p + q = n. Define
the bilinear form

〈 , 〉p,q = Rn × Rn → Rn

by

〈x, y〉p,q =

p∑
k=1

xkyk −
n∑

k=p+1

xkyk.

If p = n, q = 0 then 〈 , 〉n,0 is the standard Euclidean inner product. We call 〈 , 〉p,q
the pseudo-Euclidean inner product of signature p, q.

Some properties of 〈 , 〉p,q:
• 〈x, y〉p,q = 〈y, x〉p,q
• bilinear
• non-degenerate, ie. 〈x, y〉p,q = 0 for all y iff x = 0.
• not positive-definite, unless q = 0.
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• 〈x, y〉p,q = xT Ip,qy, where

Ip,q =

[
Ip 0
0 −Iq

]
Definition 1.5. The orthogonal group is defined to be

O(p, q) = {A ∈ GL(n,R) : 〈Ax,Ay〉p,q = 〈x, y〉p,q ∀x, y ∈ Rn},
i.e., the group of automorphisms of Rn preserving 〈 . 〉p,q. O(p, q) is also called the (p, q)-
orthogoral group.

Remark 1.4. O(p, q) is a subgroup of GL(n,R). Also, O(p, q) is closed, since

〈Ax,Ay〉p,q = (Ax)T Ip,qAy = xTAT Ip,qAy.

We want xTAT Ip,qAy = 〈x, y〉p,q = xT Ip,qy, and this is true if and only if AT Ip,qA = Ip,q.
This is preserved under limits, so O(p, q) is closed. If p = n, q = 0, then O(n, 0) = O(n0 the
standard orthogonal group, i.e. {A ∈ GL(n,R) : ATA = I}. Note that if A ∈ O(p, q) then
AT Ip,qA = Ip,q, so det(A)2 = 1. Hence det(A) = ±1.

Definition 1.6. The special orthogonal group of signature p, q is defined to be

SO(p, q) := O(p, q) ∩ SL(n,R) = {A ∈ GL(n,R) : AT Ip,qA = Ip,q, det(A) = 1}.
Also, define O(n,C) = {A ∈ GL(n,C) : (Ax) · (Ay) = x · y for all x, y ∈ Cn} = {A ∈
GL(n,C) : ATA = I}.. Recall that

x · y =
n∑
k=1

xkyk.

This is not a positive-definite inner product but is a non-degenerate symmetric bilinear form.
O(n,C) is called the complex orthogonal group. There is no notion of signature (p, q) over C.

Definition 1.7. U(n) is defined to be

U(n) = {A ∈ GL(n,C), 〈Az,Aw〉 = 〈z, w〉 for all z, w ∈ Cn} = {A ∈ GL(n,C) : A∗A = I},
and we call U(n) the unitary group of Cn. Similarly, SU(n) = U(n) ∩ SL(n,C) is said to be
the special unitary group of Cn.

Remark 1.5. If A ∈ U(n) then A∗A = I, so det(A) det(A) = | det(A)|2 = 1. Thus det(A) =
eiθ for some θ.

Example 1.8. Continued from Example 1.4:

(2bc) O(p, q) and O(n,C) are examples of matrix Lie groups.
(3) Consider the standard inner product on Cn

〈z, w〉 =
n∑
k=1

zkwk = z∗w = zTw

(∗ denotes conjugate transpose). The Hermitian inner product is linear in w and

conjugate-linear in z, i.e., 〈λz, w〉 = λ〈z, w〉 and 〈w, z〉 = 〈z, w〉. Also 〈z, z〉 ≥ 0 with
equality holding if and only if z = 0. Such inner product is known to be sesquilinear.

(4) U(n) and SU(n) are matrix groups.
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(5) Symplectic groups are matrix groups. Let F = R or C. Define B = F2n × F2n → F
by

B(x, y) = (x1yn+1 − xn+1y1) + · · ·+ (xnyn+n − xn+nyn) =
n∑
k=1

(xkynk − xn+kyk).

Then B is a skew-symmetric bilinear form. Let

J =

[
0n+n −In+n

In+n 0

]
.

Then B(x, y) = (Jx)Ty = (Jx) · y = xTJTy = −xTJy.
(5a) Over R, the real symplectic group Sp(n,R) is defined to be

Sp(n,R) = {A ∈ GL(2n,R) : ATJA = J}
= {A : B(Ax,Ay) = B(x, y) for all x, y ∈ R2n}.

(5b) Over C, the complex symplectic group Sp(n) is defined to be Sp(n) = Sp(n,C)∩U(2n).
(6) Generalized Heisenberg groups Hn are

Hn :=


A ∈ GL(n,R), A =


1 ∗ ∗ · · · ∗

1 ∗ · · · ∗
1

...
...

. . . ∗
0 1




,

i.e. upper triangular matrices with 1 on diagonals. This is clearly closed. To see it is
a subgroup, let Ek = span{e1, e2, . . . , ek}, the standard basis of Rn. Then Ek ⊂ Ek+1

and A(Ek) ⊂ Ek. More precisely, A(ek) = ek + (stuff in Ek1). Note that A|Ek is
invertible, so A : Ek → Ek is an isomorphism. If A,B ∈ Hn, then

A(ek) = ek + fk−1

where fk−1, f̃k−1 ∈ Ek−1, and (BA)(ek) = B(A(ek)) = B(ek + fk1) = ek + B(fk−1 +

f̃k−1. So BA ∈ Hn, since B(fk−1) ∈ Ek−1. Thus A−1(ek) = ek − A−1(fk−1)︸ ︷︷ ︸
∈Ek−1

, so

A−1 ∈ Hn. If n = 3, then Hn becomes the classical Heisenberg group.
(7) R∗ ∼= GL(1,R),C∗ ∼= GL(1,C), S1 ∼= U(1) are all matrix Lie groups.

View Rn as a subgroup of GL(n,R) consisting of diagonal matrices with positive
entries on diagonals by

x :=


x1

x2

. . .
xn

↔

ex1 0

ex2

. . .
0 exn

 =: P (x)

x+ y ↔


ex1+y1 0

ex2+y2

. . .
0 exn+yn

 .
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P (x+y) = P (x)P (y) so P is a group isomorphism. Note that P is closed in GL(n,C)
but not in Mn(C).

2. January 07: Topological properties of matrix groups

Today, we will talk about topological properties of matrix groups, such as
• compactness
• connectedness
• simple-connectedness.

2.1. On compactness

Recall that Mn(C) ∼= R2n2
is separable, so Heine-Borel applies. Thus, a subset G on Mn(C)

is compact if and only if it is sequentially compact if and only if it is bounded and closed
in Mn(C). Hence, a matrix G is compact if and only if it is bounded and closed in Mn(C)
(Recall that it is already closed in GL(n,C) by definition.).

Example 2.1. GL(n,C) and GL(n,R) are not compact since they are not bounded and not
closed in Mn(C).

Example 2.2. If F = R or C, then SL(n,F), O(p, q), SO(p, q),U(n), SU(n), Sp(n,F), Sp(n), Hn

are all closed in Mn(C). Thus it suffices to check if they are bounded.
Suppose A ∈ O(n), that is, ATA = I, or equivalently, columns of A are orthonormal, hence
|Aij| ≤ 1 for all i, j. Hence O(n) is compact. It also follows that SO(n) = O(n) ∩ SL(n,R)
is compact also.

As for U(n), note that A ∈ U(n) if and only if A∗A = I, i.e., columns of A are orthonormal
with respect to Hermitian inner product. Thus |Aij| ≤ 1 for all i, j hence bounded. Thus
U(n) is compact, and so is SU(n). Thus, Sp(n) := U(n)∩Sp(n,C) is compact also. However,
SL(n,F) and O(n,C) are not compact if n ≥ 2. Sp(n,F) is not compact for all n ≥ 1. If
p, q ≥ 1, then O(p, q) and SO(p, q) are not compact. You will prove them in Assignment #1.

2.2. On connectedness

Recall that a topological space XR is connected if and only if U ⊆ X open, closed, non-
empty implies U = X (i.e., there can be no separation). Every topological space is a disjoint
union of its “connected components” X =

∐
α∈A

Uα with each Uα connected. Note that all the

connected components are closed.

Definition 2.3. A path in a topological space X is a continuous map α : [0, 1] → X. A
topological space X is path-connected if and only if any two points a, b ∈ X can be joined
by a path (i.e., there exists a path such that α(0) = a, α(1) = b).

Fact 1. If X is locally path-connected (includes manifold), then connectedness and path-
connectedness are equivalent. Thus connected components = path-connected components.
Since all matrix Lie groups are manifolds, the two notions are equivalent. Therefore, through-
out this course, we are always in the setting where the two definitions are equivalent. So we
will say “connected” but will test using the definition of path-connectedness.

Proposition 2.4. Let G be a matrix group, and G0 be the connected component containing
the identity I. Then G0 is a matrix group, and is a subgroup of G.
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Proof. Connected components are closed in G, so G0 is closed in G hence closed in GL(n,C).
We thus only need to show that G0 is a subgroup. Let A,B ∈ G0. Since there exist
paths α, beta : [0, 1] → G such that α(0) = β(0) = I and α(1) = A, β(1) = B, then
αβ : [0, 1] → G defined by (αβ)(t) = α(t)β(t) is continuous since the matrix multiplication
map is continuous. Note that (αβ)(0) = I2 = I and (αβ)(1) = AB. Thus AB ∈ G0. Define
α−1 : [0, 1] → G to be the matrix inversion map, i.e., α−1(t) := (α(t))−1. Then α−1 is
continuous, so α−1(0) = I and α−1(1) = A−1. This completes the proof. �

Proposition 2.5. GL(n,C) is connected.

Proof. For this, we prove via induction. If n = 1, then GL(1,C) = C∗ is connected. Let
n ≥ 2. Recall that every complex square matrix is triangularizable. In other words, for any
A ∈ GL(n,C), one can find P ∈ GL(n,C) such that

P−1AP =


λ1 ∗

λ2

. . .
0 λn

 .
Since detA = λ1 · · ·λn 6= 0 so none of λi can be zero. Let B := P−1AP , and define
β : [0, 1]→ GL(n,C) as follows:

β(t) :=


λ1 ∗(1− t)

λ2

. . .
0 λn

 .
Then β(0) = B, and let β(1) =: D. Define α(t) = Pβ(t)P−1. Then we have α(0) =
PBP−1 = A and α(1) = PDP−1. Now apply the n = 1 case to derive that there must exist
continuous paths fi : [0, 1]→ C∗ = GL(1,C) such that fi(0) = λi and fi(1) = 1. Define

γ(t) := P


f1(t)

f2(t)
. . .

fn(t)

P−1.

Then γ(0) = PDP−1 = α(1) and γ(1) = PIP−1 = I. Thus there exists a path from A to I.
Thus GL(n,C) is connected, as required. �

Proposition 2.6. SL(n,C) is connected.

Proof. Clearly, SL(1,C) = {1} is connected. For n ≥ 2, proceed as before, with λ1λ2 · · ·λn =
1. Define α as we did in the previous proof, and for γ take

fn(t) =
1

f1(t)f2(t) · · · fn−1(t)
. �
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Proposition 2.7. U(n) and SU(n) are connected for all n ≥ 1.

Proof. If A ∈ U(n), then A∗A = I. Thus A is normal and A is unitarily diagonalizable, i.e.,
there exists P ∈ U(n) such that

P−1AP =


λ1

λ2

. . .
λn

 =


eiθ1

eiθ2

. . .

eiθn

 .
Moreover, since A ∈ U(n), each λk = eiθk . Let

α(t) = P−1


eiθ1(1−t)

eiθ2(1−t)

. . .

eiθn(1−t)

P.
Then α(0) = A and α(1) = P−1IP = I. So α is a path in U(n). Hence U(n) is connected.
Similarly, we can prove that SU(n) is connected by using the similar argument as in the
SL(n,C) case: take

λn(t) =
1

λ1(t) · · ·λn−1(t)
,

and the claim follows. �

Proposition 2.8. GL(n,R) is not connected.

Proof. Suppose that A,B ∈ GL(n,R) with det(A) > 0 and det(B) < 0. Suppose that α(t)
is a path in GL(n,R) from A to B. Let f := det ◦α : [0, 1]→ R∗. Then f is continuous. By
the intermediate value theorem, since f(0) > 0 and f(1) < 0, there must exist t ∈ [0, 1] such
that f(t) = 0, and this is a contradiction. �

Proposition 2.9. O(n) is not connected but SO(n) is connected, for all n ≥ 1.

Proof. You will prove this in Assignment #1! �

2.3. On simple-connectedness

Definition 2.10. A subset G of Mn(C) is simple-connected if it is connected and every
closed loop can be continuously deformed to a point while staying in G. In other words, if
α : [0, 1] → G such that α(0) = α(1) = A (“closed loop”). Then there exists H : [0, 1] ×
[0, 1] → G continuous such that H(t, 0) = α(t) for all t ∈ [0, 1] and A = H(1, s) = H(0, s)
for all s, i.e, H( , s) is a loop. Also, note that H(t, 1) = A for all t (constant loop).

Remark 2.1. Checking whether a subset G is simply connected or not is difficult. It is
crucially important for the “Lie correspondence” between Lie groups and Lie algebras.

Proposition 2.11. Recall that SO(2) ∼= U(1) (Assignment #1), and U(1) and S1 are home-
omorphic. Thus they are not simply connected. However, Sp(1) ∼= SU(2), and SU(2) is
homeomorphic to S3, which is simply connected. Recall that Sk is simply connected for all
k ≥ 2. Therefore, SU(n) is simply connected but U(n) is not. SO(n) is also not simply
connected for all n > 2. The spin group Spin(n) is simply connected for all n > 2.
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2.4. Polar decomposition of SL(n,R)

Remark 2.2. Recall that if A ∈ Mn(R) is symmetric, then it is orthogonally diagonalizable
with real eigenvalues, i.e., there exists R ∈ O(n) such that

R−1AR = RTAR =


λ1

λ2

. . .
λn


with λi ∈ R.

Definition 2.12. We say that a symmetric matrix is positive if

(Ax) · x = xTAx =
∑
i,j

Aijxixgj ≥ 0,

where the equality holds if and only if x = 0. Recall that A is positive if and only if λi > 0 for
all i (exercise). If A is positive-symmetric, then we can define a square root A1/2 as follows.
First, A1/2 is also positive-symmetric defined by

A1/2 := R


√
λ1 √

λ2

. . . √
λn

R−1.

Then (A1/2)2 = A and A1/2 is positive-symmetric. In fact, this A1/2 is the unique matrix in
Mn(R) with these two properties (exercise).

Proposition 2.13. Let A ∈ SL(n,R). Then there exists a unique pair (R,P ) where R ∈
SO(n) and P is real and positive-symmetric such that det(P ) = 1, and A = RP

Proof. ATA = PRTRP = P 2, and ATA is positive-symmetric:

(ATAx) · x = (ATAx)Tx = xTATAx = |Ax|2 ≥ 0,

and the equality holds if and only if x = 0 as A is invertible. We need to show that
P = (ATA)1/2. So R = AP−1, thus only need to show R ∈ SO(n).

RRT = (AP−1)(AP−1)T = AP−1P−1AT = A(P 2)−1AT

= A(ATA)−1AT = I.

Thus R ∈ O(n). On the other hand, det(A) = det(R) det(P ) = 1 and det(P ) > 0, so
det(R) = 1. Hence R ∈ SO(n) and det(P ) = 1, as required. �

Remark 2.3. For SL(n,C), a self-adjoint matrixA (i.e., A∗ = A) is called positive if 〈Ax, x〉 :=
x∗A∗x = x∗Ax > 0 for all x 6= 0

Proposition 2.14. Given A ∈ SL(n,C), there exists a unique pair (U, P ) with U ∈ SU(n)
with P self-adjoint and positive such that A = UP and det(P ) = 1.
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2.5. Homomorphisms and Isomorphisms

Definition 2.15. Let G,H be matrix Lie groups. Let F : G→ H be a map. We say F is a
matrix Lie group homomorphism if:

• F is a group homomorphism.
• F is continuous.

In addition, if F is bijective and F−1 is continuous, then F is called a matrix Lie group
isomorphism (i.e., it is a group isomorphism and a homeomorphism of topological spaces).

Remark 2.4. In practice, most group homomorphisms between matrix Lie groups will be
continuous.

Definition 2.16. Two matrix Lie groups are isomorphic (as matrix Lie groups) if there
exists a matrix Lie group isomorphisms between them. We will only care about matrix Lie
groups up to isomorphism

Example 2.17. R∗ ∼= GL(1,R) and C∗ ∼= GL(1,C). Also, U(1) ∼= SO(2) and Sp(1) ∼= SU(2)
(Assignment #1).

Example 2.18 (Matrix Lie group homomorphisms). The determinant map det : GL(n,F)→
F∗ ∼= GL(1,F) is a Lie group homomorphism. Also, F : R→ SO(2) defined as

F (t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
is a homomorphism. One can check that F (0) = I, F (−t) = (F (t))−1, and F (t + s) =
F (t)F (s).

3. January 12

Example 3.1 (One more important example of a matrix Lie group homomorphism). Quick

aside: there exists a natural Hermitian inner product on Mn(C) ∼= Cn2

〈A,B〉 =
∑
i,j

AijBij =
∑
i,j

(A∗))jiBij =
n∑
j=1

(A∗B)jj = tr(A∗B).

We will define a homomorphism from SU(2) to SO(3). Define V = {A ∈ M2(C);A∗ =
A, tr(A) = 0}. Note that V is a real subspace of M2(C). Since[

a b
c d

]∗
=

[
a c̄
b̄ d

]
=

[
a b
c d

]
,

we have ā = a, d̄ = d ∈ R and c = b̄. Therefore,

V =

{[
t z
z̄ −t

]
: t ∈ R, z ∈ C

}
∼= R3

as real vector spaces; V has{[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 i
−i 0

]}
as a basis.
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Now take a look at 〈A,B〉 = tr(A∗B), restricted to V . If

A =

[
t1 z1

z̄1 −t1

]
, B =

[
t2 z2

z̄2 −t2

]
then tr(A∗B) = 2(t1t2 + x1x2 + y1y2), where zk = xk + iyk. Thus (V, 1

2
〈 , 〉 ∼= (R3, ·) as inner

product spaces.
Now define a map F : SU(2) → GL(V ) ∼= GL(3,R) such that F (U)(A) = UAU−1 if

A ∈ V (note that F (U) ∈ GL(V ). Now need to verify that F (U)(A) ∈ V . First, we see that
tr(UAU−1) = tr(A) = 0. Also, (UAU−1)∗ = (UAU∗)∗ = UAU∗. But then since U ∈ SU(2),
U∗ = U−1. Thus UAU∗ ∈ V . Clearly, F (U) : V → V is linear, and F (U−1) = (F (U))−1

since U−1(UAU−1)(U−1)−1 = A.
Let A,B ∈ V , and to simplify notation, write FU := F (U). Consider the inner product

〈FUA,FUB〉 = tr((UAU∗)(UBU∗)) = tr(UABU−1)

= tr(AB) = 〈A,B〉.

Thus, for all U ∈ SU(2), we have FU ∈ O(V ) ∼= O(3), and FI = I ∈ O(3). Since det(FU) is
continuous in U and SU(2) is connected, det(FU) = +1 for all U ∈ SU(2). Therefore indeed
F sends any matrix in SU(2) to an element in SO(3). Note F is continuous, and it is easy
to verify that FU1U2 = FU1 ◦ FU2 . Thus it is indeed a homomorphism.

Remark 3.1. F is not isomorphic since F is not injective – note that FU = F−U . WE will
actually see that F is surjective and ker(F ) = {±I} (so it is “two-to-one”). Moreover, we
will see that induced homomorphism of the Lie algebras is actually an isomorphism.

3.1. Matrix exponential

Definition 3.2. Let X ∈ Mn(C). Then the matrix exponential eX is defined as

eX =
∞∑
m=0

Xm

m!
.

First, we need to prove that this definition actually makes sense. For this, we need to
prove a few claims about norms:

Claim. For any X, Y ∈ Mn(C):

(1) ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ (triangle inequality)
(2) ‖XY ‖ ≤ ‖X‖‖Y ‖

Proof. The first one is clear since ‖ ‖ is a norm. For the second one,

‖XY ‖2 =
n∑

i,j=1

|XY |2ij =
∑
i,j

(
n∑
k=1

XikYkj

)2

=
∑
i,j

|〈Xi, Yj〉|2

≤
∑
i,j

‖Xi‖2‖Yj‖2 = ‖X‖2‖Y ‖2,

where Xi is the i-th row of X and Yj the j-th column of Y . �

Definition 3.3. Let Xm ∈ Mn(C) for all m. We say that
∑
Xm converges absolutely if∑

‖Xm‖ <∞.
10



Claim. If
∑
Xm converges absolutely, then it converges.

Proof. Let

SN :=
N∑
m=0

Xm.

We have

‖SN ′ − SN‖ =

∥∥∥∥∥
N ′∑

m=N+1

Xm

∥∥∥∥∥ ≤
N ′∑

m=N

‖Xm‖ → 0

as N,N ′ →∞, since
∑
‖Xm‖ <∞. �

Claim. eX :=
∑

1
m!
Xm converges for all X ∈ Mn(C).

Proof. It converges absolutely, since∥∥∥∥ 1

m!
Xm

∥∥∥∥ ≤ 1

m!
‖X‖m.

So ∑
m

∥∥∥∥ 1

m!
Xm

∥∥∥∥ ≤∑
m

1

m!
‖X‖m = e‖X‖ <∞.

Moreover, the partial sums are continuous in X and the convergence is uniform on {X :
‖X‖ ≤ R} for all R > 0. Thus eX is continuous in X. �

Proposition 3.4 (Properties of matrix exponential). For any X, Y ∈ Mn(C):

(1) e0 = I.
(2) (eX)∗ = eX

∗
.

(3) If XY = Y X, then eXeY = eX+Y = eY eX .
(4) eX is always invertible, with (eX)−1 = e−X .
(5) e(s+t)X = esXetX for all s, t ∈ C.

(6) If P is invertible, then ePXP
−1

= PeXP−1.
(7) ‖eX‖ ≤ e‖X‖.

Proof. (Property (2)) Recall that adjoint A∗ of a matrix A is defined as the unique n × n
matrix such that

〈Aa, b〉 = 〈a,A∗b〉
for all a, b ∈ Cn. If

SN =
N∑
m=0

N∑
m=0

Xm

m!
,

then 〈sNa, b〉 = 〈a, (sN)∗b〉 for all a, b ∈ Cn. Note that

(SN)∗ =
N∑
m=0

(X∗)m

m!
.

Take N →∞ to get 〈eXa, b〉 = 〈a, eX∗b〉 for all a, b. Hence eX
∗

= (eX)∗.
11



(Property (3)) Since the series converges absolutely, we are free to rearrange the terms:

eXeY =

(
I +X +

X2

2
+
X3

6
+ · · ·

)(
I + Y +

Y 2

2
+
Y 3

6
+ · · ·

)
=

∞∑
m=0

(
m∑
k=0

Xk

k!

Y m−k

(m− k)!

)
=

∞∑
m=0

1

m
!
m∑
k=0

m!

k!(m− k)!
XkY m−k

!
=

∞∑
m=0

1

m!
(X + Y )m = eX+Y .

Note that
!

= follows since XY = Y X.
(Property (4)) Let Y = −X in (3). And X,−X commute. Hence eXe−X = e−XeX =

eX+(−X) = e0 = I. Thus e−X = (eX)−1.
(Property (6)) Notice

P

(
N∑
m=0

1

m!
XM

)
P−1 =

N∑
m=0

1

m!
(PXP−1)m.

Take N →∞ to get PeXP−1 = ePXP
−1

. �

Proposition 3.5. Let α(t) = etX for t ∈ R. Then α : R→ Mn(C) is smooth, and that

d

dt
etX = XetX = etXX

for all t. Therefore

d

dt

∣∣∣∣
t=0

etX = X.

Proof. etX is a convergent power series in t, so can be differentiated term-by-term. So we
have

d

dt
etX =

d

dt

(
∞∑
m=0

tmXm

m!

)
=

∞∑
m=1

mtm−1Xm

m!
= X

(
∞∑
m=1

(tX)m−1

(m− 1)!

)
= XetX . �

How can we compute eX in practice? A theorem of linear algebra (see Appendix B of
the theft or Hoffman-Kunze) says that every matrix X can be written uniquely in the form
X = S +N where S is diagonalizable and N is nilpotent (i.e., there exists k ∈ Z+ such that
Nk = O) and SN = NS. Then

eX = eS+N = eSeN .

Since S is diagonalizable one can find P such that

P−1SP =


λ1 0

λ2

. . .
0 λn

 = D

12



and PDP−1 = S. So eS = ePDP
−1

= PeDP−1, so

eD =


eλ1 0

eλ2

. . .

0 eλn

 .
Also, since N is nilpotent,

eN =
∞∑
m=0

1

m!
Nm

reduces to a finite sum.

Example 3.6. Write

A =

[
a b
0 a

]
=

[
a 0
0 a

]
︸ ︷︷ ︸

=S

+

[
0 b
0 0

]
︸ ︷︷ ︸

=N

.

Since N2 = O, we have eN = 1 +N . Thus

eA = eSeN =

[
ea eab
0 ea

]
.

Example 3.7. Let

X =

[
0 −θ
θ 0

]
= θ

[
0 −1
1 0

]
︸ ︷︷ ︸

=J

. (θ ∈ R)

It is easy to check that J2 = −I, and that J2l = (−1)lI and J2l+1 = (−1)lJ . So

eX = eθJ =
∞∑
m=0

(θJ)m

m!

=
∞∑
l=0

θ2lJ2l

(2l)!
+
∞∑
l=0

θ2l+1J2l+1

(2l + 1)!

=

(
∞∑
l=0

(−1)0θ2l

(2l)!
I

)
+

(
∞∑
l=0

(−1)lθ2l+1

(2l + 1)!

)
J

= cos θI + sin θJ.

Therefore,

eθJ =

[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2).

3.2. Matrix logarithm

Proposition 3.8. Define log(z) by

log(z) =
∞∑
m=1

(−1)m+1 (z − 1)m

m
.

13



This is defined and is analytic in B1(1) := {w ∈ C : |w − 1| < 1}. Moreover, for all z ∈ C
such that |z−1| < 1, we have elog(z) = z for all u ∈ C with |u−0| < log 2, we have |eu−1| < 1
and log(eu) = u.

Proof. Let x > 0 and |x| < 1. Then the identity

d

dx
log(1− x) =

−1

1− x
= −(1 + x+ x2 + · · · ).

Integrate term by term to see

log(1− x) = −
(
x+

x2

2
+
x3

3
+ · · ·

)
.

Let z = 1− x hence x = 1− z. So

log(z) = −
(

(1− z) +
(1− z)2

2
+

(1− z)3

3
+ · · ·

)
=

∞∑
m=1

(−1)m+1(z − 1)m

m
.

This has radius of convergence |z − 1| < 1, as expected.
Also, it coincides with the usual logarithm on (0, 2) ∈ R, i.e., elog(x) = x for all x ∈ (0, 2).

By analyticity, elog(z) = z for all z ∈ B1(1). If |u| < log 2 then

|eu − 1| =
∣∣∣∣u+

u2

2
+ · · ·

∣∣∣∣ ≤ |u|+ ∣∣∣∣u2

2

∣∣∣∣+ · · · = e|u| − 1 < 1.

So log(eu) = u for all real u with |u| < log 2. By analyticity, we have log(ew) = w for all
w ∈ C and |w| < log 2. �

Definition 3.9. For A ∈ Mn(C), define

log(A) =
∞∑
m=1

(−1)m+1 (A− I)m

m

whenever this series converges. We ono for sure this converges when ‖A − I‖ < q because
‖(A− I)m‖ ≤ ‖A− I‖m and ∑

m

(−1)m+1 (z − 1)m

m!

converges.

Remark 3.2. In general, it may converge on a bigger set, but we need not care about this
for the purpose of this course. For instance, if A − I is nilpotent, then log(A) converges
regardless of ‖A− I‖.

So, in summary, the log function

log(A) =
∞∑
m=1

(−1)m+1 (A− I)m

m

is defined (and continuous, by the uniform convergence of compact subsets) on {A ∈ Mn(C) :
‖A− I‖ < 1}. If ‖A− I‖ < 1, then elogA = A. Also, if ‖X‖ < log 2, then ‖eX − I‖ < 1 and
log(eX) = X. Hence, e and log are continuous and are inverses of each other near O and I,
respectively. We will start proving this fact in the next lecture. We will also discuss more
properties of e and log. We will also talk about the “Lie product formula”, and Lie algebras
of G.

14



4. January 14: Lie product formula and Lie algebras

Proposition 4.1. The function

A 7→ log(A) :=
∞∑
m=1

(−1)m+1 (A− I)m

m

is defined and continuous on B1(I) := {A : Mn(C) : ‖A − I‖ < 1}. Also, if ‖A − I‖ < 1,
then elogA = A and if ‖x‖ < log 2, then ‖eX − I‖ < 1 and log eX = X.

Proof. Note that ‖(A− I)m‖ ≤ ‖A− I‖m < 1 for all m. Hence∥∥∥∥∥
∞∑
m=1

(−1)m+1 (A− I)m

m

∥∥∥∥∥ ≤
∞∑
m=1

‖A− I‖m

m

converges. So the tseries for log converges absolutely for A ∈ B1(I) and uniformly on
compact subsets. Hence log is continuous on B1(I).

To show that elogA = A for all A such that ‖A− I‖ < 1, consider the following two cases:

(1) A is diagonalizable
If so, then there exists some P such that

P−1AP = D =


λ1

λ2

. . .
λn

 .
So we have

A− I = PDP−1 − I = P (D − I)P−1 = P


λ1 − 1

λ2 − 1
. . .

λn − 1

P−1,

and ‖A − I‖ = ‖P (D − I)P−1‖ ≤ ‖P‖‖D − I‖‖P−1‖. Now we need the following
claim:

Claim. If ‖B‖ < 1 then all eigenvalues of B has norm < 1. (Assignment #2!)

Let B = D − I. Note that ‖B‖ < 1 (Spiro couldn’t think of why this is the case
– we need to check this ourselves.). Hence, by the claim above, we have |λi − 1| < 1
for all i. Hence

∞∑
m=1

(−1)m+1 (A− I)m

m
= P

(
∞∑
m=1

(−1)m+1(D − I)m

m

)
P−1,

so equivalently,

logA = P


log λ1

log λ2

. . .
log λn

P−1.
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Similarly, it follows

elogA = P


elog λ1

elog λ2

. . .

elog λn

P−1 = A.

(2) General case We need to use the fact that the diagonalizable matrices are dense
in Mn(C), which you will prove in Assignment #2. We have elogAm = Am for all
diagonalizable matrices Am such that ‖Am − I‖ < 1. So by continuity, we have
elogA = A as m→∞. One can derive log eX = X in a similar manner.

This completes the proof. �

Proposition 4.2. There exists c > 0 such that for all B ∈ Mn(C) with ‖B‖ < 1
2

such that

‖ log(I +B)−B‖ ≤ c‖B‖2.

Note that c is independent of B.

Proof. log(I +B) is defined since ‖(I +B)− I‖ = ‖B‖ < 1
2
< 1. Hence

log(I +B)−B =
∞∑
m=1

(−1)m+1Bm

m
−B

=
∞∑
m=2

(−1)m+1Bm

m
B2

(
∞∑
m=2

(−1)m+1Bm−2

m

)
.

So we have

‖ log(I +B)−B‖ ≤ ‖B‖2
∑
m≥2

(1/2)m−2

m
.

Now choose c =
∑
m≥2

(1/2)m−2

m
, and we are done. Note that this shows that log(I + B) =

B + O(‖B‖2), i.e., for ‖B‖2 sufficiently small, we have the O(‖B‖2) portion ≤ c‖B‖2 with
the choice of c independent of B. �

Theorem 4.3 (Lie product formula). Let X, Y ∈ Mn(C). Then

eX+Y = lim
m→∞

(
e
X
m e

Y
m

)m
.

