MATH 5045C: ADVANCED ALGEBRA I (MODULE THEORY) COMPREHENSIVE EXAM EDITION

HEESUNG YANG

1. January 7: Rings

Definition 1.1. A ring R is a set with two binary operations called addition (+) and multiplication (\cdot) such that

- (1) $\langle R, + \rangle$ is an abelian group
- (2) \cdot is associative (i.e., $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$)
- (3) \cdot and + are distributive over one another (i.e., a(b+c) = ab+ac and (a+b)c = ac+bc).

Definition 1.2. A ring R is commutative if ab = ba for all $a, b \in R$. Otherwise a ring R is non-commutative. A ring R has unity (or has identity) if \cdot has an identity, which we call it 1 (i.e., $1 \in R$ and $1 \cdot a = a$ for all $a \in R$). An element $a \in R$ is a unit if there exist a left multiplicative inverse a' and a right multiplicative inverse a'' such that a'a = aa'' = 1.

Example. \mathbb{Z}, \mathbb{R} , and $\mathbb{Z}[x]$ are examples of (commutative) rings. $M_2(\mathbb{Z})$, the 2×2 -matrix ring over \mathbb{Z} is a (non-commutative) ring.

Proposition 1.1. a' = a''. In other words, a left multiplicative inverse of a and a right multiplicative inverse of a are the same.

Proof.
$$a'a = 1$$
, so $a'aa'' = a''$. Thus $a' = a''$.

Definition 1.3. A non-zero element $a \in R$ is a zero-divisor if there exists $b \neq 0 \in R$ such that ab = 0 or ba = 0. If R is commutative, has unity, and has no zero-divisors, then R is an integral domain (or domain in short). A field is an integral domain in which every non-zero element is a unit.

Example. \mathbb{Z} is a commutative ring with unity 1 and units ± 1 . \mathbb{Z} has no zero divisors. Thus \mathbb{Z} is an integral domain. On the other hand, $\mathbb{Z}/6\mathbb{Z}$ has unity 1 and the units are 1, 5. However, $\mathbb{Z}/6\mathbb{Z}$ has three zero divisors, namely 2, 3, 4. Notice that $2 \cdot 3 = 4 \cdot 3 = 0$. Therefore $\mathbb{Z}/6\mathbb{Z}$ is not an integral domain.

Example. $\mathbb{Z}/p\mathbb{Z}$ for p prime, $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{C}(x)$ are examples of fields.

Remark 1.1. Units cannot be zero divisors (left as an exercise).

Definition 1.4. Let R be a ring. A *left (resp. right) ideal* I *of* R is a non-empty subset $I \subseteq R$ such that:

- $ra \in I$ (resp. $ar \in I$) for any $a \in I$ and $r \in R$
- $a b \in I$ for any $a, b \in I$.

An ideal usually means a left and right ideal.

Date: 9 April 2019.

Example. Let $R = \mathbb{Z}$ and $I = 3\mathbb{Z} = \{3x : x \in \mathbb{Z}\}$. Then I = (3) (i.e., I is an ideal generated by 3). Since every ideal of \mathbb{Z} is generated by a single element, R is in fact a PID (principal ideal domain). Every ideal is finitely generated in Noetherian rings, so \mathbb{Z} is Noetherian.

 $\mathbb{R}[x]$ is a ring (in fact it is a Euclidean domain). Then (x) and $(x^2 + 3)$ are both ideals of $\mathbb{R}[x]$.

Example. However, $\mathbb{Z}[x]$ is not a PID (however, it is a UFD (unique factorization domain)). Note that there does not exist $f \in \mathbb{Z}[x]$ such that (2, x) = (f(x)).

Definition 1.5. Let R be a ring. A *left* R-module M over R is an abelian group $\langle M, + \rangle$ along with an action of R on M, denoted by multiplication such that

- (1) r(x+y) = rx + ry for all $r \in R$ and $x, y \in M$
- (2) (r+s)x = rx + sx for all $r, s \in R$ and $x \in M$
- (3) (rs)x = r(sx) for all $r, s \in R$ and $x \in M$.
- (4) $1_R \cdot x = x$ for all $x \in M$, provided that R has unity.

A right R-module is defined similarly, but with the action of R from the right.

Remark 1.2. Every ring R is an R-module (and a \mathbb{Z} -module also).

Example. Every abelian group is a \mathbb{Z} -module. Every k-vector space is a k-module for a field k. $\mathbb{Z}[x]$ and $\mathbb{Z}/6\mathbb{Z}$ are \mathbb{Z} -modules.

Example. For every ring R and an ideal I, R/I is an R-module (left as an exercise). Let $r \in R$ and $a + I \in R/I$. Then the action is given by r(a + I) = ra + I.

Example. Let I be an ideal of ring R. Then I is an R-module.

2. January 9

Definition 2.1. Let R be a ring, and M an R-module. Then a *submodule of* M is a subgroup N of M which is also an R-module under the same action of R.

Lemma 2.1 (The submodule criterion). Let R be a ring with unity, M a (left) R-module, and $N \subseteq M$. Then N is a submodule of N of M if and only if

- (1) N is non-empty, and
- (2) $x + ry \in N$ for an $r \in R$ and $x, y \in N$.

Remark 2.1. Notice that R having the unity is crucial, as we will see in the proof. If R has no unity, then we need to go back to the definition and check one by one instead.

Proof. (\Rightarrow) This is a routine application of the definition of an R-module to verify that those two conditions hold.

(\Leftarrow) Suppose that N satisfies the listed criteria. Then N is a subgroup of M. The first condition implies that there exists $x \in N$. Thus $x + (-1)x = 0 \in N$ by the second condition. Finally, by the second condition, for any $x, y \in N$ we have $0 - x = -x \in N$ and $x + 1 \cdot y = x + y \in N$. Thus for any $x \in N$ and $x \in R$, we have $0 + rx = rx \in N$. Hence N is closed under action of R. The remaining properties (distributivity) follow because M is an R-module already: notice that they are inherited from M.

Definition 2.2. Let R be a ring and M, N R-modules. A function $\varphi: M \to N$ is an R-module homomorphism if

- (1) $\varphi(x+y) = \varphi(x) + \varphi(y)$ for all $x, y \in M$
- (2L) (for left R-modules) $\varphi(rx) = r\varphi(x)$ for all $x \in M$ and $r \in R$.
- (2R) (for right R-modules) $\varphi(xr) = \varphi(x)r$ for all $x \in M$ and $r \in R$.

Additionally, if $\varphi: M \to N$ is also

- (1) injective, then φ is an R-module monomorphism.
- (2) surjective, then φ is an R-module epimorphism.
- (3) bijective, then φ is an R-module isomorphism.
- (4) M = N, then $\varphi: M \to M$ is an R-module endomorphism.
- (5) a bijective endomorphism, then φ is an R-module automorphism.

Proposition 2.1. $\varphi(0) = 0$ for any R-module homomorphism φ .

Proof.
$$\varphi(0) = \varphi(0+0) = 2\varphi(0)$$
, so $\varphi(0) = 0$.

Example. We examine some examples of module homomorphisms.

- A group homomorphism of abelian groups is a Z-module homomorphism.
- A linear transformation of k-vector spaces is a k-module homomorphism.
- If $\varphi: R \to S$ is a ring homomorphism, then S is an R-module with action of R defined as $r \cdot x = \varphi(r)x$ for all $r \in R, x \in S$. Then S is an R-module. Evidently, R is also an R-module, so φ is in fact an R-module homomorphism. Indeed,
 - (1) $\varphi(x+y) = \varphi(x) + \varphi(y)$ for all $x, y \in R$ (since φ is a ring homomorphism)
 - (2) $\varphi(rx) = \varphi(r)\varphi(x) = r \cdot \varphi(x) = r\varphi(x)$ for $r, x \in R$.

Lemma 2.2. Let R be a ring with unity, and M and N are left R-modules. Then the following are equivalent:

- (i) $\varphi: M \to N$ is an R-module homomorphism.
- (ii) $\varphi(x+ry) = \varphi(x) + r\varphi(y)$ for all $x, y \in M$ and $r \in R$.

Proof. Exercise. \Box

Definition 2.3. Let $\varphi: M \to N$ be a homomorphism of left R-modules. Then kernel of φ is

$$\ker \varphi = \{x \in M : \varphi(x) = 0\}.$$

The image of φ is

$$\operatorname{im} \varphi = \{ y \in N : y = \varphi(x) \text{ for some } x \in M \}.$$

Lemma 2.3. If $\varphi : M \to N$ is a left R-module homomorphism, then $\varphi(M) = \operatorname{im} \varphi$ is submodule of N, and $\ker \varphi$ is submodule of M.

Proof. From group theory, we already know that $\ker \varphi$ and $\operatorname{im} \varphi$ are subgroups. Thus we only need to verify they are also modules. For $\varphi(M)$, for any $r \in R$ and $x \in \varphi(M)$ there exists $y \in M$ such that $x = \varphi(y)$. Thus, $rx = r\varphi(y) = \varphi(ry) \in \varphi(M)$ since $ry \in M$. Thus $\varphi(M)$ is a submodule of N.

As for the kernel, for any $r \in R$ and $x \in \ker \varphi$ we have $\varphi(rx) = r\varphi(x) = r0 = 0$. Thus $rx \in \ker \varphi$, as required.

Definition 2.4. Let M, N be left R-modules, and let

$$\operatorname{Hom}_R(M,N) := \{ \varphi : M \to N \mid \varphi \text{ is an } R\text{-module homomorphism} \}.$$

Define addition on $\operatorname{Hom}_R(M,N)$ as follows. For any $\varphi,\psi\in\operatorname{Hom}_R(M,N)$, define

$$(\varphi + \psi)(x) := \varphi(x) + \psi(x)$$
 for all $x \in M$.

It is not hard to see that $\varphi + \psi : M \to N$ is an R-module homomorphism. We see $\varphi + \psi$ respects addition since for any $x, y \in M$,

$$(\varphi + \psi)(x + y) = \varphi(x + y) + \psi(x + y)$$
$$= \varphi(x) + \varphi(y) + \psi(x) + \psi(y)$$
$$= (\varphi + \psi)(x) + (\varphi + \psi)(y).$$

Similarly, we have, for any $r \in R$ and $x \in M$,

$$(\varphi + \psi)(rx) = \varphi(rx) + \psi(rx) = r\varphi(x) + r\psi(x)$$
$$= r(\varphi(x) + \psi(x)) = r((\varphi + \psi)(x)).$$

Hence $\psi + \varphi \in \operatorname{Hom}_R(M, N)$ for all $\varphi, \psi \in \operatorname{Hom}_R(M, N)$. Let $0 \in \operatorname{Hom}_R(M, N)$ be the zero homomorphism $\mathbf{0} : M \to N$ (i.e., $\mathbf{0}(x) = 0$ for all $x \in M$), which serves as the identity element. It is not that hard to see that $-\varphi \in \operatorname{Hom}_R(M, N)$ defined as $x \mapsto -\varphi(x)$ is also an R-module homomorphism for any $\varphi \in \operatorname{Hom}_R(M, N)$. Therefore $\varphi + (-\varphi) = \mathbf{0}$.

Thus, we show that $\langle \operatorname{Hom}_R(M,N), + \rangle$ is an abelian group. Can we make $\operatorname{Hom}_R(M,N)$ into an R-module? The answer is yes, provided that R is commutative, with action of R defined as $(r\varphi)(x) = r\varphi(x) = \varphi(rx)$ for any $r \in R, x \in M, \varphi \in \operatorname{Hom}_R(M,N)$.

3. January 11

Let R be a commutative ring, M, N R-modules. We define an action of R on $\operatorname{Hom}_R(M,N)$ as follows: let $r\varphi: M \to N$ satisfy $(r\varphi)(x) = r\varphi(x)$ where φ is an R-module homomorphism from M to N. We need to verify that $r\varphi: M \to N$ is an R-module homomorphism.

- (1) $(r\varphi)(x+y) = r \cdot \varphi(x+y) = r(\varphi(x) + \varphi(y)) = r \cdot \varphi(x) + r \cdot \varphi(y) = (r\varphi)(x) + (r\varphi)(y)$ fo rall $x, y \in M$ and $r \in R$.
- (2) Let $r, s \in R$ and $x \in M$. Then $(r\varphi)(sx) = r \cdot \varphi(sx) = rs\varphi(x) = sr\varphi(x) = s(r\varphi)(x)$, as needed.

Proposition 3.1. $\operatorname{Hom}_R(M,N)$ under the action of R defined above is an R-module.

Proof. We know $\operatorname{Hom}_R(M,N)$ is an abelian group and is closed under the action. So it remains to verify the criteria for modules. Suppose that $r, s \in R$ and $\varphi, \psi \in \operatorname{Hom}_R(M,N)$.

- (1) We need to show that $(r+s)\varphi = r\varphi + s\varphi$. (Exercise)
- (2) We need to show that $r(\varphi + \psi) = r\varphi + r\psi$. (Exercise)
- (3) We also need to show that $(rs)\varphi = r(s\varphi)$. Indeed, $((rs)\varphi)(x) = rs\varphi(x) = r(s\varphi(xx)) = r(s\varphi)(x)$.

Thus $\operatorname{Hom}_R(M,N)$ is an R-module as required.

3.1. Composition of homomorphisms

Proposition 3.2. Let M, N, L be R-modules, and suppose $\varphi \in \operatorname{Hom}_R(M, L)$ and $\psi \in \operatorname{Hom}_R(L, N)$. Then $\psi \circ \varphi : M \to N \in \operatorname{Hom}_R(M, N)$, i.e., $\psi \circ \varphi$ is a homomorphism.

Proof. This is a straightforward verification.

$$\psi \circ \varphi(x+y) = \psi(\varphi(x+y)) = \psi(\varphi(x) + \varphi(y)) = \psi \circ \varphi(x) + \psi \circ \varphi(y)$$

$$\psi \circ \varphi(rx) = r(\psi \circ \varphi(x)) \text{(Exercise.)},$$

since ψ and φ are R-module homomorphisms.

Proposition 3.3. Suppose R is a commutative ring and M an R-module. Let + be the usual addition, and \cdot be the composition of homomorphisms. Then $\operatorname{Hom}_R(M,M)$ is a ring with unity 1.

Proof. Exercise. \Box

3.2. Quotient modules

Suppose M is an R-module, and N a submodule of M. Then M/N is the quotient group $\{x+N:x\in M\}$. Notice that R can act on M/N. For any $r\in R$ and $x+N\in M/N$, let the action be

$$r(x+N) := rx + N.$$

First, observe that this action is well-defined. Indeed, if x + N = y + N in M/N, and $r \in R$, then $x - y \in N$. But N is a submodule, so $r(x - y) \in N$ also. Hence $rx - ry \in N$ so rx + N = ry + N, as required. Second, we want to show that M/N is an R-module under this action. That is, we need to verify the three following conditions:

- (1) r((x+y) + N) = (rx + N) + (ry + N) (Exercise)
- (2) (r+s)(x+N) = r(x+N) + s(x+N)
- (3) (rs)(x+N) = r(sx+N)

Definition 3.1. The (group) projection map $\pi: M \to M/N$ is defined by $\pi(x) = x + N$.

It is evident that π is a(n additive) group homomorphism. That π is R-linear is also evident: for any $r \in R$ and $x \in M$, we have $\pi(rx) = rx + N = r(x + N) = r\pi(x)$.

3.3. Isomorphism theorems for modules

Assume that M, N are R-modules, and that A and B are submodules of M.