That is, this identity holds even when X and Y do not commute.

Proof. Start with

eX/m = I +
X

m
+

1

m2

X2

2
+

1

m3

X3

6
+ · · ·

= I +
X

m
+

1

m2

(
X2

2
+

1

m

X3

6
+ · · ·

)
︸ ︷︷ ︸

(∗)

.

We claim that (∗) is bounded, and that the bound depends on X but not on m. Note that:

‖(∗)‖ ≤ ‖X‖
2

2
+

1

m

‖X‖3

6
+ · · · ≤ e‖X‖ − ‖I‖ − ‖X‖ ≤ e‖X‖.
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Note that for m−2 sufficiently small (in fact, for all m ≥ 1) we have eX/m = I + X
m

+O( 1
m2 )

and the similar claim can be made for eY/m. Hence,

eX/meY/m = I +
X

m
+
Y

m
+O

(
1

m2

)
.

Since eX/meY/m → I as m → ∞, it will be in the domain of log as long as m is sufficiently
large. Apply Proposition 4.2 after taking logs on both sides:

log(eX/meY/m) = log

(
I +

X

m
+
Y

m
+O

(
1

m2

))
=
X

m
+
Y

m
+O

(
1

m2

)
+O

(∥∥∥∥Xm +
Y

m
+O

(
1

m2

)∥∥∥∥)︸ ︷︷ ︸
≤c̃m−2

,

where c̃ does not depend on m but on X and Y . Hence

log(eX/meY/m) =
X

m
+
Y

m
+O

(
1

m2

)
.

Exponentiate both sides and take m-th powers, i.e.,

eX/meY/m = eX/m+Y/m+O(m−2),

hence (
eX/meY/m

)m
= em(X/m+Y/m+O(m−2) = eX+Y+O(m−1).

Since e is continuous, upon making m→∞, we have

lim
m→∞

(eX/meY/m)m = eX+Y ,

as required. �

Theorem 4.4. For all X ∈ Mn(C), we have det(eX) = etr(X).

Proof. Suppose when X is diagonalizable. Then we have, for some P ,

PXP−1 = P


λ1

λ2

. . .
λn

P−1 = D,

or X = PDP−1. So we have

det(eX) = det(PeDP−1) = det(P ) det(eD) det(P−1) = eλ1+···+λn = etr(D) = etr(X). �

For the general case, use the fact that the set of diagonalizable matrices is dense in Mn(C)
and that the exponential map and the determinant map are continuous.

Definition 4.5. A map α : R→ GL(n,C) is called a 1-parameter subgroup of GL(n,C) if:

(1) α is continuous; and
(2) α(s+ t) = α(s)α(t) for all s, t ∈ R.

In other words, α is a continuous group homomorphism.

Remark 4.1. By property (2), we have α(0) = I and α(−t) = (α(t))−1.
17



Remark 4.2. If x ∈ Mn(C), then α(t) = etX is an example of a 1-parameter subgroup.

Theorem 4.6. If α is a 1-parameter subgroup, then there exists a unique X ∈ Mn(C) such
that α(t) = etX for all t ∈ R.

Proof. Suppose that there exists X, Y such that α(t) = etX = etY . Then

d

dt

∣∣∣∣
t=0

α(t) = X = Y

so the uniqueness is proved. Now we need to show existence.
Let Bε(0) := {Y ∈ Mn(C) : ‖Y ‖ < ε}, and let ε < log 2. We have shown that exponentia-

tion takes Bε(0) bijectively onto exp(Bε(0)) with continuous inverse log map from exp(Bε(0))
to Bε(0). Now let U := exp(Bε/2(0)) = log−1(Bε/2(0)). Then U is open.

We claim that every B ∈ U has a unique square root in U , given by exp(1
2

logB). Let

Y := log(B), with ‖B‖ < ε/2 so that exp(1
2

logB) ∈ U . Then Z := exp(1
2
Y ) = exp(1

2
logB).

Then clearly we have Z2 = (exp(1
2
B))2 = exp(Y ) = B. Hence Z is indeed a square root

of B. For uniqueness, suppose that Z ′ is another square root of B, with Z ′ ∈ U . Since
(Z ′)2 = B and exp(logZ ′) = Z ′, we have

exp(2 logZ ′) = (exp(logZ ′))2 = (Z ′)2 = B = exp(Y ).

Since Z ′ ∈ U , we have logZ ′ ∈ Bε/2(0), and 2 logZ ′ ∈ Bε(0). Also, Y ∈ Bε/2(0) ⊆ Bε(0)
and exp is injective on Bε(0). Hence Y = 2 logZ ′ so Z ′ = exp(1

2
Y ) = exp(1

2
logB) = Z, as

required.
Now, since α is continuo and B is in the neighbourhood of I, there exists some t0 > 0 such

that α(t) ∈ U for all |t| ≤ t0 and α(0) = I. Let X = 1
t0

log(α(t0)) so t0X = log(α(t0)). So

t0X ∈ Bε/2(0) and α(t0) = et0X . Note that α(t0/2) ∈ U and (α(t0/2))2 = α(t0/2)α(t0/2) =
α(t0) = et0X , by property (2) of an 1-parameter subgroup. So by the claim we just proved,

α(t0/2) = e
t0
2
X . Repeat this operation to see that

α

(
t0
2k

)
= e

t0
2k
X

for all k ∈ N. Take m-th powers and use property (2) to get

α
(m

2k
t0

)
= e

mt0
2k

X

for all k,m ∈ N. Now {m
2k
t0 : m, k ∈ N} is dense in R and α and exp are continuous, so

α(t) = etX for all t as desired. �

Remark 4.3. We needed the following ingredients to prove the previous theorem:

(1) The fact that α is continuous and is a homomorphism
(2) the fact that exp and log are continuous inverses of each other near 0 and I respec-

tively.

Now that we identified all the 1-parameter subgroups, we are ready to define Lie algebras.
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4.1. Lie algebra of a matrix Lie group

Definition 4.7. Let G be a matrix Lie group. Then the Lie algebra of G, denoted g, is the
set

g = {X ∈ Mn(C) : etX ∈ G for all t ∈ R},
i.e., X ∈ g⇔ the 1-parameter subgroup {etX : t ∈ R} generated by X lies in G.

Remark 4.4. We cannot say that X ∈ g ⇔ eX ∈ G. One can find examples where eX ∈ G
but etX /∈ G for some t ∈ R. Those X are not in g.

Also, we cannot say that X ∈ g ⇔ etX ∈ G for all t ∈ C. A Lie algebra for which this is
true is called a complex Lie algebra.

Remark 4.5. Every matrix lie group G is an embedded submanifold of GL(n,C) and it follows
that it Lie algebra g is isomorphic to the tangent space to G at I, i.e., TIG ∼= g.

Example 4.8. Some examples of Lie algebras:

(1) GL(n,C)
If X ∈ Mn(C), then etX ∈ GL(n,C) for all t ∈ R. Hence the Lie algebra of GL(n,C)
is gl(n,C) = Mn(C).

(2) GL(n,R)
If X ∈ Mn(R), then etX ∈ GL(n,R) for all t ∈ R. Conversely, if etX ∈ GL(n,R) for
all t ∈ R, then

X =
d

dt

∣∣∣∣
t=0

etX ∈ Mn(R).

Hence we have gl(n,R) = Mn(R). In particular, we have shown that ifG is a subgroup
of GL(n,R), then its Lie algebra g consists of real matrices.

(3) SL(n,C)
Recall that det(eX) = etr(X). Hence det(etX) = et·tr(X) for all t ∈ R since tr is
linear. So if etX ∈ SL(n,C) for all t ∈ R then et·tr(X) = 1 for all t ∈ R. Hence
tr(X) = 0. Conversely, if tr(X) = 0, then det(etX) = et·tr(X) = e0 = 1 for all t. Thus
etX ∈ SL(n,C) for all t ∈ R. It follows that

sl(n,C) = {X ∈ gl(n,C) : tr(X) = 0}.

Similarly, in the real case, we have

sl(n,R) = {X ∈ gl(n,R) : tr(X) = 0}.

(4) U(n) = {A ∈ GL(n,C) : A∗ = A−1}
Let etX ∈ U(n) for all t ∈ R, i.e.

(etX)∗ = etX
∗

= e−tX = (etX)−1

for all t ∈ R. So
d

dt

∣∣∣∣
t=0

etX
∗

= X∗ = −X.

Conversely, if X∗ = −X then (etX)∗ = (etX)−1 for all t ∈ R. Hence

u(n) = {X ∈ gl(n,C) : X∗ = −X}.
19



Thus u(n) consists of skew-Hermitian matrices, i.e., the matrices with diagonal entries
purely imaginary. Simiarly, in the case of SU(n) = U(n) ∩ SL(n,C), we have

su(n) = {X ∈ gl(n,C) : X∗ = −X and tr(X) = 0},

so su(n) consists of traceless skew-Hermitian matrices.

5. January 19

Recall the definition of Lie algebra first:

Definition 5.1. g is the Lie algebra of a matrix Lie group G ⊂ GL(n,C) if

g = {X ∈ GL(n,C) : etX ∈ G∀t ∈ R}.

Remark 5.1. If X ∈ g, then eX ∈ G0, where G0 denotes a connected component of I in G,
since etX ∈ G for all t, and we have a path from I to eX . Moreover, X ∈ g ⇔ etX ∈ G for
all t ∈ R⇔ etX ∈ G0 for all t ∈ R. Therefore, the Lie algebra g of G is the same as the Lie
algebra of G0.

Example 5.2. If G = O(n) = {A ∈ GL(n,R) : ATA = I}, or AT = A−1. Suppose that

etX ∈ O(n) for all t ∈ R. So it follows that e−tX = etX
T

= (etX)T = (etX)−1. Therefore, the
Lie algebra of G is

o(n) = {X ∈ gl(n,R) : XT = −X}.
that is, o(n) consists of skew-symmetric matrices. Therefore, necessarily tr(X) = 0. There-
fore if X ∈ o(n), then det(etX) = et tr(X) = et·0 = 1 for all t. Hence etX ∈ SO(n) for all
t ∈ R, so so(n) = o(n) = {X ∈ gl(n,R) : XT = −X}. Therefore so(n) = o(n) (in fact,
SO(n) = O(n).).

Example 5.3. We also claim that Lie(SO(p, q)) = Lie(O(p, q)) where Lie(A) denotes the Lie
algebra of A. If A ∈ O(p, q), then AT Ip,qA = Ip,q, or Ip,qA

T I−1
p,q = A−1. So if etX ∈ O(p, q),

then Ip,q(e
tX)T I−1

p,q = (etX)−1 = et(Ip,qX
T I−1
p,q ) = e−tX . Hence so(p, q) = o(p, q) = {X ∈

gl(p+ q,R) : Ip,qX
T Ip,q = −X}.

Example 5.4. Recall that Sp(n,F) : {A ∈ GL(n,F) : ATJA = J}, where

J :=

[
0 −In
In 0

]
.

So A ∈ Sp(n,F) ⇔ JATJ−1 = −A−1. So if etX ∈ Sp(n,F) then J(etX)TJ = etJX
tJ =

−(etX)−1 = −e−tX for all t ∈ F. That is, X ∈ sp(n,F) ⇔ JXTJ = X. Thus sp(n,F) =
{X ∈ gl(2n,F) : JXTJ = X}. More generally,

sp(n) = sp(n,C) ∩ u(2n) = {X ∈ gl(2n,C) : JXTJ = X,X∗ = −X}.

Remark 5.2. If X =

[
A B
C D

]
, then X ∈ sp(n,F) if and only if D = −AT and B,C

symmetric.

Example 5.5. Suppose that Hn is a generalized Heisenberg group. Let X be an upper
triangular matrix with 0 on the diagonals. It is clear that etX ∈ Hn for all t ∈ R. Conversely,

20



if etX ∈ Hn for all t ∈ R then X is an upper triangular matrix with 0 on the diagonals.
Hence the Lie algebra of Hn is

hn = Lie(Hn) =




0 ∗
0 0
...

...
. . .

0 0 · · · 0




Now we are ready to discuss some properties of Lie algebras.

Proposition 5.6. Let G be a matrix Lie groups with Lie algebra g. Let X ∈ g and A ∈ G.
Then AXA−1 ∈ g. That is the conjugation by an element of G preserves g.

Proof. One-line proof: et(AXA
−1) = AetXA−1 ∈ G for all t ∈ R. �

Theorem 5.7. g is a real vector space. That is,

(1) if X ∈ g then tX ∈ g for all t ∈ R
(2) if X, Y ∈ g then X + Y ∈ g.

Additionally, we also have

(3) if X, Y ∈ g then XY − Y X ∈ g.

Proof. Let t ∈ R. Since es(tX) = e(st)X ∈ G for all s ∈ R, we have tX ∈ g. For (2), we divide
into two cases. If XY = Y X, then et(X+Y ) = etXetY ∈ G for all t ∈ R. Hence X + Y ∈ g.
If X and Y do not commute, then note that etX/metY/m ∈ G hence (etX/metY/m)m ∈ G also,
for all nonzero m. Any matrix exponential is invertible, so et(X+Y ) ∈ GL(n,C). Apply the
Lie product formula to get

et(X+Y ) = lim
m→∞

(
etX/metY/m

)m
,

and since G is closed in GL(n,C), it follows that either the limit is not invertible or in G.
Hence the limit is in G.

As for (3), recall that

d

dt

∣∣∣∣
t=0

etX = X ⇒ d

dt

∣∣∣∣
t=0

etXY = XY.

Hence
d

dt

∣∣∣∣
t=0

etXY e−tX = XY e−0x + e0xY (−X) = XY − Y X.

If we let Z(t) := etXY e−tX , then Z(t) is the conjugation of an element of g (Y ) by an element
of G (namely, etX). Hence Z(t) ∈ g for all t ∈ R, and

d

dt

∣∣∣∣
t=0

Z(t) = XY − Y X ∈ g,

since g is a subspace of gl(n,C) and any subspace of a finite-dimensional C-vector space is
closed. �

Definition 5.8. Given X, Y ∈ gl(n,C), their Lie bracket or commutator [X, Y ] is defined
to be [X, Y ] = XY − Y X.
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Remark 5.3. We showed that the Lie algebra g of G is a real vector space that is closed
under the Lie bracket, i.e., X, Y ∈ g⇒ [X, Y ] ∈ g.

Remark 5.4. Even if G ∈ GL(n,C) as opposed to GL(n,R), the Lie algebra g of G is only a
real vector space.

Example 5.9. Recall that U(n) ⊂ GL(n,C) while U(n) 6⊂ GL(n,R). However, u(n) = {X ∈
gl(n,C) : X∗ = −X}, so if X ∈ u(n) then (iX)∗ = −iX∗ = (−i)(−X) = iX 6= −iX.
Therefore iX /∈ u(n) so u(n) is not subspace of the n-dimensional C-vector space.

Definition 5.10. The Lie algebra g of a matrix Lie group G is a complex Lie algebra if
X ∈ g ⇒ iX ∈ g (i.e. g is a complex subspace of gl(n,C)). In this case, we say G is a
complex Lie group.

Example 5.11. GL(n,C), SL(n,C), SO(n,C),O(n,C), Sp(n,C) are complex Lie groups. On
the other hand, GL(n,R), SL(n,R), Sp(n,R),O(n), SO(n),O(p, q),U(n), SU(n), Sp(n) are not
complex Lie groups.

Remark 5.5. Homomorphisms of matrix Lie groups induce homomorphisms of their Lie
algebras.

Theorem 5.12. Let G,H be matrix Lie groups with Lie algebras g, h respectively, and let
Φ : G → H be a matrix Lie group homomorphism. Then there exists a unique real linear
map Φ∗ : g→ h such that

Φ(eX) = eΦ∗(X) for all X ∈ g.

Φ∗ also satisfies

(1) Φ∗(AXA
−1) = Φ(A)Φ∗(X)Φ(A)−1 for all A ∈ G,X ∈ g

(2) Φ∗([X, Y ]) = [Φ∗X,Φ∗Y ] (Lie algebra homomorphism)
(3) Φ∗(X) = d

dt

∣∣
t=0

Φ(etX) for all X ∈ g.
(4) If Ψ : H → K is another Lie group homomorphism, then Ψ ◦ Φ : G → K and

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗.

Proof. Since Φ is a group homomorphism and continuous, the map t ∈ R Ψ7→ Φ(etX) ∈ H is a
1-parameter subgroup. Use the fact that Φ is a group homomorphism to get Φ(etX)Φ(esX) =
Φ(etXesX) = Φ(e(t+s)X). Similarly, Ψ(s)Ψ(t) = Ψ(s + t). So by last week’s theorem, there
exists a unique matrix W ∈ gl(n,C) such that Φ(etX) = etW for all t ∈ R.

Φ(etX) ∈ H so etW ∈ H for all t ∈ R, which impiles that W ∈ h. So define Φ∗(X) = W .
So we have (3). Indeed,

Φ∗(X) = W =
d

dt

∣∣∣∣
t=0

etW =
d

dt

∣∣∣∣
t=0

Φ(etX).

Φ(etX) = etΦ∗(X) for all t, so Φ(e(ts)Φ∗(X)) = Φ(e(ts)X) = Φ(et(sX)) = etΦ∗(sX). Take the
derivative at t = 0 to get

Φ∗(sX) = sΦ∗X for all s ∈ R. (∗)
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From Φ(etX) = etΦ∗(X) at t = 1, we have Φ(eX) = eΦ∗(X). Also,

et(Φ∗(X+Y )) = eΦ∗(tX+tY ) (by (∗))

= Φ(etX+tY ) = Φ
(

lim
m→∞

(
etX/metY/m

)m)
= lim

m→∞
Φ
((
etX/metY/m

)m)
(Φ is a continuous homomorphism)

= lim
m→∞

(
Φ(etX/m)Φ(etY/m)

)m
= lim

m→∞

(
e
t
m

Φ∗Xe
t
m

Φ∗Y
)m

= et(Φ∗X+Φ∗Y ) (by the Lie product formula).

For (1), note that

etΦ∗(AXA
−1) = eΦ∗(tAXA−1) = Φ(etAXA

−1

) = Φ(AetXA−1)

= Φ(A)Φ(etX)Φ(A)−1.

Take d/dt at t = 0 to get Φ∗(AXA
−1) = Φ(A)Φ∗XΦ(A)−1, which proves (1).

As for (2), recall that

[X, Y ] =
d

dt

∣∣∣∣
t=0

etXY e−tX .

So

Φ∗[X, Y ] = Φ∗

(
d

dt

∣∣∣∣
t=0

etXY e−tX
)

=
d

dt

∣∣∣∣
t=0

Φ∗(e
tXY e−tX) (differentiation commutes with linear maps)

=
d

dt

∣∣∣∣
t=0

Φ∗(e
tXY e−tX) (by (1))

=
d

dt

∣∣∣∣
t=0

etΦ∗XΦ∗Y e
−tΦ∗X

= [Φ∗X,Φ∗Y ],

thereby proving (2).
For (4), note that

et(Ψ◦Φ)∗X = (Ψ ◦ Φ)(etX) = Ψ(Φ(etX))

= Ψ(etΦ∗X) = etΨ∗Φ∗X .

Take d/dt at t = 0 to get (Ψ ◦ Φ)∗X = Ψ∗(Φ∗X) for all X, as required. �

Remark 5.6. We have shown that Φ : G → H matrix Lie group homomorphism induces
Φ∗ : g→ h Lie group homomorphism.

Question. Suppose that g, h is a Lie group homomorphism (i.e., R-linear, λ[X, Y ] = [λ(X), λ(Y )]
if λ : g→ h is a Lie algebra homomorphism). Then does there exist a Lie group homomor-
phism Φ : G→ H such that Φ∗ = λ?

The answer is actually no. We will prove that a sufficient condition is that G is simply
connected.
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6. January 21

Recall that if Φ : G → H is a Lie group homomorphism, then it induces a Lie algebra
homomorphism Φ∗ : g→ h such that the diagram

G
Φ // H

g

exp

OO

Φ∗
// h

exp

OO

commutes.

6.1. The Adjoint mapping

Definition 6.1. Let G be a matrix Lie group and g its Lie algebra. Fix A ∈ G. If x ∈ g,
then AXA−1 ∈ g. Define

AdA : g→ g

by AdA(X) = AXA−1. Then AdA is R-linear and AdA is invertible, because AdA−1 =
(AdA)−1. Therefore AdA ∈ GL(g), the set of invertible linear operators on g.

Proposition 6.2. The map from G to GL(g) defined by A 7→ AdA is a matrix Lie group
homomorphism.

Proof. The map is clearly continuous (linear maps over finite-dimensional spaces). It is a
homomorphism since

AdAB(X) = (AB)X(AB)−1 = A(BXB−1)A−1 = (AdA ◦AdB)(X),

i.e., AdAB = AdA ◦AdB. �

By last class, there exists an induced map (Ad)∗ : g→ gl(g), where gl(g) denotes the Lie
algebra of GL(g), the space of all linear operators on g.

Proposition 6.3. For all A, AdA : g→ g is a Lie algebra homomorphism.

Proof. This is a straightforward computation:

AdA[X, Y ] = A(XY − Y X)A−1

= (AXA−1)(AY A−1)− (AY A−1)(AXA−1)

= [AdAX,AdA Y ]. �

So Ad induces a map Ad∗ so that the following diagram commutes:

G
Ad // GL(g)

g

Ad∗

OO

(Ad)∗

// gl(g)

exp

OO

Now we are ready to define the little ad:

Definition 6.4. We define the little “ad” as ad := (Ad)∗ : g → gl(g). That is, ad is the
map such that exp(adX) = Ad(expX), or eadX = Ad(eX).

Proposition 6.5. adX(Y ) = [X, Y ].
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Proof. Note that adX = d
dt

∣∣
t=0

Ad(etX), by definition of induced linear map on Lie algebras.
Therefore,

adX Y =
d

dt

∣∣∣∣
t=0

Ad(etX)Y

=
d

dt

∣∣∣∣
t=0

(etXY e−tX)

= [X, Y ],

by what we did last class. �

Corollary 6.6. (eadX )Y =
∞∑
m=0

(adX)m

m!
Y.

Proof. Note that

∞∑
m=0

(adX)m

m!
Y = Y + [X, Y ] +

1

2
[X, [X, Y ]] + · · · = Ad(eX)Y = eXY e−X . �

6.2. Detour to exponential mapping

Remark 6.1. Recall that exp : g→ G is defined to be exp(X) = eX , and it is continuous in
X. It exp injective or surjective? Unfortunately, the answer is no in general (i.e., neither
injective nor surjective). The following example illustrates this point.

Example 6.7. We already know that eX ∈ G0, the connected component of identity. There-

fore g
exp→ G cannot be surjective if G is not connected. For example, note that so(n) = o(n),

and the image of exp : o(n)→ O(n) lies in SO(n) ( O(n).

Example 6.8. However, even if G is connected, exp is in general still not surjective. Let
G := GL(2,C), which is clearly connected. Let

A =

[
−1 1
0 −1

]
∈ SL(2,C).

We claim that there cannot exist any X ∈ sl(2,C) = {X ∈ gl(2,C), trX = 0} such that
eX = A. For this, consider the following cases:

Case 1. λ1 = λ2 = 0. Every 2 × 2 matrix in triangularizable over C, i.e., there exists P

such that X = P

[
0 a
0 0

]
P−1. Therefore, eX = Pe

 0 a
0 0


P−1 = P

[
1 a
0 1

]
P−1. But

since

[
1 a
0 1

]
has both eigenvalues 1, it cannot be A.

Case 2. λ1 + λ2 = 0 and λ1 6= 0, i.e., (λ1, λ2) = (λ,−λ).
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Then X has distinct eigenvalues, so X is diagonalizable. Hence there must exist P such
that

P−1XP =

[
λ 0
0 −λ

]
X = P

[
λ 0
0 −λ

]
P−1

eX = P

[
eλ 0
0 e−λ

]
P−1.

Therefore eX is diagonalizable. But A is not diagonalizable, hence a contradiction.

Example 6.9. We remark also that exp : g → G is generally not injective either. Consider

the following exponential map from so(2) to SO(2):

[
0 −θ
θ 0

]
exp→
[

cos θ − sin θ
sin θ cos θ

]
. This

is clearly not injective!

We will see however that exp : g→ G is a homeomorphism from an open neighbourhood
U of 0 in g to an open neighbourhood V = exp(U) of I in G.

Theorem 6.10. For 0 < ε < log 2 (we need this to guarantee that logA is defined on Vε and
log(eX) = X), let Uε := {X ∈ gl(n,C) : ‖X‖ < ε} and Vε := exp(Uε). Let G ⊆ GL(n,C)
be a matrix Lie group with Lie algebra g. Then there exists ε0 ∈ (0, log 2) such that for all
A ∈ Vε with A ∈ G if and only if logA ∈ g. Hence, exp : Uε0 → Vε0 is a homeomorphism.

Proof. (⇒) First, we need the following claim:

Claim. Let Bm ∈ G for all m ∈ N such that Bm converges to I, and let Ym := logBm, which is
well-defined for m sufficiently large. up pose that Ym 6= 0 for all m, and Ym

‖Ym‖ → Y ∈ gl(n,C).

Then Y ∈ g.

Proof of Claim. To show that Y ∈ g, we need to show that etY ∈ G for all t ∈ R. Let t ∈ R.
Then t

‖Ym‖Ym → tY as m→∞, but Bm → I. Therefore Ym → 0 and ‖Ym‖ → 0. Therefore

there exists a sequence km ∈ Z (depends on t) such that km‖Ym‖ → T as m→∞. Then

(Bm)km = (eYm)km = ekmYm = ekm‖Ym‖
Ym
‖Ym‖ → etY ,

so indeed (Bm)km ∈ G for all m. Since G is closed in GL(n,C), it follows that etY ∈ G. So
Y ∈ g as required. �

To finish off the proof, we start by observing that gl(n,C) ∼= Cn2 ∼= R2h2 with usual

topology, and that g is a real subspace of R2n2
. Decompose gl(n,C) = g ⊕ g⊥, where

g⊥ is the orthogonal complement with respect to the usual inner product. Define a map
F : g ⊕ g⊥ = gl(n,C) → GL(n,C) as F (X, Y ) = eXeY . Then F : R2n2 → R2n2

is a smooth
map. Since

d

dt

∣∣∣∣
t=0

F (tX, 0) = X

d

dt

∣∣∣∣
t=0

F (0, tY ) = Y,
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we have
(DF )|0 : R2n2 → R2n2

is the identity. In particular, (DF )|0 is invertible, so by the inverse function theorem, there
exists a neighbourhood 0 ∈ U such that V = F (U) is a neighbourhood of I and F : U → V
is a homeomorphism (in fact a diffeomorphism).

Now we need to show that there exists ε0 ∈ (0, log 2) such that A ∈ Vε ∩ G ⇒ logA ∈ g.
Suppose not. That is, for all m ∈ N and for ε = m−1, there exists Am ∈ V 1

m
∩ G such that

logAm /∈ g. Using the local inverse for F , if m is sufficiently large then Am ≈ I (Am is close
to I), so Am = eXmeYm where Xm ∈ g and Ym ∈ g⊥ such that Xm → 0 and Ym → 0 (since
Am → I). We must have Ym 6= 0 since otherwise Am = eXm ⇒ Xm = logAm ∈ g, which is a
contradiction.

Let Bm = e−XmAm = eYm so that Bm ∈ G for all m and Bm → I as m → ∞. Since the
unit sphere in g⊥ is compact, there must exist a subsequence of Ym’s (call it Ym again) such
that Ym/‖Ym‖ → Y with ‖Y ‖ = 1. But then by the claim we just proved, we have Y ∈ g:
since Ym/‖Ym‖ ∈ g⊥ for all m we have Y = limYm/‖Ym‖ ∈ g⊥. But this implies that Y = 0,
and this is a contradiction.

(⇐) This is obvious since elogA = A for all A ∈ Vε0 . �

Corollary 6.11. Let G be a matrix Lie group with Lie algebra g. Then there exists a
neighbourhood U of 0 in g and a neighbourhood V of I in G such that exp : U → V is a
homeomorphism.

Corollary 6.12. Let G be connected. Then every A ∈ G can be written in the form
A = eX1eX2 . . . eXk for X1, . . . , Xk ∈ g, with k depending on A.

Remark 6.2. Informally speaking, every connected Lie group is generated by a neighbourhood
of I. Note that we cannot take k = 1 in general.

Proof. Let A ∈ G. Since G is connected, there exists a continuous path α : [0, 1]→ G with
α(0) = I and α(1) = A. Let V V be a neighbourhood of I in G on which exp : exp−1(V )→ V
is a homeomorphism. Since α is continuous, f(x) = (α(s))−1α(t) is continuous in s. Note
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that f(t) = I.. Also, for f : (t−ε, t+ε)→ G, there exists δt > 0 such that s ∈ (t−δk, t+δk)
means F (s) = (α(s))−1α(t) ∈ V . Since [0, 1] is compact, we can find 0 = t0 < t1 < t2 <
· · · < tk−1 < tk = 1 such that α(tj−1)−1α(tj) ∈ V for all j = 1, 2, . . . , k. Note that

A = A(t0)−1A(t1)︸ ︷︷ ︸
∈V

A(t1)−1A(t2)︸ ︷︷ ︸
∈V

· · ·A(tk−1)−1A(tk)︸ ︷︷ ︸
∈V

,

= eX1eX2 · · · eXk ,

where A(t0)−1 = I, A(tk) = A(1) = A and X1, . . . , Xk are some matrices in g. �

Corollary 6.13. Let G,H be matrix Lie groups where G is connected. Let Φj : G → H be
matrix Lie group homomorphisms j = 1, 2. If (Φ1)∗ = (Φ2)∗ : g→ h then Φ1 = Φ2.

Remark 6.3. This corollary is false if G is not connected.

Proof. Let A ∈ G, and write A = eX1eX2 · · · eXk , where Xi ∈ g.

Φ1(A) = Φ1(eX1eX2 · · · eXk)
= Φ1(eX1)Φ1(eX2) · · ·Φ1(eXk)

= e(Φ1)∗X1 · · · e(Φ1)∗Xk

= e(Φ2)∗X1 · · · e(Φ2)∗Xk

= Φ2(eX1)Φ2(eX2) · · ·Φ2(eXk)

= Φ2(eX1eX2 · · · eXk) = Φ2(A). �

6.3. Abstract Lie algebras

Definition 6.14. Let F be R or C. A finite-dimensional F-Lie algebra g is a finite-
dimensional F-vector space together with a map [ , ] : g× g→ g such that:

(1) [ , ] is bilinear over F
(2) [X, Y ] = −[Y,X] for all X, Y ∈ g (i.e. skew-symmetric)
(3) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X] + Y ] = 0 for all X, Y, Z ∈ g (Jacobi identity).

Remark 6.4. As defined, a Lie algebra need not be a subspace of gl(n,F), and [X, Y ] need not
be XY −Y X (since the matrix multiplication may not make sense). However it is indeed the
case that [X, Y ] = XY − Y X in gl(n,C) satisfies (3). Therefore gl(n,F) is a F-Lie algebra
with commutator as Lie bracket. Therefore, the Lie algebra g of a matrix Lie group G is a
R-Lie algebra in this abstract sense.

Also, if X ∈ g then iX ∈ g (complex matrix Lie group) then g is a C-Lie algebra in this
sense.

Definition 6.15. Let g be a real (resp. complex) Lie algebra.

(1) A subalgebra of g is a real (resp. complex) subspace h that is closed under the Lie
bracket, i.e., [H1, H2]︸ ︷︷ ︸

Lie bracket in g

∈ h for all H1, H2 ∈ h.

If g is a complex Lie algebra and h ⊆ g is a real subspace closed under the bracket,
then h is a real subalgebra of g.

(2) A F-linear map λ : g→ h between two F-lie algebra is a Lie algebra homomorphism
if λ[X, Y ]g = [λX, λY ]h for all X, Y ∈ g.
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Example 6.16. u(n) is a real subalgebra of the complex Lie algebra gl(n,C).