Theorem 3.1 (First isomorphism theorem for modules). Let $\varphi : M \to N$ be a R-module homomorphism. Then $\ker \varphi$ is a submodule of M and $M/\ker \varphi \cong \varphi(M)$.

Proof. First part: Exercise. Since $M/\ker\varphi\cong\varphi(M)$ as groups already, by the first isomorphism theorem for groups, it suffices to verify that the group isomorphism given by the first isomorphism theorem for groups is R-linear. (Exercise.)

Theorem 3.2 (Second isomorphism theorem for modules). $(A+B)/B \cong A/(A \cap B)$.

Proof. Pick an appropriate $\varphi: A+B \to A/(A\cap B)$. Show that φ is surjective and that $\ker \varphi = B$. Just show that φ is R-linear, and then apply the first isomorphism theorem. Do not try to show that the map is additive – this is already given by the theorem for group counterparts.

Theorem 3.3 (Third isomorphism theorem for modules). If $A \subseteq B$, then $(M/A)/(M/B) \cong A/B$.

Theorem 3.4 (Correspondence theorem for modules (Fourth isomorphism theorem for modules)). There is an inclusion-preserving one-to-one correspondence between the set of submodules of M containing A and the set of submodules of M/A. This correspondence commutes with taking sums and intersections (i.e., there is an isomorphism of lattices between the submodule lattice of M/A and the lattice of submodules of M containing A).

Remark 3.1. The last statement of the fourth isomorphism theorem for modules shows why the theorem is also called the "lattice isomorphism theorem".

4. January 14

Definition 4.1. A category is a collection of objects and morphisms between the objects. A category C comes with:

- $Obj(\mathcal{C})$: collection of objects in \mathcal{C} .
- for every $A, B \in \text{Obj}(\mathcal{C})$ a set $\text{Hom}_{\mathcal{C}}(A, B)$ of morphisms $f: A \to B$ with domain A and codomain B of f such that:
 - (i) for every $A \in \text{Obj}(\mathcal{C})$ there exists $\mathbf{1}_A \in \text{Hom}_{\mathcal{C}}(A, A)$ which is the identity morphism on A. Therefore, there is always a morphism in $\text{Hom}_{\mathcal{C}}(A, A) = \text{End}_{\mathcal{C}}(A) \neq \emptyset$ (endomorphisms).
 - (ii) $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ give a morphism $gf \in \operatorname{Hom}_{\mathcal{C}}(A, C)$. Hence, there exists a set function

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \times \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

 $(f, g) \mapsto gf.$

- (iii) Composition is associative: $f \in \text{Hom}_{\mathcal{C}}(A, B), g \in \text{Hom}_{\mathcal{C}}(B, C), h \in \text{Hom}_{\mathcal{C}}(C, D),$ then h(gf) = (hg)f.
- (iv) For every $f \in \text{Hom}_{\mathcal{C}}(A, B)$, $f\mathbf{1}_A = f$ and $\mathbf{1}_B f = f$.
- (v) If $\operatorname{Hom}_{\mathcal{C}}(A,B) \cap \operatorname{Hom}_{\mathcal{C}}(C,D) \neq \emptyset$, then A=C and B=D.

4.1. Generators for modules

Let R be a ring with unity 1. Let M be an R-module, and N_1, N_2, \ldots, N_k submodules of M.

Definition 4.2. The sum of N_1, \ldots, N_k is

$$N_1 + N_2 + \dots + N_k := \{x_1 + \dots + x_k \mid x_i \in N_i \text{ for all } i\}.$$

Proposition 4.1. $N_1 + \cdots + N_k$ is a submodule of M.

Proof. Exercise. \Box

Remark 4.1. If N_1, \ldots, N_k are submodule of N, then $N_1 + \cdots + N_k$ is a submodule of M generated by $N_1 \cup \cdots \cup N_k$.

Definition 4.3. Let $A \subseteq M$ be a subset (not necessarily a submodule). Then define

$$RA := \{r_1 a_1 + \dots + r_n a_n : a_1, \dots, a_n \in A, r_1, \dots, r_n \in R\},\$$

which generates a submodule. We call RA the submodule of M generated by A (the smallest submodule of M containing A). If $A = \emptyset$ we say $RA = \{0\}$. If A is finite, then RA is finitely generated. If |A| = 1, then RA is a cyclic module.

It is not entirely obvious if RA is actually a module, but it is not a difficult exercise to prove this is indeed the case.

Proposition 4.2. RA is indeed a submodule of M.

Proof. Exercise.
$$\Box$$

Example. R is a cyclic R-module because $R = R1_R$. R/I is another example of a cyclic R-module since $R/I = R(1_R + I)$. $\mathbb{Z}[x]/(x^2) = \langle 1, x \rangle$ as a \mathbb{Z} -module. However, $\mathbb{Z}[x]$ is not a finitely generated \mathbb{Z} -module, since $\mathbb{Z}[x]$ is generated by $\{1, x, x^2, x^3, \dots\}$.

Definition 4.4. If M_1, \ldots, M_k are R-modules, then the direct product of M_1, \ldots, M_k is the collection

$$\prod_{i=1}^k M_i = M_1 \times M_2 \times \cdots \times M_k = \{(m_1, \dots, m_k) : m_i \in M_i \,\forall i\}.$$

This is also called the external direct sum of M_1, \ldots, M_k , denoted by $M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

Remark 4.2. For a family of abelian groups $\{G_i : i \in I\}$ (note that I may be uncountable), the direct product and the direct sum as follows:

$$\prod_{i \in I} G_i = \left\{ f : I \to \bigcup G_i \mid f(i) \in G_i \, \forall i \in I \right\}$$

$$\sum_{i \in I} G_i = \left\{ f \in \prod G_i \mid f(i) = 0 \text{ for all but finitely many } i \in I \right\}.$$

For any $f, g \in \prod G_i$, define the composition $fg: I \to \bigcup G_i$ be $i \mapsto f(i) + g(i)$. Therefore, if I is finite, then the direct sum and the direct product are equal. Finally, it is a straightforward verification to check that $\prod G_i$ is a group.

Proposition 4.3. $M_1 \times \cdots \times M_k$ is an abelian group under component-wise addition. Furthermore, we can define a component-wise action on R

$$r(x_1,\ldots,x_k)=(rx_1,\ldots,rx_k),$$

making $M_1 \times \cdots \times M_k$ into an R-module.

Proposition 4.4 (Direct sum of submodules). Let R be a ring with unity and M an R-module. Let N_1, \ldots, N_k be submodules of M. Then the following are equivalent:

(i) The map $\pi: N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$ defined by

$$(n_1,\ldots,n_k)\mapsto n_1+\cdots+n_k$$

is an isomorphism of R-modules.

- (ii) $N_j \cap (N_1 + \dots + N_{j-1} + N_{j+1} + \dots + N_k) = \{0\}$ for all $j \in \{1, 2, \dots, k\} \pmod{k}$.
- (iii) For any $x \in N_1 + \cdots + N_k$, x can be written uniquely as $a_1 + \cdots + a_k$ where $a_i \in N_i$.

Definition 4.5. If $N_1 + \cdots + N_k$ satisfies any of the conditions listen in Proposition 4.4, then $N_1 + \cdots + N_k$ is the *internal direct sum of* N_1, \ldots, N_k , and we write $N_1 \oplus N_2 \oplus \cdots \oplus N_k$.

5. January 16

Proof of Proposition 4.4. ((1) \Rightarrow (2)) If $N_j \cap \sum_{i \neq j} N_i$ contains an element $a_j \neq 0$, then there exists $a_i \in N_i$ where $i \neq j$ such that

$$a_j = \sum_{i \neq j} a_i.$$

So $a_1 + \cdots + a_{j-1} - a_j + a_{j+1} + \cdots + a_k = 0$. So if $\pi((a_1, \dots, a_k)) = 0$, then $a_1 = \dots = a_k = 0$. Thus $a_i = 0$, but it is a contradiction.

 $((2) \Rightarrow (3))$ Suppose that $a_1 + \cdots + a_k = b_1 + \cdots + b_k$. Then there exist $a_i, b_i \in N_i$ where $i = 1, 2, \dots, k$. Fix $j \in \{1, 2, \dots, k\}$, and one can write

$$a_j - b_j = (b_1 - a_1) + (b_2 - a_2) + \dots + (b_{j-1} - a_{j-1}) + (b_{j+1} - a_{j+1}) + \dots + (b_k - a_k) \in N_j \cap \sum_{i \neq j} N_i = 0.$$

Thus $a_j - b_j = 0$, so $a_j = b_j$ for every j as required.

 $((3) \Rightarrow (1))$ Let $\pi: N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$ is an isomorphism because $\pi(a_1, \ldots, a_k) = ((3) \Rightarrow (1))$ 0 implies $a_1 + \cdots + a_k = 0$. Thus $a_1 = a_2 = \cdots = a_k = 0$. Therefore π is injective. Clearly, π is surjective (clear from the definition of π). Also, it is straightforward to verify that π is a module homomorphism, so this will be left as an exercise.

5.1. Universal property of direct sum of modules

Theorem 5.1. Let R be a ring, let $\{M_i \mid i \in I\}$ be a family of R-modules, N an R-module, and $\{\psi_i: M_i \to N \mid i \in I\}$ a family of R-module homomorphisms. Then there exists a unique R-module homomorphism

$$\psi: \sum_{i\in I} M_i \to N$$

such that $\psi_i = \psi_{M_i}$ for all $i \in I$. Furthermore, this $\sum M_i$ is uniquely determined up to isomorphism by this property (i.e., $\sum M_i$ is a co-product in the category of R-modules).

Proof. It is known that this works for all groups – we can define

$$\psi: \sum_{i \in I} M_i \to N$$

by $\psi((a_i)_{i\in I}) = \sum \psi_i(a_i)$. Verify that this is a group homomorphism and is R-linear (exercise). Also, it is a routine exercise to verify the rest of the claims.

5.2. Exact sequences

Definition 5.1. Let M, N, L be R-modules. Then the sequence of R-module homomorphisms

$$M \xrightarrow{f} N \xrightarrow{g} L$$

is called exact at N if f is injective, g is surjective, and im $g = \ker f$. Similarly, a long exact sequence is

$$\cdots \to M_{i-1} \stackrel{f_i}{\to} M_i \stackrel{f_{i+1}}{\to} M_{i+1} \to \cdots$$

such that for every M_i , ker $f_{i+1} = \operatorname{im} f_i$ for all i. A short exact sequence is of the form

$$0 \to M \xrightarrow{f} N \xrightarrow{g} P \to 0$$

such that f is injective, g is surjective, and im $f = \ker g$.

Remark 5.1. If $0 \xrightarrow{f} M \xrightarrow{g} N$ is exact at M, then $\ker g = \operatorname{im} f = 0$. Therefore g is injective. Similarly, if $M \xrightarrow{f} E \xrightarrow{g} 0$ is exact at N, so $\ker g = N = \operatorname{im} f$. Thus f is surjective in this case.

Example. If M is an R-module and N a submodule of M, then $0 \to N \xrightarrow{i} M$ is exact; similarly, $M \xrightarrow{\pi} N \to 0$ is exact as well. Thus we get the short exact sequence

$$0 \mapsto N \xrightarrow{i} M \xrightarrow{\pi} M/N \to 0$$

where i is the injection map and M the projection map.

Definition 5.2. The *co-kernel* of an *R*-module homomorphism $f: M \to N$ is $CoKer(f) := N/\operatorname{im} f$.

Remark 5.2. Let $f:M\to N$ be an R-module homomorphism. Then we have an exact sequence

$$0 \to \ker f \to M \xrightarrow{f} N \xrightarrow{\pi} \operatorname{CoKer}(f) \to 0.$$

How many short exact sequences can we extract out of this? We can generate at least two short exact sequences. $0 \to \ker f \to M \to \operatorname{im} f \to 0$ and $0 \to \operatorname{im} f \to N \to N/\operatorname{im} f \to 0$.

Example. For any M, N, and their direct sum $M \oplus N$, the sequence

$$0 \to M \xrightarrow{i} M \oplus N \xrightarrow{\pi} N \to 0$$

is a short exact sequence. Note that im $i = M \oplus 0$, and clearly $\ker \varphi = M \oplus 0$.

Definition 6.1. Suppose that

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is a short exact sequence. Then this short exact sequence is split exact if $B \cong A \oplus C$.

Definition 6.2. Two short exact sequences $0 \to A \to B \to C \to 0$ and $0 \to A' \to B' \to C' \to 0$ of R-modules are *isomorphic* if there is a commutative diagram of R-module homomorphisms such that $g \circ \alpha = \alpha' \circ f$ and $h \circ \beta = \beta' \circ g$.

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow A' \xrightarrow{\alpha'} B' \xrightarrow{\beta'} C' \longrightarrow 0$$

Theorem 6.1. Let R be a ring, and let $0 \to A \to B \to C \to 0$ be a short exact sequence of R-module. Then the following are equivalent:

- (i) There exists an R-module homomorphism $h: C \to B$ such that $g \circ h = \mathrm{id}_C$.
- (ii) There exists an R-module homomorphism $k: B \to A$ such that $k \circ f = id_A$.
- (iii) $B \cong A \oplus C$ and the sequence above can be isomorphically written as

$$0 \to A \stackrel{i_1}{\to} A \oplus C \stackrel{\pi_2}{\to} C \to 0.$$

Therefore the short exact sequence is split exact.

To prove the equivalent conditions for split exact sequence, we need the following lemma.

Lemma 6.1 (Short five lemma). Let R be a ring, and where is a commutative diagram of R-modules and R-module homomorphisms

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

such that each row is a short exact sequence. Then

- (i) If α and γ are monomorphisms, then β is also a monomorphism.
- (ii) If α and γ are epimorphisms, then β is also an epimorphism.
- (iii) If α and γ are isomorphisms, then β is also an isomorphism.

Proof. (i) Suppose $x \in \ker \beta$. Then $\beta(x) = 0$, so $(g' \circ \beta)(x) = 0$. But then $g' \circ \beta = \gamma \circ g$. But then γ is a monomorphism, so g(x) = 0. Hence $x \in \ker g = \operatorname{im} f$. So there exists $y \in A$ such that x = f(y). Hence $(\beta \circ f)(y) = (f' \circ \alpha)(y) = 0$; but f' is a monomorphism, so $\alpha(y) = 0$. But again α is also a monomorphism, so y = 0. Hence x = f(y) = 0 as needed.

(ii) Let $y \in B'$. Then $g'(y) \in C'$. But since γ is an epimorphism, there exists $z \in C$ such that $g'(y) = \gamma(z)$. But g is an epimorphism, so there is $u \in B$ such that z = g(u). So $g'(y) = \gamma(z) = (\gamma \circ g)(u) = (g' \circ \beta)(u)$. It thus follows that $g'(\beta(u) - y) = 0$, so $\beta(u) - y \in \ker g' = \operatorname{im} f'$. Since $\beta(u) - y \in \operatorname{im} f'$, there is $v \in A'$ such that $\beta(u) - y = f'(v)$. α is an epimorphism, so one can find $w \in A$ such that $\beta(u) - y = (f' \circ \alpha)(w) = (\beta \circ f)(w)$. So $\beta(u - f(w)) = y$. This proves that β is surjective.