Definition 6.17. It is easy to see that a bijective Lie algebra homomorphism has inverse
which is also a Lie algebra homomorphism. Therefore, a bijective Lie algebra homomorphism
is a Lie algebra isomorphism.

Theorem 6.18 (Ado’s theorem). Every finite-dimensional F-Lie algebra is isomorphic (as
an abstract F-Lie algebra) to a subalgebra of gl(n,F) for some F with the Lie bracket being
the usual commutator.

Remark 6.5. It is not true if the dimension is infinite, even for F is R or C. The proof of
this theorem is beyond the scope of this course.

7. January 26

Definition 7.1. Let g be a Lie algebra, and let X ∈ g. We defined adX : g→ g by adX(Y ) =
[X, Y ]. Last week, from Ad : G → GL(g), we induced a Lie algebra homomorphism ad :=
(Ad)∗ : g→ gl(g).

Claim. ad : g→ gl(g) is a Lie algebra homomorphism from g to g.

Proof. ad is linear since [ , ] is bilinear. We need to check that ad[X,Y ] = [adX , adY ]
?
=

adX adY − adY adX . Note that ad[X.Y ] Z = [[X, Y ], Z] and (adX adY − adY adX)Z = [X, [Y, Z]]−
[Y, [X,Z]]. By the Jacobi identity, it follows [[X, Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]]. �

Proposition 7.2. For all X ∈ g, the map adX : g → g is a derivation of g. That is,
adX [Y, Z] = [adX Y, Z] + [Y, adX Z].

Proof. [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] by the Jacobi identity. �

7.1. Complexification of a real Lie algebra

Definition 7.3. Let V be a finite-dimensional real vector space. Then the complexification
VC is the finite-dimensional C-vector space such that

VC := V ⊗R C = {vi + iv2; v1, v2 ∈ V },
where i(v + iw) := iv − w.

Remark 7.1. VC is a C-vector space with dimC VC = dimR V . For instance, note that (Rn)C =
Cn.

Remark 7.2. If W is a complex vector space, then by restrictions on scalars, we can consider
the underlying real vector space WR. Note that we have the identity dimR(WR) = 2 dimCW
and (Cn)R = R2n. As real vector spaces, we have the isomorphism (VC)R ∼= V ⊕ V .

Remark 7.3. If {v1, . . . , vn} is a basis for V as a R-vector space and {v1, . . . , vn} a basis for
VC as a C-vector space, then {v1, . . . , vn, iv1, . . . , ivn} isa basis for (VC)R ∼= V ⊕ V as a real
vector space.

Proposition 7.4. Let g be a real Lie algebra, and let gC be its complexification as a vector
space. Then the Lie bracket [ , ] on g has a unique extension to gC which makes gC into a
complex Lie algebra.
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Proof. Let X1, X2, Y1, Y2 ∈ g. We have, by bilinearity, that [X1 + iX2, Y1 + iY2] = [X1, Y1]−
[X2, Y2] + i[X2, Y1] + i[X1, Y2]. One can show this makes gC into a C-Lie algebra (straight-
forward but tedious computations). �

Example 7.5. gl(n,R)C = gl(n,C); similarly, gl(n,R)C = sl(n,C). The complexification of
sp(n,R) is sp(n,R)C = sp(n,C).

Example 7.6 (Complexification of u(n)). Recall that u(n) = {X ∈ gl(n,C) : X∗ = −X}.
Let Z ∈ gl(n,C). Write

Z =
Z − Z∗

2
+ i

Z + Z∗

2i
=: X + iY.

Note that both X and Y and skew-adjoint, since

X∗ =
Z∗ − Z∗∗

2
=
Z∗ − Z

2
= −X,

and one can similarly see that Y ∗ = −Y . Hence u(n)C = gl(n,C). One can show that both
have dimension n2.

Therefore, gl(n,R) and u(n) both have the same complexification. But they are not
isomorphic as real Lie algebras Similar fact is true for su(n) and sl(n,R): they have the
same complexification, but they are not isomorphic as real Lie algebras either.

8. January 26: Campbell-Baker-Hausdorff formula and its consequences

Recall that if Φ : G→ H is a homomorphism of matrix Lie groups, it induce a Lie algebra
homomorphism Φ∗ : g→ h such that the following diagram commutes.

G
Φ // H

g

exp

OO

Φ∗
// h

exp

OO

Question. Let g, h be two Lie algebras of matrix Lie groups G and H. Let λ : g→ h be a
Lie algebra homomorphism. Then does there exist Φ : G→ H such that Φ∗ = λ?

So we want

G
Φ // H

g

exp

OO

λ
// h

exp

OO

to commute: that is, Φ(eX) = eλ(X). But here is the problem. Not every A ∈ G is in the
image of exp – recall that exp is not always surjective. Even though it is, the problem is
far from over, since X need not be unique – recall that exp is not always injective either.
We will soon see though that if G is simply connected, then problems can be overcome. The
CBH formula is used to show that the map we can define is in fact a homomorphism from
G to H. The CBH formula says that the group multiplication (at least near I) is completely
determined by the Lie bracket in g.

The idea goes as follows. Let g be the Lie algebra of G. Let also that X, Y ∈ g sufficiently
close to 0, thereby making eX , eY , eXeY sufficiently close to I, so that log(eXeY ) is defined.
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If [X.Y ] = 0, then eXeY = eX+Y , so log(eXeY )
!

= X + Y . But in general, the
!

= part is
not necessarily true. The CBH formula expresses log(eXeY ) in terms of X and Y and the
bracket of these two. We need the following analytic function g : {|z − 1| < 1} → C defined
by

g(z) =
log z

1− 1
z

=
z log z

z − 1
= − z

1− z
log z =

∑
m≥0

am(z − 1)m,

for some am ∈ C. Note that since g(z) can be written as the power series (as shown above)
as long as |z − 1| < 1, g(z) is indeed analytic on {|z − 1| < 1}.

Let V be a k-dimensional C-vector space (if we choose a basis, V ∼= Ck and we can take
the usual Euclidean norm on Mk(C) ∼= L(V, V ), the space of linear transformations from V
to itself. Hence, for any A ∈ L(V, V ), with ‖A− I‖ < 1, we can define

g(A) =
∑
m≥0

am(A− I)m.

This converges absolutely and uniformly on compact subsets to a continuous function of A.

Theorem 8.1 (Campbell-Baker-Hausdorff formula (integral form)). Let X, Y ∈ gl(n,C),
with ‖X‖, ‖Y ‖ sufficiently small. Then

log(eXeY ) = X +

∫ 1

0

g(eadXet adY )Y dt. (1)

Before discussing the proof of this theorem, we will discuss some corollaries of CBH.

Corollary 8.2. Let G be a matrix Lie group and g its Lie algebra. Then, for X, Y ∈ g with
their norm sufficiently small, we have log(eXeY ) ∈ g and λ(log(eXeY )) = log(eλ(X)eλ(Y )).

Remark 8.1. The above corollary will be used to construct a homomorphism Φ of Lie groups
from a homomorphism of Lie algebras and to relate Lie subgroups to Lie subalgebras.

Proof of Corollary. If X, Y ∈ g, then adX and adY leave g invariant. So the RHS of CBH is
indeed in g. Hence the LHS of CBH is in g as well. If λ is a Lie algebra homomorphism, then
λ[Y,X] = [λX, λY ], so λ(adY X) = adλ(Y ) λ(X). So by induction, we have λ((adY )mX) =
(adλ(Y ))

mλ(X), hence

λ(et adY (X)) =
∑
m≥0

tm

m!
λ((adY )mX) (∵ λ continuous)

=
∑
m≥0

tm

m!
(adλ(Y ))

mλ(X) = et adλ(Y )λ(X).

We can repeat this computation to get λ(eadXet adY ) = eadλ(X)et adλ(Y ) . We let X and Y small
enough so that we can apply CBH, and also to λ(X), λ(Y ):

λ(log(eXeY )) = λ(X) +

∫ 1

0

∑
m≥0

amλ((eadXet adY − I)m(Y )) dt (∵ CBH and λ linear)

= λ(X) +
1∑
0

∑
m≥0

am(eadλ(X)et adλ(Y ) − I)m(λ(Y )) dt

= log(eλ(X)eλ(Y )),
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with the last equality following from the CBH for λ(X) and λ(Y ). So log(eXeY ) ∈ g and
λ(log(eXeY )) = log(eλ(X)eλ(Y )). �

Remark 8.2 (Idea of proof of CBH). we ail show that two different expressions (one being
Z(X) = eXetY ) satisfy the same ordinary differential equation (ODE) with the same initial
conditions. By existence and uniqueness, we will get the equality. More in detail:

First step: we need to understand the linearization, or “differential”, of the exponential
map exp : gl(n,C)→ GL(n,C) at points other than 0 ∈ g. We saw that

d

dt

∣∣∣∣
t=0

exp(tX) = X.

Recall that if F : Rk → Rk is smooth (or just differentiable), then the directional derivative
of F at X in the direction of Y (DF )X : Rk → Rk is the linear map defined as

(DF )X(Y ) =
d

dt

∣∣∣∣
t=0

F (X + tY ).

Since

(D exp)0(Y ) =
d

dt

∣∣∣∣
t=0

exp(0 + tY ) = Y,

it follows that (D exp)0(Y ) = I, regardless of the dimension of the given space. So we want

d

dt

∣∣∣∣
t=0

exp(X + tY ) for X 6= 0.

If X and Y commute, then exp(X + tY ) = eXetY . Then d
dt

∣∣
t=0

exp(X + tY ) = eXY . Hence

(D exp)X = eX if [X, Y ] = 0. Next time, we will show that

d

dt

∣∣∣∣
t=0

eX+tY = eX
(
I − e− adX

adX

)
Y.

We will try to make sense of this.

9. January 28

We start by recalling the CBH:

Theorem 9.1 (Campbell-Baker-Hausdorff formula). For all X, Y ∈ gl(n,C) sufficiently
close to 0, we have

log(eXeY ) = X +

∫ 1

0

g(eadXeadY ) dt,

where g(z) = z log z
z−1

=
∑
am(z − 1)m.

We need some preliminary results before the full proof of CBH:

Theorem 9.2. For any X, Y ∈ gl(n,C) we have

d

dt

∣∣∣∣
t=0

eX+tY = eX
(
I − e− adX

adX

)
Y. (2)
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Lemma 9.3. For all X ∈ gl(n,C),

1− e− adX

adX
= lim

m→∞

1

m

m−1∑
k=0

(
exp

(
−adX

m

))k
.

Proof. Observe that exp(− adX
m

)k = exp(− k
m

adX); hence (and also by absolute convergence

(the reason
!

= is justified)),

1

m

m−1∑
k=0

exp

(
− k
m

adX

)
!

=
∞∑
l=0

1

m

m−1∑
k=0

1

l!

(
− k
m

adX

)l
=
∞∑
l=0

[
1

m

m−1∑
k=0

(
k

m

)l]
(−1)l

l!
(adX)l.

Note, in fact, that 1
m

∑m−1
k=0

(
k
m

)l
is a Riemann sum for x 7→ xl on [0, 1] – i is a lower

approximation to
∫ 1

0
xl = 1

l+1
. Therefore

∞∑
l=0

[
1

m

m−1∑
k=0

(
k

m

)l]
(−1)l

l!
(adX)l,

so the series converges absolutely. The terms (in l) are bounded in norm, since(
1

l + 1

)
1

l!
‖ adX‖l ≤

1

l!
‖ adX‖l,

hence ∑
l

(
1

l + 1

)
1

l!
‖ adX‖l ≤ e‖ adX‖ <∞.

Therefore we can apply the dominated convergence theorem to interchange limits m, l →
∞. �

Proof of Theorem 9.2. Consider the complex function

1− e−z

z
=

1− (1− z + z2

2
− z3

6
+ · · · )

z
=

∞∑
m=0

(−1)mzm

(m+ 1)!
,

and this power series has infinite radius of convergence. Therefore it is an entire function,
hence we can substitute into this function for any A ∈ L(V, V ) where V is a finite-dimensional
vector space. We want V = gl(n,C) and A = adX .

More generally, if X(t) ∈ gl(n,C) is smooth in t, then

d

dt
eX(t) = eX(t)

(
I − e− adX(t)

adX(t)

)
dX

dt
(3)

To see why (3) and (2) are equivalent, note that (2) follows from (3) by letting X(t) = X+tY
with t = 0; for the other direction, you can use the chain rule.

Write F (X, Y ) = d
dt

∣∣
t=0

eX+tY = (D exp)XY . So F (X, Y ) is linear in Y . Since exp :

gl(n,C) → gl(n,C) is a C1-map (you will prove this in Assignment #3), we know that
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F (X, Y ) is continuous in X and continuous in Y (and also linear in Y ). We have

eX+tY =

[
exp

(
X

m
+ t

Y

m

)]m
Take d

dt

∣∣
t=0

on both sides:

F (X, Y ) =
m−1∑
k=0

[
exp

(
X

m

)]m−k−1 [
d

dt

∣∣∣∣
t=0

exp

(
X

m
+ t

Y

m

)][
exp

(
X

m

)]k

= exp

(
m− 1

m
X

)(m−1∑
k=0

[
exp

(
X

m

)])−k
F

(
X

m
,
Y

m

)[
exp

(
X

m

)]k
= exp

(
m− 1

m
X

)
1

m

m−1∑
k=0

Ad

(
exp

(
− k
m
x

))
F

(
X

m
,Y

)

= exp

(
m− 1

m
X

)
1

m

m−1∑
k=0

exp

(
ad

(
k

m
X

))
F

(
X

m
,Y

)
.

So we have

F (X, Y ) = exp

(
m− 1

m
X

)
1

m

m−1∑
k=0

[
exp

(
−adX

m

)]k
F

(
X

m
,Y

)
(for all m ≥ 0)

= lim
m→∞

em−1
m

X︸ ︷︷ ︸
(∗)

(
1

m

m−1∑
k=0

[
exp

(
−adX

m

)]k)
︸ ︷︷ ︸

(∗∗)

F

(
X

m
,Y

)
︸ ︷︷ ︸

(∗∗∗)

 .

Note that (∗)→ eX and eX is continuous; by Lemma 9.3, (∗∗) = I−e− adX

adX
. Note that (∗ ∗ ∗)

is F (0, Y ) since F is continuous in Y , and F (0, tY ) = d
dt

∣∣
t=0

etY = Y . The claim follows. �

Proof of CBH. Let Z(t) := log(eXetY ). If X,Y both sufficiently close to 0, then Z(t) is
defined for all t ∈ [0, 1]. In fact, Z(t) is smooth in t. We want to compute Z(1) = log(eXeY ).
Our strategy is to take advantage of the fundamental theorem of calculus, i.e.,

Z(1) = Z(0) +

∫ 1

0

dZ

dt
dt. (4)

Therefore, the proof of CBH reduces to proving that dZ
dt

= g(eadXet adY )Y .
By Theorem 9.2, we have

e−Z(t) d

dt
eZ(t) =

(
I − e− adZ(t)

adZ(t)

)
dZ

dt
,

provided that X and Y are small. Z(t) is small, so I−e− adZ(t)

adZ(t)
is invertible. Recall that

I − e− adZ(t)

adZ(t)

=
∞∑
l=0

(− adZ(t))
l

(l + 1)!
,
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so I−e− adZ(t)

adZ(t)
can be written as a sum of I and “small” matrices. Thus

dZ

dt
=

(
I − e− adZ(t)

adZ(t)

)−1

Y.

Ad : G→ GL(g) is a homomorphism, so

eadXet adY = eadZ(t) = AdeZ(t) = AdeX ◦AdetY

take log on both sides to get adZ(t) = log(eadXet adY ). So

dZ

dt
=

(
I − (eadXet adY )−1

log(eadXet adY )

)−1

Y = g(eadXet adY )Y, (5)

where g(z) =
(

1−z−1

log z

)−1

. The formula now follows upon letting t = 1 and replace the dZ
dt

in

(4) with the RHS of (5). �

Recall from last time, that we proved a corollary of CBH:

Corollary 9.4. Let G be a matrix Lie group with Lie algebra g. If λ : g → gl(n,C) is
a Lie algebra homomorphism, then for X, Y sufficiently small we have log(eXeY ) ∈ g and
λ(log(eXeY )) = log(eλ(X)eλ(Y )).

So what does this corollary mean? The corollary says that near 0, the exponential map
exp : U ∈ g → exp(U) = V ∈ G is a homomorphism. Near I ∈ G, we can write elements
of G as eX for some unique X ∈ g. The corollary says that if we define Φ : G → GL(n,C)
by Φ(eX) = eλ(X) (defined on a neighbourhood V of I) then Φ is a “local” homomorphism.
Write λ(log(eXeY )) = log(eλ(X)eλ(Y )) = log(Φ(eX)Φ(eY )). Take the exponential map on
both sides:

eλ(log(eXeY )) = Φ(elog(eXeY )) = Φ(eXeY )

eλ(log(eXeY )) = Φ(eX)Φ(eY ).

So Φ is a homomorphism whenever it is well-defined. That is, if AB ∈ V for every A,B ∈ V ,
then we have Φ(AB) = Φ(A)Φ(B).

Theorem 9.5 (Campbell-Baker-Hausdorff formula (series form, up to the third order)).

log(eXeY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + (††),

with (††) being the higher order terms (i.e., bracket of X, Y of brackets of brackets (. . . )).

Proof. Let g(z) := z log z
z−1

. Write

g(z) =
(1 + (z − 1))[(z − 1)− (z−1)2

2
+ (z−1)3

3
− · · · ]

z − 1

= (1 + (z − 1))

(
1− z − 1

2
+

(z − 1)2

3
− · · ·

)
= 1 +

1

2
(z − 1)− 1

6
(z − 1)2 + · · · = 1 +

∞∑
m=1

(−1)m+1

m(m+ 1)
(z − 1)m.
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So

eadXet adY − I =

(
I + adX +

(adX)2

2
+ · · ·

)(
I + t adY +

t2

2
(adY )2 + · · ·

)
− I

= adX +t adY +
(adX)2

2
+
t2

2
(adY )2 + t adX adY +(†),

where (†) denotes the higher-order terms in adX , adY . Note that there is no zeroth order
term, so (eadXet adY − I)m only has terms of degree ≥ m in adX , adY . So up to degree 2 in
adX , adY , we have

g(eadXet adY ) = I +
∞∑
m=1

(−1)m+1

m(m+ 1)
(eadXet adY − I)m

= I +
1

2

(
adX +t adY +

(adX)2

2
+
t2

2
(adY )2 + t adX adY + · · ·

)
︸ ︷︷ ︸

m=1

− 1

6

(
(adX)2 + t2(adY )2 + t adX adY +t adY adX + · · ·

)︸ ︷︷ ︸
m=2

+ · · · .

Now apply to Y , with using the fact that adY (Y ) = [Y, Y ] = 0. So

g(eadXet adY )Y = Y +
1

2
[X, Y ] +

1

4
[X, [X, Y ]]− 1

6
[X, [X, Y ]] +

t

6
[Y, [X, Y ]] + · · · .

Thus

log(eXeY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + (††),

with (††) being the higher order terms (i.e., bracket of X, Y of brackets of brackets (. . . )). �

Remark 9.1. If [X, Y ] = 0, then we already know that log(eXeY ) = X + Y . Hence, the
non-triviality of the Lie bracket is the infinitesimal measure of the non-commutativity of the
Lie group. That is, if G is abelian then eXeY = eY eX for all X, Y ∈ g (Hint: replace X with
tX and Y with sY : take the derivative ∂f

∂t∂s
at (s, t) = (0, 0) and see what happens.) and

[X, Y ] = 0 for all X, Y ∈ g (clear!).
Conversely, if [X, Y ] = 0 for all X, Y then G is abelian near I.

Remark 9.2. The bracket is “infinitesimal” measure of (non-)commutativity. One can show
that the Jacobi identity is a consequence of the fact that the Lie group G is associative.
One can define a “weaker” notion of “Lie groups”, i.e., a group with associativity dropped
(but still want multiplication and inversion to be continuous). For such objects, some of this
theory holds, but for instance the Jacobi identity fails.
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10. February 2

Theorem 10.1. Let G,H be matrix Lie groups with lie algebras g, h respectively. Let λ :
g→ h be a Lie algebra homomorphism. If G is simply connected, then there exists a unique
Lie group homomorphism Φ : G→ H such that Φ∗ = λ, i.e.,

G
Φ // H

g

exp

OO

λ
// h

exp

OO

commutes.

Before proving this, we will first prove a corollary

Corollary 10.2. Suppose G and H are both simply connected. If g ∼= h then G ∼= H also.

Proof. Tthere exists λ : g ∼= h so λ−1 : h ∼= g is also an isomorphism. By Theorem 10.1, there
exist Lie group homomorphisms Φ : G → H and Ψ : H → G such that Φ∗ = λ,Ψ∗ = λ−1.
Hence (Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗ = λ−1λ = idg. So by Assignment #3, we have Ψ ◦ Φ = id and
Φ ◦Ψ = id. �

Proof of Theorem 10.1. The proof will be broken into multiple steps:
Step 1: We have shown that there exists U open neighbourhood of 0 ∈ g and V open

neighbourhood of I ∈ G such that exp : U → V = exp(U) is a homeomorphism. Without
loss of generality, take V small enough so that if A,B ∈ V then logA, logB are small enough
to apply the CBH. On V , define Φ by Φ : V → H where Φ(A) = eλ(logA).

V
Φ //

log
��

H

U

exp

OO

λ
// h

exp

OO

Step 2: Since G is simply connected, it is connected. Let A ∈ G be arbitrary. Then there
must exist a continuous path α : [0, 1] → G with α(0) = I and α(1) = A. Just as we did
last week, there must exist a partition 0 = t0 < t1 < · · · < tm = 1 such that for all s and t
satisfying ti ≤ s ≤ t ≤ ti+1 we have α(t)α(s)−1 ∈ V .

Write

A = α(1) = (α(tm)α(tm−1)−1)︸ ︷︷ ︸
∈V

(α(tm−1)α(tm−2)−1)︸ ︷︷ ︸
∈V

· · · (α(t2)α(t1)−1)︸ ︷︷ ︸
∈V

α(t1).

We want Φ to be a homomorphism so define

Φ(A) = Φ(α(tm)α(tm−1)−1)Φ(α(tm−1)α(tm−2)−1) · · ·Φ(α(t2)α(t1)−1)Φ(α(t1)),

using Φ defined on V by Step 1.
Step 3: We need to show that the definition of Φ(A) from Step 2 is independent of the

partition.
We will show that Φ(A) is unchanged if we refine our partition. Let s ∈ (ti, ti+1) be an

extra partition point. Then

α(ti+1)α(ti)
−1 = (α(ti+1)α(s)−1)(α(s)α(ti)

−1).
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So by a corollary of CBH (did it last time) on V , Φ as defined in Step 1 is a local homomor-
phism. Hence

Φ(α(ti+1)α(ti)
−1) = Φ(α(ti+1)α(s)−1)Φ(α(s)α(ti)

−1).

So the definition of Φ(A) from step 2 is unchanged if we refine the partition. Therefore the
definition of Φ(A) is independent of the choice of admissible partition (by considering their
common refinement). Thus Φ(A) depends only on the path of α chosen. In the next step,
we will show that in fact Φ(A) is independent of the path chosen.

Step 4: We now show that the definition of Φ(A) is independent of path (uses simple
connectedness of G).

We said that G is simply connected if and only if every closed loop is continuously de-
formable to a constant loop. This notion is equivalent to the following notion (courtesy of
algebraic topology): any two paths α, α̃ joining the same two endpoints are homotopic as
paths with fixed end points. This means that if α, α̃ : [0, 1]→ G such that α(0) = α̃(0) and
α(1) = α̃(1) then there exists a continuous map β : [0, 1]× [0, 1]→ G such that

• β(0, t) = α(t) for all t
• β(1, t) = α̃(t) for all t
• β(s, 0) = α(0) = α̃(0) for all s
• β(s, 1) = α(1) = α̃(1) fora ll s.

Let α, α̃ be two paths from I to A. Need to show that the definitions of Φ(A) using each of
these paths agrees. Let β be the one defined as above. Since β is continuous and [0, 1]× [0, 1]
is compact, there exists N > 0 such that if (s, t), (s′, t′) ∈ [0, 1]× [0, 1] with |s− s′| < 2N−1

and |t− t′| < 2N−1 then β(s, t)β(s′, t′)−1 ∈ V . We will deform α to α̃ a little bit of time and
show value of Φ(A) is unchanged with each step.

Define αk,l : [0, 1] → G a continuous path from I to A for k = 0, 1, . . . , N − 1 and
l = 0, 1, 2, . . . , N − 1 as follows:

αk,l(t) =

{
β
(
k+1
N
, t
)

t ∈
[
0, l−1

N

]
β
(
k
N
, t
)

t ∈
[
l
N
, 1
]
.

As for [ l−1
N
, l
N

], we interpolate between them with the straight line.

So more or less we deform the following way: α = α0,0 → α0,1 → α0,2 → · · · → α0,N →
α1,0 → · · · → αN−1,N → αN,0 = α̃. Notice that αk,l and αk,l+1 are identical except in the
interval [ l−1

N
, l
N

].
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We have shown that the definition of Φ(A) using a given bath is independent of admissible
partition. For both αk,l and αk,l+1, choose the partition points to be 0, N−1, 2N−1, . . . , (l −
1)N−1, (l + 1)N−1, . . . , 1 (note that we omitted l/N). So distance between any two con-
secutive partition points is 2N−1. So this is a valid partition since β(s, t)β(s′, t′)−1 ∈ V if
s = s′, |t − t′| < 2N−1. Note also that the values of Φ(A) obtained using paths αk,l, αk,l+1

using this partition for each path are identical because αk,l(t0) = αk,l+1(t0) for any of these
partition points t0. So the definition of Φ(A) using αk,l or αk,l+1 is the same. As for the case
of αk,N → αk+1,0, it’s the same idea: note αk,N(1) = αk+1,0(1) = A.

Hence, we can define Φ(A) independent of path.
Step 5: We still need to show Φ is a homomorphism and that the diagram commutes. Let α

be a path from I to A and β a path from I to B. We want to show that Φ(AB)
?
= Φ(A)Φ(B).
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For this, define

γ(t) =

{
β(2t) 0 ≤ t ≤ 1

2

α(2t− 1)B 1
2
≤ t ≤ 1.

Note that γ(1/2) = β(1) = B and γ(1/2) = α(0)B = IB = B, so γ is indeed a path from I
to AB.

Let 0 = t0 < t1 < t2 < · · · < tm = 1 be an admissible partition for α. Also, let
0 = s0 < s1 < · · · < sn = 1 be an admissible partition for β. Then

0 =
t0
2

=
s0

2
<
s1

2
<
s2

2
< · · · < sN

2
=

1

2
<

1

2
+
t1
2
<

1

2
+
t2
2
< · · · < 1

2
+
tm
2

= 1

is an admissible partition for γ. Notice that

γ

(
1

2
+
ti
2

)
γ

(
1

2
+
ti+1

2

)−1

= (α(ti)B)(α(ti−1)B)−1

= α(ti)BB
−1α(ti−1)−1 = α(ti)α(ti−1)−1 ∈ V,

and similarly we have γ( si
2

)γ( si+1

2
)−1 = β(si)β(si−1)−1. So since

A = α(tm)α(tm−1)−1α(tm−1)α(tm−2)−1 · · ·α(t2)α(t1)−1α(t1)

B = β(sn)β(sn−1)−1β(sn−1)β(sn−2)−1 · · · β(s2)β(s1)−1β(s1),

we have

AB = γ(rn+m)γ(rn+m−1)−1 · · · γ(r2)γ(r1)−1γ(r1).

So Φ(AB) = Φ(A)Φ(B), as desired.
Step 6: Finally, near I, we have Φ = exp ◦λ ◦ log, so

Φ(etX) = etλ(X)

for t sufficiently small. Hence

d

dt

∣∣∣∣
t=0

Φ(etX) = λ(X).
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This proves that λ = Φ∗. So the diagram

V
Φ //

log
��

H

U

exp

OO

λ
// h

exp

OO

does commute, which is what we wanted. �

11. February 4

Let G ∈ GL(n,C) be matrix Lie group. Let H ≤ G be a matrix Lie subgroup (i.e., it is
closed in G). Then the Lie algebra of H, h := {X ∈ gl(n,C) : etX ∈ H ≤ G for all t ∈ R} ≤
g. One can verify that h is closed under bracket, so h is a Lie algebra of g.

What about converse? If G is a matrix Lie group with Lie(G) = g and h a subalgebra of
g, does there exist a matrix Lie subgroup H of G such that Lie(H) = h? Answer is that,
in general, no because the notion of matrix Lie subgroup is too restrictive. Consider the
following example.

Example 11.1. Let G = GL(2,C) and g = gl(2,C). Define

h :=

{[
it 0
0 itα

]
: t ∈ R

}
for some fixed irrational α. Then h is clearly a Lie subalgebra. So does there exist a matrix
Lie group H ⊂ GL(2,C) such that Lie(H) = h? If so, then H contains

exp

([
it 0
0 itα

])
=

[
eit 0
0 eitα

]
for all t ∈ R. Therefore

H ′ :=

{[
eit 0
0 eitα

]
: t ∈ R

}
⊂ H.

We want H to be closed, so it must contain the closure of H ′. But the Lie algebra of H ′ is
two-dimensional while h is one-dimensional. Contradiction! Note that H ′ is isomorphic (as a
group) to a matrix Lie group, but it is not isomorphic as a matrix Lie subgroup of GL(2,C).

While the answer to our previous question is no in general, one can nonetheless prove a
weaker converse, as we shall see later.

Definition 11.2. Let H be any subgroup of GL(n,C), which is not necessarily closed. Then
its Lie algebra h is defined to be

Lie(H) = h = {X ∈ gl(n,C) : etX ∈ H for all t ∈ R}.

Definition 11.3. Let G be a matrix Lie group with Lie algebra g. A subgroup H of G
(again, not necessarily closed) is called an analytic subgroup (or a connected Lie subgroup)
if:

• h := Lie(H) is a vector subspace of g.

• Every A ∈ H can be written in the form A =
m∏
i=1

eXi for some m and X1, . . . , Xm ∈ h.
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Proposition 11.4. Let H be an analytic subgroup of G. Then H is path-connected.

Proof. Let A ∈ H. Then there exist X1, . . . , Xm ∈ h such that A = eX1eX2 · · · eXm . Let
α(t) = Ae−tXm = eX1eX2 · · · e(1−t)Xm , which is a continuous path such that α(0) = A and
α(1) = eX1 · · · eXm−1 (and then iterate). �

Proposition 11.5. Let H be an analytic subgroup of G. Then h = Lie(H) is a subalgebra
of g.

Proof. We need to show that [X, Y ] ∈ h if X, Y ∈ h. Let A ∈ H and Y ∈ h. Then

etAY A
−1

= AetYA−1, so etAY A
−1 ∈ H since etY ∈ H, for all t. Therefore AY A−1 ∈ h. And if

X, Y ∈ h, then etXY e−tX ∈ h. Take d
dt

∣∣
t=0

, and use the fact that h is a subspace of g. The
proof is complete upon noticing that

d

dt

∣∣∣∣
t=0

etXY e−tX = [X, Y ] ∈ h. �

Theorem 11.6 (Main theorem for today’s lecture). Let G be a matrix Lie group and let
g := Lie(G). If h is a subalgebra of g, then there exists a unique analytic subgroup H of G
with Lie(H) = h. In fact, H = {eX1eX2 · · · eXm : Xi ∈ h}.

Before we prove the theorem, notice that without loss of generality, we can take G =
GL(n,C) because an analytic subgroup of GL(n,C) such that Lie(H) = h ⊆ g is an analytic
subgroup of G. We need two technical lemmas for the proof of Theorem 11.6.

Definition 11.7. Let B be a basis of h. An element R ∈ h is called rational with respect
to B if its coordinates with respect to this basis are rational.

Lemma 11.8. For all δ > 0 and for all A ∈ H, there exist rational elements R1, . . . , Rm ∈ h
such that A = eR1eR2 · · · eRmeX with X ∈ h and ‖X‖ < δ.

Proof. Let ε > 0 be sufficiently small so that CBH (for GL(n,C)) holds for all X, Y such
that ‖X‖, ‖Y ‖ < ε:

log(eXeY ) = C(X, Y ) = X +

∫ 1

0

g(eadXet adY )Y dt.

C(X, Y ) is continuous at X and Y . Since C(X, Y ) is continuous, choose ε′ > 0 (without
loss of generality assume ε′ < ε) such that ‖X‖, ‖Y ‖ < ε. Then ‖C(X, Y )‖ < ε. Since

eX = (e
X
k )k, any element of H can be written in the form A = eX1eX2 · · · eXm with ‖Xi‖ < ε′

for all i. Since h is a subalgebra of gl(n,C) (assumption), by CBH we have C(X1, X2) ∈ h.
Choose a rational element R1 ∈ h close to C(X1, X2) such that ‖R1‖ < ε (possible since
‖X1‖, ‖X2‖ < ε′ ⇒ C(X1, X2) < ε). Then

eX1eX2 = eC(X1,X2) = eR1e−R1eC(X1,X2) = eR1eC(−R,C(X1,X2)).

Write X̃2 = C(−R1, C(X1, X2)). Notice that C(−X,X) = 0 for all X by choosing R1

sufficiently close to C(X1, X2). Thus we can ensure that ‖X̃2‖ < ε′. So A = eX1eX2 · · · eXm =

eR1eX̃2eX3 · · · eXm , with ‖X̃2‖, ‖Xj‖ < ε′ for all j = 3, . . . ,m. Iterate this process to get

A = eR1eR2 · · · eRm−1eX̃m with R1, . . . , Rm−1 rational elements and ‖X̃m‖ < ε′. �
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Recall that gl(n,C) = h⊕ h⊥. We proved earlier that there exist a neighbourhood U of 0
in h, a neighbourhood W of 0 in h⊥, and neighbourhood V of I in GL(n,C) such that every
A ∈ V can be written uniquely as A = eY eX for some Y ∈ W ⊆ h⊥ and X ∈ U ⊆ h where
X and Y depend continuously on A.

Lemma 11.9. The set of {Y ∈ W : eY ∈ H} is at most countable.

Proof. Fix δ > 0 such that for all X, Y ∈ h with ‖X‖, ‖Y ‖ < δ, C(X, Y ) is defined and
contained in U (possible since C(0, 0) = 0 and C is continuous in X and Y ). We claim that
for each finite set {R1, . . . , Rm} of rational element in h,, there is at most one X ∈ h with
‖X‖ < δ such that eR1eR2 · · · eRmeX ∈ exp(W ).

Proof of the above claim. Suppose that there are more than one. If eR1eR2 · · · eRmeX1 = eY1

and eR1eR2 · · · eRmeX2 = eY2 with Xi ∈ h, ‖Xi‖ < δ and Yi ∈ W ∈ h⊥, then eY2e−X2 =
eY1e−X1 . Hence eY2 = eY1e−X1eX2 = eY1eC(−X1,X2) with C(−X1, X2) ∈ U ⊆ h. But each
element of U has a unique representative eY eX with Y ∈ W,X ∈ U . Hence, by uniqueness
Y2 = Y1, and C(−X1, X2) = 0, and eX1 = eX2 . So X1 = X2 since exp is injective in U . �

By Lemma 11.8, for every A ∈ H, there exist rational R1, . . . , Rm ∈ h such that A =
eR1 · · · eRmeX with X ∈ h and ‖X‖ < δ. But there exist countably many rational elements
in h, so countably many eR1 · · · eRm , each of which (by the claim above) products at most
one element eY = eR1 · · · eRmeX for some Y ∈ W . The lemma follows. �

Proof of Theorem 11.6. Recall that we defined H = {eX1eX2 · · · eXm : Xi ∈ h}. This is
clearly a subgroup of GL(n,C). We want to show that H is an analytic subgroup of GL(n,C)
and Lie(H) = h, since uniqueness is clear from the properties of analytic subgroups. In order
for H to be an analytic subgroup, we need to prove two things: (a) Lie(H) is a subgroup
of gl(n,C); and (b) every element is of the form eX1eX2 · · · eXm with Xi ∈ Lie(H). If we
show that Lie(H) = h then we are done, since h is a subalgebra (hence a subspace) of

gl(n,C) by construction. Let h̃ = Lie(H). Need to show that h̃ = h. If X ∈ h, then

etX ∈ H for all t ∈ R by the definition of H, since h is a subspace. So X ∈ h̃ = Lie(H).

Hence h ⊆ h̃. Let z ∈ h̃ = Lie(H), for all sufficiently small t. Write etZ = eY (t)eX(t) with
Y (t) ∈ W ⊆ h⊥ and X(t) ∈ U ⊆ h, with X(t) and Y (t) continuous in t. But etZ , eX(t) ∈ H.
Hence eY (t) = etZe−X(t) ∈ H, for all sufficiently small t. But by Lemma 11.9, we must have
Y (t) is constant. If not, it takes on uncountably many values (just apply the intermediate
value theorem to one of its components). Hence Y (t) must be constant. But Y (0) = 0 so
etZ = eX(t) for all sufficiently small t. Hence tZ = X(t) ∈ h for all sufficiently small t. Thus

z ∈ h so h̃ ⊆ h, as required. �

Remark 11.1 (Quick summary of what we did today). There exists a one-to-one correspon-
dence between analytic subgroups of GL(n,C) and subalgebras of gl(n,C). The one-to-
one correspondence map is given by H 7→ h = Lie(H) where H is an analytic subgroup
of G. Conversely, if h is a subalgebra of gl(n,C) then this subalgebra corresponds to
H = {eX1eX2 · · · eXm : Xi ∈ h} (an analytic subgroup of GL(n,C)).

43



12. February 9: Representation theory of Lie groups and Lie algebras

Definition 12.1. Let G be a matrix Lie group. A finite-dimensional complex representation
of G is a matrix Lie group homomorphism

Π : G→ GL(V ),

for some finite-dimensional complex vector space V , i.e., V ∼= Cn and GL(V ) ∼= GL(n,C)
for some n = dim(V ) ≥ 1.

A finite-dimensional real representation of G is a matrix Lie group homomorphism Π :
G→ GL(V ) where V is a finite-dimensional real vector space V such that dimV ≥ 1.

Remark 12.1. If g ∈ G, then Π(g) ∈ GL(V ). We shall abuse notation and write g · v :=
Π(g)(v) for all v ∈ V when the representation Π of G is understood. We say that G acts on
V by the representation Π. W sometime also say that V is a representation of G. Note that
since Π(gh) = Π(g)Π(h), we have g · (h · v) = (gh) · v.

Definition 12.2. Let g be a real or complex abstract Lie algebra. A finite-dimensional
complex representation of g is a Lie algebra homomorphism

π : g→ gl(V )

for some finite-dimensional complex vector space dim(V ) ≥ 1. Recall that gl(V ) is a Lie
algebra whose Lie bracket is the usual commutator.

If g is a real algebra then a real representation of g is a Lie algebra homomorphism
π : g→ gl(V ) where V is a finite-dimensional real vector space.

Remark 12.2. Throughout this course, every representation we consider is finite-dimensional
unless stated otherwise.

Definition 12.3. A representation (real or complex) of a Lie group or a Lie algebra is called
faithful if the homomorphism is injective.

Definition 12.4. Let Π be a real or complex representation of G, acting on V . Then
subspace W of V is called G-invariant (or invariant under G) if Π(g)w ∈ W for all w ∈ W ,
i.e., Π(g)W ⊆ W .

If W 6= {0}, V then the subspace W is called non-trivial. A representation is called
irreducible if it has no non-trivial invariant subspace.

The same type of definitions are applicable for representations of Lie algebras.

Remark 12.3. Any one-dimensional representation is necessarily irreducible.

Definition 12.5. Let Π : G → GL(V ) and Σ : G → GL(W ) be two representations of a
matrix Lie group G (both real or both complex). A linear map T : V → W is said to be a
morphism of representations, or an intertwining map if (T ◦Π(g))(v) = (Σ(g) ◦ T )(v) for all
g ∈ G and v ∈ V . That is, the following diagram commutes:

V
Π(g)

//

T
��

V

T
��

W
Σ(g)

// W
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An intertwining map that is an isomorphism of vector spaces is called an isomorphism
of representations or an equivalence of representations. We consider the isomorphic G-
representations to be “the same”.

The same definition is applicable for Lie algebra representations. (i.e., (T ◦ π(X))(v) =
(σ(X) ◦ T )(v) for all X ∈ g and v ∈ V .

Question. Given G (or g), what are all the irreducible representations up to equivalence,
real or complex? We will answer this question in the next few lectures.

Proposition 12.6. Let Π be a representation of G acting on V . Then there exists a unique
representation of g = Lie(G) acting on the same vector space V such that:

• Π(eX) = eπ(X) = eΠ∗(X) for all X ∈ g
• π(X) = d

dt

∣∣
t=0

Π(etX)

• π(gXg−1) = Π(g)π(X)(Π(g))−1 for all g ∈ G,X ∈ g.

Proof. This is immediate from our earlier results, namely π ≡ Π∗ : g → gl(V ), where
g = Lie(G) and gl(V ) = Lie(GL(V )). �

Proposition 12.7. Let G be a connected matrix Lie group with the Lie algebra g.

(1) Let Π be a representation of G and let π = (Π)∗ be the associated representation of
g. Then Π is irreducible if and only if π is irreducible.

(2) Let Π1,Π2 be two representations of G with associated Lie algebra representations
π1, π2, respectively. Then Π1

∼= Π2 if and only if π1
∼= π2.

Proof. ((1), ⇒) Suppose that Π is irreducible. Let W be a subspace of V invariant under
π(X) for all X ∈ g. Since G is connected, any g ∈ G is of the form G = eX1eX2 · · · eXm for
some X1, . . . , Xm ∈ g. If W is invariant under π(Xi), then W is invariant under eπ(Xi) =
Π(eXi) (to see why this follows, recall that W ≤ V is topologically closed). Hence Π(g) =
Π(eX1) · · ·Π(eXm) leaves W invariant for all g ∈ G. Since Π is irreducible, W = {0} or V .
This proves that π is irreducible.

((1), ⇐) Conversely, suppose π is an irreducible representation of g acting on V . Let W
be a subspace of V invariant under Π(g) for all g ∈ G. Hence Π(etX)W ⊆ W for all t ∈ R
and X ∈ g. Take

d

dt

∣∣∣∣
t=0

Π(etX)W ⊆ W

for all X ∈ g. So W is invariant under all π(X). hence W = {0} or V . So π is irreducible.
((2), ⇔) You will prove this in Assignment #4. �

Proposition 12.8. Let g be a real Lie algebra and let gC be its complexification. Every
complex representation π of g has a unique extension to a complex representation of gC,
also denoted π, given by

π(X + iY ) = π(X) + iπ(Y )

for all X, Y ∈ g. Moreover, π is irreducible as a representation of g if and only if π is
irreducible as a representation of gC.

Remark 12.4. This proposition does not make sense if the word “complex” is replaced with
“real”.
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Proof. If such an extension is to exist, we must have, by complex linearity, that π(X+ iY ) =
π(X) + iπ(Y ) for all X, Y ∈ g.

Define it by the above, then we need to show that it is a complex Lie algebra homo-
morphism. One can show that (computational steps omitted) π([X1 + iY1, X2 + iY2]) =
[π(X1 + iY1), π(X2 + iY2)].

What is more interesting is the second part of the proposition.
(⇒) Let π : g→ gl(V ) be a complex representation of g. Suppose that π is irreducible as

a representation of g. Let W ⊆ V be an irreducible subspace for gC, i.e., π(X + iY )W ⊆ W
for all X, Y ∈ g. If Y = 0, then we have π(X)W ⊆ W for all X ∈ g. So W is invariant
subspace for g, hence W = {0} or V . Thus π is also irreducible as a representation of gC.

(⇐) Conversely, suppose that W ⊆ V is an invariant subspace for g. Then π(X)W ⊆ W
for all X ∈ g, and W is a complex subspace, hence iπ(Y )W ⊆ W for all Y ∈ g. Thus
π(X + iY )W ⊆ W for all X, Y ∈ g. Thus W is an invariant subspace for gC. But since
W = {0} or V , it follows that π is irreducible as a representation of g. �

Example 12.9 (The standard representation). By definition, G ⊆ GL(n,C) for some n. The
inclusion map ι : G ↪→ GL(n,C) is a complex finite-dimensional representation of G.

If G ⊆ GL(n,R) for some n, then the inclusion map ι : G ↪→ GL(n,R) is a real finite-
dimensional representation of G.

Similarly, if g is a Lie algebra of matrices (such as the Lie algebra of a matrix Lie group)
(i.e., g is a subalgebra of gl(n,C) or gl(n,R)), then the inclusion map is a finite-dimensional
(complex or real) representation of g.

Remark 12.5. If an abstract Lie group is not a matrix Lie group, then there is no “standard
representation”.

Example 12.10 (The trivial representation). Consider Π : G→ GL(1,C) given by Π(g) = 1
for all g ∈ G. This is irreducible since this representation is one-dimensional. Another non-
trivial representation is π : g→ gl(1,C) given by π(X) = 0 for all X ∈ g. This is irreducible,
for the same reason (one-dimensional).

Example 12.11 (The Adjoint representation). We have already seen a non-trivial represen-
tation of a matrix Lie group and its Lie algebra, namely the big “Ad”. (Let V = g.) Recall
that Ad : G→ GL(g), and Adg : g→ g is defined as Adg(X) = gXg−1 is a matrix Lie group
homomorphism. Since Adgh = Adg ◦Adh, it follows that Ad is a representation of G on g.

On the other hand, (Ad)∗ = ad : g→ gl(g) (again, V = g here) defined as adX(Y ) = [X, Y ]
is a representation, since ad[X,Y ] = [adX , adY ].

Claim. Let G = SO(3) and g = so(3) ∼= R3 (isomorphic as vector spaces). Then the
standard representation of SO(3) on R3 and the adjoint representation of SO(3) on so(3) are
equivalent/isomorphic.

Proof. You will prove this in Assignment #4. �

Definition 12.12. We define Vm to be a complex vector space of homogeneous polynomials
of degree m ≥ 0 in two complex variables. That is,

Vm := {a0z
m
1 + a2z

m−1
1 z2 + · · ·+ am−1z1z

m−1
2 + amz

m
2 : ai ∈ C}.

Thus the basis of Vm is {zk1zm−k2 : k = 0, 1, . . . ,m}. Thus dimVm = m+ 1.
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13. February 11

We will show that, up to equivalence, the following representations are all the finite-
dimensional complex irreducible representations of SU(2).

13.1. A complex irreducible representation of SU(2) of dim m+ 1 (m ≥ 0)

Remark 13.1. Recall that SU(2) acts on C2 in the standard way: for any A ∈ SU(2) and

z =

[
z1

z2

]
∈ C2, we have

A =

[
A11z1 + A12z2

A21z1 + A22z2

]
∈ C2.

Define Πm : SU(2)→ GL(Vm) to be

(Πm(A)f)(z) := f(A−1z).

If A,B ∈ SU(w), then

(Πm(A)Πm(B)f)(z) = (Πm(B)f)(A−1z) = f(B−1A−1z) = f((AB)−1z).

Hence Πm(A)Πm(B)f = Πm(AB)f for all f ∈ Vm. So Πm is indeed a representation of
SU(2).

If f = a0z
m
1 + · · ·+ amz

m
2 =

m∑
k=0

akz
m−k
1 zk2 , then

(Πm(A)f)(z1, z2) =
m∑
k=0

ak((A
−1)11z1 + (A−1)12z2)m−k((A−1)21z1 + (A−1)22z2)k,

hence Πm(A)f(z1, z2) ∈ Vm for all A ∈ SU(2). Hence, Πm induces a representation πm of
su(2) on the same space Vm

πm(X) =
d

dt

∣∣∣∣
t=0

Πm(etX)

(πm(X)f)(z) =
d

dt

∣∣∣∣
t=0

f(e−tXz).

Let z(t) = e−tXz. Apply the chain rule:

(π(X)f)(z) =
d

dt

∣∣∣∣
t=0

f(z(t)) =
∂f

∂z1

(z)
dz1

dt

∣∣∣∣
t=0

+
∂f

∂z2

(z)
dz2

dt

∣∣∣∣
t=0

= (−X11z1 −X12z2)
∂f

∂z1

(z) + (−X21z1 −X22z2)
∂f

∂z2

(z).

Since sl(2,C) = su(2)C, this πm is a representation of sl(2,C) given by the same formula.
Consider π(X) for some specific sl(2,C). For instance, consider

H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
.
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Recall that H,X, Y form a basis of sl(2,C). So we have

πm(H)f = −z1
∂f

∂z1

+ z2
∂f

∂z2

=

(
−z1

∂

∂z1

+ z2
∂

∂z2

)
f

πm(X)f = −z2
∂f

∂z1

=

(
−z2

∂

∂z1

)
f

πm(Y )f = −z1
∂f

∂z2

=

(
−z1

∂

∂z2

)
f.

Observe that

πm(H)(zk1z
m−k
2 ) =

(
−z1

∂

∂z1

+ z2
∂

∂z2

)
(zk1z

m−k
2 )

= −kzk1zm−k2 + (m− k)zk1z
m−k
2

= (m− 2k)zk1z
m−k
2 .

hence, πm(H) is diagonalizable as an operator on Vm. Meanwhile, as for the remaining two:

πm(X)(zk1z
m−k
2 ) = −kzk−1

1 zm−k+1
2

πm(Y )(zk1z
m−k
2 ) = −(m− k)zk+1

1 zm−k−1
2 .

Claim. Vm is an irreducible C-representation of sl(2,C).

Proof. Let W 6= {0} be an invariant subspace. We need to show that W = Vm. We claim
that there exists w 6= 0 ∈ W . That is we need to find w = a0z

m
1 + a1z

m−1
1 z2 + · · · + amz

m
2

where at least one of ak is non-zero. Let k0 be the smallest integer with ak0 6= 0. So we can
write w = ak0z

m−k0
1 zk02 + · · ·+ amz

m
2 .

Now consider πm(X)m−k0w = ak0(−1)m−k0(m−k0)!zm2 6= 0. Therefore zm2 ∈ W . Note that
πm(X)m−k0(w) ∈ W since W is invariant under πm. Then πm(Y )k(zm2 ) = (∗)zk1zm−k2 where
(∗) is some non-zero stuff. This means zk1z

m−k
2 ∈ W for all 0 ≤ k ≤ m meaning W = Vm. �

13.2. Complex representations of sl(2,C)

We can just use the same basis for sl(2,C). Note that [H,X] = 2X. Similarly we have
[H,Y ] = −2Y . Finally, note [X, Y ] = H.

Let V be a complex vector space. LetA,B ∈ gl(V ). If [A,B] = 2B, [A,C] = −2C, [B,C] =
A then the map π : sl(2,C) → gl(V ) where π(H) = A, π(X) = B, π(Y ) = C is a complex
representation of sl(2,C).

Remark 13.2. Consider π(H) ∈ gl(V ). We know that there exists at least one eigenvector,
i.e., there exists non-zero u ∈ V and α ∈ C such that π(H)u = αu.

Lemma 13.1. Let π : gl(2, C)→ gl(V ) be a complex, not necessarily irreducible representa-
tion of sl(2,C). Then π(H)π(X)u = (α+2)π(X)u and π(H)π(Y )u = (α−2)π(Y )u. Hence,
either π(X)u = 0 or 4π(X)u is an eigenvector of π(H) with eigen value α + 2. Similarly,
either π(Y ) = u or π(Y ) is an eigenvector of π(H) with eigenvalue α− 2.

Proof. π(H)π(X)u − π(X)π(H)u = [π(H), π(X)]u = π([H,X])u = π(2X)u = 2π(X)u.
Therefore π(H)π(X)u − απ(X)u = 2π(X)u. One can prove the other claim in a similar
manner. �
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Theorem 13.2 (Main theorem). The following are true:

(1) For every integer m ≥ 0, there exists an irreducible complex representation of sl(2, C)
with dimension m+ 1.

(2) Any two irreducible complex representations of sl(2,C) with same dimension are
equivalent.

(3) If π is an irreducible complex representation of sl(2,C) of dimension m + 1, then
π ∼= πm.

Proof. First, we want to diagonalize π(H), since we don’t know yet that π(H) is always
diagonalizable. By Lemma 13.1, there exists a non-zero u so that π(H)u = αu for some
α ∈ C, and π(X)nu = 0 or π(X)nu an eigenvector of π(H) with eigenvalue α + 2n for all
n ∈ N.

Recall that eigenvectors with distinct eigenvalues are linearly independent; and since V
is finite-dimensional, there exists a non-negative integer N such that π(X)Nu 6= 0 but
π(X)NHu = 0. Let u0 = π(X)Nu 6= 0. Then π(X)u0 = 0 and π(H)(u0) = (α+2N)u0 = λu0,
where π = α + 2N .

Define uk = π(Y )ku0. By Lemma 13.1, either uk = 0 or uk is an eigenvector of π(H) with
eigenvalue λ − 2k. So there exists m ≥ 0 such that uk = π(Y )ku0 6= 0 for all k ≤ m and
um+1 = π(Y )m+1u0 = 0. We need the following claim to proceed further:

Claim. π(X)u0 = 0, and π(X)uk = (kλ− k(k − 1))uk−1 for k > 0.

Proof of the claim. We prove by induction on k. If k = 1, then π(X)u1 = π(X)π(Y )u0 =
π(H)u0 = λu0 since π(X)u0 = 0.

Now assume that the claim holds for k (the induction hypothesis). Observe that

π(X)uk+1 = π(X)π(Y )uk = π(Y )π(X)uk + π(H)uk

= π(Y )[kλ− k(k − 1)]uk−1 + (λ− 2k)uk

= (kλ− k2 + k + λ− 2k)uk

= ((k + 1)λ− (k + 1)k)uk. �

um+1 = 0 so π(X)um+1 = 0. By the claim above we have π(X)um+1 = ((m+ 1)λ− (m+
1)m)um = 0, or (m+ 1)(λ−m)um = 0. Therefore λ = m, which is a non-negative integer.

So far, we have that there exist a non-negative integer m such that u0, . . . , um are non-zero
vectors such that π(H)uk = (m−2k)uk, π(Y )uk = uk+1, π(Y )um = 0, π(X)uk = (km−k(k−
1))uk−1, and π(X)u0 = 0. Call the collection of these facts (∗).

Let W = spanC{u0, . . . , um}. By construction, W is an invariant subspace for π. If π :
sl(2,C)→ gl(V ) is an irreducible complex representation of sl(2,C) then V = span{u0, . . . , um}.

Claim. (∗) is also sufficient. That is, if u0, . . . , um is a basis for an (m + 1)-dimensional
complex vector space V and if we define π(H), π(X), π(Y ) acting on V by (∗), and extend
by linearly to an action of sl(2,C), then this is a Lie algebra representation.

Proof of the claim. Let k > 0. Then [π(H), π(X)]uk = π(H)π(X)uk − π(X)π(H)uk =
(m− 2(k − 1))π(X)uk − (m− 2k)π(X)uk. Hence 2π(X)uk = π(2X)uk = π([H,X])uk. Also
π([H,X])u0 = π(2X)u0 = 0. So π([H,X]) = [π(H), π(X)]. Also, π([H,X])u0 = π(2X)u0 =
0. Thus π([H,X]) = [π(H), π(X)]. Similarly, [π(H), π(Y )] = π(−2Y ) = π([H,Y ]). And
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finally (for 0 < k < m),

[π(X), π(Y )]uk = π(X)π(Y )uk − π(Y )π(X)uk = π(X)uk+1 − π(Y )[km− k(k − 1)]uk−1

= [m(k + 1)− (k + 1)k]uk − [km− k(k − 1)]uk−1

= (m− 2k)uk = π(H)uk.

Same holds for k = 0,m so [π(X), π(Y )]uk = π(H)uk. Therefore [π(X), π(Y )] = π([X, Y ])
so π is an sl(2,C)-Lie algebra representation. �

Now let π : sl(2,C) → gl(V ), π̃ : sl(2,C) → gl(Ṽ ) be two finite-dimensional irreducible
complex representations of sl(2,C) of same dimension m+ 1. We have seen that there exist

a basis {u0, . . . , um} of V and a basis {ũ0, . . . , ũm} of Ṽ such that (∗) holds. Then the linear

map T : V → Ṽ defined by T (uk) = ũk is an equivalence of representations. So T is a
bijective morphism because, for any z ∈ sl(2,C), the following diagram

V
π(z)

//

T
��

V

T
��

Ṽ
π̃(z)

// Ṽ

commutes, i.e., π̃(z)T (uk) = π̃(z)ũk = T (π(z)uk). This proves (2) so the proof is complete.
�

Remark 13.3 (Summary of what we have done). Let π be a finite-dimensional complex
representation of sl(2,C) acting on V , where π is not necessarily irreducible. Then:

(1) every eigenvalue of π(H) is an integer.
(2) If v ∈ V is non-zero such that π(X)v = 0 and π(H) = λv, then λ is a non-negative

integer m and {v, π(Y )v, . . . , π(Y )mv} is an irreducible invariant subspace of V of
dimension m+ 1.

Remark 13.4 (What’s coming up). First, given a finite-dimensional representation of a matrix
Lie group or a Lie algebra, we want to use them to construct new representations. Let
V,W be finite-dimensional vector space over F, where F = R or C. There are three basic
constructions: direct sum V ⊕W , dual space V ∗ := L(V,F), and tensor product V ⊗W .

If Π,Σ are representations of G with Π : G → GL(V ) and Σ : G → GL(W ), we want to
define

Π⊕ Σ : G→ GL(V ⊕W )

Π∗ : G→ GL(V ∗)

Π⊗ Σ : G→ GL(V ⊗W ),

and the same can be defined for Lie algebra representations. Note that Π ⊕ Σ is never
irreducible since V ⊕ {0} and {0} ⊕W are non-trivial invariant subspaces. Now suppose
that Π : G → GL(V ) is a finite-dimensional complex representation of G. So the question:
is Π equivalent (isomorphic) to a direct sum of irreducible representation? The answer is,
unfortunately, not always. But this holds only for “nice” groups or Lie algebras. This
prompts us to introduce a new definition.
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Definition 13.3. A representation Π is completely reducible if it is isomorphic to a direct
sum of irreducible representations.

Remark 13.5. Not all representations are completely reducible. Also, note that any irre-
ducible representation is completely reducible.

Remark 13.6. Another question: if Π,Σ are irreducible representations, then is Π ⊗ Σ irre-
ducible also? The answer is again unfortunately no in general. If G has the property that

all finite-dimensional representations are completely reducible, then Π ⊗ Σ ∼=
N⊕
k=0

Pk where

each Pk is an irreducible representation.

14. February 23: Constructing new representations from existing ones

14.1. First way: direct sum

Definition 14.1. Let G be a matrix Lie group. Let Π1, . . . ,Πm be representations of G
acting on V1, V2, . . . , Vm respectively, all over some field. Then the direct sum Π1⊕ · · · ⊕Πm

of G acting on V1 ⊕ V2 ⊕ · · · ⊕ Vm is given by (for any g ∈ G)

(Π1 ⊕ Π2 ⊕ · · · ⊕ Πm)(g)(v1 ⊕ v2 ⊕ · · · ⊕ vm) = (Π1(g)v1)⊕ · · · ⊕ (Πm(g)vm),

for each vi ∈ Vi. We shall abuse notation by writing

g · (v1 ⊕ v2 ⊕ · · · ⊕ vm) = (gv1)⊕ · · · ⊕ (gvm),

and

g(h · (v1 ⊕ v2)) = g((hv1)⊕ (hv2)) = (g(hv1))⊕ (g(hv2))

= ((gh)v1)⊕ ((gh)v2) (∵ Π1,Π2 are representations)

= (gh) · (v1 ⊕ v2).

So Π1 ⊕ · · · ⊕ Πm : G→ GL(V1 ⊕ V2 ⊕ · · · ⊕ Vm) is a representation of G.
Similarly, let π1, . . . , πm be representations of g (of a Lie algebra) acting on V1, . . . , Vm

respectively. Then

(π1 ⊕ · · · ⊕ πm)(X)(v1 ⊕ · · · ⊕ vm) = (π1(X)v1)⊕ · · · ⊕ (πm(X)vm).

Thus π1 ⊕ · · · ⊕ πm : g→ gl(V1 ⊕ · · · ⊕ Vm) is a Lie algebra representation.

Definition 14.2. Let G be a matrix Lie group. We say G has the complete reducibility
property if every finite-dimensional complex representation of G is isomorphic to a direct
sum of irreducible representations. Similarly, we define CRP for a Lie algebra g.

Remark 14.1. Not every G or g has the CRP. We will see later on soon.

14.2. Second way: tensor product of representations

Definition 14.3. Let G be a matrix Lie group, and Π1,Π2 representations of G acting on
V1, V2 respectively. Then the tensor product Π1 ⊗ Π2 of Π1 and Π2 is given by

(Π1 ⊗ Π2)(g)(v1 ⊗ v2) := (Π1(g)v1)⊗ (Π2(g)v2)

where vi ∈ Vi (extend this definition by linearity). Then again, by abuse of notation, we
write g(v1 ⊗ v2) = (gv1)⊗ (gv2).

Proposition 14.4. Π1 ⊗ Π2 is a representation.
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Proof. First we need to show that it is well-defined. Let λ ∈ F. Then

(λv1)⊗ v2 = v1 ⊗ (λv2) = λ(v1 ⊗ v2).

Therefore

g((λv1)⊗ v2) = (g(λv1))⊗ (gv2)

= (λ(gv1))⊗ (gv2)(∵ g is linear)

= λ((gv1)⊗ (gv2)),

and similarly,

g(v1 ⊗ (λv2)) = λ((gv1)⊗ (gv2)),

so λg(v1 ⊗ v2) = g(λ(v1 ⊗ v2)). Similarly, since (v1 + u1)⊗ v2 = v1 ⊗ v2 + u1 ⊗ v2. Apply g
on both sides to get (gv1 + gu1)⊗ gv2 = gv1 ⊗ gv2 + gu1 ⊗ gv2. Hence the representation is
well-defined.

It is easy to check that Π2 ⊗ Π2 : G→ GL(V1 ⊗ V2) is a homomorphism, so indeed it is a
representation. �

Let πk : g→ gl(Vk) for k = 1, 2 be representations of g. We want to define π1 ⊗ π2 : g→
GL(V1 ⊗ V2). Let X ∈ g. Define (again with abuse of notation)

(π1 ⊗ π2)(X)(v1 ⊗ v2) := (π1(X)v1)⊗ v2 + v1 ⊗ (π2(X)v2)

X(v1 ⊗ v2) := (Xv1)⊗ v2 + v1 ⊗ (Xv2),

and extend by linearity.
Recall that a representation of Lie algebras is a homomorphisms of Lie algebras. So in

particular it is a linear map. Note that if we define (π1⊗π2)(X)(v1⊗v2) = π1(X)v1⊗π2(X)v2

is no longer linear.
If πk = (Πk)∗ i.e., induced from Πk : G→ GL(Vk), then

πk(X)v =
d

dt

∣∣∣∣
t=0

Πk(e
tX)v.

Since eπk(X) = Πk(e
X), we have, for Π1 ⊗ Π2 : G→ GL(V1 ⊗ V2),

(Π1 ⊗ Π2)∗(X)(v1 ⊗ v2) =
d

dt

∣∣∣∣
t=0

(Π1 ⊗ Π2)(etX)(v1 ⊗ v2)

=
d

dt

∣∣∣∣
t=0

(Π1(etX)v1)⊗ (Π2(etX)v2)

= π1(X)v1 ⊗ Iv2 + Iv1 ⊗ π2(X)v2 (by the product rule).