Proof of Theorem 6.1. ((i) \Rightarrow (iii)) Consider the two short exact sequences

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow \text{id} \uparrow \qquad \qquad \varphi \uparrow \qquad \qquad \downarrow \text{id} \uparrow \qquad \qquad \downarrow 0$$

$$0 \longrightarrow A \xrightarrow{\iota_1} A \oplus C \xrightarrow{\pi_2} C \longrightarrow 0$$

We need to show that these two sequences are isomorphic. Thus we need to find an isomorphism φ such that the diagram above commutes. Define $\varphi:A\oplus C\to B$ by $(a,c)\mapsto f(a)+h(c)$. Note that φ is well-defined since (a,c) is a unique representative for this element, and both f and h are well-defined. φ is a homomorphism since

$$\varphi(r(a,c)) = \varphi((ra,rc)) = f(ra) + h(rc) = r(f(a) + h(c)) = r\varphi(a,c)$$

$$\varphi((a,c) + (a',c')) = \varphi((a+a',c+c')) = f(a+a') + h(c+c')$$

$$= f(a) + h(c) + f(a') + h(c') = \varphi((a,c)) + \varphi((a',c')).$$

We want to show that the diagram commutes. Pick $(a,c) \in A \oplus C$. Then $(g \circ \varphi(a,c) = g(f(a) + h(c)) = (g \circ f)(a) + (g \circ h)(c) = c$. On the other hand, $(id \circ \pi_2)(a,c) = id(c) = c$. Thus $g \circ \varphi \equiv id \circ \pi_2$. We can use the similar argument to show that the other side commutes, i.e., $\varphi \circ i_1 \equiv f \circ id$. That φ is an isomorphism follows from the short five lemma.

 $((ii) \Rightarrow (iii))$ Assume that there is k such that $k \circ f = id_A$. Define $\varphi : B \to A \oplus C$ so that $b \mapsto (k(b), g(b))$. φ is well-defined since k and g are well-defined also. φ is also an R-module homomorphism since k and g are. Indeed, $\varphi(b_1 + b_2) = (k(b_1 + b_2), g(b_1 + b_2)) = (k(b_1), g(b_1)) + (k(b_2), g(b_2)) = \varphi(b_1) + \varphi(b_2)$; also for any $r \in R$, $\varphi(rb_1) = (k(rb_1), g(rb_1)) = (rk(b_1), rg(b_1)) = r(k(b_1), g(b_1)) = r\varphi(b_1)$. So by the short five lemma, φ is an isomorphism, so the two short exact sequences are isomorphic as desired.

 $((iii) \Rightarrow (i), (ii))$ We have an isomorphism of short exact sequences, i.e., φ_1, φ_2 , and φ_3 are all isomorphisms.

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow \text{id} \uparrow \qquad \varphi \uparrow \qquad \downarrow \text{id} \uparrow$$

$$0 \longrightarrow A \xrightarrow{\iota_1} A \oplus C \xrightarrow{\pi_2} C \longrightarrow 0$$

We let $h: C \to B$ where $h = \varphi_2^{-1}i_2\varphi_3$. Note that h is well-defined since it is just the composition of three homomorphisms. For any $c \in C$, observe that $\varphi_2^{-1}i_2\varphi_3(c) \in B$. So by the commutativity, $\varphi_3g(b) = \pi_2\varphi_2(b) = \pi_2\varphi_2(\varphi_2^{-1}i_2\varphi_3(c)) = \pi_2(i_2\varphi_3(c)) = \varphi_3(c)$. But then φ_3 is an isomorphism, so g(b) = c from which gh(c) = c follows. Hence $gh = \mathrm{id}_C$.

Now define $k: B \to A$ by $k:= \varphi_1^{-1}\pi_1\varphi_2$ which is a well-defined homomorphism for the same reason h is. For any $a \in A$, we have $kf(a) = \varphi_1^{-1}\pi_1\varphi_2f(a) = \varphi_1^{-1}\pi_1i_1\varphi_1(a) = a$, as desired.

Remark 6.1. If M a R-module and M_1, M_2 submodules of M, we have a short exact sequence

$$0 \longrightarrow M_1 \cap M_2 \stackrel{f}{\longrightarrow} M_1 \oplus M_2 \stackrel{g}{\longrightarrow} M_1 + M_2 \longrightarrow 0,$$

where $f: m \mapsto (m, -m)$ and $g: (m_1, m_2) \mapsto m_1 + m_2$.

7. Detour: Nakayama's Lemma

Definition 7.1. Let R be a commutative ring with unity. If R has a unique maximal ideal \mathfrak{m} , then (R,\mathfrak{m}) is a *local ring*.

Lemma 7.1. Let R be a ring, I an ideal of R, and M an R-module. Then

$$IM = \{am \mid a \in I, m \in M\}$$

is a submodule of M.

Lemma 7.2. If M is a R-module, and I an ideal of R, then M/IM is an R/I-module, where the action of R/I is defined by (r+I)(x+IM): f=rx+IM.

Remark 7.1. Recall that if (R, \mathfrak{m}) is a local ring, then the only non-units of R are precisely the elements of \mathfrak{m} . Suppose that is not the case. Pick $x \in R \setminus \mathfrak{m}$. Consider the ideal I = (x), and that $1 \notin I$ (since x is not a unit). Thus $I \neq R$. Since \mathfrak{m} is the only maximal ideal, it follows that $(x) \leq \mathfrak{m}$. But this means $x \in \mathfrak{m}$ which is a contradiction.

Theorem 7.1 (Nakayama's lemma). Let R be a commutative ring with unity 1, I be an ideal of R, and M a finitely generated R-module. If IM = M, then there exists $r \in R$ satisfying $r \equiv 1 \pmod{I}$ that vanishes M (i.e., rM = 0).

Theorem 7.2 (Nakayama's lemma, local ring version). Let (R, \mathfrak{m}) be a local ring, and M an R-module. Suppose that $x_1, \ldots, x_n \in M$. Then the following are equivalent:

- (i) $M = \langle x_1, x_2, \dots, x_n \rangle$ is a finitely generated R-module.
- (ii) $M/\mathfrak{m}M = \langle \overline{x_1}, \overline{x_2}, \dots, \overline{x_n} \rangle$ is an R/\mathfrak{m} -vector space $(\overline{x_i} \text{ is the image of } x_i \text{ under the } map M \to M/\mathfrak{m}M$. Note that R/\mathfrak{m} is a field, so any R/\mathfrak{m} -module is automatically an R/\mathfrak{m} -vector space.

8. January 23: Free modules

Suppose that M is an R-module where R is a ring with unity 1.

Definition 8.1. A subset R of M is called *linearly independent* if $a_1x_1 + \cdots + a_nx_n = 0$ implies $a_1 = a_2 = \cdots = a_n = 0$ for all $a_1, \ldots, a_n \in R$ and $x_1, x_2, \ldots, x_n \in X$. If M is generated by a linearly independent subset X, then X is called a *basis* of M. A *free module* is a module with a non-empty basis.

Theorem 8.1. Suppose that R is a ring with identity, and F an R-module. Then the following are equivalent:

- (i) F has a non-empty basis.
- (ii) F is the internal direct sum of cyclic submodules.
- (iii) F is isomorphic to a direct sum of copies of R (i.e., $F \cong R^n$ for some n; alternatively, $F \cong \oplus R$.)

Proof. ((ii) \Leftrightarrow (iii)) They are equivalent statements since $Rx \cong R$ for any non-zero $x \in X$.

 $((i) \Rightarrow (ii) \& (iii))$ If $X \neq \emptyset$ is a basis of F and $x \in X$, then we have a surjective R-module homomorphism $\varphi_x : R \to Rx$ defined by $\varphi_x(r) := rx$. φ_x is injective, since if rx = 0 then r = 0 (note that $x \in X$ is a basis, so $x \neq 0$). Thus $\ker \varphi_x = 0$ as needed. It is not hard to check that φ_x is a homomorphism.

Hence, we have

$$F \cong \bigoplus_{x \in X} Rx \cong \bigoplus_{x \in X} R.$$

Note that the second direct sum is internal, whereas the third direct sum is external; note also that the second isomorphism follows since φ_x is an isomorphism (and replace each Rx with R).

 $((iii) \Rightarrow (i))$ Suppose that $F \stackrel{\Psi}{\cong} \bigoplus_{x \in X} R$ where X is the index set of this direct sum. Define

 $\iota_x \in F$ to be the tuple such that

$$(\iota_x)_y = \begin{cases} 1 & (x = y) \\ 0 & \text{otherwise.} \end{cases}$$

Then $\{\iota_x : x \in X\}$ is a basis for $\bigoplus_{x \in X} R$. The image of $\{\iota_x : x \in X\}$ under Ψ is a basis for F.

9. January 25

Definition 9.1. A division ring (or a skew field) is a ring with 1 such that every non-zero element in a unit. A field is a commutative division ring, and a vector space is a module over a division ring.

Example. The quaternion ring is a standard example of a division ring.

Lemma 9.1. Let V be a vector space over a division ring D, and let X be a maximal linearly independent subset of V. Then X is a basis of V.

Proof. If $V' = \langle X \rangle \subseteq V$, we want to show that $V' = \langle V \rangle$. Since X is linearly independent, it is a basis of V'. Let $x \in V \setminus V'$. Then $X \cup \{x\}$ is linearly independent. Suppose otherwise. Then if

$$d_1x_1 + \dots + d_nx_n + dx = 0$$

where $d_i, d \in D$ and $x_i \in X$, we have

$$x = d^{-1}(d_1x_1 + \dots + d_nx_n) \in V'.$$

But this is a contradiction since $x \notin V'$. This forces d = 0, so $d_1x_1 + \cdots + d_nx_n = 0$. In turn, this implies $d_1 = d_2 = \cdots = d_n = 0$ as well. This implies $X \cup \{x\}$ is linearly independent, but this contradicts the fact that X is a maximal linearly independent set.

Theorem 9.1 (Zorn's lemma). Let $A \neq \emptyset$ be a partially ordered set, such that every chain has an upper bound in A. Then A contains a maximal element.

Theorem 9.2. Let V be a vector space over a division ring D. Then V has a basis, so V is a free D-module. Moreover, if Y is a linearly independent subset of V, then there exists a basis X of V such that $Y \subseteq X$.

Proof. The first part follows from the second part, and clearly \emptyset is (vacuously) linearly independent by default, so whe will prove the second part only. Let

$$A := \{X \subseteq V : X \text{ linearly independent and } Y \subseteq X\}.$$

Since $Y \in A$, $A \neq \emptyset$. A is partially ordered by inclusion. If \mathcal{C} is a chain in A, define

$$\underline{X} := \bigcup_{X \in \mathcal{C}} X \in A.$$

Then \underline{X} is an upper bound of \mathcal{C} . By Zorn's lemma, A contains a maximal element B, so by Lemma 9.1, B is a basis of V.

Theorem 9.3. If V is a vector space over a division ring D, then every generating set of V contains a basis of V.

Proof. If X is a generating set of V, let $A := \{Y \mid Y \subseteq X \text{ linearly independent}\}$, which is a partially ordered set under inclusion. Again, every chain has an upper bound by Zorn's lemma. Suppose that Y is a maximal element of A. Then $x \in \langle Y \rangle$ for all $x \in X$ (otherwise, we can add an element to Y, which contradicts the maximality of Y). Hence $V \subseteq \langle X \rangle \subseteq \langle Y \rangle$, so $V = \langle Y \rangle$.

Theorem 10.1. Let X be any set, and R a ring with unity. Then there exists a free R-module F(X) on X satisfying the following universal property: for any R-module M and $\varphi: X \to M$ a function, there is a unique R-module homomorphism $\Phi: F(X) \to M$ such that $\Phi(x) = \varphi(x)$ for all $x \in X$. In other words, the following diagram commutes.

$$X \xrightarrow{\varphi} M$$

$$\uparrow \\ \uparrow \exists ! \Phi$$

$$F(X)$$

Proof. Build F(X). If $X = \emptyset$ then F(X) = 0. Otherwise, $F(X) = \{f : X \to R : f(x) = 0 \text{ for all but finitely many } x \in X\}$. We will make F(X) into an R-module. Let $f, g \in F(X)$ and $f \in R$, and let

$$(f+g)(x) := f(x) + g(x)$$
$$(rf)(x) := r \cdot f(x)$$

for all $x \in X$. If $x \in X$ define $f_x \in F(X)$ as

$$f_x(y) := \begin{cases} 1 & y = x \\ 0 & \text{otherwise.} \end{cases}$$

So if $f \in F(X)$ then there are $x_1, \ldots, x_n \in X$ such that

$$f = f(x_1)f_{x_1} + \dots + f(x_n)f_{x_n}.$$

Note that $f(x_i) \in R$ and $f_{x_i} \in F(X)$ for all i. And we know this is unique, so $\{f_x : x \in X\}$ is a basis for F(X). Thus F(X) is a free R-module.

To check the universal property, suppose $\varphi: X \to M$. Define $\Phi: F(X) \to M$ so that

$$\Phi\left(\sum_{i=1}^{n} a_i f_{x_i}\right) = \sum_{i=1}^{n} a_i \varphi(x_i).$$

It is not hard to check if it is well-defined, is a homomorphism, and $\Phi|_X = \varphi$ (Exercise). Every element of F(X) has a unique presentation in the form of

$$\sum_{i=1}^{n} a_i f_{x_i}$$

for some $n \in \mathbb{Z}_+, a_i \in R$, and $x_i \in X$. Thus Φ is the unique extension of φ to F(X) as needed.

Proposition 10.1. Every finitely generated R-module for R a ring with identity is the homomorphic image of a finitely generated free module.

Proof. Let $X := \{x_1, \ldots, x_n\}$, and $M = \langle X \rangle$ be a finitely generated R-module. By the universal property, there is a free R-module F(X) and a homomorphism $\varphi : F(X) \to M$ satisfying $f_x \mapsto x$.

Remark 10.1. In fact, $M \cong F(X)/\ker \varphi \cong \mathbb{R}^n/\ker \varphi$.

10.1. Free modules and ranks

Suppose that F is a free module over a ring with 1. Do every two bases necessarily have the same cardinality? The answer is actually **no** in general, but it is true for commutative rings and division rings. Our main goal in this section is to prove this is indeed the case.

Definition 10.1. Let R be a commutative ring or a division ring, and let X be a basis of a free R-module F. Then the rank of F is the cardinality of X.

Theorem 10.2. Let R be a ring with unity, and F a free module with basis X with $|X| = \infty$. Then every basis of X has the same cardinality as X. Therefore, if the basis is infinite, then the cardinality is unique regardless of what the ring is.

Proof. Suppose Y is another basis of F whose basis is X. If Y is finite, suppose $Y = \{y_1, \ldots, y_n\}$. Then for all $y_i \in Y$ one can find $x_{i,1}, \ldots, x_{i,m_i} \in X$ and $r_{i,1}, \ldots, r_{i,m_i} \in R$ so that $y_i = r_{i,1}x_{i,1} + \cdots + r_{i,m_i}x_{i,m_i}$. Then $X' = \{x_{i,j} : 1 \le i \le n, 1 \le j \le m_i\}$ is a finite subset of X spanning F. Therefore X contains a finite-generating set for F, but this contradicts the fact that $|X| = \infty$. Therefore |Y| is infinite.

Let K(Y) be the set of finite subsets of Y, and define $f: X \to K(Y)$ so that $x \mapsto \{y_1, \ldots, y_n\}$ where $x = \sum_{i=1}^n r_i y_i$ is uniquely defined. (i.e., $r_1, r_2, \ldots, r_n \in R \setminus \{0\}$ are unique, and $y_1, \ldots, y_n \in Y$ are uniquely determined by x. Therefore f is well-defined. We make a few observations regarding f.

First, im f is an infinite set. Suppose otherwise, and let $X = \langle \bigcup_{A \in \text{im } f} A \rangle$. Note that

A = f(x) for some x. Thus A is a finite set, and the finite union of finite sets is finite. Thus F is generated by a finite subset of Y, which is a contradiction. Second, for any $S \in \text{im } f$ we have $|f^{-1}(S)| < \infty$. Let $x \in f^{-1}(S)$. Then $x \in \langle y : y \in S \rangle$ is a submodule of F. Hence $f^{-1}(S) \subseteq \langle y : y \in S \rangle$. Each y in S thus can be uniquely written as a sum of finite elements of X, and $|S| < \infty$. Hence $f^{-1}(S) \subseteq \langle X_S \rangle$, where X_S is a finite subset of X.

Now, if $x \in f^{-1}(S)$, then there are $x_1, \ldots, x_n \in X_S$ and $r_1, \ldots, r_n \in R$ such that $x = \sum R_i x_i$. Thus $f^{-1}(S) \subset X_S$. Therefore $|f^{-1}(S)| \leq |X_S| < \infty$. Now let $s \in \text{im}(f)$. Then, say, $f^{-1}(S) = \{x_1, \ldots, x_n\}$. Define $g_S : f^{-1}(S) \to \text{im} f \times \mathbb{N}$ by $x_i \mapsto (S, i)$. Now we claim that the sets $f^{-1}(S)$ for $S \in \text{im} f$ forms a partition of X. It is a relatively straightforward exercise to verify that

$$X = \bigcup_{S \in \operatorname{im} f} f^{-1}(S),$$

and if $x \in X$, there exists a unique $\{y_1, \ldots, y_n\} = S \subseteq Y$ such that $x \in \langle y_1, \ldots, y_n \rangle$.

Thus define $g: X \to \text{im } f \times \mathbb{N}$ by $x \mapsto g_S(x)$ where $x \in f^{-1}(S)$. Note that g is well-defined and injective. Furthermore, $|X| \leq |\text{im } f| \times |\mathbb{N}| = |\text{im } f| \aleph_0 = |\text{im } f| \leq |K(Y)| = |Y|$ (For more information, refer to Hungerford's I.8.13).

Now use the reverse argument to show that $|Y| \leq |X|$, from which |X| = |Y| follows. \square

Corollary 10.1. Let V be a vector space over a division ring D, and X, Y two bases of V. Then |X| = |Y|.

Now that we got the infinite case out of the way, we can move on to the finite basis case. Recall that we claimed that the rank of a free R-module is well-defined only when R is a division ring or a commutative ring.

Theorem 10.3. Let V be a finite-dimensional vector space over a division ring D. Let X and Y be two bases of V. Then |X| = |Y|.

Proof. Suppose that $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_m\}$. Without loss of generality, assume $n \leq m$. Then there are $r_1, \ldots, r_n \in D$ so that $y_m = r_1 x_1 + \cdots + r_n x_n$. Let k be the smallest index with $r_k \neq 0$. Then

$$x_k = r_k^{-1} y_m - r_k^{-1} r_{k+1} x_{k+1} - \dots - r_k^{-1} r_n x_n.$$

So $X_1 = \{x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n\} \cup \{y_m\}$ spans V. Now we do the same thing for y_{m-1} with X_1 . Thus, we can find $a_i \in D$ and $b_m \in D$ so that

$$y_{m-1} = b_m y_m + a_1 x_1 + \dots + a_{k-1} x_{k-1} + a_{k+1} x_{k+1} + \dots + a_n x_n.$$

If all $a_i = 0$, then $y_{m-1} = b_m y_m$, but this is a contradiction as Y will no longer be linearly independent. So there is a_i so that $a_i \neq 0$. Pick the smallest such index s so that $a_s \neq 0$. Using the same argument as we did on x_k , we see that $x_s \in \langle x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{s-1}, x_{s+1}, \dots, x_n, y_m, x_{m-1}, x_{m$ y_{m-1} . Hence $X \setminus \{x_s, x_k\} \cup \{y_m, y_{m-1}\}$ spans V. We can use this argument repeatedly (at each step i, throw out x_{k_i} from X, and add y_{m-i+1}) till we reach step u = n-1, where we have

$$X_u = X \setminus \{x_{k_1}, \dots, x_{k_{n-1}}\} \cup \{y_m, y_{m-1}, \dots, y_{m-u+1}\}$$

spans V. Hence $y_{m-u} \in \langle X_u \rangle$. This means we can throw out the last remaining x_i (specifically, x_{k_u}), so $X_u = \{y_m, \dots, y_{m-u}\}$ spans V. But this is possible only when $X_u = Y$. Hence m - u = 1, or m = u + 1 = n - 1 + 1 = n, as required.

Definition 10.2. We say that R a ring with unity has the invariant rank property if for every free R-module F, any two bases have the same cardinality. In this case we call the cardinality of a basis (of F) the rank (or the dimension) of F.

Example. Any division ring has the invariant rank property. Any commutative ring has the invariant rank property.

11. February 6

Our goal in this section is to prove that the rank of a free module is well-defined if it is a module over a commutative ring with unity.

Lemma 11.1. Let R be a ring with unity, and I a proper ideal of R. Suppose that F is a free R-module, X a basis of F, and $\Pi: F \to F/IF$ the canonical quotient map. Then F/IFis a free R/I-module with basis $\Pi(X)$ and $|\Pi(X)| = |X|$.

Proof. If $y \in F/IF$, then evidently there is $x \in F$ such that y = x + IF. Let $r_1, \ldots, r_n \in R$ satisfy $x = r_1x_1 + \cdots + r_nx_n$. (note that $r_1, \ldots, r_n, x_1, \ldots, x_n$ are unique by the linear independence of a basis). Thus $\Pi(x) = y = r_1(x_1 + IF) + \cdots + r_n(x_n + IF) = r_1\Pi(x_1) + \cdots + r_n(x_n + IF) = r_n\Pi(x_n) + \cdots + r_n(x_n) + \cdots + r_n$ $\cdots + r_n \Pi(x_n)$. This means $\Pi(X)$ spans F/IF.

Let $\overline{r_1}\Pi(x_1) + \cdots + \overline{r_n}\Pi(x_n) = 0$ for some $r_i \in R$ and $x_i \in X$ (where $\overline{r_i} := r_i + I$). If $\Pi(r_1x_1 + \cdots + r_nx_n) = 0$, then $r_1x_1 + \cdots + r_nx_n \in IF$. Then we know there exist $y_1, \ldots, y_m \in X$ and $s_1, \ldots, s_m \in I$ such that

$$r_1x_1 + \dots + r_nx_n = s_1y_1 + \dots + s_my_m.$$

Then by the uniqueness of presentation of an element of F in terms of X, we have m=n and $r_i=s_i \in I$, and $y_i=x_i$. So $r_1,\ldots,r_n \in I$, or $\overline{r_1}=\cdots=\overline{r_n}=0$. Hence $\Pi(X)$ is linearly independent over R/I, meaning it is a basis of F/IF as an R/I-module.

As for the last part, we need to show that Π is one-to-one on X. If $\Pi(x) = \Pi(x')$, then $\Pi(x - x') = 0$. Thus $x - x' \in IF$, so $x - x' = s_1y_1 + \cdots + s_my_m$ for $s_i \in I$ and $y_j \in X$. By the uniqueness of presentation, indeed m = 2; and without loss of generality we may let $y_1 = x, y_2 = x', s_1 = 1$, and $s_2 = -1$. So $1 \in I$, so I = R. But this contradicts the fact that I is a proper ideal of R. Hence Π is one-to-one on X, from which $|\Pi(X)| = |X|$ follows. \square

Definition 11.1. If M is an R-module, then M has torsion if there exist non-zero $r \in R$ and $m \in M$ such that rm = 0. M is said to be torsion-free if M has no torsion elements.

Proposition 11.1. Suppose R is an integral domain, and M an R-module. If M is free, then M is torsion-free.

Proof (sketch). Suppose m is a torsion-element. Then there is r such that rm = 0. Then there exist unique x_1, \ldots, x_n basis elements and $r_1, r_2, \ldots, r_n \in R$ such that $m = r_1x_1 + \cdots + r_nx_n$. So $rm = rr_1x_1 + \cdots + rr_nx_n = 0$. Thus $rr_i = 0$ for all i, so r = 0, which contradicts the fact that r is non-zero.

Remark 11.1. What happens if R is not an integral domain? Then there exist zero divisors in R, i.e., $r \neq 0, s \neq 0$, but rs = 0. Suppose that F is a free R-module with basis X, and $x \in X$. Since $s \neq 0$, indeed $sx \neq 0$. But r(sx) = (rs)x = 0, so we see that sx is a torsion element. So a free module may contain a torsion element in this case.

Proposition 11.2. Suppose $f: R \to S$ is a surjective ring homomorphism (i.e., S is a homomorphic image of R) and that both R and S contain identity. If S has the invariant rank property, then R also has the invariant rank property.

Proof. If ker f =: I, then by the first isomorphism theorem, $S \cong R/I$. If F is a free R-module, and X and Y are both bases of F, we want to show that |X| = |Y|. But this follows from the first isomorphism theorem, Lemma 11.1, and the invariant rank property of $R/I \cong S$; therefore $|X| = |\Pi(X)| = |\Pi(Y)| = |Y|$.

Theorem 11.1. Every commutative ring with unity has the invariant rank property.

Proof. R has a maximal ideal \mathfrak{m} by Zorn's lemma, so R/\mathfrak{m} is a field, and we have a surjective homomorphism $R \to R/\mathfrak{m}$. So by Proposition 11.2, R has the invariant rank property. Recall that R/\mathfrak{m} is a fortiori a division ring, so R/\mathfrak{m} has the invariant rank property. \square

12. February 8

12.1. Dimension theory in division rings

Theorem 12.1. Let D be a division ring, and V a vector space over D. Suppose that W is a subspace of V. Then

- (i) $\dim_D W < \dim_D V$.
- (ii) If $\dim_D V < \infty$ and $\dim_D V = \dim_D W$, then W = V.
- (iii) $\dim_D V = \dim_D W + \dim_D V/W$.

Proof. (i) A basis X of W can be extended to a basis Y of V. So $|X| \leq |Y|$, from which $\dim_D W < \dim_D V$ follows.

- (ii) Let X be a basis of W, and we proved X can be extended to a basis Y of V, so $X \subseteq Y$. But then |X| = |Y| so X = Y. Therefore V = W.
- (iii) Pick a basis X for W and extend to a basis Y for V. So $X \subseteq Y$. Let $Z = \{y+W : y \in Y \setminus X\}$. We want to claim that Z is a basis of V/W. Clearly $Z \subseteq V/W$, and if $v+W \in V/W$ then there exist unique $y_1, \ldots, y_n \in Y$ and $a_1, \ldots, a_n \in D$ so that $v = a_1y_1 + \cdots + a_ny_n$. Then $v + W = a_1y_1 + \cdots + a_ny_n + W$. Without loss of generality, suppose $y_1, \ldots, y_s \notin X$ but $y_{s+1}, \ldots, y_n \in X$. This implies $v + W = a_1y_1 + \cdots + a_sy_s + W \in \langle Z \rangle$, so Z spans V/W.

We also need to prove linear independence. Suppose that $a_1(y_1+W)+\cdots+a_n(y_n+W)=0$ fo some $a_1,\ldots,a_n\in D$ and $y_1+W,\ldots,y_n+W\in Z$. Suppose that there are $b_1,\ldots,b_m\in D$ and $x_1,\ldots,x_m\in X$ such that $a_1y_1+\cdots+a_ny_n=b_1x_1+\cdots+b_mx_m$. But since Y is linearly independents, this forces $a_i=b_j=0$ for all $1\leq i\leq n, 1\leq j\leq m$. So Z is a basis of V/W. Also $|Z|=|Y|-|X|=\dim_D V-\dim_D W$, from which the claim follows.

Corollary 12.1. Let V and V' be D-modules, where D is a division ring. Let $f: V \to V'$ be a linear transformation (or, equivalently, a D-module homomorphism). Then there exists a basis X of V such that $X \cap \ker f$ is a basis of $\ker f$, and $f(X) \setminus \{0\}$ is a basis of $\inf f$. Furthermore, $\dim_D V = \dim_D \ker f + \dim_D \inf f$.

Proof. Apply the previous theorem (iii) with $W = \ker f$ which is a submodule of V. Recall that any D-module is free since D is a division ring, so W has a basis X' which can be extended to a basis X of V. Also, $V/W \cong V/\ker f \cong \operatorname{im} f$ by virtue of the first isomorphism theorem for modules. Therefore $f(X) \setminus \{0\}$ is a basis of $\operatorname{im} f$.

Corollary 12.2. Let V and W be vector spaces over division ring D, and that both V and W are finite-dimensional. Then $\dim_D V + \dim_D W = \dim_D (V + W) + \dim_D (V \cap W)$.

Proof. Exercise. \Box

13. February 11: Projective and injective modules

Definition 13.1. A module P over a ring R is said to be *projective* if given any diagram of R-module homomorphisms whose bottom row is exact (i.e., g is an epimorphism),

$$\begin{array}{c}
P \\
\downarrow f \\
A \xrightarrow{\kappa g} B \longrightarrow 0
\end{array}$$

there exists an R-module homomorphism $h: P \to A$ that makes the above diagram commute (gh = f).

Now we shall take a look at some examples of projective modules.

Theorem 13.1. Every free module F over a ring R with unity is projective.

Remark 13.1. The theorem holds even without the unity assumption.

Proof. Consider

$$A \xrightarrow{h?} \downarrow_f \\ A \xrightarrow{k'g} B \longrightarrow 0$$

with the bottom row exact. Let X be a basis of F. Let $x \in X$. Since g is an epimorphism, there is $a_x \in A$ such that $g(a_x) = f(x)$. Define $h' = x \to A$ by $h'(x) = a_x$. Since F is free, the map h' induces an R-module homomorphism $h: F \to A$ defined by

$$h\left(\sum_{i=1}^{n} c_i x_i\right) = \sum_{i=1}^{n} c_i a_{x_i}.$$

Note that h is well-defined since F is free -F being free implies that $\sum c_i x_i$ is the unique representation of an element of F. Now it is not a hard exercise to check that h is a homomorphism. Now, we have $f(x) = g(a_x) = gh(x)$. By the uniqueness of presentation of elements of F (as F is free), we see that f(u) = gh(u) for all $u \in F$. Therefore F is projective as required.

Theorem 13.2. Let R be a ring with unity. The following conditions on an R-module P are equivalent:

- (i) P is projective.
- (ii) Every short exact sequence $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} P \longrightarrow 0$ is split exact. Hence $B \cong A \oplus P$.
- (iii) P is a direct summand of a free module F. In other words, $F \cong K \oplus P$ with F a free R-module and K an R-module.

Proof. $((i) \Rightarrow (ii))$ Consider the diagram

$$B \xrightarrow{h?} P \downarrow_{\mathrm{id}_{P}}$$

$$B \xrightarrow{g} P \longrightarrow 0$$

Since P is projective, there exists an R-module homomorphism $h: P \to B$ so that $gh = id_P$. Thus we have

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \xrightarrow[\leftarrow -h]{g} P \longrightarrow 0$$

Therefore the above sequence splits, so $B \cong A \oplus P$ as required.