Thus (Π1 ⊗Π2)∗(X) = π(X)⊗ Iv2 + Iv1 ⊗ π2(X). One can also check directly that π1 ⊗ π2

as defined earlier is a Lie algebra homomorphism.

Remark 14.2. If V1, V2 are irreducible representations of G or g, then V1 ⊗ V2 need not be
irreducible in general.
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14.3. Third way: dual representation

Definition 14.5. Let T : V → W be a linear map of vector spaces. Then T t : W ∗ → V ∗ is
the dual linear map if for all α ∈ W ∗ and T tα ∈ V ∗, then (T tα)(v) = α(T (v)) for all v ∈ V .

Suppose γ is a basis of W and β is a basis of V . Then A = [T ]γ,β is a dimW × dimV
matrix. Then if β∗ is a dual basis of V ∗ and γ∗ is a dual basis of W ∗, tun B = [T t]β∗,γ∗ is a
dimV × dimW matrix, and B = At.

Definition 14.6. Let Π : G → GL(V ) be a representation of G. Define the dual represen-
tation Π∗ : G→ GL(V ∗) by Π∗(g) = (Π(g−1)t : V ∗ → V ∗.

Remark 14.3. We see that Π∗ is a homomorphism, since, for any g, h ∈ G,

Π∗(g)Π∗(h) = (Π(g−1))t(Π(h−1))t = (Π(h−1)Π(g−1))t

= (Π(h−1g−1))t = (Π((gh)−1))t = Π∗(gh).

Proposition 14.7. Let π : g → gl(V ) be a Lie algebra representation. Then the dual
representation π∗ : g→ gl(V ∗) is given by

π∗(X) := −(π(X))t.

Proof. Since the Lie bracket is a bracket in gl(V ∗), the bracket is the usual commutator.

[π∗(X), π∗(Y )] = π∗Xπ∗Y − π∗Y π∗X
= (−πX)t(−πY )t − (−πY )t(−πX)t = ((πY )(πX))t − ((πX)(πY ))t

= [πY, πX]t = (π([Y,X]))t (∵ π is a representation)

= (π(−[X, Y ]))t = π∗([X, Y ]). �

Recall that an intertwining map is a linear map T : V → W , where V and W are
representations of a matrix Lie group G or a Lie algebra g satisfying T (g · v) = g · T (v) for
all g ∈ G (or T (X · v) = X · T (v) for all X ∈ g).

14.4. Schur’s lemma

Theorem 14.8 (Schur’s lemma). The following are true:

(1) Let V and W be irreducible representations of a matrix Lie group or a Lie algebra,
and let T : V → W be an intertwining map. Then either T ≡ 0 or T is an isomor-
phism. Therefore, any morphism between two irreducible representations is either
the zero map or an isomorphism.

(2) Let V be an irreducible complex representation of a matrix Lie group or Lie algebra.
Then if T : V → V is an intertwining map of V with itself then T = λI for some
λ ∈ C.

(3) Let V,W be irreducible complex representation of a matrix Lie group or Lie algebra.
Let T1, T2 : V → W be two non-zero intertwining maps. Then T1 = λT2 for some
λ ∈ C∗.

Proof. We will only do the Lie group case, since the Lie algebra case only requires modifying
notation.

(Proof of (1)) Suppose that g · T (v) = T (g · v) for all v ∈ V, g ∈ G. Let v ∈ ker(T ). Then
T (g · v) = g · T (v) = g · 0 = 0. Thus g · v ∈ ker(T ). Thus ker(T ) is an invariant subspace of
V . Let w ∈ im(T ). So w = T (v) for some v ∈ V , whence g ·w = g ·T (v) = T (g · v) ∈ im(T ).

53



It follows that im(T ) is an invariant subspace of W . But then since V and W are both
irreducible, ker(T ) is either trivial or the entire V ; similarly, im(T ) is either trivial or the
entire W . Therefore either T ≡ 0 (if ker(T ) = V, im(T ) = 0) or T is an isomorphism (if
ker(T ) = 0, im(T ) = W ).

(Proof of (2)) Let T (g · v) = g · T (v). There exists at least one eigenvector v0 6= 0 and
eigenvalue λ ∈ C for T , i.e., T (v0) = λv0.

Let Eλ be the eigenspace with eigenvalue λ. If v ∈ Eλ, then T (g ·v) = g ·T (v) = g · (λv) =
λ · (g · v), by the linearity of the group action. Hence Eλ is a non-zero invariant subspace of
V , so Eλ = V . Thus T (x) = λx for all x ∈ V .

(Proof of (3)) By (1), both T1, T2 are isomorphisms, Hence T1 ◦ T−1
2 : W → W is an

intertwining map. By (2), we have T1 ◦ T−1
2 = λI for some λ ∈ C∗. �

Corollary 14.9. Let Π be an irreducible complex representation of G. Let Z(G) be the
centre of G, i.e., Z(G) = {g ∈ G : gh = hg ∀h ∈ G}. Then if g ∈ Z(G), we have Π(g) = λI
for some λ ∈ C. That is, every element in Z(G) acts by scalar multiplication.

Similarly, if π is an irreducible complex representation of g, let z(g) = {Y ∈ g : [X, Y ] =
0 ∀X ∈ g}, or the centre of g. Then if X ∈ z(g), then π(X) = λI for some λ ∈ C.

Proof. Let g ∈ Z(G). Then for any h ∈ G, we have Π(g)Π(h) = Π(gh) = Π(hg) = Π(h)Π(g).
So Π(g) is an intertwining map of V to itself. Thus by (2) of Schur’s lemma, indeed Π(g) =
λI. The Lie algebra case can be proved similarly. �

Corollary 14.10. Any complex irreducible representation of an abelian group or an abelian
Lie algebra is one-dimensional.

Proof. Since Z(G) = G, by the preceding corollary, for any g ∈ G we have Π(g) = λgI for
some λG ∈ C. Hence, every subspace of V is invariant. But since V is irreducible, it cannot
have any non-trivial subspace. Therefore dim(V ) = 1. �

14.5. Relation between representations of matrix Lie groups and Lie algebras

We have seen that if F : G→ H is a homomorphism, it induces F∗ : g→ h a Lie algebra
homomorphism such that F (eX) = eF∗X for all X ∈ g. Also, if G is simply connected, then
we have a converse: that is, given λ : g → h a Lie algebra homomorphism, there exists a
unique F : G→ H such that F∗ = λ.

Any Lie group representation Π : G→ GL(V ) always induces a Lie algebra representation
Π∗ = π : g → gl(V ). Also, we can go back provided G is simply connected. Therefore, we
can conclude the following:

(1) If G is simply connected, then we have a one-to-one correspondence between repre-
sentations of G and representations of g.

(2) Moreover, this one-to-one correspondence restricts to the irreducible representations.
(3) However, if G is not simply connected, then we may not have such one-to-one cor-

respondence. We can always go from G-representations to g-representations, but we
can’t always “lift” a g-representation to a G-representation.

Example 14.11. G = SU(2) is homeomorphic to S3, so G is indeed simply connected. There-
fore we have the bijective correspondence between irreducible complex representations of
SU(2) and of su(2). We also have the bijective correspondence between the irreducible
complex representations of su(2) and those of su(2)C = sl(2,C) (the complexification of
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su(2)). Recall that we found all of the complex irreducible representations of sl(2,C) with
dim(Vm) = m + 1 unique up to isomorphism. Recall that su(2) ∼= so(3) which gives an
isomorphism g ∼= h. Thus there exists a one-to-one correspondence between irreducible com-
plex representations of g and those of h. However, recall that SO(3) is not simply connected.
We shall continue the discussion next class.

15. February 25

Recall the following bijective correspondences, which preserve irreducibility:

complex rep’s of G⇔ complex rep’s of g⇔ complex rep’s of gC.

We considered an example where G = SU(2), g = su(2). Recall that gC = sl(2,C). It is
easy to see that if g ∼= h as a Lie algebra, then there is a one-to-one correspondence between
the irreducible representations of g and the irreducible representations of h. Thus we have
a bijective correspondence between the complex irreducible representations of su(2) and
the complex irreducible representations of so(3), since su(2) ∼= so(3). However SO(3) is not
simply connected. So do there exist representations of so(3) that do not lift to representations
of SO(3)? Answer: Yes. We hope to prove this in today’s lecture. For this, we need more
details about the relation between SU(2) and SO(3).

Recall that su(2) consists of skew-Hermitian 2× 2 complex matrices, and that it is three-
dimensional as a real vector space, with basis

E1 =
1

2

[
i 0
0 −i

]
, E2 =

1

2

[
0 1
−1 0

]
, E3 =

1

2

[
0 i
i 0

]
.

Recall also that so(3) consists of skew-symmetric 3 × 3 real matrices, and that it is also a
three-dimensional real vector space, with basis

F1 =

 0 0 0
0 0 −1
0 1 0

 , F2 =

 0 0 1
0 0 0
−1 0 0

 , F3 =

 0 −1 0
1 0 0
0 0 0

 .
Note that [Ei, Ej] = Ek and [Fi, Fj] = Fk where (i, j, k) is a cyclic permutation of (1, 2, 3).
Therefore the map T : su(2) → so(3) defined by Ei 7→ Fi (and extend by linearity) is a Lie
algebra isomorphism. Thus there is a one-to0one correspondence between the representations
of su(2) and the representations of so(3) given by

π : su(2)→ gl(V )→ π ◦ T−1 : so(3)→ gl(V )

σ ◦ T ← σ.

We have determined, up to isomorphism, all the irreducible representations of su(2). So let
πm : su(2) → gl(Vm) where dimVm = m + 1 and m ≥ 0. So by the correspondence, all the
complex irreducible representations of so(3) are of the form σm := πm◦T−1 : so(3)→ gl(Vm).
Also, since SU(2) is simply connected, there is a one-to-one correspondence between Πm and
πm := (Πm)∗. What of SO(3)? For each m ≥ 0, does there exist a finite-dimensional
irreducible complex representation Σm : SO(3)→ GL(Vm) such that (Σm)∗ = σm?

Lemma 15.1. There exists a matrix Lie group homomorphism P : SU(2) → SO(3) that is
two-to-one such that P is surjective with kerP = {±I} and such that P∗ : su(2)→ so(3) is
the map T that sends Ei to Fi for i = 1, 2, 3.
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Proof. Recall that su(2) ∼= so(3) ∼= R3 as vector spaces and as Lie algebras. If {e1, e2, e3} is
the standard basis of R3, then the map Ei ↔ Fi ↔ ei is an isomorphism.

Since adEi : su(2) → su(2) and su(2) ∼= R3, we have adEi ∈ gl(R3). We also have that
Fiej = ek and Fiek = −ej where (i, j, k) is the cyclic permutation of (1, 2, 3). Under this
identification, we have

ad : su(2)→ so(3) ( gl(R3),

and adEi = Fi. hence T := ad : su(2)→ so(3) is a Lie algebra isomorphism.
Now consider Ad : SU(2) → GL(su(2)) ∼= GL(3,R). by construction, Ad is a matrix Lie

group homomorphism. We only need to show that:

(1) im(Ad) = SO(3) ⊆ GL(3,R);
(2) Ad is surjective onto its image; and that
(3) ker(Ad) = {±I}.

Recall that if 〈 , 〉 is the standard Hermitian inner product on 2× 2 complex matrices, then

〈A,B〉 = tr(A∗B) =
∑
i,j

AijBij.

When restricted to su(2), then this inner product is, up to a factor of 2, the Euclidean inner
product of R3. Therefore, 〈∑

i

aiEi,
∑

bjEj

〉
= 2

3∑
i=1

aibi.

Let g ∈ SU(2). Then g∗ = g−1. Let v ∈ R3 ∼= su(2) with Adg v = gvg−1. Thus it follows

〈Adg v,Adg w〉 = tr((gvg−1)∗gwg−1) = tr((g−1)∗v∗ g∗g︸︷︷︸
I

wg−1)

= tr(gv∗wg−1) = tr(v∗wg−1g) = tr(v∗w) = 〈v, w〉.
Therefore Adg ∈ O(3) and AdI = I ∈ SO(3). Recall that Ad is continuous and SU(2) is
connected, and that det(Adg) = ±1 for all g ∈ SU(2). So det(Adg) = 1 for all g ∈ SU(2).
So indeed im(Ad) ⊆ SO(3), which proves (1).

Recall that, for any θ,

exp

 0 0 0
0 0 −θ
0 θ 0

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
i.e., the counterclockwise rotation by θ about e1 axis. Since eθF1 = eθ adE1 = eadθE1 = Ad(eθE1)
and eθE1 ∈ SU(2), it follows that Ad(eθE1) is the counterclockwise rotation by θ about the
e1 axis. Similarly, we can show that Ad(eθEj) for j = 2, 3 are counterclockwise rotations by
θ about the ej axis.

Let R ∈ SO(3). Then by the Cartan-Dieudonné theorem, R can be written as a product
of rotations about e1, e2, e3 axes. So we have

R =
∏
i

Ad(eθEi) = Ad

(∏
i

eθEi

)
,

with the last equality following from the fact that Ad is a homomorphism. So Ad : SU(2)→
SO(3) is surjective, which proves (2).
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For the last part, let g ∈ ker(Ad). Then Adg = I ∈ SO(3) ⊆ GL(R3) = GL(su(2)). Thus
Adg Ei = Ei for all i = 1, 2, 3 SO gEig

−1 = Ei. Hence gEi = Eig fofr all i. So g is of the
form [

a −b
b a

]
,

with |a|2 + |b|2 = 1. Since g ∈ SU(2), it follows that |a|2 = 1 so a = eiθ. Now solve for g:[
a −b
b a

]
E1 = E1

[
a −b
b a

]
,

which gives [
a b
b −a

]
=

[
a −b
−b −a

]
.

Thus b = −b, or b = 0. Also,[
eiθ 0
0 e−iθ

]
E2 = E2

[
eiθ 0
0 e−iθ

]
,

so [
0 eiθ

e−iθ 0

]
=

[
0 e−iθ

eiθ 0

]
,

hence eiθ = e−iθ. So eiθ = ±1, so g = ±I, as required.
Now that we showed all (1), (2), and (3), we can say that P = Ad and P∗ = Ad∗ = ad = T ,

as we claimed initially. �

Theorem 15.2. Let σm = πm ◦ T−1 be the irreducible complex representations of so(3) on
Vm. Then:

(1) If m is even, then there exists a representation of Σm of SO(3) on Vm such that
(Σm)∗ = σm.

(2) If m is odd, then there does not exist such representation.

Proof. We will start by proving (2) first. Suppose that there exists a representation Σm such
that (Σm)∗ = σm. Thus we must have

Σm(eX) = eσm(X),

for all X ∈ so(3). Let X = 2πF1. Then

e2πF1 =

 1 0 0
0 cos(2π) − sin(2π)
0 sin(2π) cos(2π)

 = I.

So I = Σm(e2πF1) = e2πσm(F1). So we have

σm(F1) = (πm ◦ T−1)(F1) = πm(E1) =
i

2
πm(H),

where

E1 =
i

2

[
1 0
0 −1

]
=
i

2
H
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from the representation theory of su(2) and sl(2,C). So there exists a basis u0, u1, . . . , um
of Vm such that πm(H)uk = (m − 2k)uk. So we have σm(F1)uk = i

2
(m − 2k)uk. So in this

basis, we have

σm(F1) =


i
2
m

i
2
(m− 2

. . .
i
2
(−m)

 .
Since m is odd, m− 2k is also odd for all k. Hence

e2πσm(F1) =


eπim

. . .
. . .

e−mπi

 = −I, (†)

which is a contradiction. Therefore such Σm cannot exist.
Now suppose that m is even. Consider the representation Πm of SU(2). Then we have

e2πEi = exp

[
πi 0
0 −πi

]
=

[
eπi 0
0 e−πi

]
= −I.

Therefore, we have

Πm(−I) = Πm(e2πE1) = e(2π)πm(E1) = e2πσm(F1) = I,

by (†). Hence,

Πm(−U) = Πm((−I)U) = Πm(−I)Πm(U) = IΠm(U) = Πm(U),

with the second equality following from the fact that Π is a homomorphism. So Πm(U) =
Πm(−U) for all U ∈ SU(2). By the previous theorem. given R ∈ SO(3), there exists a unique
pair {U,−U |} in SU(2) such that AdU = Ad−U = R. Now define Σm : SO(3)→ GL(Vm) by
Σm(R) = Πm(U). Note that this is well-defined since m is even. One can verify that Σm is a
representation of SO(3) on Vm, and that Πm = Σm ◦ Ad by construction. So it follows that

(Πm)∗ = πm = (Σm ◦ Ad)∗ = (Σm)∗ ◦ Ad∗ = σm ◦ T,
from which it follows that σm = πm ◦ T−1 as required. �

Remark 15.1. Hence, if G is not simply connected, then there can be complex representations
of g that do not a rise from representations of G.

Remark 15.2 (On complete reducibility). Recall the following definitions, which we covered
last class. A finite-dimensional representation V of a group or an algebra is called completely
reducible if it is isomorphic to a direct sum of irreducible representations. A group or
algebra is said to have the compete reducibility property (CRP) if its every finite-dimensional
representation is completely reducible.

Notice that if g is the Lie algebra of a simply connected group G, then g has CRP if
and only if G has CRP. Also, we remark that the direct sum of irreducible representations
is preserved by this one-to-one correspondence. However, it is possible for a group to have
CRP even when it’s not connected. Here is a fact: if G is compact (not necessarily simply
connected), then it has CRP. The idea behind proving this is introducing an invariant inner
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product on V by “averaging” over G, but this needs “Haar measure”, which is more or less
a left-invariant volume form.

We will use the fact about compact groups in the following way. Recall that (3,C) =
su(3)C. Note that SU(3) is compact and simply connected. Thus, by the fact we just men-
tioned, SU(3) has CRP. Also, since SU(3) is connected, it follows that su(3) and su(3)C =
sl(3,C) also have CRP. Generalizing this, we see that SU(n) is compact and simply con-
nected, whence it follows that sl(n,C) has CRP.

15.1. Representation theory of SU(3)

From now on, all representations are finite-dimensional and complex. We will re-visit the
bijective correspondences between

irreducible rep’s of SU(3)↔ irreducible rep’s of su(3)↔ irreducible rep’s of sl(3,C).

Recall for sl(2,C), we showed that there exists exactly one (up to isomorphism) irreducible
representation in any positive dimension m ≥ 0, with dim(Vm) = m+ 1.

For sl(3,C), we will “parametrize” the irreducible representations. We will see that if
m1,m2 ≥ 0 then we will get an irreducible representation of sl(3,C) V(m1,m2)

∼= Vm̃1,m̃2 ⇔
mi = m̃i (i = 1, 2). This time, we will not get (in general) only one for each positive
dimension.

We first consider sl(2,C). Recall that sl(2,C) consists of traceless 2×2 complex matrices.
Recall also that

H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
.

serves as a basis, and that [H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H. And we derived
restriction on finite-dimensional representations of sl(2,C) and in particular on irreducible
representations.

As for sl(3,C), note that sl(3,C) is a complex vector space of dimension 8, with the basis

X1 =

 0 1 0
0 0 0
0 0 0

 , X2 =

 0 0 0
0 0 1
0 0 0

 , X3 =

 0 0 1
0 0 0
0 0 0


Y1 =

 0 0 0
1 0 0
0 0 0

 , Y2 =

 0 0 0
0 0 0
0 1 0

 , Y3 =

 0 0 0
0 0 0
1 0 0


H1 =

 1 0 0
0 −1 0
0 0 0

 , H2 =

 0 0 0
0 1 0
0 0 −1

 .
(Recall that H1 and H2 are basis for diagonal traceless matrices.)

16. March 2: Representations of sl(3,C)

Idea: given an irreducible representation (V, π) of sl(3,C), we will try to simultaneously
diagonalize π(H1), π(H2) (as of now, it is not obvious that this is possible). Recall that
for sl(2,C), we found a basis of V for which π(H) was diagonal. Note that π(H1), π(H2)
commute, since [π(H1), π(H2)] = π([H1, H2]) = 0, since H1 and H2 commute and π preserves
the bracket.
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Definition 16.1. Let π : sl(3,C) → gl(V ) be a representation. Then an ordered pair
µ = (m1,m2) ∈ C2 is called a weight of π if there exists some non-zero vector v ∈ V such
that

π(H1)v = m1v

π(H2)v = m2v.
(∗)

That is, a weight is a pair of simultaneous eigenvalues for π(H1), π(H2). We call v in this
case a weight vector for weight µ. If µ is a weight for π, then the space Wµ ⊆ V consisting
of all weight vectors for weight µ plus zero vector is a subspace. The multiplicity of µ is
dim(Wµ).

Proposition 16.2. Every representation of sl(3,C) has at least one weight.

Proof. π(H) is an operator on V , so it has at least one eigenvalue m1. So there exists non-
zero v ∈ V , with µ(H1)v = m1v. Let Em1 be the eigenspace of π(H1) with eigenvalue m1.
So Em1 6= {0}. Let v ∈ Em1 . Since [π(H1), π(H2)] = 0, we have

π(H1)π(H2)v = π(H2)π(H1)v = m1π(H2)v.

So π(H2) maps Em1 to Em1 . Hence π(H2)|Em1
is an operator on Em1 , so π(H2)|Em1

has an
eigenvalue m2 ∈ C and (m1,m2) is a weight for π. �

Proposition 16.3. If π is a representation of sl(3,C) and µ = (m1,m2) is a weight for π
then m1,M − 2 are both integers.

Proof. Let gk = span{Xk, Yk, Hk} with k = 1, 2. Note that each gk ∼= sl(2,C). Restrict π to
gk we get a representation of sl(2,C). Suppose that π(Hk) has eigenvalue mk. We already
proved that for every finite-dimensional representation of sl(2,C) the eigenvalues of π(H)
are integers. So m1,m2 ∈ Z. �

Remark 16.1. The weights of π depend on the choice {H1, H2} of basis vectors for the
subspace of sl(3,C) consisting of diagonal traceless matrices.

Definition 16.4. An ordered pair α = (a1, a2) ∈ C2 is called a root of sl(3,C) if

(1) α 6= (0, 0)
(2) there exists non-zero z ∈ sl(3,C) such that adH1 z = [H1, z] = a1z and adH2 z =

[H2, z] = a2z.

Therefore, a root of sl(3,C) is a non-zero weight for the adjoint representation of sl(3,C).
We call z a root vector for the root α.

Example 16.5. For sl(3,C) we have the following six roots:

root root vector z root root vector z
(2,−1) X1 (−2, 1) Y1

(−1, 2) X2 (1,−2) Y2

(1, 1) X3 (−1,−1) Y3

Claim. There are no other roots.
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Here’s the strategy: suppose that α = (α1, α2) is a root. Then there exists z 6= 0 in sl(3,C)
such that adHk z = akz. We can write

z = t1H1 + t2H2 + λ1X1 + λ2X2 + λ3X3 + µ1Y1 + µ2Y2 + µ3Y3,

and so

adH1 z = a1z = 0H1 + 0H2 + 2λ1X1 − λ2X2 + λ3X3 − 2µ1Y1 + µ2Y2 − µ3Y3

adH2 z = a2z = 0H1 + 0H2 − λ1X1 + 2λ2X2 + λ3X3 + λ1Y1 − 2µ2Y2 − µ3Y3.

So we have

a1t1 = 0, a2t1 = 0,

a1t2 = 0, a2t2 = 0,

a1λ1 = 2λ1, a2λ1 = −λ1,

a1λ2 = −λ2, a2λ2 = 2λ2,

a1λ3 = λ3, a2λ3 = λ3,

a1λ1 = −2µ1, a2λ1 = λ1,

a1µ2 = µ2, a2µ2 = −2µ2,

a1µ3 = −µ3, a2µ3 = µ3.

Since both a1 and a2 cannot be zero, we have t1, t2 = 0. Suppose that λ1 6= 0. Then a1 = 2,
and λ2, λ3, µ1, µ2, µ3 all zero and so forth.

More generally, we have the fact that weight vectors corresponding to distinct weight are
linearly independent. So we can use this to argue that X1, X2, X3, Y1, Y2, Y3 are the only root
vectors for sl(2,C). So the roots are non-zero eigenvalues of adH . Since adH X = 2X and
adH Y = −2Y , we have

roots (2) (−2)
root vector X Y

Lemma 16.6. Let α = (a1, a2) be a root of sl(3,C) be a root of sl(3,C), let zα 6= 0 be the
corresponding root vector. Let π be a representations of sl(3,C). Let π = (m1,m2) be a
weight for π. Let v 6= 0 be the corresponding weight vector. Then

π(H1)π(zα)v = (m1 + α1)π(zα)v

π(H2)π(zα)v = (m2 + α2)π(zα)v.
(∗∗)

Hence, π(zα)v is either zero or is a weight vector for π with weight µ+α = (m1+a1,m2+a2).

Two-line proof. [Hk, zα] = akzα, so π(Hk)π(zα)v = π(zα)π(Hk)v + [π(Hk), π(zα)]v
= mkπ(zα)v + akπ(zα)v. �

Recall that for sl(2,C), π(X) increases the eigenvalue of π(H) by 2 (or gives zero). By
finite-dimensionality, there exist only finitely many eigenvalues of π(H), so there exists a
non-zero v 6= 0 with π(X)v = 0. This v had the “highest eigenvalue” for π(H). We want
the sl(3,C) analogue of the “highest” eigenvalue. But it’s not the obvious thing.

Now let’s go back to the case of sl(3,C). If (2,−1) = α1 and (−1, 2) = α2, then (1, 1) =
α1 + α2, (−2, 1) = −α1, (1,−2) = −α2, (−1,−1) = −α1 − α2. Then (2,−1), (−1, 2), (1, 1)
are called the positive simple roots. Note that all roots are linear combinations of α1 and α2

with integer coefficients that are all ≥ 0 or ≤ 0.
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Definition 16.7. Let µ1, µ2 to be two weights of π, a representation of sl(3,C). We say
that µ1 is higher than µ2 (µ1 � µ2), or equivalently µ2 is lower than µ1 (µ2 � µ1) if
µ1 − µ2 = sα1 + tα2 with s, t ≥ 0.

Remark 16.2. Notice that � is a partial order. If µ1 � µ2 and µ2 � µ3 then µ1 � µ3, since
µ1 − µ3 = (µ1 + µ2) + (µ2 − µ3). If µ1 � µ2 and µ2 � µ1 then µ1 − µ2 = sα1 + tα2 and
µ2 − µ1 = s′α1 + t′α2 with s, t, s′, t′ ≥ 0. So sα1 + tα2 = −s′α1 − t′α2, whence we have
s, t = 0.

However, given two weights µ1 and µ2, neither one need to be higher than the other. For
instance, if µ = α1−α2 = (3,−3) then µ is neither higher nor lower than, say, (0, 0). Also note
that the coefficients s, t need not be integers, even though µ1 and µ2 may have integer entries.
For example, clearly (1, 0) � (0, 0) because (1, 0) = (1, 0)− (0, 0) = 2

3
(2,−1) + 1

3
(−1, 2).

Definition 16.8. Let π be a representation of sl(3,C). Then a weight µ0 for π is called the
highest weight if, for any weight µ of π1 we have µ0 � µ. Clearly, if a highest weight exists,
then it is unique.

Theorem 16.9 (The highest weight for sl(3,C)). The following are true for sl(3,C):

(1) every irreducible complex representation π of sl(3,C) is the direct sum of its weight
spaces (i.e., π(H1) and π(H2) are simultaneously diagonalizable in every irreducible
representation).

(2) Every irreducible representation of sl(3,C) has a unique highest weight µ0 and two
isomorphic irreducible representations have the same highest weight.

(3) Two irreducible representations of sl(3,C) with the same highest weight are isomor-
phic.

(4) If π is an irreducible representation of sl(3,C) then the highest weight is µ0 =
(m1,m2) where m1,m2 ∈ Z≥0.

(5) If µ0 = (m1,m2) is an ordered pair of non-negative integers, then there exists an
irreducible representation of sl(3,C) with the highest weight µ0.

Remark 16.3 (Quick summary of what’s going on in the above theorem). Any finite-dimensional
irreducible representation of sl(3,C) are parametrized up to isomorphism by pairs (m1,m2)
of non-negative integers. We do not say that there exists one in any given dimension. There
may exist non or more than one in a given dimension.

We first need the following definitions:

Definition 16.10. An ordered pair (m1,m2) of non-negative integers is called a dominant
integral element.

Definition 16.11. A representation (V, π) of sl(3,C) is called a highest weight cyclic repre-
sentation with height µ0 = (m1,m2) if there exists a non-zero v ∈ V such that:

(1) v is a weight vector with weight µ0.
(2) π(X1)v = 0 and π(X2)v = 0 (which imply π(X3)v = 0 also)
(3) the smallest invariant subspace of V contains v is all of V .

This vector v is called a cyclic vector for π.

So the theorem of the highest weight says that every irreducible representation of sl(3,C)
has a unique highest weight which is a dominant integral element; and that conversely, every
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dominant integral element arises as the highest weight of some irreducible representation of
sl(3,C).

Note that (1, 0) = 2
3
α1 + 1

3
α2 and (0, 1) = 1

3
α1 + 2

3
α2 where α1 = (2,−1) and α2 = (−1, 2).

So every dominant integral element is higher than (0, 0). However, not every (a, b) ∈ Z× Z
that is higher than (0, 0) is dominant integral. For example, α1 is higher than (0, 0).

(Red dots = dominant integral elements)

Proof. (Proof of (1)) In every irreducible representation (V, π) of sl(3,C) we have that π(H1)
and π(H2) can be simultaneously diagonalizable (i.e., V is the direct sum of its weight
spaces). Let W be the direct sum of weight spaces of π (equivalently, linear combination
of simultaneous eigenvalues of π(H1), π(H2)). By the main lemma if zα is a root vector of
sl(3,C) then π(zα)(W ) ⊆ W and π(zα)(Wµ) ⊆ Wµ+α. Also, π(Hk) : W ⊆ W . So W is
invariant under π and W 6= {0}. SInce V is irreducible we have W = V , as desired.

(Idea of the proof of (2) and (3)) We will show that being a finite-dimensional complex
irreducible representation of sl(3,C) with the highest weight is equivalent to being a highest
weight cyclic representation. We will show that if (V, π) is a HWC with weight µ0 then
µ0 is a highest weight. And then we shall show that HWC with weight µ0 is equivalent to
“irreducible with highest weight µ0. After this, we shall get to (2) and (3) in the process on
Wednesday. �

17. March 4

Before proving (2) and (3) of Theorem 16.9, we need to prove the following lemma:

Lemma 17.1. Let g be any Lie algebra and let π : g → gl(V ) be a finite-dimensional
representation of g. Let z1, . . . , zm be an ordered basis of g. Then any expression of the form

π(zi1) · · · π(zin)

can be expressed as a linear combination of terms of the form

π(zm)km · · · π(z2)k2π(z1)k1

with ki ≥ 0 and k1 + · · ·+ km ≤ N .

Proof. We prove by induction on N . For N = 1, the claim is immediate. Now assume that
for N ,

π(zi)π(zj) = π(zj)π(zi) +
m∑
k=1

ckijπ(zk)
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where [zi, zj] =
m∑
k=1

ckijzk if we have

π(zi1) · · · π(ziN ) = π(zi1)[linear combination of terms π(zm)km · · · π(z1)k1 ],

with ki ≥ 0 and k1 + · · · + km ≤ N . Now jump over to put i1 in the right spot, and each
time introduce new terms where each of them is a product of ≤ N factors. Apply induction
hypothesis on each of those terms. �

Definition 17.2. Recall that a representation (V, π) of sl(3,C) is called highest weight cyclic
(HWC) with weight µ0 if there exists a non-zero v ∈ V such that

(1) v is a weight vector with weight µ0

(2) π(X1)v = 0 and π(X2)v = 0 implies that π(X3)v = 0 where X3 = [X1, X2]
(3) the smallest invariant subspace of V that contains V is all of V .

And the vector v is called a cyclic vector for π.