 $((ii) \Rightarrow (iii))$ Every R-module is a homomorphic image of a free module. So there exists a free module F such that

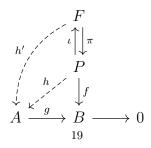
$$0 \longrightarrow \ker f \longrightarrow B \stackrel{f}{\longrightarrow} P \longrightarrow 0$$

is exact. By hypothesis, the sequence splits so

$$F \cong \ker f \oplus P$$
.

Now take $\ker f =: K$.

 $((iii) \Rightarrow (i))$ Consider a diagram



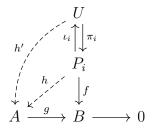
with $F \cong K \oplus P$. Since F is free, it is projective. So there exists an R-module homomorphism $h': F \to A$ such that $gh' = f\pi$. Define $h: P \to A$ as $h = h'\iota$. Then $gh = gh'\iota = f\pi\iota = f \circ \mathrm{id}_P = f$.

Proposition 13.1. Let R be a ring with unity, and let I be an index set. A direct sum of R-modules $\sum_{i \in I} P_i$ is projective if and only if each P_i is projective fo all $i \in I$.

Proof. (\Rightarrow) Suppose that $\sum P_i$ is projective. Then

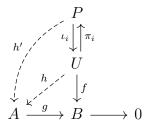
$$\underbrace{\sum_{i \in I} P_i}_{=:U} = P_i \oplus \underbrace{\sum_{j \in I} P_j}_{j \neq i}$$

for a fixed $i \in I$. Now consider the diagram



Since U is projective, there exists an R-module homomorphism $h': U \to A$ such that $gh' = f\pi_i$. Define $h: P_i \to A$ as $h = h'\iota_i$. Then $gh = gh'\iota_i = f\pi_i\iota_i = f\operatorname{id}_{P_i}$. So P_i is projective for all $i \in I$.

 (\Leftarrow) Suppose that P_i is projective for all $i \in I$. Consider the diagram



Since P_i is projective, there exists an R-module homomorphism $h'_i: P_i \to A$ such that $gh'_i = f\iota_i$. By the universal property of direct sums, there exists an R-module homomorphism $h: U \to A$ such that $h\iota_i = h'_i$. Then $gh\iota_i = gh'_i = f\iota_i$ for all $i \in I$. Therefore gh = f as needed. So

$$U = \sum_{i \in I} P_i$$

is projective.

14. February 25 & 27

Definition 14.1. If R is a ring with identity, then an R-module J is called *injective* if for any diagram of R-modules and R-module homomorphisms

$$0 \longrightarrow A \xrightarrow{g} B$$

there is $h: B \to J$ such that the diagram commutes, i.e., hg = f.

Lemma 14.1 (Baer's criterion). Suppose R is a ring with the identity, and J an R-module. Then J is injective if and only if for any left ideals I of R, any R-module homomorphism $I \to J$ can be extended to an R-module homomorphism from R to J.

Proof. Let $f: I \to J$ and consider the diagram

$$0 \longrightarrow I \xrightarrow{g} R$$

$$\downarrow^{f}_{k} \stackrel{f}{h}$$

$$J$$

which is exact. Since J is injective, there is $h: R \to J$ such that hg = f.

 (\Leftarrow) Suppose that we have the diagram of R-module homomorphisms

$$0 \longrightarrow A \xrightarrow{g} B$$

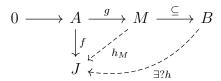
$$\downarrow^{f} \qquad \qquad \downarrow^{g} A$$

$$J$$

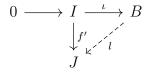
Consider the set $S := \{h_C : C \to J \mid \text{im } g \subseteq C \subseteq B\}$. We claim that $S \neq \emptyset$ since $fg^{-1} : \text{im } g \to J \text{ is in } S$. S is partially ordered by \leq where $h_c \leq h_D \Leftrightarrow C \subseteq D$ and $h_D|_C = h_C$. Suppose that C is a chain in S. We shall show that S has an upper bound in S. Write

$$M_{\mathcal{C}} := \bigcup_{h_{\mathcal{C}} \in \mathcal{C}} C.$$

Then note that $M_{\mathcal{C}}$ is a submodule of B containing im g. im $g \subseteq M_{\mathcal{C}} \subseteq B$, so we can define the homomorphism $h_{M_{\mathcal{C}}}: M_{\mathcal{C}} \to B$ defined by $h_{M_{\mathcal{C}}}(x) = h_{\mathcal{C}}(x)$ when $x \in \mathcal{C}$ and $h_{\mathcal{C}} \in \mathcal{C}$. Thus $h_{M_{\mathcal{C}}} \in S$ and is an upper bound for \mathcal{C} . By Zorn's lemma, S has a maximal element; let this maximal element be M. So let $h_M: M \to J$.



So far, we know that there is h_M making the above diagram commute. But is it M = B? This is what we want. Suppose that $M \subsetneq B$. Then there is $b \in B \setminus M$. Construct $I = \{r \in R : rb \in M\}$. This is an ideal (proving this is left as an exercise); consider now $f': I \to J$ defined by $r \mapsto h_M(rb)$. f' is a well-defined R-module homomorphism (exercise to prove that this is the case). Therefore, by assumption



there is $l: R \to J$ such that $l\iota = f'$. Now define $\overline{h}: M+Rb \to J$ where $a+rb \mapsto h_M(a)+rl(1)$. Suppose that $a, a' \in M$ and $r, r' \in R$ such that a+rb=a'+r'b. Then $(r'-r)b=a-a' \in M$. Thus $r-r' \in I$, so $rl(1)-r'l(1)=(r-r')l(1)=l((r-r')\cdot 1)=l(r-r')=h_M((r-r')b)$. Hence $h_M((r-r')b)=h_M(a'-a)=h_M(a')-h_M(a)$; it follows that $h_M(a)+rl(1)=h_M(a')+r'l(1)$. It is a straightforward verification to check whether \overline{h} is an R-module homomorphism. This means that $\overline{h}=h_{M+Rb} \in S$, which contradicts the maximality of h_M . This forces M=B, so $h_M=h_B$ is indeed the homomorphism we were seeking.

15. March 1

Definition 15.1. Let M be an R-module over domain R. If $m \in M$ and $r \in R$, we say that m is divisible by r if there is $m' \in M$ such that m = rm'. We say that M is a divisible module if every $m \in M$ is divisible by every non-zero $r \in R$.

Example. \mathbb{Q} is divisible \mathbb{Z} -module. Frac(R), the fraction field of R, is a divisible R-module, where R is a domain.

Proposition 15.1. If R is a domain, and M an injective R-module, then M is divisible.

Proof. Let $m \in M$ and $r \in R$ with $r \neq 0$; we need to find $x \in M$ such that m = rx. Let $f:(r) = Rr \to M$ so that f(ar) = am. f is well-defined since R is a domain, and f is an R-module homomorphism. Since M is injective, by Baer's criterion, there is $h: R \to M$ such that $h|_{(r)} = f$. Thus $m = f(r) = h(r) = h(r \cdot 1) = rh(1)$. Now let x = h(1), so we have m = rx. The claim follows.

Theorem 15.1. Suppose R is a principal ideal domain, and M an R-module. Then M is injective if and only if M is divisible.

Proof. (\Leftarrow) Suppose that M is divisible. By Baer's criterion, it suffices to show that for any ideal I of R and any $f:I\to M$ an R-module homomorphism, f can be extended to the entire R. Since R is a PID, there is a such that I=(a). Since M is divisible, there is $m\in M$ such that $(a)=am\in M$. Let $h:R\to M$ be h(r)=rm. One can verify that h is an R-module homomorphism. If $r\in I$, then h(r)=rm; if $s\in R$ satisfies r=sa, then h(r)=rm=sam=sf(a)=f(sa)=f(r). Thus h extends f, so M is injective.

 (\Rightarrow) This follows from Proposition 15.1.

Corollary 15.1. Let R be a PID. Suppose M an injective (hence also divisible) R-module, and N a submodule of M. Then M/N is injective (hence divisible) over R.

Proof. If $m + N \in M/N$ and $r \neq 0 \in R$, then there exists $m' \in M$ such that m = rm'. Hence m + N = rm' + N = r(m' + N). Therefore M/N is divisible. But then over a PID, any module is divisible if and only if it is injective, so the claim follows.

Corollary 15.2. The homomorphic image of a divisible group (i.e., divisible \mathbb{Z} -module) is divisible.

Proof. Let G' be a homomorphic image of a divisible group G. So there exists a homomorphism $\varphi: G \to G'$ such that φ is surjective. So by the first isomorphism theorem we have $G' \cong G/\ker \varphi$. $G/\ker \varphi$ is divisible by the previous corollary, so G' is also divisible. \square

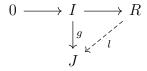
16. March 6 & 8

Recall that if M and N are R-modules, then $\operatorname{Hom}_R(M,N)$ is the set of all R-module homomorphisms from M to N.

Proposition 16.1. If J is a divisible abelian group, and R is a ring with identity, then $\text{Hom}_{\mathbb{Z}}(R,J)$ is an injective R-module.

Proof. We know $\operatorname{Hom}_{\mathbb{Z}}(R,J)$ is an R-module with action of R defined by rf(x) := f(xr), where $r \in R$ and $f \in \operatorname{Hom}_{\mathbb{Z}}(R,J)$. Assume that I is a left ideal of R, and $f: I \to \operatorname{Hom}_{\mathbb{Z}}(R,J)$ is an R-module homomorphism. We would like to apply Baer's criterion: that is, find $\psi: R \to \operatorname{Hom}_{\mathbb{Z}}(R,J)$ such that ψ extends f.

Let $g: I \to J$ be g(x) = f(x)(1). We need to verify if g is an R-module homomorphism. Let $x, y \in I$ and $r \in R$. Then g(rx + y) = f(rx + y)(1) = (rf(x) + f(y))(1) = rf(x)(1) + f(y)(1) = rg(x) + g(y), as needed. So we have



with $0 \to I \to R$ being an exact sequence. Since J is a divisible \mathbb{Z} -module, so J is an injective \mathbb{Z} -module. Hence there exists $l:R\to J$ which is a \mathbb{Z} -module homomorphism such that $l|_I=g$ by Baer's criterion. Now define $h:R\to \operatorname{Hom}_{\mathbb{Z}}(R,J)$ by $r\mapsto h(r):R\to J$, where h(r) maps x to l(xr).

(1) We need to verify if h(r) is a group homomorphism for any $r \in R$. For any $x, y \in R$ we have

$$h(r)(x+y) = l((x+y)r)$$

$$= l(xr+yr)$$

$$= l(xr) + l(yr) \text{ (because } l \text{ is a group homomorphism)}$$

$$= h(r)(x) + h(r)(y).$$

(2) h is well-defined. Let r = r' where $r, r' \in R$. Then for any $x \in R$ we have h(r)(x) = l(xr) and h(r')(x) = l(xr'). If r = r' in R, then xr = xr' in R, so l(xr) = l(xr'). Hence h(r)(x) = h(r')(x), so h is well-defined.

(3) h is an R-module homomorphism. Consider $h(rx+y): R \to J$. For any $u \in R$,

$$h(rx+y)(u) = l(u(rx+y)) = l(urx+uy)$$

$$= l(urx) + l(uy) \quad (\because l \text{ is a group homomorphism})$$

$$= h(x)(ur) + h(y)(u) = (rh(x))(u) + h(y)(u)$$

$$= (rh(x) + h(y))(u),$$

as required.

(4) Finally, we need $h|_I = f$. Suppose $r \in I$. Then $h(r) : R \to J$ maps $x \mapsto l(xr)$. But $xr \in I$ since I is a left ideal. Therefore

$$l(xr) = g(xr) = f(xr)(1)$$

= $xf(r)(1)$
= $f(r)(1 \cdot x)$ (since f is an R -module homomorphism)
= $f(r)(x)$.

Therefore for any $r \in I$, we have h(r)(x) = f(r)(x). Hence h = f whenever $r \in I$, so $h|_{I} = f$ as desired.

We want to prove that if R is a ring with identity and M an R-module, then $M \subseteq J$ for some injective R-module J.

First we want to prove this for the case $R = \mathbb{Z}$.

Lemma 16.1. Every abelian group can be embedded in a divisible abelian group.

Proof. Let G be an abelian group. Then G is a \mathbb{Z} -module, so there exists free \mathbb{Z} -module $F = \bigoplus \mathbb{Z}$ and an epimorphism $f: F \to G$. The first isomorphism theorem implies $G \cong F/\ker f$. Observe that $F = \bigoplus \mathbb{Z} \hookrightarrow D = \bigoplus \mathbb{Q}$. D is divisible since \mathbb{Q} is divisible as a \mathbb{Z} -module. \mathbb{Z} is a PID, so \mathbb{Q} is injective as well as a \mathbb{Z} -module; any direct sum of injective modules is injective, so $\bigoplus \mathbb{Q} = D$ is injective as a \mathbb{Z} -module.

If h is the injection from F to D, then $F \cong h(F)$. Thus, $G \cong F/\ker f \cong h(F)/h(\ker f) \subseteq D/h(\ker f)$. So G is embedded in an injective \mathbb{Z} -module; note that any quotient of a divisible module is also divisible, making $D/h(\ker f)$ divisible also.

Theorem 16.1. Let R be a ring with identity, and M an R-module. Then M can be embedded into an injective R-module.

Proof. Let M be an abelian group. By the previous lemma there exists a divisible group J (injective \mathbb{Z} -module) such that $f: M \hookrightarrow J$ is a group monomorphism. We want to build $\overline{f}: \operatorname{Hom}_{\mathbb{Z}}(R, M) \to \operatorname{Hom}_{\mathbb{Z}}(R, J)$ mapping $g \mapsto fg$. Previously, we showed that $\operatorname{Hom}_{\mathbb{Z}}(R, J)$ is an injective R-module. We will show that M can be embedded here.

We claim that f is an R-module homomorphism. That is, if $a \in R$ and $g_1, g_2 \in \text{Hom}_{\mathbb{Z}}(R, M)$, then $\overline{f}(ag_1 + g_2) = f(ag_1 + g_2) = f(ag_1) + f(g_2)$ as f is a group homomorphism. Observe that for any $r \in R$,

$$f(ag_1)(r) = f((ag_1)(r)) = f(g_1(ra)) = fg_1(ra) = afg_1(r).$$

Therefore

$$\overline{f}(ag_1 + g_2) = f(ag_1) + f(g_2) = afg_1 + fg_2,$$

as required.

Now that we showed \overline{f} is an R-module homomorphism, we now need to show that \overline{f} is injective. Suppose $\overline{f}(g) = 0$. Then fg = 0, so in particular fg(1) = 0. Therefore f(g(1)) = 0; but since f is injective, we have g(1) = 0. Thus $g \equiv 0$ as desired. Thus \overline{f} is an R-module monomorphism as needed, so $\operatorname{Hom}_R(R, M)$ is a submodule of $\operatorname{Hom}_{\mathbb{Z}}(R, M)$.

Let $\varphi: M \to \operatorname{Hom}_R(R, M)$ be $m \mapsto f_m$ where $f_m: R \to M$ maps r to rm. Then φ is an R-module monomorphism. Indeed, if $\varphi(m) = 0$, then $f_m(r) = 0$ for all $r \in R$, which implies $f_m(1) = 0$. Therefore 1m = m = 0, as needed.

Now we have a chain of injections

$$M \stackrel{\varphi}{\hookrightarrow} \operatorname{Hom}_R(R, M) \stackrel{i}{\hookrightarrow} \operatorname{Hom}_{\mathbb{Z}}(R, M) \stackrel{\overline{f}}{\hookrightarrow} \operatorname{Hom}_{\mathbb{Z}}(R, J).$$

But then we previously proved that $\operatorname{Hom}_{\mathbb{Z}}(R,J)$ is injective, so M is embedded in an injective R-module as desired.