Proposition 17.3. Let (V, π) be HWC with height µ0. Then

(1) π has highest weight µ0

(2) the height space Wµ0 corresponds to µ0 is one-dimensional.

Proof. Let W be the subspace of V spanned by the elements of the form

π(Yi1)π(Yi2) · · · π(Yim)v,

where each ik is 1, 2, or 3 and N ≥ 0. We will show that W is an invariant subspace.
Suppose that X1, X2, X3, H1, H2, Y1, Y2, Y3 is our ordered basis of sl(3,C). Apply the

lemma that we just proved to see that for any z n the basis, π(z)π(Yi1) · · · π(YiN ) is a linear
combination of the terms π(Y3)k8π(Y2)k7π(Y1)k6π(H2)k5π(H1)k4π(X3)k3π(X2)k2π(X1)k1 . But
since π(Xk)v = 0 for k = 1, 2, 3, we can assume that k1 = k2 = k3 = 0. Powers of π(H1)
and π(H2) only introduce constants because v is a simultaneous eigenvector of π(H1) and
π(H2). We are left with an element of W . Since π is linear, we get π(Z)(W ) ⊆ W for all
Z ∈ sl(3,C). So W is an invariant subspace containing v.

Hence by (3) of the definition of HWC, we have W = V . We know that Y1, Y2, Y3 are root
vectors of sl(3,C) with roots −α1,−α2,−α1 − α2 respectively. Hence, every element of V is
a linear combination of weight vectors with weight µ0 − n1α1 − n2α2 for n1, n2 non-negative
integers.

π(Y3)k3 π(Y2)k2 π(Y1)k1v︸ ︷︷ ︸
weight
µ0−k1α1︸ ︷︷ ︸

µ0−k1α1−k2α2︸ ︷︷ ︸
µ0−k1α1−k2α2−k3(α1+α2)

Note that µ0 is higher than µ0 − n1α1 − n2α2 since µ0 − (µ0 − n1α1 − n2α2) = n1α1 + n2α2

and n1, n2 ≥ 0. Thus if (V, π) is a HWC representation with weight µ0 then µ0 is a highest
weight for π.

Let w ∈ V be a weight vector with weight µ0. If v, v1, . . . , vr are weight vectors of
corresponding distinct heights, then there exists a constant c such that w = cv + v1 + · · ·+
vr. Since cv − w has weight µ0, all the vectors have distinct weights, so they are linearly
independent. Thus cv − w = 0 so w = cv. Thus Wµ0 is one-dimensional as we wanted. �
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The following proposition will prove (2) of Theorem 16.9.

Proposition 17.4. Every irreducible representation of sl(3,C) is a HWC representation
with a unique highest weight µ0.

Proof. We already know by (1) of Theorem 16.9 that every irreducible representation is a
direct sum of its weight spaces. Since our representations are finite-dimensional, there can
be at most finitely many distinct weights. Hence there exists a weight µ0 such that there is
no weight µ 6= µ0 that is higher than µ0. Note that this is not equivalent to saying that µ0

is a highest weight.
Since there is no weight higher than µ0, if v 6= 0 is a weight vector with weight µ0 then

π(X1)v = 0 and π(X2)v = 0. (Otherwise, there would be weight vectors with weights µ0 +α1

and µ0 + α2 respectively, both of which are distinct from µ0 and higher than µ0.) Since π is
irreducible, the smallest invariant subspace of V containing v is all of V . Thus the all the
definitions of HWC are satisfied. �

Corollary 17.5. Every irreducible representation of sl(3,C) has a unique highest weight.

Remark 17.1. This is (2) of Theorem 16.9.

Proposition 17.6. Every HWC representation of sl(3,C) is irreducible.

Proof. Let (V, π) be a HWC representation of sl(3,C) with weight µ0. Here is where we use
the fact that sl(3,C) has CRP. So (V, π) is isomorphic to

V ∼=
N⊕
i=1

Vi,

where each (Vi, πi) is irreducible, and π ∼= π1 ⊕ · · · ⊕ πN . We have already shown in (1) of
Theorem 16.9 that each Vi is a direct sum of its weight spaces. Since the weight µ0 occurs
in V , it must occur in some Vi. If not, then we can get a vector v ∈ V1 ⊕ V2 such that v is a
weight vector with weight µ0 and v = v1 + · · · + vr such that weight vectors of either V1 or
V2 with weight distinct from µ0. This implies that v = 0, a contradiction.

So at least one Vi has weight µ0. But we proved that fro every HWC representation with
weight µ0 the height space Wµ0 is one-dimensional. So Vi must contain v. Also, Vi is an
invariant subspace of V containing v. By (3) of the definition of HWC, we have V1 = V .
Therefore V = Vi is indeed irreducible. �

So we just proved that the irreducible representations of sl(3,C) is the same as the HWC
representation of sl(3,C).

Proposition 17.7. Two irreducible representations of sl(3,C) with the same highest weight
are isomorphic.

Remark 17.2. This is (3) of the main theorem.

Proof. We have shown that irreducibility and HWC are equivalent. Let (V, π) and (W,σ) be
two such representations with the same highest weight µ0 = (m1,m2). Let v 6= 0 in V and
w 6= 0 in W be the corresponding cyclic vectors. Consider the representation (V ⊕W,π⊕σ),
and let U be the smallest invariant subspace of V ⊕W containing (v, w). Then

(π ⊕ σ)(Xk)(v, w) = (π(Xk)v, σ(Xk)w) = (0, 0),
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since v, w are cyclic vectors for π and σ respectively. Similarly,

(π ⊕ σ)(Hk)(v, w) = (π(Hk)v, σ(Hk)w) = (mkv,mkw) = mk(v, w),

with k = 1, 2. So (v, w) 6= (0, 0) in U ⊆ V ⊕W , and (π ⊕ σ)(Xk)(v, w) = (0, 0) for k = 1, 2
and (v, w) is a weight vector for π ⊕ σ with weight µ0. And U is the smallest invariant
subspace containing (v, w). Hence (U, (π ⊕ σ)|U) is a HWC representation of sl(3,C) with
height µ0. Hence (U, (π ⊕ σ)|U) is irreducible.

Now consider the canonical projection maps P1 : V ⊕W → V and P2 : V ⊕W → W .
It’s easy to verify that P1, P2 are intertwining maps, so P1|U and P2|U are intertwining maps
also. So it follows that P1|U : U → V and P2|U : U → W are intertwining maps between the
irreducible representations. By Schur’s lemma, each is either zero or an isomorphism. But
then neither of them are zero because P1|U(v, w) = v 6= 0 and P2|U(v, w) = w 6= 0. Thus
they are both isomorphisms. Hence V ∼= U as representations of sl(3,C). Thus V ∼= W as
desired. �

Proof of Theorem 16.9(4). Let π be an irreducible representation of sl(3,C). THen the high-
est weight µ0 of π is of the form µ0 = (m1,m2) for m1,m2 ∈ Z. We need to show that m1 and
m2 are non-negative integers. Let v 6= 0 be a cyclic vector for π with π(X1)v = π(X2)v = 0.
Hence if we restrict π to a representation of the subalgebra

gk = span{Hk, Xk, Yk} ∼= sl(2,C)

for k = 1, 2, then we get that π(Hk)v = mkv and π(Xk)v = 0 by our results for sl(2,C) with
mk ≥ 0. This completes the proof. �

Now all that remains is (5) of Theorem 16.9: given µ0 = (m1,m2) with m1,M − 2 non-
negative integers, we need to show that there exists an irreducible representation of sl(3,C)
with highest weight µ0.

Proof of Theorem 16.9(5). First, construct in the cases µ0 = (0, 0), (1, 0), (0, 1). If µ0 = (0, 0)
then V = C and define π(0,0) : sl(3,C) → gl(1,C) by π(0,0)(z)v = 0 for all z ∈ sl(3,C) and
v ∈ C. This is the trivial representation, which is irreducible (evidently). Since π(H2)v = 0
for all v, this representation has only one weight (0, 0).

Now suppose µ0 = (1, 0). Let V = C3. Consider the standard representation π. Then
π(z)v = zv (the regular matrix multiplication). Recall that you showed in Assignment #4
that this is irreducible. Let e1, e2, e3 be the standard basis of C3. Then e1 has weight (1, 0);
e2 has weight (−1, 1); and e3 has weight (0,−1). We claim that (1, 0) is the highest weight
since (1, 0)−(−1, 1) = (2,−1) = α1 and (1, 0)−(0,−1) = (1, 1) = α1 +α2. So the irreducible
representation with highest weight (1, 0) is the standard representation.

In the case of (0, 1), take the same vector space V = C3. Let π∗ : sl(3,C) → gl(3,C)
be the dual of the standard representation. Recall that π∗(z) = −(π(z))t. Then we have
π∗(z)v = −ztv (the usual matrix multiplication). By Assignment #4, we see that since π is
irreducible, so is π∗. Since π∗(Hk)v = −H t

kv = −Hkv, we see that e1 is a weight vector of π∗

with height (−1, 0); e2 has weight (for π∗) (1,−1); and e3 has weight (0, 1). One can easily
check that (0, 1) is the highest of the three. Hence the irreducible representation of sl(3,C)
with the highest weight (0, 1) is the dual of the standard representation.

We ran out of time, so we will continue this proof next Monday. We will start on con-
structing an irreducible representation of sl(3,C) of highest weight (m1,m2) using the “fun-
damental representation” (i.e., the irreducible representations of sl(3,C) of highest weight
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(1, 0) and (0, 1)). We will do (1, 1) in class and (2, 0) in Assignment #5. We will also start
on Weyl group. �

Remark 17.3. The three cases for (0, 0), (1, 0), (0, 1) prove that the standard representation
of sl(3,C) is not isomorphic to its dual. On the other hand, for sl(2,C) is indeed isomorphic
to its dual: note that they have the same dimension, and for sl(2,C) there exists exactly one
in each dimension.

Remark 17.4. For sl(3,C), it is not the case that there exists at least one irreducible rep-
resentation in every dimension (unlike sl(2,C)). In particular, there cannot exist an irre-
ducible representation of dimension 2 (there exists a formula for the dimension in terms of
µ0 = (m1,m2)).

18. March 9

Proposition 18.1. Let µ = (m1,m2) be a dominant integral element (i.e., mi are non-
negative integers). Then there exists an irreducible representation of sl(3,C) with highest
weight (m1,m2).

Remark 18.1. Recall that:

highest weight representation
(0, 0) trivial representation
(1, 0) standard representation (π(Z)v = Zv)
(0, 1) dual of the standard representation (π∗(Z)v = Zv, Z = −Zt)
(1, 1) adjoint representation (we will do this in class today)

Proof. Let (V1, π1) be the (1, 0) representation with cyclic vector v. Then π1(Xk)v =
0, π1(H1)v = v, π1(H2)v = 0 where k = 1, 2. Let (V2, π2) be the (0, 1) representation with
cyclic vector w. Then π2(Xk)2 = 0, π2(H1)w = 0, π2(H2)w = w where again k = 1, 2.

Define V = V ⊗m1
1 ⊗V ⊗m2

2
∼= C3(m1+m2), and let πm1,m2 = π⊗m1

1 ⊗π⊗m2
2 be the tensor product

representation of sl(3,C) on V . This is a finite-dimensional representation of sl(3,C). The
action of πm1,m2 is therefore (where Z ∈ sl(3,C)):

πm1,m2(Z) = π(Z)⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗ π2(Z).

Consider vm1,m2 := v⊗m1 ⊗ w⊗m2 . This is non-zero, and we have

πm1,m2(H1)vm1,m2 = m1vm1,m2

πm1,m2(H2)vm1,m2 = m2vm1,m2

πm1,m2(Xk)vm1,m2 = 0.

So vm1,m2 is a weight vector for πm1,m2 with height (m1,m2). Thus by Theorem 16.9, if we let
U be the smallest invariant subspace of V containing vm1,m2 , then πm1,m2|U : sl(3,C)→ gl(U)
is an irreducible representation of sl(3,C) with the highest weight (m1,m2) (since it is a HWC
rep’n with weight (m1,m2). �
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Example 18.2 (“Good for your soul”, according to Spiro). Recall that the basis of sl(3,C)
consists of

X1 =

 0 1 0
0 0 0
0 0 0

 , X2 =

 0 0 0
0 0 1
0 0 0

 , X3 =

 0 0 1
0 0 0
0 0 0


Y1 =

 0 0 0
1 0 0
0 0 0

 , Y2 =

 0 0 0
0 0 0
0 1 0

 , Y3 =

 0 0 0
0 0 0
1 0 0


H1 =

 1 0 0
0 −1 0
0 0 0

 , H2 =

 0 0 0
0 1 0
0 0 −1

 .
Then the (1, 0) representation of sl(3,C) satisfies

Y1(e1) = 0, Y2(e1) = 0

Y1(e2) = 0, Y2(e2) = e3

Y1(e3) = 0, Y2(e3) = 0,

and the highest weight vector is e1. As for the (0, 1) representation, we have

Y1 =

 0 −1 0
0 0 0
0 0 0

 , Y2 =

 0 0 0
0 0 −1
0 0 0


H1 =

 −1 0 0
0 1 0
0 0 0

 , H2 =

 0 0 0
0 −1 0
0 0 1

 .
In this case, e3 is a highest weight vector. Switch the notation for the dual representation
by letting f1 := e3, f2 := −e2, f3 := e1. Then we have

Y1(f1) = 0, Y2(f1) = f2

Y1(f2) = f3, Y2(f2) = 0

Y1(f3) = 0, Y2(f3) = 0.

Thus the (1, 1) irreducible representation of sl(3,C) is obtained by taking the smallest in-
variant subspace of C3 ⊗ C3 ∼= V1 ⊗ V2 containing e1 ⊗ f1. The subspace is determined by
applying powers of π(Y1), π(Y2) to e1 ⊗ f1 where π = π(1,0) ⊗ π(0,1), i.e.,

π(Y1) = Y1 ⊗ I + I ⊗ Y1

π(Y2) = Y2 ⊗ I + I ⊗ Y2.

Also, recall the following fact: if v is a weight vector with weight µ and zα is a root vector
with root α, then either π(zα)v = 0 or π(zα)v is a weight vector with weight µ + α; recall
also that Y1, Y2 are the root vectors with roots (−2, 1) and (1,−2) respectively.

Now let’s apply π(Y1) and π(Y2) repeatedly, starting from e1 ⊗ f1 till we get the zero
vector. We get the following diagram:
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In the above diagram, the tensor signs were omitted so as to save spaces. Left arrows denote
applying π(Y1) and the right arrows π(Y2). Then we get

weights weight vectors
(1, 1) e1 ⊗ f1

(−1, 2) e2 ⊗ f1

(2,−1) e1 ⊗ f2

(0, 0) e3 ⊗ f1 + e2 ⊗ f2 and e2 ⊗ f2 + e1 ⊗ f3

(−2, 1) e2 ⊗ f3

(1,−2) e3 ⊗ f2

(−1,−1) e3 ⊗ f3.

So the dimension of the (1, 1) representation is 8, with 7 distinct weights and 6 of them have
one-dimensional weight spaces, while one of them has a two-dimensional height space. But
then V1⊗V2

∼= C3⊗C3 ∼= C9, so V1⊗V2 is not irreducible. Also, since sl(3,C) has the CRP,
it follows that V1 ⊗ V2 = U ⊕ V ′ where V ′ is some complementary invariant subspace. Since
dim(U) = 8, it follows that dim(V ′) = 1. So (1, 0)⊗ (0, 1) = (1, 1)⊕ (0, 0).

Remark 18.2. In Assignment #5, you will figure out M such that (1, 0)⊗ (1, 0) = (2, 0)⊕M .

Remark 18.3. The (1, 1) representation is isomorphic to the adjoint representation. Recall
that the adjoint representation is defined as follows. If ad : g→ gl(g) with V = g = sl(3,C)
defined as adX(Y ) = [X, Y ] is is a representation of degree eight (i.e., dim(sl(3,C)) = 8).
One can check from the commutation relations of sl(3,C) that this is true. One can find an
isomorphism of representations between (1, 1) representation we constructed and the adjoint
representation.

18.1. Weyl group of sl(3,C) (Weyl group of SU(3))

Let π : sl(3,C) → gl(V ) be a finite-dimensional finite-dimensional representation of
sl(3,C). We know that, since SU(3) is simply connected, that π = Π∗ for some finite-
dimensional complex representation Π : SU(3)→ GL(V ) of SU(3). Let A ∈ SU(3). WE can
then construct a new representation πA : sl(3,C) → gl(V ) acting on the same space V as
follows:

πA(X) := π(AXA−1) = π ◦ AdA(X).
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Recall that AdA : g→ g is a Lie algebra automorphism since AdA[X, Y ] = [AdAX,AdA Y ].
So πA is indeed a representation of sl(3,C). Note also that

πA(X) = π(AXA−1) = π(AdAX)

= Π∗(AdAX) = AdΠ(A)(π(X)) = Π(A)π(X)Π(A)−1.

Let GL(V ) 3 T = Π(A) : V ∼= V . Then Π(A)π(X) = πA(X)Π(A) for all X ∈ sl(3,C).
Hence T is an isomorphism of representations, so πA is isomorphic to π for all A ∈ SU(3).
Given any A ∈ SU(3), we get an action on each isomorphism class of finite-dimensional
complex representations of sl(3,C).

Define h := span{H1, H2} ⊆ sl(3,C). This is a two-dimensional Lie subalgebra of sl(3,C)
on which the Lie bracket vanishes identically. In fact, h is a maximal commutative subalge-
bra.

Definition 18.3. Such h as defined above is called a Cartan subalgebra for sl(3,C).

For any A ∈ SU(3), the map AdA : sl(3,C)→ sl(3,C) is a Lie algebra automorphism. But
there is no reason for AdA to preserve h. Now we are ready to define what a Weyl group is:

Definition 18.4. Let Z ⊆ SU(3) be the subgroup of SU(3) whose elements satisfy AdA(H) =
H for all H ∈ h (i.e., elements that fix h pointwise).

Now let N ⊆ SU(3) be the subgroup of elements such that AdA(H) ∈ h for all H ∈ h (i.e.,
the elements that preserve h).

Remark 18.4. Note that Z is a subgroup of SU(3) since AdAB = AdA ◦AdB implies that
A,B ∈ Z ⇒ AB ∈ Z, and AdA−1 = (AdA)−1.

Remark 18.5. Note that Z / N . We need to verify if A ∈ Z and B ∈ N then BAB−1 ∈ Z.
Let H ∈ h. Then

AdBAB−1 H = AdB AdA(AdB)−1(H)

= AdB(AdB)−1(H) (AdA fixes h)

= H.

So BAB−1 ∈ Z.

Therefore we can take the quotient N/Z.

Definition 18.5. The Weyl group of sl(3,C) (or equivalently the Weyl group of SU(3)) is
W := N/Z.

We have an action of W on h. Namely, if [A] ∈ W , define [A]H = AdAH where A is
any representation of the equivalence class [A], where the equivalence is defined as follows:
if [A] = [B] ,then there exists C ∈ Z such that A = BC.

Theorem 18.6. Let N and Z be the subgroups as defined in Definition 18.4.

(1) Z consists of diagonal matrices in SU(3). That is,

Z =


 eiθ 0 0

0 eiϕ 0
0 0 e−i(θ+ϕ)


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(2) N consists of the matrices A ∈ SU(3) such that for each k = 1, 2, 3 there exists
l ∈ {1, 2, 3} such that Aek = eiθkek for some eiθk (those that permute the standard
basis vectors {e1, e2, e3} of C2 up to a complex phase)

(3) W = N/Z ∼= S3

Proof of Theorem 18.6(1). Let A ∈ Z. Then AHA−1 = H for all H ∈ h, hence AH = HA.
Thus [A,H] = 0 for all H ∈ h. Note that H1 has three distinct eigenvalues with eigenvectors
e1, e2, e3, so A preserves the eigenspaces of H1. If Hv = λv, then λAv = HAv so A preserves
the eigenspaces of H1. So Ae1 = t1e1, Ae2 = t2e2, Ae3 = t3e3. Since A ∈ SU(3), we have
t1 = eiθ, t2 = eiϕ, t3 = e−i(ϕ+θ). Conversely, every diagonal matrix in SU(3) commutes with
every H ∈ h since the H’s are diagonal. Thus Z consists of diagonal matrices in SU(3). �

19. March 11

Proof of Theorem 18.6(2). Let A ∈ N . Then AH1A
−1 ∈ h, so it must be diagonal. Also,

H1 =
[

1 0 0
0 −1 0
0 0 0

]
has three distinct eigenvalues 1,−1, 0 with eigenvectors e1, e2, e3. So AH1A

−1

is also diagonal, hence has e1, e2, e3 as eigenvectors. So we have (AH1A
−1)(Aek) = AH1ek =

λkAek. Therefore eigenvectors of AH1A
−1 are Ae1, Ae2, Ae3 with distinct eigenvalues. Since

A ∈ SU(3), we have |Aek| = |ek| = 1. Hence, for all k = 1, 2, 3 there exists l ∈ {1, 2, 3}, tk ∈
C, |tk| = 1 such that Aek = tkel.

Conversely, suppose that A ∈ SU(3) so that for all k we have Aek = tlek for some l
with |tk| = 1, with eigenvectros of AH1A

−1 still e1, e2, e3 (but in possibly a different order).
We have tr(H1) = 0, so tr(AH1A

−1) = 0. Thus AH1A
−1 ∈ h. Similarly, AH2A

−1 ∈ h so
A ∈ N . �

Proof of Theorem 18.6(3). Let A ∈ N . consider AdA : h ∼= h. Let σ ∈ S3 such that
Aek = tkeσ(k). Let H ∈ h such that Hek = λkek. So it follows

AHA−1eσ(k) = AHt−1
k ek = Aλkt

−1
k ek = λk

tk
tk
eσ(k) = λkeσ(k)

if ek is an eigenvector of H with eigenvector λk. Then eσ(k) is an eigenvector of AdAH with
eigenvector λk. Hence the diagonal entries of H are permuted by the permutation σ, i.e.,

H =

 λ1 0 0
0 λ2 0
0 0 λ3

⇒ AdAH =

 λσ−1(1) 0 0
0 λσ−1(2) 0
0 0 λσ−1(3)

 .
λk is now in σ(k)-th column of AdAH. Hence W ∼= S3. If [A] = [B] ∈ W then A = BC
with C ∈ Z. Thus AdA = AdB AdC , and AdC acts as I on h. �

Why should we care aboutW? Note thatW permutes the weights of any finite-dimensional
representation of sl(3,C) (not necessarily irreducible). To make this precise, we need to
reformulate the notion of a weight in a basis-independent manner. Recall that (m1,m2) ∈
C2 is a weight of a representation (V, π) of sl(3,C) if there is non-zero v ∈ V such that
π(H1)v = m1v and π(H2)v = m2v. We also showed that mk ∈ Z. Since π(a1H1 + a2H2)v =
a1π(H1)v + a2π(H2)v = (a1m1 + a2m2)v, it follows that v is an eigenvector for π(H) for all
H ∈ h and the eigenvalue π(H) ∈ C of π(H) with eigenvector v is a linear functional on h.
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Definition 19.1. Define h := span{H1, H2} ⊆ sl(3,C). Let (V, π) be a finite-dimensional
representation of sl(3,C). A linear functional µ ∈ h∗ is called a weight for π if there exists
a non-zero v ∈ V sic that π(H)v = µ(H)v for all H ∈ h, and v is called a weight vector of
π with weight µ ∈ h∗. Also, µ is uniquely determined by µ(H1) = m1 and µ(H2) = m2 so
these notions are equivalent.

The Weyl group W acts on h. Denote it by w ∈ W,H ∈ h ⇒ w · H ∈ h. So if
w = [A] ∈ N/Z with A ∈ N then w ·H = AdA(H). Thus W defines on induced action on
h∗, by w ∈ W and µ ∈ h∗:

(w · µ)︸ ︷︷ ︸
∈h∗

(H) := µ(w−1 ·H).

With this definition, we can say (w1w2) · µ = w1 · (w2 · µ) so this is an action.

Theorem 19.2. Let π be a finite-dimensional representation of sl(3,C) and let µ ∈ h∗ be a
weight of π. Then for all w ∈ W , w ·µ is a weight for π and the multiplicity of w ·µ is equal
to the multiplicity of µ, which is the dimension of this weight space.

Proof. Let Π be the associated representation of SU(3). Note that we know such thing exists
since SU(3) is simply connected. Let µ be a weight for π, with weight vector v 6= 0. If
A ∈ N , then

π(H)Π(A)v = Π(A)Π(A−1)π(H)Π(A)v = Π(A)π(A−1HA)v

= Π(A)µ(A−1HA)v = µ(A−1HA)Π(A)v.

Also, A−1HA = AdA−1 H − w−1 ·H where w = [A] ∈ W . Hence,

π(H)Π(A)v = π(A−1HA)Π(A)v = µ(w−1 ·H)Π(A)v = (w · µ)(H)Π(A)v.

Therefore Π(A) is a weight vector for π with weight w · µ. Note that Π(A)Wµ ⊆ Ww·µ and
Π(A−1)Ww·µ ⊆ Wµ, and Π(A) is invertible hence it is an isomorphism from Wµ to Ww·µ.
Therefore µ and w · µ have the same multiplicity. �

Remark 19.1. Recall that the rtoos of sl(3,C) are the non-zero weights of the adjoint rep-
resentation. If w ∈ W then w takes non-zero weights to non-zero weights. If µ = 0 then
(w · µ)(H) = µ(w−1 ·H) = 0 for all H ∈ h. Then w · µ = 0. Thus W permutes the roots of
sl(3,C).

We want a geometric picture of the symmetry of W on the set of roots of sl(3,C). We
need one more change of point of view for this though. SInce h ⊆ sl(3,C) ⊆ gl(3,C) ∼= C9,
we have a standard Hermitian inner product on gl(3,C), defined by

〈A,B〉 = tr(A∗B) =
3∑

i,j=1

AijBij.

Recall that W permutes the diagonal entries of an element H ∈ h. Hence if H, J ∈ h, w ∈ W ,
then 〈w ·H,w · J〉 = 〈H, J〉. Thus the inner product 〈 , 〉 restricted to h is invariant under
action of W . In other words, each w ∈ W is a unitary operator on (h, 〈 , 〉|h). So 〈 , 〉
induces an identification (bijective correspondence) between h and h∗ via H 7→ 〈H, 〉 ∈ h∗,
which is a conjugate-linear isomorphism (for any α ∈ h∗, there exists a unique H ∈ h such
that α(J) = 〈H, J〉 for all J ∈ h).
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We now can say that a weight for a representation (V, π) is an element α ∈ h such that
π(H)v = 〈α,H〉v = µ(H)v for all H ∈ h for some non-zero v ∈ V .

Claim. Under this identification of h with h∗, the action of W on h∗ coincides with the usual
action of W on h.

Proof. µ(H) = 〈α,H〉, so (w · µ)(H) = µ(w−1 ·H) = 〈α,w−1 ·H〉 = 〈w · α,H〉. �

We will now try to describe the roots of sl(3,C) (the non-zero weights of the adjoin
representation) as elements of h.

Claim. α1 and α2 coincide with H1 and H2 respectively. That is,

α1 =

 1 0 0
0 −1 0
0 0 0

 , α2 =

 0 0 0
0 1 0
0 0 −1

 .
Proof. Verify that 〈α1, H1〉 = 2, 〈α1, H2〉 = −1, 〈α2, H1〉 = −1, 〈α2, H2〉 = 2. �

Note ‖α1‖2 = ‖α2‖2 = 2 and 〈α1, α2〉 = −1 = ‖α1‖‖α2‖ cos θ = 2 cos θ. Hence θ = 2π/3.
(We shall visualize the two-dimensional real subspace of h spanned by α1, α2 ∈ h.)

Definition 19.3. Let µ = (m1,m2) where m1,m2 are non-negative integers (that is, µ is a
dominant integral element). These are exactly the highest weights of irreducible representa-
tions of sl(3,C). Let µ1 ↔ (1, 0) and µ2 ↔ (0, 1). These two are said to be the fundamental
weights.

Then µ1, µ2 ∈ h, and we have 〈µ1, H1〉 = 〈µ2, H2〉 = 1 and 〈µ1, H2〉 = 〈µ2, H1〉 = 0, where
µ1 = 2

3
α1 + 1

3
α2 and µ2 = 1

3
α1 + 2

3
α2. As elements of h,

µ1 =

 2
3

0 0
0 −1

3
0

0 0 −1
3

 , µ2 =

 1
3

0 0
0 1

3
0

0 0 −2
3

 .

So ‖µ1‖ = ‖µ2‖ =
√

6
3

. But 〈µ1, µ2〉 = 3
9

= 6
9

cos θ so θ = π/3. The set of dominant integral
elements is the set of non-negative integer linear combinations of µ1, µ2. So α1, α2 are length√

2 with angle 2π/3 and µ1, µ2 are length
√

6/3 with angle π/3. This gives us the following
weight diagram for the adjoint representation (=“root diagram”):
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with each vector on the diagram having length
√

2 and the sides of each small triangle having
length

√
6/3 and each dot representing a dominant integral element.

Now consider the action of the Weyl group W = S3. Let, for instance, σ = (123). Then
since

α1 =

 1 0 0
0 −1 0
0 0 0

 , α2 =

 0 0 0
0 1 0
0 0 −1

 , α1 + α2 =

 1 0 0
0 0 0
0 0 −1

 ,
it follows that

σ · α1 =

 0 0 0
0 1 0
0 0 −1

 = α2

σ · α2 =

 −1 0 0
0 0 0
0 0 1

 = −α1 − α2.

So σ = (123) is a counterclockwise rotation by 2π/3. As for τ = (12), we see that

τ · α1 =

 −1 0 0
0 1 0
0 0 0

 = −α1

τ · α2 =

 1 0 0
0 0 0
0 0 −1

 = α1 + α2.
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Hence τ = (12) represents a reflection across the line orthogonal to span{α1}. Hence,
S3
∼= W ∼= symmetry group of an equilateral triangle.

20. March 16: Structure theory for complex semisimple Lie algebras

Recall that a compact (matrix) Lie group has the complete reducibility property (CRP),
which we stated without proof. So the Lie algebra g of a compact, simply connected ma-
trix group G has the CRP (because there exists a bijective correspondence between the
representations preserving irreducibility); in this case, gC also has the CRP. For instance,
sl(n,C) = su(n)C and SU(n) is compact and simply connected, so SU(n) also has the CRP.

Definition 20.1. Let g be a complex Lie algebra. An ideal h of g is a complex (Lie)
subalgebra such that if X ∈ g and Y ∈ h then [X, Y ] ∈ h.

Definition 20.2. A complex Lie algebra g is called simple if dim g ≥ 2 and contains no
non-trivial ideals. A complex Lie algebra g is called semisimple if it is (isomorphic to) a
direct sum of simple Lie algebras (as a Lie algebra). That is, if g is semisimple, then there
exist gi Lie algebras such that g = g1 ⊕ g2 ⊕ · · · ⊕ gn, where the Lie bracket is defined to be

[X1 ⊕X2 ⊕ · · · ⊕Xn, Y1 ⊕ Y2 ⊕ · · · ⊕ Yn] := [X1, Y1]⊕ · · · ⊕ [Xn, Yn],

i.e., [gi, gj] = 0 whenever i 6= j.
A complex Lie algebra is called reductive if it is (isomorphic to) g ∼= ga ⊕ gs where gα is

abelian and gs is semisimple.

Lemma 20.3. A subalgebra h ⊆ g is an ideal if and only if h is an invariant subspace for
the adjoint representation of g.

Proof. adX(h) ⊆ h⇔ [X,H] ∈ h for all H ∈ h, X ∈ g. �

Proposition 20.4. A complex Lie algebra g is reductive if and only if the adjoint represen-
tation is completely reducible.