Theorem 16.2. Let R be a ring with identity, and J an R-module. Then the following are equivalent:

- (i) J is injective.
- (ii) Every short exact sequence $0 \to J \to B \to C \to 0$ is split exact. In particular, $B \cong J \oplus C$.
- (iii) If J is a submodule of B, then J is a direct summand of B.

Proof. ((i) \Rightarrow (ii)) This works similarly to the projective case. Indeed,

$$0 \longrightarrow J \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow id \downarrow \downarrow f \exists h$$

Since J is injective, there is h such that $hf = \mathrm{id}_J$. By definition this is a split exact sequence, so indeed $B \cong J \oplus C$.

 $((ii) \Rightarrow (iii))$ The exact sequence

$$0 \longrightarrow J \longrightarrow B \longrightarrow B/J \longrightarrow 0$$

is split exact by (ii), so $B \cong J \oplus B/J$.

 $((iii) \Rightarrow (i))$ By the previous theorem, $J \subseteq J'$ where J' is an injective R-module. By (iii) J is a direct summand of an injective module, so J is injective. Recall that a direct product of R-modules $\prod_{i \in I} J_i$ is injective if and only if J_i is injective for each $i \in I$.

Recall that if A and B are R-modules then

$$\operatorname{Hom}_R(A,B) = \{ f : A \to B : f \text{ is a } R\text{-module homomorphism} \}.$$

Theorem 17.1. Let $\varphi: C \to A$ and $\psi: B \to D$ be R-module homomorphisms where R is a ring. Then

$$\theta: \operatorname{Hom}_R(A,B) \to \operatorname{Hom}_R(C,D)$$

mapping $f \mapsto \psi f \varphi$ is a group homomorphism.

Proof. Note that θ is well-defined since it is just a composition of functions $(C \xrightarrow{\varphi} A \xrightarrow{f} B \xrightarrow{\psi} D)$. θ is additive: for any $f, g \in \operatorname{Hom}_R(A, B)$, we have $\theta(f+g) = \psi(f+g)\varphi = \psi f \varphi + \psi g \varphi = \theta(f) + \theta(g)$.

Definition 17.1. We shall denote the θ in Theorem 17.1 by $\text{Hom}(\varphi, \psi)$, and call it the homomorphism induced by φ and ψ .

Note that $\varphi_1: E \to C, \varphi_2: C \to A, \psi_1: B \to D, \psi_2: D \to F$. Then $\operatorname{Hom}(\varphi_1, \psi_2) \operatorname{Hom}(\varphi_2, \psi_1) = \operatorname{Hom}(\varphi_2 \varphi_1, \psi_2 \psi_1).$ $\operatorname{Hom}_R(A, B) \xrightarrow{\operatorname{Hom}(\varphi_2 \varphi_1, \psi_2 \psi_1)} \operatorname{Hom}_R(E, F)$

 $\operatorname{Hom}_R(A,B) \xrightarrow{\operatorname{Hom}_R(E,F)} \operatorname{Hom}_R(E,F)$ $\operatorname{Hom}_R(C,D)$

Proposition 17.1. The following are equivalent:

- (a) $0 \longrightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C$ is an exact sequence of R-modules.
- (b) For every R-module $D, 0 \longrightarrow \operatorname{Hom}_R(D, A) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(D, B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(D, C)$ is an exact sequence of abelian groups, where $\overline{\varphi}: f \mapsto \varphi f$ and $\overline{\psi}: g \mapsto \psi g$.

Proof. (\Leftarrow) Suppose $D = \ker \varphi$, and suppose $\iota : D \hookrightarrow A$ be the inclusion map. Note that $\iota \in \operatorname{Hom}_R(D,A)$. $\overline{\varphi}(\iota) = \varphi \iota = 0$: if $x \in D = \ker \varphi$, then $\varphi(\iota x) = \varphi(x) = 0$. Thus $\iota \in \ker \overline{\varphi}$; but since $\overline{\varphi}$ is injective by exactness, we have $\underline{\iota} = 0$. Hence $D = \ker \varphi = 0$, so φ is injective. Now pick D = A. Then $\operatorname{im} \overline{\varphi} = \ker \overline{\psi}$. So $\overline{\psi}\overline{\varphi}(\operatorname{id}_A) = 0$. So $\psi \varphi \operatorname{id}_A = 0$, hence $\psi \varphi = 0$. Therefore $\operatorname{im} \varphi \subseteq \ker \psi$.

For the other inclusion, we shall pick $D = \ker \psi$, and let $\iota : D \hookrightarrow B$. Indeed, $\overline{\psi}(\iota) = \psi \iota = 0$. Hence $\iota \in \ker \overline{\psi} = \operatorname{im} \overline{\varphi}$. Thus there exists $f \in \operatorname{Hom}_R(\ker \psi, A)$ so that $\iota = \overline{\varphi}(f)$. Hence $\iota(x) = \varphi(f(x)) \in \operatorname{im} \varphi$, so $\ker \psi \subseteq \operatorname{im} \varphi$. So $\ker \psi = \operatorname{im} \varphi$ as desired, thereby completing the proof.

(\Rightarrow) Let D be an R-module. Suppose $f \in \ker \overline{\varphi}$. Then $\overline{\varphi}(f) = 0$. So $\varphi f = 0$. Hence for all $d \in D$ we have $\varphi(f(d)) = 0$. But φ is injective, so f(d) = 0 for all $d \in D$ which gives f = 0. Therefore $\overline{\varphi}$ is injective.

We still need to prove that $\operatorname{im} \overline{\varphi} = \ker \overline{\psi}$. Let $f \in \operatorname{im}(\overline{\varphi})$. Then $f = \varphi(g)$ for some $g \in \operatorname{Hom}_R(D,A)$. Thus $f(\underline{d}) = \varphi g(\underline{d}) = \varphi(g(\underline{d})) \in \operatorname{im} \varphi = \ker \varphi$. Hence $\overline{\psi}(f) = 0$ so $f \in \ker \overline{\psi}$. Hence $\operatorname{im} \overline{\varphi} \subseteq \ker \overline{\psi}$. Conversely, let $f \in \ker \overline{\psi}$. Then $\overline{\psi}(f) = \psi f = 0$. Therefore for all $d \in D$ we have $\psi f(\underline{d}) = 0 = \psi(f(\underline{d}))$. Thus $\operatorname{im} f \subseteq \ker \psi = \operatorname{im} \varphi$. φ is injective, so $\varphi : A \to \operatorname{im} \varphi$ is an isomorphism, by the first isomorphism theorem. Now we shall construct $h : D \xrightarrow{f} \operatorname{im} f \hookrightarrow \operatorname{im} \varphi \xrightarrow{\varphi^{-1}} A$ where $f \in \operatorname{Hom}_R(D,B)$. Then $h \in \operatorname{Hom}_R(D,A)$. Moreover, $f = \varphi h = \overline{\varphi}(h)$ by construction, so $f \in \operatorname{im} \overline{\varphi}$. Hence $\ker \overline{\psi} \subseteq \operatorname{im} \overline{\varphi}$, so indeed $\ker \overline{\psi} = \operatorname{im} \overline{\varphi}$, as needed.

We can prove the analogous result for $\operatorname{Hom}_R(\cdot, D)$ using a similar reasoning.

Theorem 17.2. Let R be a ring. Then $A \stackrel{\varphi}{\to} B \stackrel{\psi}{\to} C \to 0$ is an exact sequence of R-modules if and only if $0 \to \operatorname{Hom}_R(C,D) \stackrel{\overline{\psi}}{\to} \operatorname{Hom}_R(B,D) \stackrel{\overline{\varphi}}{\to} \operatorname{Hom}_R(A,D)$ is an exact sequence of \mathbb{Z} -modules.

In summary, $\operatorname{Hom}_R(D,\cdot)$ preserves left-exactness and the arrows; on the other hand, $\operatorname{Hom}_R(\cdot,D)$ flips arrows, and changes right-exactness to left-exactness.

Now we shall discuss some cases in which Hom is also right-exact.

Theorem 17.3. Let R be a ring. Then the following are equivalent.

- (i) $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a split exact sequence of R-modules
- (ii) $0 \to \operatorname{Hom}_R(D,A) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(D,B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(D,C) \to 0$ is a split exact sequence of \mathbb{Z} -modules for every R-module D.
- (iii) $0 \to \operatorname{Hom}_R(C,D) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(B,D) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(A,D) \to 0$ is a split exact sequence of \mathbb{Z} -modules for every R-module D.

Proof. ((i) \Rightarrow (iii)) $0 \to A \to B \to C \to 0$ is split exact, so there are $\psi_1 : C \to B$ such that $\psi\psi_1 = \mathrm{id}_C$. Consider $\overline{\psi_1} : \mathrm{Hom}_R(B,D) \to \mathrm{Hom}_R(C,D)$ defined the usual way $(f \mapsto f\psi_1)$. Note that $\overline{\psi_1\psi}f = \overline{\psi_1}(\overline{\psi}f) = \overline{\psi_1}(f\psi) = f\psi\psi_1 = f$ where $f \in \mathrm{Hom}_R(C,D)$. So the left-exactness of $\mathrm{Hom}_R(\cdot,D)$ gives us exactness everywhere but at $\overline{\varphi}$.

Now we need to show that $\overline{\varphi}$ is surjective. We already know that there is $\varphi_1: B \to A$ such that $\varphi_1 \varphi = \mathrm{id}_A$. Let $\overline{\varphi_1}: \mathrm{Hom}_R(A, D) \to \mathrm{Hom}_R(B, D)$ be the usual map, i.e., $f \mapsto f\varphi_1$. Observe that $\overline{\varphi\varphi_1} = \mathrm{id}_{\mathrm{Hom}_R(A,D)}$. Therefore $\overline{\varphi}$ is surjective. Indeed, if $f \in \mathrm{Hom}_R(A,D)$, then $\overline{\varphi\varphi_1}(f) = \overline{\varphi}(\overline{\varphi_1}(f)) = f$, so $f \in \mathrm{im} \overline{\varphi}$.

The remaining directions are left as exercises.

Theorem 17.4. Let R be a ring, and let P be an R-module. The following are equivalent.

- (i) P is projective.
- (ii) If $B \xrightarrow{\varphi} C \to 0$ is an exact sequence of R-modules, then $\operatorname{Hom}_R(P,B) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(P,C) \to 0$ is an exact sequence of \mathbb{Z} -modules.

(iii) If $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a short exact sequence of R-modules, then $0 \to \operatorname{Hom}_R(P,A) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(P,B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(P,C) \to 0$ is a short exact sequence of \mathbb{Z} -modules.

Proof. ((i) \Rightarrow (ii)) Suppose $B \stackrel{\varphi}{\to} C \to 0$ is exact, and let $f \in \operatorname{Hom}_R(P,C)$. Since P is projective ,there is $g \in \operatorname{Hom}_R(P,B)$ such that $\varphi g = f$.

$$\begin{array}{c}
P \\
\downarrow f \\
B \xrightarrow{\varphi} C \longrightarrow 0
\end{array}$$

Thus for any f there is g such that $\overline{\varphi}(g) = f$, which shows that $\overline{\varphi}$ is surjective.

- $((ii) \Rightarrow (i))$ Consider an exact sequence $B \xrightarrow{\varphi} C \to 0$ with surjective φ , and let $f: P \to C$ be an R-module homomorphism. But since $\overline{\varphi}$ is surjective, there is $g: P \to B$ such that $\overline{\varphi}(g) = f$. Hence $\varphi g = f$, so P is projective (see the commutative diagram above).
 - $((ii) \Rightarrow (iii))$ Suppose $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a short exact sequence. Then we know

$$0 \to \operatorname{Hom}_R(P,A) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(P,B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(P,C) \to 0$$

is exact for the first three arrows by the left exactness of Hom. The fourth arrow is also straightforward due to (ii).

((iii) \Rightarrow (ii)) Given $B \stackrel{\varphi}{\to} C \to 0$, we can build a short exact sequence $0 \to \ker \varphi \to B \to C \to 0$. By (iii),

$$0 \to \operatorname{Hom}_R(P,A) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(P,B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(P,C) \to 0$$

is exact, so hence $\operatorname{Hom}_R(P,B) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(P,C) \to 0$ is exact.

The next theorem proves the injective counterpart.

Theorem 17.5. Let R be a ring, and let J be an R-module. The following are equivalent.

- (i) J is injective.
- (ii) If $0 \to A \xrightarrow{\varphi} B$ is an exact sequence of R-modules, then $\operatorname{Hom}_R(B,J) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(A,J) \to 0$ is an exact sequence of \mathbb{Z} -modules.
- (iii) If $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is a short exact sequence of R-modules, then $0 \to \operatorname{Hom}_R(C,J) \xrightarrow{\overline{\psi}} \operatorname{Hom}_R(B,J) \xrightarrow{\overline{\varphi}} \operatorname{Hom}_R(A,J) \to 0$ is a short exact sequence of \mathbb{Z} -modules.

Proof. Similar to the projective case.

18. March 18 & 20

Definition 18.1. Let M_R be a right R-module, and R a left R-module, and let F be the free \mathbb{Z} -module on the set $M \times N$. That is, F has a basis $\{e_{(m,n)} : (m,n) \in M \times N\}$. For the simplicity of notation, write $(m,n) := e_{(m,n)}$. Then the tensor product of M and N is defined as the \mathbb{Z} -module

$$M \otimes_R N := F/Z$$
,

where Z is the subgroup of F generated by the set

$$K := \{ (m+m',n) - (m,n) - (m',n), (m,n+n') - (m,n) - (m,n'), (mr,n) - (m,rn) \mid m,m' \in M, n,n' \in N, r \in R \}$$

For any $m \in M$ and $n \in N$, $m \otimes n := (m, n) + Z$.

Proposition 18.1 ("The three rules"). Definition of tensor product implies the following properties:

- $(i) (m+m') \otimes n = m \otimes n + m' \otimes n$
- (ii) $m \otimes (n + n') = m \otimes n + m \otimes n'$
- (iii) $r(m \otimes n) = mr \otimes n = m \otimes rn$

Corollary 18.1. $m \otimes 0 = 0 \otimes n = 0$.

We shall see that $M \otimes_R N$ is a \mathbb{Z} -module for any ring R. If R is commutative, we will see that $M \otimes_R N$ is not just an abelian group, but is an R-module. We shall also see that $M \otimes_R N$ is generated by $\{m \otimes n : m \in M, n \in N\}$. Thus any typical element of $M \otimes_R N$ is of the form

$$\sum_{i=1}^{h} m_i \otimes n_i$$

where $m_1, \ldots, m_h \in M, n_1, \ldots, n_h \in N$, and $h \in \mathbb{N}$.

Definition 18.2. Let M_R and R_RN be right and left R-modules respectively, and let Q be an abelian group. Then a function $f: M \times N \to Q$ is said to be middle-linear if for all $m, m' \in M$, $n, n' \in N$, and $r \in R$, f satisfies the following three conditions.

- (i) f(m+m',n) = f(m,n) + f(m',n)
- (ii) f(m, n + n') = f(m, n) + f(m, n')
- (iii) f(mr, n) = f(m, rn)

In particular, the middle-linear map $\iota: M \times N \to M \otimes_R N$ defined by $\iota(m,n) = m \otimes n$ is said to be the *canonical middle-linear map*.

Proposition 18.2 (Universal property of tensor products). Let M_R be a right R-module and R a left R-module; let Q be an abelian group. If $f: M \times N \to Q$ is a middle-linear map, then there exists a unique group homomorphism $\overline{f}: M \otimes_R N: Q$ such that the diagram below commutes.

$$M \otimes_R N$$

$$\downarrow f$$

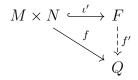
$$M \times N \xrightarrow{f} Q$$

i.e., $f = \overline{f}\iota$. Moreover, $M \otimes_R N$ is the unique abelian group with this property.

Proof. As before, let F be a free \mathbb{Z} -module with on $M \times N$, and let

$$K := \langle (m+m',n) - (m,n) - (m',n), (m,n+n') - (m,n) - (m,n'), (mr,n) - (m,rn) \mid m,m' \in M, n,n' \in N, r \in R \rangle.$$

Then $M \otimes_R N = F/K$ by definition. By the universal property of free modules, for the function $f: M \times N \to Q$, there exists a unique abelian group homomorphism $f': F \to Q$ such that $f'\iota' = f$.



Now if $m, m' \in M, n, n' \in N$ and $r \in R$, we have f'((m + m', n) - (m, n) - (m', n)) = 0. Similarly, $f'(\alpha) = 0$ for all $\alpha \in K$. Hence $K \subseteq \ker f'$. Therefore f' induces an abelian group homomorphism $\overline{f} : F/K \to Q$ such that $\overline{f}(m \otimes n) = f'((m, n)) = f(m, n)$.

Suppose that g is another group homomorphism $g: M \otimes_R N \to Q$ such that $g\iota = f$. Then for any $(m,n) \in M \times N$, $g(m \otimes n) = g\iota(m,n) = f(m,n) = \overline{f}\iota(m,n) = \overline{f}(m \otimes n)$. Hence $g = \overline{f}$, which proves the uniqueness of \overline{f} . Finally, the uniqueness of $M \otimes_R N$ comes from the uniqueness of universal objects in categories.

Definition 18.3. Suppose that R is a commutative ring, and A, B, C R-modules (note that since R is commutative, every module is is both a left R-module and a right R-module). A bilinear map $f: A \times B \to C$ is a function satisfying the following three conditions for all $a, a' \in A, b, b' \in B, r \in R$.

- (i) f(a + a', b) = f(a, b) + f(a', b)
- (ii) f(a, b + b') = f(a, b) + f(a, b')
- (iii) f(ra, b) = rf(a, b) = f(a, rb)

Remark 18.1. The (iii) from the above definition gives us the R-module structure on $M \otimes_R N$ when R is commutative.

Remark 18.2. When A and B are R-modules for a commutative ring R, then $A \otimes_R B$ is an R-module, and the canonical middle-linear map $\iota : A \times B \to A \otimes_R B$ is in fact bilinear.

Recall that if R is a commutative ring, then M, N are left R-modules, then $M \otimes_R N$ is a left R-module with action on R defined as $r(m \otimes n) = rm \otimes n = mr \otimes n = m \otimes rn$ for $r \in R, m \in M, n \in N$.

Example. We claim that $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} = 0$. Indeed, suppose that $a = 3a \in \mathbb{Z}/2\mathbb{Z}$ and $b \in \mathbb{Z}/3\mathbb{Z}$. Then $a \otimes b = 3a \otimes b = 3(a \otimes b) = a \otimes 3b = a \otimes 0 = a \otimes 0 = 0$.

The above example shows that the value of $x \otimes y$ depends very much on where x and y live. We present another example which illustrates this point.

Example. We will see what $2 \otimes 1$ is in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$. We have $2 \otimes 1 = 2(1 \otimes 1) = 1 \otimes 2 = 1 \otimes 0 = 0$. But on the other hand, in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$, we have $2 \otimes 1 \neq 0$.

Proposition 18.3. Let R be a commutative ring, and let M, M', N, N' R-modules. Suppose that $f: M \to M'$ and $g: N \to N'$ are R-module homomorphisms. Then there exists a unique R-module homomorphism $f \otimes g: M \otimes_R N \to M' \otimes_R N'$ where $(f \otimes g)(m \otimes n) := f(m) \otimes g(n)$.

Proof. Define $h: M \times N \to M' \otimes_R N'$ by $h(m,n) = f(m) \oplus g(n)$. We need to show that h is well-defined, but this is straightforward since f and g are. We also need to show that h is bilinear. Let $m, m' \in M, n, n' \in N$, and $r \in R$.

$$h(m+m',n) = f(m+m') \otimes g(n) = (f(m)+f(m')) \otimes g(n)$$

$$= f(m) \otimes g(n) + f(m') \otimes g(n) = h(m,n) + h(m',n)$$

$$h(m,n+n') = f(m) \otimes g(n+n') = f(m) \otimes (g(n)+g(n)')$$

$$= f(m) \otimes g(n) + f(m) \otimes g(n') = h(m,n) + h(m,n')$$

$$h(rm,n) = f(rm) \otimes g(n) = rf(m) \otimes g(n) = r(f(m) \otimes g(n)) = rh(m,n)$$

$$h(m,rn) = f(m) \otimes g(rn) = f(m) \otimes rg(n) = r(f(m) \otimes g(n)) = rh(m,n).$$

Hence h is bilinear map from $M \times N$ to $M' \otimes N'$. By the universality of tensor products, h extends to unique R-module homomorphism.

Proposition 18.4 (Right-exactness of tensor). Suppose R is a commutative ring. Let $M \xrightarrow{f} N \xrightarrow{g} K \longrightarrow 0$ be an exact sequence of left R-modules. If D is any right R-module, then

$$D \otimes_R M \xrightarrow{\operatorname{id}_D \otimes f} D \otimes_R N \xrightarrow{\operatorname{id}_D \otimes g} D \otimes_R K \longrightarrow 0$$

is also an exact sequence of R-modules.

Proof. We will prove it the direct way. First, we claim that $\mathrm{id}_D \otimes g$ is surjective. Note that $D \otimes_R K$ is generated by elements of the form $d \otimes k$, where $d \in D$ and $k \in K$. Since g is surjective, there exists $n \in N$ such that g(n) = k. Hence $d \otimes k = (\mathrm{id}_D \otimes g)(d \otimes n)$. Second, we need $\mathrm{im}(\mathrm{id}_D \otimes f) = \ker(\mathrm{id}_D \otimes g)$. $\mathrm{im}(\mathrm{id}_D \otimes f)$ is generated by $d \otimes n$ where $d \in D$ and $n \in \mathrm{im} f = \ker g$. Thus $(\mathrm{id}_D \otimes g)(d \otimes n) = d \otimes g(n) = d \otimes 0 = 0$. Hence $d \otimes n \in \ker(\mathrm{id}_D \otimes g)$. To prove the reverse inclusion, consider the canonical quotient map

 $\pi: D \otimes_R N \to D \otimes_R N / \operatorname{im}(\operatorname{id}_D \otimes f)$. Since $\operatorname{im}(\operatorname{id}_D \otimes f) \subseteq \ker(\operatorname{id}_D \otimes g)$, there is a unique R-module homomorphism

$$\varphi: (D \otimes_R N) / \operatorname{im}(\operatorname{id}_D \otimes f) \to D \otimes_R K.$$

We show that φ is an isomorphism, which will show that $\ker(\mathrm{id}_D\otimes g)=\mathrm{im}(\mathrm{id}_D\otimes f)$. To do this we shall show that φ has an inverse, by showing that there is a bilinear map $\psi:D\times K\to (D\otimes N)/\mathrm{im}(\mathrm{id}_D\otimes f)$ defined by $(d,k)\mapsto d\otimes n+\mathrm{im}(1_D\otimes f)$ where $n\in N$ is such that g(n)=k. We show that ψ is well-defined bilinear map. Suppose that $n,n'\in N$ such that g(n)=g(n')=k. Then $\psi(d,k)=d\otimes n+\mathrm{im}(\mathrm{id}_D\otimes f)$ but also $\psi(d,k)=d\otimes n'+\mathrm{im}(\mathrm{id}_D\otimes f)$. Observe that $d\otimes n-d\otimes n'=d\otimes (n-n')\in \mathrm{im}(\mathrm{id}_D\otimes f)$. But then g(n)=g(n')=k, so g(n-n')=0. Thus $n-n'\in\ker g=\mathrm{im} f$, so ψ is well-defined. Proving bilinearity is straightforward, so this will be left as an exercise. So by the universality of tensor, there exists $\overline{\psi}:D\otimes_R K\to (D\otimes_R N)/\mathrm{im}(\mathrm{id}_D\otimes f)$. Finally, observe $\psi\overline{\psi}=\overline{\psi}\psi=\mathrm{id}$, thereby proving that ψ is an isomorphism as desired.

Remark 18.3. The above statement can also be proved using the exactness of Hom and the observation that $\operatorname{Hom}(M \otimes_R N, P) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, P))$.

19. March 25

Definition 19.1. A functor F is a function from a caterogy to another category preserving morphisms. F is covariant if $F(f): F(A) \to F(B)$ for $f: A \to B$. F is contravariant if $F(f): B \to A$ where $f: A \to B$. F is exact if F takes short exact sequences to short exact sequences.

Example. Let R be a commutative ring, and D an R-module. Then $\operatorname{Hom}_R(D, \cdot)$ is a covariant functor which is exact if and only if D is projective. Similarly, $\operatorname{Hom}_R(\cdot, D)$ is a contravariant functor which is exact if and only if D is injective. The functor $\cdot \otimes_R D$ is a covariant functor which is exact if and only if D is a flat module.

Corollary 19.1. Let R be a commutative ring, and M, M', N, N' all left R-modules. Also, let $f: M \to M'$ and $g: N \to N'$ surjective homomorphisms. Then $f \otimes g: M \otimes_R N \to M' \otimes_R N'$ is a surjective homomorphism of R-modules.

Proof. Applying the functor $M \otimes_R \cdot$, we see that

$$M \otimes_R N \stackrel{\mathrm{id}_M \otimes g}{\longrightarrow} M \otimes_R N' \longrightarrow 0$$

is exact. Similarly, we can apply the functor $\cdot \otimes_R N'$ gives

$$M \otimes_R N' \stackrel{f \otimes \operatorname{id}_{N'}}{\longrightarrow} M' \otimes_R N' \longrightarrow 0$$

is exact. Note that if $m \in M$ and $n \in N$, then $(f \otimes g)(m \otimes n) = f(m) \otimes g(n) = (f \otimes id_{N'})(m \otimes g(n))$. Therefore $f \otimes g = (f \otimes id_{N'}) \circ (id_M \otimes g) : M \otimes N \to M' \otimes N'$. Hence $f \otimes g$ is surjective since other two are.

Theorem 19.1. Let R be a commutative ring with unity. Suppose that A is a right R-module and B a left R-module. Then $A \otimes_R R \cong A$ and $R \otimes_R B \cong B$.

Proof. Define $f: R \times B \to B$ by f(r, b) = rb. We show that f is bilinear.

$$f(r+r',b) = (r+r')b = rb + r'b = f(r,b) + f(r',b)$$

$$f(r, b + b') = r(b + b') = rb + rb' = f(r, b) + f(r, b')$$

$$f(sr, b) = (sr)b = s(rb) = sf(r, b) = (rs)b = r(sb) = f(r, sb).$$

By the universal property of tensor product, there is a R-module homomorphism $\overline{f}: R \otimes_R B \to B$ defined by $r \otimes b \mapsto rb$. We just need to show that \overline{f} is bijective. f is surjective since for any $b \in B$, we have $b = 1 \cdot b = \overline{f}(1 \otimes b)$. As for injectivity, suppose that

$$\overline{f}\left(\sum_{i=1}^{n} r_i \otimes b_i\right) = 0$$

where $r_1, \ldots, r_n \in R$ and $b_1, \ldots, b_n \in B$. Then

$$\sum_{i=1}^{n} r_i b_i = 0$$

in B. Thus,

$$\sum_{i=1}^n r_i \otimes b_i = \sum_{i=1}^n r_i (1 \otimes b_i) = \sum_{i=1}^n (1 \otimes r_i b_i) = 1 \otimes \left(\sum_{i=1}^n r_i b_i\right) = 1 \otimes 0 = 0.$$

Thus \overline{f} is an R-module isomorphism as required.

20. March 27: Modules over principal ideal domains

Definition 20.1. Let R be a ring, and M a left R-module. M is a Noetherian module if M satisfies the ascending chain condition (ACC) of submodules, i.e., for any chain of submodules $M_1 \subseteq M_2 \subseteq \cdots \subseteq M_k \subseteq M_{k+1} \subseteq \cdots$, there exists N such that $M_n = M_{n+1} = \cdots$ for all $n \geq N$. Therefore every ascending chain of submodules stabilizes. In particular, R is a Noetherian ring if it satisfies the ascending chain condition on its ideals.

Theorem 20.1. If R is a ring, and M a left R-module, then the following are equivalent.

- (1) M is Noetherian.
- (2) Every non-empty set of submodules of M contains a maximal element under inclusion.
- (3) Every submodule of M is finitely generated.

Proof. ((1) \Rightarrow (2)) Suppose that M is Noetherian, and Σ a non-empty set of submodules of M. Let $M_1 \in \Sigma$, and suppose that M_1 is not maximal. Then there exists $M_2 \in \Sigma$ with $M_1 \subseteq M_2$. If M_2 is not maximal, there exists M_3 such that $M_1 \subseteq M_2 \subseteq M_3$. Repeating this step, we can build an ascending chain of modules in Σ . But since M is Noetherian, there must exists N such that $M_n = M_{n+1} = \cdots$ for all $n \geq N$. Then M_k is a maximal element of Σ .

 $((2) \Rightarrow (3))$ Let N be a submodule of M, and we want to show that N is finitely generated. Let

$$\Sigma = \{N' \mid N' \text{ finitely generated submodule of } N\}.$$

Clearly $0 \in \Sigma$ so $\Sigma \neq \emptyset$. Now let N' be a maximal element of Σ . If N = N', we are done. If not, then $N' \subsetneq N$. So there exists $x \in N$ but $x \in N'$. But then $N' = \langle f_1, \ldots, f_s \rangle$ for some $f_1, \ldots, f_s \in N$ since N' is finitely generated. Define $N'' = \langle f_1, \ldots, f_s, x \rangle$. But $N'' \supseteq N$, and

clearly $N'' \in \Sigma$. But this contradicts the maximality of N'. Therefore N = N', so N is finitely generated.

 $((3)\Rightarrow (1))$ Suppose that $M_1\subseteq M_2\subseteq \cdots$ is an ascending chain of submodules of M. Let

$$N := \bigcup_{i \ge 1} M_i,$$

so N is a submodule of M. Thus N is finitely generated, say $N = \langle f_1, \ldots, f_s \rangle$ for $f_1, \ldots, f_s \in M$. Thus there exists M_{a_1}, \ldots, M_{a_s} such that $f_1 \in M_{a_1}, \ldots, f_s \in M_{a_s}$. Without loss of generality suppose that $a_1 \leq a_2 \leq \cdots \leq a_s$. Thus $M_{a_1} \subseteq M_{a_2} \subseteq \cdots \subseteq M_{a_s}$; note that $f_1, \ldots, f_s \in M_{a_s}$, so $M_{a_s} = N$. Therefore we have $M_n = M_{n+1}$ for any $n \geq a_s$, which is precisely the ascending chain condition we wanted to show.

Example. Any PIDs are Noetherian rings since every ideal is generated by one element.