Proof. (⇐) Suppose that ad : g → gl(g) is completely reducible. Hence, as a vector space,
g = g1 ⊕ · · · ⊕ gm where each gi is an irreducible invariant subspace of ad. Hence each gi
is an ideal of g by Lemma 20.3. But since gi is irreducible, gi contains no ideals of g, other
than gi and {0}. Let X ∈ gk, Y ∈ gl with k 6= l. Then [X, Y ] ∈ gk ∩ gl = {0}, where the
membership follows from the fact that gk and gl are ideals and the equality follows from the
fact that g is a direct sum. Hence g = g1 ⊕ · · · gm as Lie algebra. We claim that each gi has
no non-trivial ideals of g. If h ⊆ gi is an ideal of gi then [X, Y ] ∈ h for all X ∈ g, Y ∈ h.
hence [X, Y ] = 0 ∈ h for all X ∈ gj, Y ∈ h and j 6= i. So [X, Y ] ∈ h for all X ∈ g, Y ∈ h.
Hence h is an ideal in g contained in gi so h = {0} or gi. So gi contains no non-trivial ideals
of gi.

Let

ga =
⊕

k=1,...,m
dim(gk)=1

gk, gs =
⊕

k=1,...,m
dim(gk)≥2

gk.

Then ga is the abelian portion, and gs is the semisimple portion, as desired.
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(⇒) Conversely, suppose that g is reductive. Thus,

g = gs ⊕ ga =

 ⊕
k=1,...,m

dim(gk)≥2

gk

⊕
 ⊕

k=1,...,m
dim(gk)=1

gk

 .

This is a direct sum of irreducible invariant subspaces for the adjoint representation. �

Corollary 20.5. The complexification of the Lie algebra of a connected complex matrix Lie
group is reductive.

Proof. Every compact group has CRP, so in particular the adjoint (Ad) representation of G
is completely reducible. Since G is connected, ad is completely reducible if and only if Ad is
completely reducible. Hence ad : gC → gl(gC) is completely reducible also. �

Theorem 20.6. A complex Lie algebra g is semisimple if and only if it is (isomorphic to)
the complexification of the Lie algebra of a simply connected compact matrix Lie group.

Proof. (⇒) this direction is beyond the scope of this course – we need some deep structure
theory of complex Lie algebras.

(⇐) This one is easier, but we need some results from algebraic topology, which we are
not assuming. So we will discuss underlying ideas. Start with K, a compact and simply
connected matrix Lie group. Let k be the Lie algebra of K. Let g = kC be its complexification.
We already know that g = ga ⊕ gs is reductive, by the above corollary. One can show that
k = ka ⊕ ks as Lie algebras. Then K = Ka × Ks where Ka and Ks are compact, simply
connected matrix groups such that Lie(Ka) = ka and Lie(Ks) = ks. ThusKa is a commutative
Lie group. But a result from algebraic topology says that the only simply connected abelian
matrix group is isomorphic to Rn, which is non-compact if n ≥ 1. Therefore n = 0, so
ka = {0} so g = gs as required. �

Definition 20.7. Let g be a complex Lie algebra. Then a compact real form of g is a real
subalgebra k such that:

(1) kC = g
(2) there exists a compact simply connected matrix Lie group K1 such that the k1 =

Lie(K1) ∼= k (isomorphic, not necessarily equal).

Remark 20.1. The previous theorem says that a complex semisimple Lie algebra has a com-
pact real form. The compact real from of a complex semisimple Lie algebra is unique up to
conjugation.

Example 20.8. sl(n,C) has a compact real form su(n) since SU(n) is compact, simply con-
nected, and su(n)C = sl(n,C).

Proposition 20.9. Let g ⊆ gl(n,C) be a complex semisimple Lie algebra with compact real
form k. Let K be the analytic subgroup of GL(n,C) whose Lie algebra is k. Then K is
compact (but not necessarily simply connected).

Proof. By the definition of a compact real form, there exists a compact simply connected
matrix group K1 whose Lie algebra k1 is isomorphic to k. Let φ : k1 → k ⊆ gl(n,C) be the Lie
algebra isomorphism. Because K1 is simply connected, there exists a lift Φ : K1 → GL(n,C)
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which is a Lie group homomorphism and Φ∗ = φ. Let K = Φ(K1). This is compact. We

claim that K is the analytic subgroup of GL(n,C) with Lie algebra k. Let K̃ be the analytic
subgroup of GL(n,C) with Lie algebra k. Since K1 is connected, every A ∈ K1 is of the form

A = eX1eX2 · · · eXm ,
for each Xi ∈ ki. It follows that

Φ(A) = Φ(eX1eX2 · · · eXm) = eφ(X1)eφ(X2) · · · eφ(Xm) ∈ K̃,

since K̃ = {eY1eY2 · · · eYm : Yi ∈ k}. Hence K = Φ(K1) ⊆ K̃.

Conversely, let B ∈ K̃. Then B = eY1eY2 · · · eYm with Yi ∈ k. Let Xi ∈ ki be such that

φ(Xi) = Yi. Then B = eφ(X1) · · · eφ(Xm) = Φ(eX1eX2 · · · eXm) ⊆ Φ(K1). Hence K̃ ⊆ Φ(K1) =
K. �

Remark 20.2. K need not be simply connected. For instance, take g = so(3,C) ⊆ gl(3,C)
is the complexification of k = so(3,R) which is isomorphic to the Lie algebra of a complex,
simply connected group, because so(3,R) ∼= su(2) = k1 hence SU(2) = K1. Hence so(3,R) is
the compact real form of so(3,C) but the analytic subgroup of GL(3,C) whose Lie algebra
is so(3,R) is K = SO(3) which we know is not simply connected.

Corollary 20.10. Every complex semisimple Lie algebra has the complete reducibility prop-
erty.

Proof. There is a bijective correspondence between the representations of g and those of k;
and there is also a bijective correspondence between the representations of k and those of k1,
since k ∼= k1. These are erectly the representations of K1 which is compact, hence has the
CRP. �

Remark 20.3. Let’s summarize what we have done so far. Namely, we showed that the
following characterizations are equivalent:

(1) g is a complex semisimple Lie algebra
(2) g is a direct sum of of simple Lie algebras (as a Lie algebra)
(3) g is the complexification of a real LIe algebra k which is isomorphic to the Lie algebra

of a compact simply connected matrix group
(4) g has the complete reducibility property.

20.1. Examples of complex Lie algebras
g = kC compact real form k K1

sl(n,C), n ≥ 2 (semisimple) su(n) SU(n)
so(n,C), n ≥ 3 (semisimple) so(n) Spin(n)

so(2,C) (reductive but not semisimple) N/A N/A
gl(n,C) (reductive but not semisimple) N/A N/A

sp(n,C) (semisimple) sp(n) Sp(n)

A few things about the table above:

(1) Spin(n) denotes the simply connected complex matrix group with Lie algebra iso-
morphic to so(n).

(2) so(2,C) is not semisimple since so(2) = so(2,R) 6∼= Lie algebra of a simply connected,
compact group.

(3) gl(n,C) is not semisimple since gl(n,C) = u(n)C and U(n) is not simply connected.
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Remark 20.4. The semisimple ones sl(n,C)(n ≥ 2), so(n,C)(n ≥ 3), sp(n,C)(n ≥ 1) are in
fact all simple, except for so(4,C) ∼= sl(2,C)⊕ sl(2,C).

Theorem 20.11 (Classification theorem for complex simple Lie algebras). If g is a complex
simple Lie algebra, then g is either one of

sl(n,C) An−1 n ≥ 2
so(2n,C) Dn n ≥ 3

so(2n+ 1,C) Bn n ≥ 1
sp(n,C) Cn n ≥ 1

or one of the five exceptional Lie algebras: g2, f4, e6, e7, e8.

21. March 18

21.1. Cartan subalgebras

Definition 21.1. Let g be a complex Lie algebra. A Cartan subalgebra h is a vector subspace
of g such that:

• [H1, H2] = 0 for all H1, H2 ∈ h;
• if X ∈ g and [X,H] = 0 for all H ∈ h then X ∈ h;
• for all H ∈ h, the map adH : g→ g is diagonalizable.

Remark 21.1. If H1, H2 ∈ h then [adH1 , adH2 ] = ad[H1,H2] = ad0 = 0 so all adH ’s com-
mute for H ∈ h. Hence, if h is a Cartan subalgebra, then all the adH ’s are simultaneously
diagonalizable for all H ∈ h.

Proposition 21.2. If g ⊆ gl(n,C) is a complex semisimple Lie algebra, then a Cartan
subalgebra always exists.

Proof. Let k be a compact real fem of g. Let t be a maximal abelian Lie subalgebra of k
(start with any one-dimensional subalgebra and keep “increasing” until maximal). Define
h = tC = t + it. Then h is an abelian subalgebra of g.

Let X ∈ g. Suppose that [X,H] = 0 for all H ∈ h. Then [X,H] = 0 for all H ∈ t. Write
X = X1 + iX2 where X1, X2 ∈ k. Then [X1 + iX2, H] = [X1, H] + i[X2, H] = 0 for all H ∈ t.
By maximality of t in k, we get X1, X2 ∈ t so X ∈ h. Therefore h is maximal. It still remains
to show that every adH is diagonalizable for all H ∈ h. Let K be the analytic subgroup of
GL(n,C) whose Lie algebra is k. We showed last time that K is compact.

Claim. There exists a real-valued positive-definite inner product on k that is invariant under
the adjoint action of K. That is, there exists a positive-definite inner product · : k× k→ R
such that fro all A ∈ K, the following identity is satisfied:

(AdAX) · (AdA Y ) = X · Y,
where AdAX = AXA−1 as usual.

How do we prove this claim? The idea is to choose any inner product ·o on K, and define

X · Y :=

∫
K

(AdAX) ·o (AdA Y ) volK .

(We can integrate over compact groups with a left-invariant volume form.) We can extend
this inner product on k to a Hermitian positive-definite inner product on kC = g in the usual
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way. Let 〈 , 〉 : g × g → C such that 〈X1 + iX2, Y1 + iY2〉 = (Xi − iX2) · (Y1 + iY2). Then
by extending · to kC by complex bilinearity, we have

〈Xi + iX2, Y1 + iY2〉 = (X1 − iX2) · (Y1 + iY2) = (X1 · Y1 +X2 · Y2) + i(X1 · Y2 −X2 · Y1).

It is a straightforward verification to check if 〈 , 〉 is a positive-definite Hermitian inner
product. So 〈AdAX,AdA Y 〉 = (AdAX) · (AdA Y ) = X · Y = 〈X, Y 〉 for all A ∈ K and
X, Y ∈ g. Moreover, 〈 , 〉 takes real values on k. Let A ∈ K with 〈AdAX,AdA Y 〉 = 〈X, Y 〉
for all X, Y ∈ g. Let z ∈ k. Then etZ ∈ K and AdetZ = et adZ . Therefore 〈et adZX, et adZY 〉 =
〈X, Y 〉 for all t ∈ R. Take the derivative on both sides at t = 0 to get

〈adZ X, Y 〉+ 〈X, adZ Y 〉 = 0

if X, Y ∈ g and Z ∈ k. So adZ : g→ g is skew-Hermitian for all Z ∈ k. In particular, adH is
diagonalizable for all H ∈ t, since t ∈ k. Let H = H1+iH2+h where Hi ∈ t. Then adH1 , adH2

commute and are both diagonalizable; hence adH1 , adH2 are simultaneously diagonalizable.
So adH = adH1 +i adH2 is also diagonalizable. �

Remark 21.2. If g is not semisimple, then there may not exist a Cartan subalgebra (see
Assignment #6 for more).

Remark 21.3. If g is complex semisimple, then every Cartan subalgebra of g arises in this
way, and they are all conjugate to each other (hence all isomorphic). This involves some
deep structure theory which is beyond the scope of this course, so we will not prove this fact.

Definition 21.3. Let g be a complex semisimple Lie algebra. Then the rank of g is the
dimension of any Cartan subalgebra.

Example 21.4. sl(n,C) = An−1 has rank n − 1. Therefore sl(2,C) has rank 1, since h =
span{H}; sl(3,C) has rank 2 as h = span{H1, H2}. so(2n,C) = Dn, so(2n + 1,C) =
Bn, sp(n,C) = Cn all have rank n. Similarly, g2, f4, e6, e7, e8 have rank 2, 4, 6, 7, 8 respec-
tively.

For the rest of the course until stated otherwise, we will assume that:

(1) g is a complex semisimple Lie algebra
(2) k is a compact real form of g with maximal abelian subalgebra t
(3) h = t + it = tC is a Cartan subalgebra of g
(4) We have chosen a positive-definite Hermitian inner product 〈 , 〉 on g that is AdA-

invariant for all A ∈ K, and takes real values on k.

21.2. Roots and root spaces

Definition 21.5. A root of g (relative to the Cartan subalgebra h) is a non-zero linear
functional α ∈ h∗ such that there exists X 6= 0 such that [H,X] = adH X = α(H)X for all
H ∈ h. In other words, a root is a collection of simultaneous eigenvalues of adH : g→ g for
all H ∈ h.

Remark 21.4. Note that α has to be linear:

α(a1H1 + a2H2)X = ada1H1+a2H2(X) = [a1H1 + a2H2, X]

= a1 adH1 X + a2 adH2 X = (a1α(H1) + a2α(H2))X.

Let R be the set of roots of g.
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Proposition 21.6. If α ∈ R, then α(H) ∈ iR for all H ∈ t.

Proof. We showed that adH is skew-adjoint for all H ∈ Z, and the eigenvalues of a skew-
adjoint operator are all purely imaginary. �

Definition 21.7. Let α be a root of g. Then the root space gα is defined to be

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h},
i.e., g is the set of all simultaneous eigenvalues of all adH ’s with eigenvalue α(H) plus the
zero vector.

In fact, gα is a subspace of g. In general, for any α ∈ h∗, then

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h}.
Thus if α 6= 0, then gα = {0} unless α is a root. Meanwhlie, if α = 0, then

g0 = {X ∈ g : [H,X] = 0 for all H ∈ h} = h

by maximality of a Cartan subalgebra. Since all the adH ’s are simultaneously diagonalizable,
there exists a basis of g consisting of simultaneous eigenvectors of all adH ’s (i.e., root vectors
or elements of h). Hence, as a vector space, there exists a decomposition

g = h⊕

(⊕
α∈R

gα

)
,

so every element of g is expressible uniquely as an element of h plus one root vector from
each root space.

Proposition 21.8. Let α, β ∈ h∗. Then [gα, gβ] ⊆ gα+β i.e., if X ∈ gα and Y ∈ gβ, then
[X, Y ] ∈ gα+β.

Proof. Suppose X ∈ gα and Y ∈ gβ. Then [H,X] = α(H)X and [H,Y ] = β(H)Y for all
H ∈ h. Recall the Jacobi identity: [H, [X, Y ]] = [[H,X], Y ] + [X, [H,Y ]], or equivalently,
adH [X, Y ] = [adH X, Y ] + [X, adH Y ], i.e., adH is a Lie algebra derivation.

IN this case, for all H ∈ h, we have [H, [X, Y ]] = α(H)[X, Y ] + β(H)[X, Y ] = (α +
β)(H)[X, Y ]. Hence [X, Y ] ∈ gα+β. �

Corollary 21.9. [gα, g−α] ⊆ h = g0.

Corollary 21.10. If X ∈ gα and Y ∈ gβ and α + β 6= 0 and α + β is not a root, then
[X, Y ] = 0.

Next, we shall investigate restrictions on the set R of roots of g.

Proposition 21.11. If α is a root, then so is −α. Also, the roots span h∗.

Proof. Since α is a root, then there existsX 6= 0 in g such that [H,X] = α(H)X for allH ∈ h.
Hence H ∈ t. Write X = X1 + iX2 and Xj ∈ k. Let H ∈ t. Then [H,X1] + i[H,X2] =
α(H)(X1 + iX2). We have seen that α(H) = iθ for some θ ∈ R since H ∈ t. So we
have [H,X1] + i[H,X2] = iθ(X1 + iX2) = −θX2 + iθX1. Therefore [H,X1] = −θX2 and
[H,X2] = θX1. Define X := X1 − iX2 6= 0. Then, for all H ∈ t,

[H,X] = [H,X1]− i[H,X2] = −θX2 − iθX1 = −iθ(X1 − iX2) = −iθX = −α(H)X.
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Thus −α is a root of g, and X is a root vector in g−α. This completes the proof of the first
part.

As for the second part, start by assuming that roots do not span h∗. Choose a maximal
linearly independent subset α1, . . . , αk of R and complete it to a basis α1, . . . , αk, αk+1, . . . , αr
of h∗ where r = rank(g). Let Z1, . . . , Zk, Zk+1, . . . , Zr be the dual basis of h. Note that
Zk+1 6= 0 since it is a basis element. Note also that α(Zk+1) = 0 for all α ∈ R because
every root is a linear combination of α1, . . . , αk. Therefore [H,Zk+1] = 0 for all H ∈ h since
Zk+1 ∈ h and [Zk+1, Xα] = α(Zk+1)Xα = 0 for all α ∈ R and Xα ∈ gα. Hence, since

g = h⊕

(⊕
α∈R

gα

)
,

we get [Zk+1, X] = 0 for all X ∈ g. So Zk+1 is in the centre of g. But since g is semisimple,
the centre of g is trivial. Therefore Zk+1 = 0 which is a contradiction. �

Lemma 21.12. Let X ∈ gα, Y ∈ g−α, H ∈ h. Then [X, Y ] ∈ h, and 〈[X, Y ], H〉 =
α(H)〈Y,−X〉, where X = X1 + iX2 and −X = −X1 + iX2, where Xj ∈ k.

Proof. If X ∈ k we showed that adX is skew-Hermitian, i.e., 〈adX Y, Z〉 = −〈Y, adX Z〉 for
all x ∈ k and Y, Z ∈ g. Write X = Xi + iX2 with Xj ∈ k, and compute 〈adX Y, Z〉:
〈adX Y, Z〉 = 〈adX1+iX2 Y, Z〉 = 〈adX1 Y + i adX2 Y, Z〉 = 〈adX1 Y, Z〉 − i〈adX2 Y, Z〉

= −〈Y, adX1 Z〉+ 〈Y, i adX2 Z〉 = 〈Y, ad−X1+iX2 Z〉 = 〈Y, ad−X Z〉.
Therefore 〈adX Y, Z〉 = 〈Y, ad−X Z〉 for all X, Y, Z ∈ g. Hence

〈[X, Y ], H〉 = 〈adX Y,H〉 = 〈Y, ad−X H〉 = 〈Y, [−X,H]〉
= 〈Y, [H,X]〉 = −α(H)〈Y,X〉 = α(H)〈Y,−X〉. �

22. March 23

Our main goal today is to prove the following theorem:

Theorem 22.1 (Main theorem on root spaces). The following statements are true for root
spaces:

(1) If α is a root, then the only multiples of α that are roots are α and −α.
(2) If α is a root, then gα is one-dimensional.
(3) For every root α ∈ R, there exists 0 6= Xα ∈ g, 0 6= Yα ∈ g−α, 0 6= Hα ∈ h such that

[Hα, Xα] = 2Xα, [Hα, Yα] = −2Yα, [Xα, Yα] = Hα; and Hα is unique, independent of
Xα and Yα.

Proof. Let α ∈ R be a fixed root.

Claim (Claim 1). If x ∈ gα and Y ∈ g−α then [X, Y ] ∈ h and [X, Y ] is orthogonal to all
elements H ∈ h such that α(H) = 0.

Proof of Claim 1. Let ker(α) = {H ∈ h : α(H) = 0}. We can write h = ker(α) + ker(α)⊥

(as vector spaces; ker(α)⊥ is the orthogonal complement in h with respect to 〈 , 〉|h). Let
σ = rank(g) = dim(h). Since α 6= 0 by definition, ker(α) has dimension r − 1. Hence
dim(ker(α)⊥) = 1. By Claim 1, we have

[gα, g−α] = ker(α)⊥. (†)
81



Let Xα be non-zero in gα. Then −X ∈ g−α, and X 6= 0 (by Lemma 21.12). �

Claim (Claim 2). [X,−X] 6= 0 and α([X,−X]) is real and strictly positive.

Proof of Claim 2. Take Y = −X in Lemma 21.12. Then 〈[X,−X], H〉 = α(H)| −X||2, and
| −X|2 is positive. Choose H ∈ h such that α(H) 6= 0. So [X,−X] 6= 0.

Let H = [X,−X] ∈ h. Note that ‖[X,−X]‖2 = α([X,−X])‖−X‖2, so α([X,−X]) is real
and positive. �

Let Y = −X. Then H = [X, Y ] = [X,−X].
Since X ∈ gα and Y ∈ g−α, we have

[H,X] = α(H)X

[H,Y ] = α(H)Y.

Therefore α(H) = α([X,−X]) > 0 by Claim 2. Define

Xα :=

√
2

α(H)
X

Yα :=

√
2

α(H)
Y

Hα :=
2

α(H)
H.

Thus we have

[Hα, Xα] =

(
2

α(H)

)3/2

[H,X] =

(
2

α(H)

)3/2

α(H)X = 2Xα

[Hα, Yα] = −2Yα

[Xα, Yα] = Hα.

Notice that [Hα, Xα] = 2Xα = α(Hα)Xα. Since Xα 6= 0, it follows α(Hα) = 2.

Claim (Claim 3). If β = kα is a root of g for some k ∈ C, then k = m
2

for some integer
m ∈ Z.

Proof of Claim 3. Let Sα := span{Xα, Yα, Hα} ∼= sl(2,C). Let Vα be the subspace of g
spanned by ker(α)⊥ and the root spaces gβ where β = kα for some k ∈ C. We shall show
that Vα is invariant under Sα, with respect to the adjoint action. Hence it is isomorphic to
a finite-dimensional complex representation of sl(2,C). In other words, ad |Sα has Vα as an
invariant subspace.

We need to show that [Sα, Vα] ⊆ Vα if Z ∈ ker(α)⊥. Then Z = λHα for some λ ∈ C
(because [gα, g−α] ⊆ ker(α)⊥ by Claim 1). Therefore ker(α)⊥ = span{Hα}. Note that
adHα Z = [Hα, λHα] = 0. If Z ∈ gβ, we have adHα Z = β(Hα)Z = 2kZ. Therefore
adHα(Vα) ⊆ Vα. Also,

[Xα, Hα] = −2Xα ∈ gα ⊆ Vα

[Yα, Hα] = 2Yα ∈ g−α ⊆ Vα.
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Let Z ∈ gβ.Then [Xα, Z] ∈ gα+β = g(k+1)α ⊆ Vα and [Yα, Z] = g−α+β = g(k−1)α ⊆ Vα.
Therefore adXα , adYα , adHα leave Vα invariant, so Vα is a finite-dimensional representation of
Sα. From what we know about finite-dimensional representations of sl(2,C), the eigenvalues
of Hα must be integers. If 0 6= Z ∈ gβ with β = kα, then

adHα(Z) = [Hα, Z] = β(Hα)Z = 2kZ.

Hence 2k must be integer, so k ∈ 1
2
Z as desired. �

Claim (Claim 4). If α is a root, then 2α is not a root.

Proof of Claim 4. Recall Sα ⊆ Vα, so by the complete reducibility property (CRP) of sl(2,C),
Vα decomposes into

Vα = Sα ⊕ U1 ⊕ · · ·Up
as representations of Sα ∼= sl(2,C), with each Ui irreducible representations of sl(2,C).
Suppose that 2α is a root of g. Then there exists a non-zero Z ∈ g2α such that [Hα, Z] =
(2α)(Hα)Z = 4Z. Because weight vectors correspond to distinct weights are independent
and λ = 4 occurs as an eigenvalue of adHα in Vα, it must occur in one of the factors. Since Sα
cannot have eigenvalue 4 (Sα has −2, 0, 2 as eigenvalues), there exists some Ui 6= 0 such that
λ = 4 occurs as an eigenvalue. By our knowledge of irreducible representations of sl(2,C),
if m occurs as an eigenvalue of π(Hα), then so does m− 2,m− 4, · · · ,−m. If λ = 4 occurs
in Ui, so does λ = 0. So suppose that W ∈ Ui is a non-zero vector such that [Hα,W ] = 0.

Hence W ∈ ker(α)⊥ = span{Hα}. Why? note that Vα = ker(α)⊥ ⊕

( ⊕
β=kα

gβ

)
. Recall that

ker(α)⊥ is a weight space of adHα with height 0, with the remaining portion being weight
spaces of adHα with weight β = kα 6= 0. But Ui∩ker(α)⊥ ⊆ Ui∩Sa = {0}, so this contradicts
the fact that W is non-zero. Therefore 2α is not a root. �

Claim (Claim 5). The only multiples of α that are roots are ±α.

Proof of Claim 5. Let α be a root, and β = kα a root of k ∈ C∗. By Claim 3, we have
k = m/2 with m ∈ Z. Without loss of generality, let k > 0 because otherwise we can replace
α with −α. So by Claim 4,

k ∈
{

1

2
, 1,

3

2
.
5

2
,
6

2
, · · ·

}
=: N.

And α = 1
k
β are both roots, meaning that k−1 ∈ N , so k = 1. �

Part (a) of the theorem follows from the five claims.

Claim (Claim 6). The root spaces gα are one-dimensional.

Proof of Claim 6. Suppose otherwise. Then there exists X ′ independent from Xα such that
adHα(X ′) = [Hα, X

′] = α(Hα)X ′ = 2X ′. So there exists eigenvalue 2 in Vα not coming from
Sα. Hence there exists eigenvalue 0 of adHα in Vα not coming from Sα. But this contradicts
Claim 4, so gα is one-dimensional. �

So part (b) follows.
Finally, since gα and g−α are both one-dimensional, Hα = [Xα, Yα] is unique up to a scale.

The scaling is fixed by the requirement that [Hα, Xα] = 2Xα (i.e., α(Hα) = 2). This proves
uniqueness. �
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Remark 22.1. So what is this good for? If g is a complex semisimple Lie algebra, then the
possible roots α ∈ h∗ of g are severely restricted, namely of the form

g = h⊕

(⊕
α∈R

gα

)
.

This gives hope that one can classify complex simple Lie algebras (reduce to classifying
possible “root systems”).

Now we will try to give a more “geometric picture” of the roots.

Proposition 22.2. Let α, β be roots of g. Let Hα be the co-root associated to α. Then
β(Hα) ∈ Z.

Proof. Let Sα = span{Xα, Yα, Hα} as before. If 0 6= Xβ ∈ gβ then [Hα, Xβ] = β(Hα)Xβ so
β(Hα) is an eigenvalue of adHα on Vα. Therefore β(Hα) ∈ Z. �

Recall that we use the positive-definite inner product 〈 , 〉 on g that is adA-invariant for
all A ∈ K restricted to h to identify h with h∗. So # : h → h∗ defined by H 7→ H# where
H#(J) = 〈H, J〉. So for any α ∈ h∗, there exists a unique α[ such that (α[)# = α, i.e.,
〈α[, H〉 = α(H) for all H ∈ h. Using this identification, we can drop [ and # notation.
That is, a root of g is a non-zero element α ∈ h such that there exists a no-zero X ∈ g with
[H,X] = 〈α,H〉X for all H ∈ h. Note that 〈α,H〉 = α(H) = 〈α[, H〉.

Let R be the set of roots of g (as a finite subset of h this time). We have so far shown
that:

(1) each root α ∈ R is contained in it ⊆ h = t+ it (because if H ∈ t then α(H) is purely
imaginary).

(2) The roots span h (the map # taking spanning sets to other spanning sets).
(3) if α is a root, so is −α but no other multiples.

Proposition 22.3. Let α be a root and let Hα be its co-root. Then

Hα =
2α

‖α‖2
, α =

2Hα

‖Hα‖2
.

In particular, α and Hα are positive real multiples of each other, and ‖α‖2‖Hα‖2 = 4.

Proof. span{Hα} = ker(α)⊥ ∈ h, and ker(α) = {H ∈ h : 〈α,H〉 = 0} = span(α)⊥. So
span{Hα} = ker(α)⊥ = (span{α})⊥⊥ = span{α}. Therefore span{α} = span{Hα}. α =
λHα for some λ ∈ C, so

‖α‖2 = λ〈α,Hα〉 = λα(Hα) = 2λ,

so λ = ‖α‖2/2. �

Corollary 22.4. 〈β,Hα〉 = β(Hα〉 ∈ Z.

Proof. Since Hα = 2α
‖α‖2 . Hence 2〈β,α〉

‖α‖2 ∈ Z whenever α, β ∈ R. Similarly we have 2〈α,β〉
‖β‖2 ∈ Z.

Also,

β =
2Hβ

‖Hβ‖2
,

so β(Hα) = 〈β,Hα〉 =
2〈Hβ ,Hα〉
‖Hβ‖2

∈ Z. �
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Remark 22.2 (Summary). If α, β ∈ R then

2〈α, β〉
‖α‖2

=
2〈Hα, Hβ〉
‖Hβ‖2

∈ Z,

and both equal β(Hα), the eigenvalue of adHα on gβ. Geometrically speaking, if α, β ∈ R
then the orthogonal projection of α onto β is an integer or half integer multiple of β and
vice versa.

23. March 25: The Weyl group

Recall that K is the compact (but not necessarily simply connected) analytic subgroup
of GL(n,C) with Lie algebra k, which is a compact real form of g ⊆ gl(n,C). Let t be the
maximal abelian subalgebra of k. Then h = tC = t + it is a Cartan subalgebra of g.

Definition 23.1. Define

Z(t) = {A ∈ K : AdA(H) = H for all H ∈ t}
N(t) = {A ∈ K : AdA(H) ∈ t for all H ∈ t}.

It is easy to check that both Z(t), N(t) are subgroups of K and Z(t) is a normal subgroup
of N(t).

Definition 23.2. The Weyl group of g is W := N(t)/Z(t).

Define an action of W on t by [A] = w ∈ W,A ∈ N(t) as follows: w ·H = AdA(H) for all
H ∈ t. Since h = tC, this action extends (complex-linearly) to an action on h. (That is, W
consists of invertible complex-linear operators on h).

Proposition 23.3. The following hold regarding the Weyl group W :

(1) The inner product 〈 , 〉 on h is invariant under the action of W .
(2) The set R ⊆ h of roots is invariant under W .
(3) The set of co-roots is invariant under W , and w ·Hα = Hw·α.
(4) W is a finite group.
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Proof. The first statement is immediate from the fact that 〈 , 〉 is AdA-invariant fro all
A ∈ K. As for the second statement, let w ∈ W and w = [A]. Let α ∈ R. Then there
exists X 6= 0 in g such that [H,X] = 〈α,H〉X for all H ∈ h, and AdA(X) 6= 0 in g.
Note that [H,AdAX] = AdA([Ad−1

A H,X]), since AdA is a Lie algebra automorphism; and
AdA−1 H ∈ h because A−1 ∈ N(t). Hence

[H,AdAX] = AdA(〈α,AdA−1 H〉X) = 〈AdA α,H〉AdAX = 〈w · α,H〉AdAX

for all H ∈ h. Hence, w · α is a root, with root vector AdAX.
As for the third part, write Hα = 2α/‖α‖2. Then w · Hα = 2(w · α)/‖α‖2 = 2(w ·

α)/‖w · α‖2 = Hw·α, with the second-to-last inequality following from the first part of the
proposition.

For the last part, we begin by noting that the action of w ∈ W is completely determined
by what it does to the roots, but we know from the second part that w ail permute the roots.
So W is a subgroup of the permutation group of the finite set R of roots. �

Example 23.4. Let g = sl(2,C). Then k = su(2), the 2×2 traceless Skew-Hermitian matrices.
Then K = SU(2) ⊆ GL(2,C). Then

t = {
[
ia 0
0 −ia

]
: a ∈ R}

is a maximal abelian subalgebra. We claim that

Z(t) =

{[
eia 0
0 e−ia

]
: a ∈ R

}
N(t) = Z(t) t

{[
0 eia

−e−ia 0

]
: a ∈ R

}
Proof. Take

H0 =

[
i 0
0 −i

]
∈ t.

If A ∈ Z(t) then AdAH0 = H0 iff AH0 = H0A. Note that if H0v = λv then AH0v = H0Av =
λAv. Thus A preserves eigenspaces of H0. Suppose that eigenspaces are spanned by {e1}
and {e2} respectively. Hence for some c, d ∈ C we have Ae1 = ce1 and Ae2 = de2. Therefore

A =

[
c 0
0 d

]
∈ SU(2),

so

A =

[
eia 0
0 e−ia

]
.

Conversely, it’s trivial to check that anything of the form

[
eia 0
0 e−ia

]
is in Z(t).

If A ∈ N(t), then AH0A
−1 ∈ t, so it is diagonal, and AH0A

−1 has eigenvectors Ae1, Ae2

with eigenvalues ±i respectively, i.e., AH0A
−1(Aei) = AH0ei = λiAei where λ1 = i and

λ2 = −i. But every element on t has eigenvectors e1 and e2 since it is diagonal. So there
exist c and d such that Ae1 = ce1, Ae2 = de2 or Ae1 = de1, Ae2 = ce2. The former is
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the Z(t) case, while the latter is the

[
0 eia

−e−ia 0

]
case. Conversely, anything of the form[

0 eia

−e−ia 0

]
is in N(t).

Then W = N(t)/Z(t). Let w = [A], A ∈ N(t). Note that w·H = AdAH. If A ∈ Z(t), then
w is the identity on h so AdAH = H for all H ∈ h. On the other hand, if A ∈ N(t) \ Z(t),
then

AdA

[
ib 0
0 −ib

]
=

[
0 eia

−e−ia 0

] [
ib 0
0 −ib

] [
0 −eia
e−ia 0

]
=

[
−ib 0
0 ib

]
.

So w = [A] acts as − id on h. So the Weyl group of sl(2,C) ∼= Z/2Z = {± id}. �

Recall that the root diagram of sl(2,C) is

so the Weyl group is the permutation group of R. But in the case of sl(3,C), then Weyl
group is isomorphic to S3 (symmetries of equilateral triangles) hence Weyl group is a proper
subset of the permutation group of R.

Going back to the general complex semisimple algebra, the following theorem holds:

Theorem 23.5. For every root α ∈ R, there exists an element wα ∈ W such that

wα · α = −α
wα ·H = H

for all H ∈ h such that 〈H,α〉 = 0. That is, for every root α, there exists an element wα ∈ W
that is reflection across the codimension one hyperplane (span{α})⊥.
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Remark 23.1. If β ∈ h, then

β =
〈α, β〉α
‖α‖2

+

(
β − 〈α, β〉α

‖α‖2

)
︸ ︷︷ ︸

∈span{α}⊥

So

wα · β = −〈α, β〉α
‖α‖2

+

(
β − 〈α, β〉α

‖α‖2

)
= β − 2〈α, β〉α

‖α‖2

β − wα · β = 2
〈α, β〉α
‖α‖2

.

Hence if α, β ∈ R then β − wα · β is an integer multiple of α.

Proof. Let Xα, Yα, Hα be as before, where Yα = −Xα. We have Xα = X1 + iX2 with Xi ∈ k.
So Yα = −X1 + iX2, so Xα − Yα = 2X1 ∈ k. Let Aα := exp

(
π
2
(Xα − Yα)

)
∈ K. If H ∈ h

with 〈α,H〉 = 0 then [H,Xα] = 〈α,H〉Xα = 0 and [H,Yα] = −〈α,H〉Yα = 0. So Yα ∈ g−α.
So Xα, Yα commute with any H ∈ (span{α})⊥.

Claim. AdAα(H) = H for all H ∈ (span{α})⊥ and AdAα(α) = −α.

Proof of Claim. Note that

AdAα = Adexp(π2 (Xα−Yα)) = exp
(

ad
(π

2
(Xα − Yα)

))
= exp

(π
2

(adXα − adYα)
)

if 〈α,H〉 = 0, then adXα H = adYα H = 0. So

AdAα H = exp
(π

2
(adXα − adYα)

)
H = H,

since the only constant term in power series contributes.
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If H = α Hα is a positive multiple of α, then

AdAα Hα = exp
(π

2
(adXα − adYα)

)
Hα,

and the RHS only involves brackets of Xα, Yα, Hα so only depends on commutative relations
∼= sl(2,C) with basis X, Y,H. In sl(2,C), where

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
,

we have
π

2
(X − Y ) =

[
0 π

2
−π

2
0

]
,

so

exp
(π

2
(X − Y )

)
=

[
0 1
−1 0

]
∈ N(t) \ Z(t).

Therefore Adexp(π2 (X−Y ))Hα = −Hα = Ad[ 0 1
−1 0 ]Hα, as desired. �

This completes the proof of our original theorem. �

Remark 23.2. In fact, one can prove that the Weyl group W is the subgroup generated by
such reflections {wα : α ∈ R}. So this fact imposes more constraints on what sets R can be
roots of a complex semisimple Lie algebra. Hence it is useful for classification.

We have almost all the language to state the theorem of the highest weight for a complex
semisimple Lie algebra g.

Theorem 23.6. Let g be a complex semisimple Lie algebra, and assume that every repre-
sentation is complex and finite-dimensional. Then:

(1) Every irreducible representation of g has a (unique) highest weight.
(2) Two irreducible representations of g are isomorphic if and only if they have the same

highest weight.
(3) The highest weight of an irreducible representation is a dominant integral element.
(4) Every dominant integral element is the highest weight of an irreducible representation.

We first need to define weight, highest weight, integral element, and dominant integral
element.

Definition 23.7. A base for R is a subset {α1, . . . , αr} of R such that:

(1) it is a basis of h (r = dim(h) = rank(g))
(2) every α ∈ R can be written as α = c1α1 + · · ·+ crαr where each cj ∈ Z, and all cj’s

are either non-negative or non-positive.

Also, if all the cj’s above are all non-negative, then these roots are called positive with respect
to the given basis ; if cj’s are all non-positive, then these roots are called negative with respect
to the same basis. Furthermore, {α1, . . . , αr} are called positive simple roots.

Remark 23.3. A base always exists.

Definition 23.8. An element µ ∈ h is an integral element if 〈µ,Hα〉 ∈ Z for all α ∈ R and

Hα a co-root (equivalent to saying that 2〈µ,α〉
‖α‖2 ∈ Z for all α ∈ R. A dominant integral element

is an integral element µ ∈ h such that 〈µ,Hα〉 ≥ 0 for every positive simple root α.
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Definition 23.9. Let (V, π) be a finite-dimensional complex representation of g. An element
µ ∈ h is a weight of π if there exists v 6= 0 in V such that π(H)v = 〈µ,H〉v for all H ∈ h.

Definition 23.10. If µ1, µ2 ∈ h, then we say that µ1 is higher than µ2 if µ1 − µ2 = c1α1 +
· · ·+ crαr with all ci ≥ 0 (real numbers). If this is the case, then we write µ1 � µ2.

As for the proof of the theorem of the highest weight, the proofs for the first three state-
ments are identical to the sl(3,C) case. The fourth one is much harder. There are three
possible approaches: Verma modules (Lie algebra approach), Peter-Weyl theorem (compact
group approach), and Borel-Weil construction (complex group approach). Theorem means
that irreducible representations (up to isomorphism) are “parametrized” (bijective corre-
spondence) with dominant integral elements.

24. March 30: Construction of Spin(n)

Today, we will explicitly construct a matrix Lie group Spin(n) for all n ≥ 3, and a two-to-
one homomorphism π : Spin(n) → SO(n) such that Spin(n) is compact, simply connected,
and Lie(Spin(n)) ∼= so(n) = Lie(SO(n)). This is a generalization of Ad : SU(2) → SO(3).
Particularly, we will see that SU(2) ∼= Spin(3). This is all more general than what we are
going to do today.

Consider V = (Rn, 〈 , 〉) with the standard Euclidean positive-definite inner product. Let
{e1, . . . , en} be the standard basis of V . This is orthonormal.

Definition 24.1. We define Cl(V ) to be the Clifford algebra of V = (Rn, 〈 , 〉), the asso-
ciative algebra over R with identity generated by {e1, . . . , en} subject to the relations

• ei · ej = −ej · ei if i 6= j
• e2

i = ei · ei = −1 for all i = 1, 2, . . . , n.
Formally speaking, the Clifford algebra is

Cl(V ) =

(
∞⊕
k=0

(V ⊗k)

)
/I,

where I is the two-sided ideal generated by {v ⊗ v + 〈v, v〉1 : v ∈ V }.

Remark 24.1. From the two relations defined above, it follows that v · w + w · v = −〈v, w〉1
for all v, w ∈ V .

Basis for Cl(V ) is all the elements that have one of the following forms 1, ei, ei · ej (i < j),
ei · ej · ek (i < j < k), . . . , ei1 · · · · · eil (i1 < i2 < · · · < il), . . . , e1 · e2 · · · · · en. Thus,

dim(Cl(V )) =
n∑
l=0

(
n

l

)
= (1 + 1)n = 2n.

Remark 24.2. As R-vector spaces, we have

Cl(V ) ∼= Λ•(V ) =
n⊕
k=0

Λk(V ),

but not as algebras.

Remark 24.3. V ⊆ Cl(V ) as a subspace, and similarly R ⊆ Cl(V ) as a subspace, where
R = span{1}.
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Definition 24.2. A Clifford automorphism P ∈ Aut(Cl(V )) is an automorphism of the
underlying real algebra that also maps V into V satisfying

• P (a+ b) = P (a) + P (b)
• P (ta) = tP (a) for all t ∈ R
• P (a · b) = P (a) · P (b)
• P (v) ∈ V ⊆ Cl(V ) for all v ∈ V .

Remark 24.4. Note that the first three indicate that P is an algebra homomorphism. So if
P is an algebra homomorphism satisfying the fourth condition, then P becomes a Clifford
automorphism.

Theorem 24.3. Aut(Cl(V )) = O(n) = O(n,R).

Proof. Let P ∈ Aut(Cl(V )) a Clifford automorphism. Let v ∈ V . Then we have P (v) ∈ V .
By the fundamental defining relation (v · v = −|v|21) we have

〈P (v), P (v)〉1 = −P (v) · P (v) = −P (v, v) = P (−v · v)

= P (〈v, v〉1) = 〈v, v〉P (1) = 〈v, v〉1.

Thus 〈P (v), P (v)〉 = 〈v, v〉 for all v ∈ V so P |V ∈ O(n).
Now suppose P ∈ O(n). Extend P to Cl(V ) in the obvious way to make it an alge-

bra homomorphism. Then one can easily verify that this is well-defined and is an algebra
automorphism. �

Definition 24.4. A Clifford anti-automorphism is an algebra anti-automorphism, i.e., P (ab) =
P (b) · P (a) for all a, b ∈ Cl(V ) such that P (v) ∈ V for all v ∈ V .

Remark 24.5. Cl(V ) has a canonical Clifford automorphism and two Clifford anti-automorphisms.

Definition 24.5. The isometry v 7→ −v of V extend to an automorphism of Cl(V ), i.e.,
P = −I ∈ O(n). Denote this automorphism by ∼: Cl(V )→ Cl(V ).

Remark 24.6. ˜̃α = α for all α ∈ Cl(V ) since (−I)2 = I. Therefore ∼ is an involution.

Definition 24.6. We are now ready to define even Clifford algebras and odd Clifford algebras :

Cl(V )even = {α ∈ Cl(V ) : α̃ = α}
Cl(V )odd = {α ∈ Cl(V ) : α̃ = −α}.

Remark 24.7. Both are subspaces of Cl(V ), and in particular Cl(V )even is a subalgebra. Also,
since

α =
α + α̃

2
+
α− α̃

2
,

and (α+ α̃)/2 ∈ Cl(V )even and (α− α̃)/2 ∈ Cl(V )odd, we have Cl(V ) = Cl(V )even⊕Cl(V )odd

as real vector spaces.

Define an anti-automorphism ∨ : Cl(V ) → Cl(V ) by defining it on a basis (let i1 < i2 <
· · · < ik):

(ei1 · ei2 · · · · · eik)∨ = eik · eik−1
· · · · · ei1

= (−1)(k−1)+(k−2)+···+1ei1 · · · · · eik = (−1)k(k−1)/2ei1 · · · · · eik
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(i.e., reverse order of factors). Note that (α · β)∨ = β∨ · α∨, and (α∨)∨ = α so ∨ is an
involution. Furthermore, notice that, if k = 4m+ l with l = 0, 1, 2, 3 then

k(k − 1)

2
≡ l(l − 1)

2
(mod 4),

so if k ≡ 0, 1 (mod 4) then (−1)k(k−1)/2 is 1 while (−1)k(k−1)/2 is negative if k ≡ 2, 3 (mod 4).

Remark 24.8. ∨◦ ∼ ◦∨ is an automorphism of Cl(V ) that maps V ↪→ V , since (∨ ∼ ∨)(ei) =
∨(∼ (ei)) = ∨(−ei) = −ei =∼ ei. Therefore ∨ ∼ ∨ =∼ on V . Hence ∨ ∼ ∨ =∼ on Cl(V ).
Hence ∼ ∨ = ∨ ∼ (i.e., they commute).

Definition 24.7. ∧ : Cl(V ) → Cl(V ) is said to be the Clifford anti-automorphism ∧ := ∼
∨ = ∨ ∼.

For the record, we will record the signs of each map:

k mod 4 0 1 2 3
∼ + − + −
∨ + + − −
∧ + − − +

24.1. Main symmetry of Clifford algebras

Proposition 24.8. Cl(Rn) ∼= (Cl(Rn+1))
even

.

Proof. Let e1, . . . , en be the standard basis of Rn and E0, . . . , En the standard basis of Rn+1.
Define a map φ : Cl(Rn) → Cl(Rn+1) such that φ(ei) = E0 · Ei ∈ (Cl(Rn+1))

even
extend to

make φ to make an algebra homomorphism:

φ(ei)φ(ej) = E0EiE0Ej = −E0E0EiEj

= −E2
0EiEj = EiEj = −EjEi = −φ(ej)φ(ei).

for all i 6= j. If i = j, then φ(ei)φ(ei) = E2
i = −1 = φ(e2

i ). Therefore φ : Cl(Rn) →
(Cl(Rn+1))

even
, and note that both have dimension 2n, hence is an isomorphism of real

algebras (check the details) that preserves the Clifford relation. �

Example 24.9. Cl(R0) = R0 = R, and has dimension 20 = 1, and ∼,∨,∧ all identity.

Example 24.10. If r = 1, then Cl(R1) = spanR{1} ⊕ spanR{e1} ∼= R2 as real vector spaces.
And every α ∈ Cl(R1) can be written in the form α = a1 + be1 with a, b ∈ R, where 1
is the multiplicative identity and e2

1 = −1 by defining relations. Therefore Cl(R1) ∼= C
as R- algebras. And ∼= ∨ is the map a1 + be1 7→ a1 − be1, which is complex conjugate.
Hence Cl(R1)even = span{1} = R and Cl(R1)odd = span{e1} ∼= iR. It thus follows that
Cl(R0) ∼= Cl(R1)even and R = Re(C) = Ceven.

Example 24.11. What if r = 2? Note that

Cl(R2) = span{1} ⊕ span{e1, e2} ⊕ span{e1 · e2}.

Then span{e1, e2} ∼= V and span{1} ∼= R. Recall that e2
1 = e2

2 = −1 and e1 · e2 = −e2 · e1.
Notice that (e1 · e2) · e1 = −e2 · e1 · e1 = e2, and similarly, e1 · (e1 · e2) = −e2, e2 · (e1 · e2) =
−e1 · e2 · e2 = e1, and (e1 · e2) · e2 = −e1. Letting i = e1 · e2, j = e1, k = e2 we see that
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i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik. Therefore Cl(R2) ∼= R22 ∼= R4

as real vector spaces, and (as R-algebras) Cl(R2) ∼= H, the real algebra of quaternions. Then

(Cl(R2))even = span{1, e1 · e2} = span{1, i} ∼= C
(Cl(R2))odd = span{e1, e2} = span{j, k},

so Cl(R2)odd is a real subspace but not a subalgebra; and H has a real subalgebra isomor-
phic to C. Hence H = C ⊕ Cj. The anti-automorphism is defined as ∧(1) = 1,∧(±i) =
∓i,∧(±j) = ∓j,∧(±k) = ∓k. Therefore ∧ corresponds to the quaternionic conjugation
(recall that H = R⊕ Im(H)).

Note that H is a division ring (i.e., every element has a multiplicative inverse – but without
commutativity). If q ∈ H is non-zero, then q−1 = q̄/|q|2 because q̄q = qq̄ = |q|2 (analogous
to zz̄ = |z|2 in C).

Example 24.12. If r = 3, then Cl(R3) ∼= R8 as real vector spaces, but is not the octonions
O, since O is not associative. As real algebras, Cl(R3) ∼= H⊕H, where even: (p, p) and odd:
(p,−p), where (p1, q1)(p2, q2) = (p1p2, q1q2) with the multiplicative identity 1 = (1, 1).

Example 24.13. We can keep going, and we will see that:
• Cl(R4) = M2×2(H), which is 16-dimensional over reals.
• Cl(R5) = M4×4(C) (32-dimensional over reals)
• Cl(R6) = M8×8(R) (64-dimensional over R)
• Cl(R7) = M8×8(R)⊕M8×8(R) (128-dimensional)
• Cl(R8) = M16×16(R) (256-dimensional)

But we can stop here actually, because the pattern will repeat. In other words,

n mod 8 Cl(Rn) dimension = 2n

0 MN×N(R) N2

1 MN×N(C) 2N2

2 MN×N(H) 4N2

3 MN×N(H)⊕MN×N(H) 8N2

4 MN×N(H) 4N2

5 MN×N(C) 2N2

6 MN×N(R) N2

7 MN×N(R)⊗MN×N(R) 2N2

24.2. The Clifford centre and the twisted centre

Definition 24.14. We define the Clifford centre cent(Cl(V )) and the twisted centre twcent(Cl(V ))
as follows:

cent(Cl(V )) = {α ∈ Cl(V ) : α · β = β · α for all β ∈ Cl(V )}
= {α ∈ Cl(V ) : α · v = v · α for all v ∈ V }

twcent(Cl(V )) = {α ∈ Cl(V ) : α · β = −β · α for allβ ∈ Cl(V )}
= {α ∈ Cl(V ) : α · v = −v · α for all v ∈ V }.

Lemma 24.15. Let V = Rn.

(1) If n is even, then cent(Cl(V )) = R = span{1} and twcent(Cl(V )) ∼= R = span{µ}.
(2) If n is odd, then cent(Cl(V )) = spann{1, µ} ∼= R2 and twcent(Cl(V )) = {0}.
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Therefore, 1 ∈ cent(Cl(V )) always. Also, only other basis vector that can be in cent or
twcent is µ, where µ ∈ cent for n odd and µ ∈ twcent for n even.

Proof. Let ei ∈ V be a basis vector. Let α ∈ Cl(V ). Write α = β + ei · γ, where β, γ do not
involve ei. Then αei = (β + eiγ)ei, and eiα = ei(β + eiγ) = eiβ − γ. If α is even, then β is
even and γ is odd. Hence α · ei = eiβ − ei · ei · γ = eiβ + γ so:

• α · ei = ei · α⇔ γ = 0⇔ α does not involve ei.
• α · ei = −ei · α⇔ β = 0⇔ α does involve ei.

If α is odd, then β is odd and γ is even. Since α · ei = −eiβ − γ, so we have:
• α · ei = ei · α⇔ β = 0⇔ α does involve ei.
• α · ei = −ei · α⇔ γ = 0⇔ α does not involve ei.

Hence, we see that α ∈ cent(Cl(V )) if and only if αeven, αodd ∈ cent; similarly, α ∈
twcent(Cl(V )) if and only if αeven, αodd ∈ twcent(Cl(V )). �

25. April 1: Last lecture!

Recall that Cl(Rn) = Cl(Rn)even ⊕ Cl(Rn)odd, and that Cl(Rn)even is a subalgebra and
Cl(Rn)odd is a subspace (but not a subalgebra). Last time, we defined the Clifford centre
cent(Cl(V )) and the twisted centre twcent(Cl(V )):

cent(Cl(V )) = {α ∈ Cl(V ) : α · β = β · α for all β ∈ Cl(V )}
= {α ∈ Cl(V ) : α · v = v · α for all v ∈ V }

twcent(Cl(V )) = {α ∈ Cl(V ) : α · β = −β · α for allβ ∈ Cl(V )}
= {α ∈ Cl(V ) : α · v = −v · α for all v ∈ V }.

We also proved that if n is even, then cent = span{1} and twcent = span{µ}, where
µ := e1 · e2 · · · · · en. If n is odd, then cent(Cl(V )) = span{1, µ} and twcent(Cl(V )) = {0}.

25.1. Self-duality and anti-self-duality

We have µ = e1·e2·· · ··en·e1·e2·· · ··en = (−1)n(n−1)/2e1·· · ··en·en·en−1·· · ··e1 = (−1)l(l+1)/2,
where n = 4k + l. This gives us that

k mod 4 0 1 2 3
µ2 1 −1 −1 1

Definition 25.1. Suppose that n ≡ 0 or 3 mod 4. Then α ∈ Cl(V ) is called self-dual if
µ · α = α and anti-self-dual if µ · α = −α.

Remark 25.1. For any α ∈ Cl(V ), we can write

α =
α + µ · α

2
+
α− µ · α

2
.

Then α+µ·α
2

is self-dual and α−µ·α
2

is anti-self-dual. This gives us another splitting (distinct
from the even/odd splitting):

Cl(V ) = Cl+(V )⊕ Cl−(V ),

where Cl+(V ) denotes the self-dual elements and Cl−(V ) denotes anti-self-dual elements.
Both are just subspaces, not subalgebras.

Remark 25.2. µ · 1 = µ so 1 is not self-dual. But 1+µ
2
∈ Cl+(V ) and 1−µ

2
∈ Cl−(V ).
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Example 25.2. Cl(R3) = H⊕H = Cl+(R3)⊕Cl−(R3). Recall that Cl(R3)even = {(p, p) : p ∈
H} and Cl(R3)odd = {(p,−p) : p ∈ H}. So we have

Cl+(R3) = span

{
1 + µ

2
,
ei + ej · ek

2

}
Cl−(R3) = span

{
1− µ

2
,
ei − ej · ek

2

}
.

25.2. Pin groups and spin groups

Let v ∈ Rn te non-zero. Then we have v · v = v2 = −|v|21 ≡ 0. So v is invertible, and
v−1 = −v/|v|2. If |v| = 1, then v−1 = −v. Now we are ready to define pin groups.

Definition 25.3. The Pin group of (Rn, 〈 , 〉) denoted Pin(n), is the subgroup of Cl(V )∗

generated by unit vectors in Rn, i.e.,

Pin(n) = {u1 · u2 · · · · · ur : |ui| = 1, ui ∈ V }.

Remark 25.3. This is clearly a group, and notice that ±1 ∈ Pin(n). Note that every α ∈
Pin(n) is either even or odd.

Definition 25.4. The Spin group of (Rn, 〈 , 〉) denoted Spin(n) is

Spin(n) := Pin(n) ∩ Cl(V )even = {u1 · · · · · u2r : ui ∈ V, |ui| = 1}.

Remark 25.4. Clearly we have ±1 ∈ Spin(n) and Spin(n) is a subgroup of Pin(n).

Lemma 25.5 (Relation been reflections and the Clifford multiplication). Let u ∈ V be non-
zero. Let Ru : V toCl(V ) defined by Ru(v) = −u·v ·u−1. We know that u−1 = −u. Therefore
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Ru(v) = u · v · u is linear in V . We also have Ru(v) ∈ V for all v ∈ V , and Ru : V → V is
reflection across the hyperplane orthogonal to span{u}.

Proof. Ru is linear, so there are two possible cases. First, suppose that v = λu where λ ∈ R.
Then Ru(v) = uvu = λu3 = λu(u2) = −λu = −v (recall that u2 = −|u|21 = −1). If v ⊥ u
(the second case), then in this case we have u · v = −v · u, so Ru(v) = uvu = −vu2 =
−v(−1) = v. �

This lemma motivates the following definition:

Definition 25.6. The adjoint representation Ad of Cl(V )∗ on Cl(V ) is the group homomor-
phism Ad : Cl(V )∗ → GL(Cl(V )) given by the isomorphism Adα : Cl(V ) ∼= Cl(V ) defined
by β 7→ α · β · α−1 (obviously, α ∈ Cl(V )∗).

Remark 25.5. This is a representation since Adα−1 = (Adα)−1 and Adα ·Adβ = Adαβ.

Definition 25.7. The twisted adjoint representation Ãd is a representation of Cl(V )∗ on
Cl(V ) given by

Ãd : Cl(V )∗ → GL(Cl(V ))

where Ãdαβ = α̃ · β · α−1 for all α ∈ Cl(V )∗.

Remark 25.6. Ãd is a representation because

Ãdα1 · Ãdα2β = α̃1(α̃2βα
−1
2 )α−1

1

= α̃1α̃2β(α1α2)−1

= (α̃1α2)β(α1α2)−1

= Ãdα1α2β.
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Remark 25.7. If α ∈ V and α ∈ Cl(V )∗, then α is a non-zero vector in Rn. We have α̃ = −α
and α−1 = −α/‖α‖2.

Let α = u ∈ V . Then we have

Ãdu(β) = ũβu−1 = −u · βu−1.

Therefore Ãdu|V = Ru.

Theorem 25.8. The following sequences are short exact sequences:

(1) 1→ Z/2Z i→ Pin(n)
Ãd→ O(n)→ 1

(2) 1→ Z/2Z i→ Spin(n)
Ãd→ SO(n)→ 1.

Proof. If u 6= 0 in V then Ãdu = Ru ∈ O(n). If α ∈ Pin(n), then α = u1 · u2 · · · · · ur where
ui ∈ V and ui 6= 0 with |ui|| = 1. Notice that we have

Ãdα = Ãdu1·····ur = Ãdu1 · Ãdu2 · · · · · Ãdur = Ru1 · · · · ·Rur ∈ O(n).

By Cartan-Dieudonné theorem, every P ∈ O(n) is a product of a finite number of repli-
cations. So P = Ru1 · · · · · Rur for some u1, . . . , ur ∈ V , all of which are non-zero. Hence

Ãd : Pin(n)→ O(n) is surjective.

Note that i is injective with image ±1; and Ãd−1β = −̃1 · β(−1)−1 = (−1) · β · (−1) = β.

Hence Ãd−1 = 1. Therefore im(i) ⊆ ker(Ãd). We need to show that im(i) = ker(Ãd).

Suppose that α ∈ Pin(n) is in ker(Ãd). That is, Ãdα = 1. Hence α̃ · vα−1 = v for all
v ∈ V , or equivalently α̃v = vα for all v ∈ V .

If α is odd, then α̃ = −α. So we have −αv = vα for all v ∈ V . Hence α ∈ twcent(Cl(V )).
But then recall that

n even n odd
cent 1 {1, µ}

twcent µ {0}

Hence there are no non-zero elements in the twisted centre, so this is a contradiction. There-
fore α must be even, i.e., α̃ = α. So αv = vα for all v ∈ V . Hence α ∈ cent(Cl(V )), so
α ∈ span{1}. Thus α = t where t ∈ R. One can easily verify that if α ∈ Pin(n) then t = ±1,
thereby proving (a).

For (b), it’s the similar argument as (a), but here we use the fact that det(Ru) = −1 for
all u ∈ V \{0}. Hence, the elements of SO(n) are the products of even number of reflections.
Follow the reasoning outlined in the proof of (a). �

Note that we still haven’t explored why Pin(n) and Spin(n) are matrix groups. Why?

Definition 25.9. We define P to be the space of pinors and S to be the space of spinors.

The spaces P resp. S of pinors resp. spinors are finite-dimensional real vector spaces on
which Cl(Rn) resp. Cl(Rn)even acts on.

Proposition 25.10. MN×N(F) where F = R,C, or H has exactly one irreducible represen-
tation (as a real algebra), which is FN .
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Table 1. Table for pinors

n mod 8 Cl(Rn) dimension = 2n P
0 MN×N(R) N2 RN

1 MN×N(C) 2N2 CN

2 MN×N(H) 4N2 HN

3 MN×N(H)⊕MN×N(H) 8N2 HN ⊕HN

4 MN×N(H) 4N2 HN

5 MN×N(C) 2N2 CN

6 MN×N(R) N2 RN

7 MN×N(R)⊕MN×N(R) 2N2 RN ⊕ RN

Table 2. Table for spinors

n mod 8 Cl(Rn)even ∼= Cl(Rn−1) S
0 MN×N(R)⊕MN×N(R) RN ⊕ RN

1 MN×N(R) RN

2 MN×N(C) CN

3 MN×N(H) HN

4 MN×N(H)⊕MN×N(H) HN ⊕HN

5 MN×N(H) HN

6 MN×N(C) CN

7 MN×N(R) RN

Proposition 25.11. Both Pin(n) and Spin(n) are canonically matrix groups. Namely,
Spin(n) is the square matrices of size depending on n (in a rather complicated way), so
Spin(n) is a matrix group such that Lie(Spin(n)) = Lie(SO(n)) = so(n), by using the two-
to-one homomorphism.

Proposition 25.12. Spin(n) is connected. Spin(n) is simply connected for all n ≥ 3.

Proof. Let u1, u2 ∈ Rn with |u1| = |u2| = 1 and 〈u1, u2〉 = 0. Note that for any t ∈ R,

(− cos(t)u1 − sin(t)u2) · (cos(t)u1 − sin(t)u2) = (cos2 t− sin2 t)1 + 2 sin(t) cos(t)u1 · u2

= cos(2t)1 + sin(2t)(u1 · u2).

This is a path from 1 to u1 · u2. Therefore Spin(n) is connected. Hmm but this isn’t enough
to show that it is simply connected! �

Example 25.13. Both Spin(3) and Spin(4) can be explicitly realized using quaternions: S3 ∼=
Spin(3) as manifolds, and Spin(3) ∼= SU(2) ∼= Sp(1) as matrix Lie groups. Also, note that
S3 ⊆ H =∼= R4, so S3 can be thought of as unit quaternions.

Consider the map Spin(3) → SO(3) defined by p 7→ Adp. Then Adp(v) = pvp−1 = pvp̄
is a two-to-one Lie group homomorphism. And |Adp(v)| = |pvp̄| = |v| so Adp ∈ O(3) by
continuity. Hence Adp ∈ SO(3) for all p ∈ Spin(3), with ker(Ad) = ±1. One can show
that this map is surjective and S3 is simply connected. So Spin(3) ∼= S3, which can be
viewed as the set of unit quaternions. Similarly, Spin(4) = S3×S3 = Spin(3)×Spin(3). Let
ρ : S3× S3 → SO(4) such that (p, q) 7→ ρp,q where ρp,q(v) := p

√
q. We see that ker(ρ) = ±1.

98



The consequence is that Lie(Spin(4)) = so(4) = so(3)⊕ so(3). For the second equality, note
that

so(4) = ∧2(R4) = ∧2
+(R4)⊕ ∧2

−(R4),

and ∧2
+(R4) ∼= R3 ∼= ∧2(R3) ∼= so(3) and similarly ∧2

−(R4) ∼= R3 ∼= ∧2(R3) ∼= so(3).

Remark 25.8. Note that Spin(3) = S3, and by the two-to-one map from Spin(3) to SO(3) and
the corresponding map S3 to RP3 (identify antipodal points), we have π1(SO(3)) = Z/2Z
and π1(Spin(3)) = {1}. So there is a non-contractible loop in RP3, but when doubled it does
become contractible.

As an example, we will consider the case S2 and RP2. Notice that you can deform S2 into
RP2 from

to

Note that the above loop is not contractible. But if we add two more segments (purple-
coloured lines), then we do have contractible loops:
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Let’s deform a bit more for clearer pictures. Indeed,

This marks the completion of the lectures and this lecture note.

Department of Pure Mathematics, University of Waterloo, 200 University Avenue West,
Waterloo, ON, Canada N2L 3G1

E-mail address: hsyang@uwaterloo.ca
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