Definition 20.2. If R is a domain, and M an R-module, then

$$tor(M) = \{x \in M \mid rx = 0 \text{ for some } r \in R \setminus \{0\}\}\$$

is called the torsion submodule.

Remark 20.1. The emphasis on the word "the" in the above definition is intended, to emphasize that tor(M) is the *unique maximal* torsion submodule of M. Observe that any submodule of tor(M) is also a torsion module.

Remark 20.2. If M is a free R-module, then tor(M) = 0. Thus any free module is torsion-free.

Definition 20.3. The annihilator of M is

$$ann(M) = \{r \in R : rn = 0 \text{ for all } n \in M\}.$$

Remark 20.3. Note that the following properties hold for ann(M):

- (1) If N is not a torsion submodule of M, then ann(N) = (0).
- (2) If $N \subseteq L$ both submodules of M, then $\operatorname{ann}(L) \subseteq \operatorname{ann}(N)$, since if rL = 0 then rN = 0.
- (3) If, in addition to (2), R is a PID, then $\operatorname{ann}(L) = (a) \subseteq (b) = \operatorname{ann}(N)$, and so $b \mid a$. In particular, if $x \in M$ then $\operatorname{ann}(x) = (a) \supseteq \operatorname{ann}(M) = (b)$, so $a \mid b$.
- (4) $\operatorname{ann}(M)$ is an ideal of R. Indeed, $0 \in \operatorname{ann}(M)$, so $\operatorname{ann}(M)$ is non-empty. If $a, b \in \operatorname{ann}(M)$, then (a-b)x = ax bx = 0 0 = 0 for any $x \in M$, so $a-b \in \operatorname{ann}(M)$. Finally, for any $a \in \operatorname{ann}(M)$ and $r \in R$, we have (ra)x = r(ax) = r0 = 0 for any $x \in M$. Hence $ra \in \operatorname{ann}(M)$.

21. March 29

Theorem 21.1. Let R be a PID, and M a free R-module of rank $n < \infty$. Suppose that N is a submodule of M. Then

- (1) N is free of rank m where $m \leq n$.
- (2) There is a basis y_1, \ldots, y_n of M such that a_1y_1, \ldots, a_my_m is a basis of N where $a_1, \ldots, a_m \in R$ are such that $a_1 | a_2 | \cdots | a_m$.

Proof. The claims hold trivially for N=0, so assume that $N\neq 0$. Thus for all $\varphi\in \operatorname{Hom}_R(M,R)$, $\varphi(N)$ is an ideal of R; and since R is a PID, we have $\varphi(N)=(a_\varphi)$ where $a_\varphi\in R$. Define

$$\Sigma = \{(a_{\varphi}) \mid \varphi \in \operatorname{Hom}_{R}(N, R)\}.$$

Clearly $0 \in \Sigma$ so Σ is non-empty. Since R is Noetherian and $\Sigma \neq \emptyset$, Σ has a maximal element, say (a_{ν}) for some $\nu \in \operatorname{Hom}_{R}(N, R)$. Therefore $\nu(N) = (a_{\nu}) \supset (a_{\varphi}) = \varphi(N)$ for all $\varphi \in \operatorname{Hom}_{R}(M, R)$. Let $a_{1} := a_{\nu}$.

First, we prove that $a_1 \neq 0$. Let M be a free module with basis, say, x_1, \ldots, x_n , and projection homomorphisms $\pi_i : M \to R$ defined by $\sum c_j x_j \mapsto c_i$. Since $N \neq 0$, $\pi_i(N) \neq 0$ for some i. Hence there exists a non-zero element in Σ , which is enough to show that $a_1 \neq 0$, since (a_1) is a maximal element of Σ .

Second, we claim that if $y \in N$ such that $\nu(y) = a_{\nu} = a_1$, then $a_1 \mid \varphi(y)$ for all $\varphi \in \operatorname{Hom}_R(M,R)$. Fix $\varphi \in \operatorname{Hom}_R(M,R)$ and let $(\varphi(y),a_1)=(d)$. Indeed, if $\varphi(y)\in (d)$ and $a_1\in (d)$, then $d\mid \varphi(y)$ and $d\mid a_1$. Conversely, if $d\in (\varphi(y),a_1)$ then $d=r_1a_1+r_2\varphi(y)$ for some $r_1,r_2\in R$.

Let $\psi: r_1\nu + r_2\varphi \in \operatorname{Hom}_R(M, R)$. Then $\psi(y) = r_1\nu(y) + r_2\varphi(y) = r_1a_1 + r_2\varphi(y)$. So $d \in \psi(N)$; hence $(d) \subseteq \psi(N)$. Thus $(a_1) \subseteq (d) \subseteq \psi(N) \subseteq (a_1)$ since a_1 is a maximal element. Since $(a_1) = (d) = \varphi(N)$, $a_1 \mid d$ and $d \mid \varphi(y)$, so $a_1 \mid \varphi(y)$ as desired.

Let $\varphi = \pi_i$ be the projection onto the "i-th coordinate". Then $a_1 | \pi_i(y)$, which holds true for every i. So there exists $b_i \in R$ such that $\pi_i(y) = b_i a_1$ for each i = 1, 2, ..., n. Suppose that $y_1 = b_1 x_1 + \cdots + b_n x_n$. Then $a_1 y_1 = a_1 b_1 x_1 + \cdots + a_1 b_n x_n = \pi_1(y) x_1 + \cdots + \pi_n(y) x_n = y$. Thus $a_1 = \nu(y) = \nu(a_1 y_1) = a_1 \nu(y_1)$. But since $a_1 \neq 0$, it follows $\nu(y_1) = 1$.

We claim that y_1 can be a basis element of M, and a_1y_1 can be a basis elements of N. Note that it suffices to show instead that (a) $M = Ry_1 \oplus \ker \nu$ and (b) $N = Ra_1y_1 \oplus (N \cap \ker \nu)$ – observe that the main claim follows from (a) and (b) by extending $\{y_1\}$ and $\{a_1y_1\}$ to a basis.

We prove (a) first. Suppose that $x \in M$. Then $x = \nu(x)y_1 + (x-\nu(x)y_1) = \nu(x-\nu(x)y_1) = \nu(x) - \nu(x)\nu(y_1) = \nu(x) - \nu(x) + (x)\nu(y_1) = 0$. So $x - \nu(x)y_1 \in \ker \nu$. Hence $M = Ry_1 + \ker \nu$. Now suppose that $Ry_1 \cap \ker \nu$ is non-trivial. Then there is $r \in R$ such that $ry_1 \in \ker \nu$. Since $\nu(ry_1) = r\nu(y_1) = 0$, it follows r = 0 since $\nu(y_1) = 1$. Hence $Ry_1 \cap \ker \nu$ is trivial, as required.

As for (b), we start by assuming that $x' \in N$ so that $\nu(x') \in (a_1) = \nu(N)$. Then $a_1 | \nu(x')$. Thus there exists $b \in R$ such that $\nu(x') = ba_1$. Now consider the decomposition $x' = \nu(x')y_1 + (x' - \nu(x')y_1)$. Clearly $\nu(x')y_1 = ba_1y_1 \in Ra_1y_1$. Observe that

$$\nu(x' - \nu(x')y_1) = \nu(x') - \nu(x')\nu(y_1) = \nu(x') - \nu(x') = 0,$$

so $x' - \nu(x')y_1 \in \ker \nu \cap N$. Using the similar argument as used in part (a), we see that $Ra_1y_1 \cap (\ker \nu \cap N) = 0$, so $N = Ra_1y_1 \oplus (N \cap \ker \nu)$.

Now that all the ground work is complete, we shall go back to prove the two statements of the theorem. For (1), we will prove by induction on m, where m is the maximum number of linearly independent elements of N. If m=0, then N is a torsion module, but this in turn implies N=0. Indeed, since M is free over a PID, M is torsion-free, which in turn implies that the only torsion element of M (hence of N) is 0. If m>0, then $N\cap\ker\nu$ has the maximum m-1 linearly independent elements. By induction hypothesis, $N\cap\ker\nu$ is of rank m-1. Therefore N is free of rank m, completing the proof of (1).

The proof of (2) is also by induction, this time on $n = \operatorname{rank}(M)$. $\ker \nu$ is indeed a submodule of M by (1), and $\ker \nu$ is free. By part (a), $\operatorname{rank}(\ker \nu) = n - 1$. So by induction hypothesis applied to $\ker \nu$ and its submodule $N \cap \ker \nu$, there exists a basis $\{y_2, \ldots, y_n\}$ of $\ker \nu$ such that a_2y_2, \ldots, a_my_m is a basis of $N \cap \ker \nu$, and $a_2 \mid a_3 \mid \cdots \mid a_m$. By (a) we see that y_1, \ldots, y_n is a basis of M; and by (b), a_1y_1, \ldots, a_my_m is a basis of N. Now it remains to show that $a_1 \mid a_2$. Let $\varphi \in \operatorname{Hom}_R(M, R)$ be such that $\varphi(y_1) = \varphi(y_2) = 1$ but $\varphi(y_i) = 0$ for all i > 2. So $a_1 = \varphi(a_1y_1) \in \varphi(N)$. Since $(a_1) \subseteq \varphi(N) \in \Sigma$ and (a_1) is maximal in Σ , we have $\varphi(N) = (a_1)$. Similarly, $a_2 = \varphi(a_2y_2) \in \varphi(N)$, so $a_2 \in (a_1)$, which proves $a_1 \mid a_2$.

22. April 1

Definition 22.1. An R-module M is cyclic if $M = \langle x \rangle$ for some $x \in M$.

Let $\pi: R \to M = \langle x \rangle$ such that $\pi(1) = x$ and hence $\pi(r) = rx$. Then π is surjective, so by the first isomorphism theorem we have $M \cong R/\ker \pi$. But if R is a PID, then there exists $a \in R$ such that $\ker \pi = (a)$. Thus $M \cong R/(a)$. Therefore, a cyclic module over a PID R is of this form. Particularly, $(a) = \operatorname{ann}(M)$.

Theorem 22.1 (Fundamental theorem of finitely generated modules over a PID). Suppose R is a PID, and M is a finitely generated R-module. Then the following are true.

(1) M is isomorphic to the direct sum of finitely many cyclic modules. That is, there exist $r \in \mathbb{N} \cup \{0\}$ and non-units $a_1, \ldots, a_m \in \mathbb{R}^*$ such that $a_1 | a_2 | \cdots | a_m$ such that

$$M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_m).$$

- (2) From the above isomorphism, $R/(a_1) \oplus \cdots \oplus R/(a_m)$ is isomorphic to the torsion submodule of M. In particular, M is a torsion R-module if and only if r = 0, and in this case $\operatorname{ann}(M) = (a_m)$.
- (3) M is torsion-free if and only if M is free.

Proof. (1) M is finitely generated, so let $\{x_1,\ldots,x_n\}$ be a generating set for M of minimal cardinality. Let R^n be the free R-module of rank n with basis b_1,\ldots,b_n . Define $\pi:R^n\to M$ by $r(b_i)=x_i$, and extend by R-linearity to R^n . But π is surjective, so the first isomorphism theorem implies $M\cong R^n/\ker \pi$. $\ker(\pi)$ is a submodule of M, and M is free over R which is a PID, so $\ker(\pi)$ is free over R. Hence there exist a basis y_1,\ldots,y_n of R^n and $a_1,\ldots,a_m\in R$ such that $a_1\mid a_2\mid \cdots\mid a_m$ and a_1y_1,\ldots,a_my_m is a basis of $\ker(\pi)$ by virtue of Theorem 21.1. Thus we have

$$M \cong R^n / \ker \pi = \frac{Ry_1 \oplus Ry_2 \oplus \cdots \oplus Ry_n}{Ra_1 y_1 \oplus \cdots \oplus Ra_m y_m}.$$

Define $\varphi: Ry_1 \oplus \cdots \oplus Ry_n \to R/(a_1) \oplus \cdots \oplus R(a_m) \oplus R^{n-m}$ by $\varphi(u_1y_1, \ldots, u_ny_n) = (u_1 \mod (a_1), \cdots, u_m \mod (a_m), u_{m+1}, \ldots, u_r)$. And so $\ker \varphi = Ra_1y_1 \oplus Ra_2y_2 \oplus \cdots \oplus Ra_my_m \oplus 0^{n-m}$. Putting the isomorphisms together, we see

$$M \cong \frac{Ry_1 \oplus \cdots Ry_n}{Ra_1y_1 \oplus \cdots \oplus Ra_my_m} \cong R/(a_1) \oplus \cdots \oplus R/(a_m) \oplus R^{n-m}.$$

If any of the a_i is a unit, then $R/(a_i) = 0$ so we can drop that component from the direct sum. This means we can assume that any of the a_i 's are non-units.

- (2) This follows immediately, since ann $(R/(a_i)) = (a_i)$.
- (3) Each $R/(a_i)$ is a torsion R-module, so R is torsion-free if and only if $M \cong R^r$.

Definition 22.2. Suppose R is a PID, and M a finitely generated R-module. Then there are $r \in \mathbb{N} \cup \{0\}$ and $a_1 | a_2 | \cdots | a_m$ non-units such that

$$M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_m).$$

Then r is called the *free rank* or the *Betti number* of M. a_1, \ldots, a_m are called the *invariant factors* of M, unique up to multiplication by units. Finally, we call such presentation the *invariant factor form*.

Remark 22.1. The r and the a_i from the above definition are all unique, though this is yet to be proved.

Any PID is a UFD, so R has unique factorization. So if $a \in R$, then $a = up_1^{\alpha_1} \cdots p_s^{\alpha_s}$ where the p_i 's are primes, and u is a unit and $\alpha_i > 0$ for all $1 \le i \le s$. And hence the ideals $(p_i^{\alpha_i})$ are uniquely determined by a. It is also known that $(p_i^{\alpha_i}) + (p_j^{\alpha_j}) = R$ for any $i \ne j$ since $\gcd(p_i^{\alpha_i}, p_j^{\alpha_j}) = 1$ (i.e., $(p_i^{\alpha_i})$ and $(p_j^{\alpha_j})$ are comaximal). By the Chinese remainder theorem,

$$R/(a) \cong R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_s^{\alpha_s}).$$

Apply this to the invariant factor form of M to obtain the following theorem.

Theorem 22.2. If M is a finitely generated R-module over a PID R, then M is the direct sum of finitely many cyclic R-modules whose annihilators are either (0) or generated by powers of primes in R, i.e.,

$$M \cong R^r \oplus R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_t^{\alpha_t}),$$

where $r \geq 0, p_1^{\alpha_1}, \dots, p_t^{\alpha_t}$ are powers of not necessarily distinct primes $p_1, \dots, p_t \in R$.

Definition 22.3. The $p_1^{\alpha_1}, \ldots, p_t^{\alpha_t}$ in the above decomposition are called the *elementary divisors* of M, and the abote decomposition is called the *elementary divisor form*.

23. April 3

In this lecture we will prove the uniqueness of presentation of a finitely generated modules over a PID (i.e., the uniqueness of the Betti number, invariant factors, and elementary divisors).

Theorem 23.1 (Primary decomposition theorem). Let R be a PID, and M a non-zero torsion R-module (not necessarily finitely generated) with a non-zero annihilator a. Suppose that the factorization of a into distinct powers of primes in R is $a = up_1^{\alpha_1} \cdots p_n^{\alpha_n}$ where u is a unit, p_i primes, and $a_i \in \mathbb{Z}_+$. Also let $N_i = \{x \in M : p_i^{\alpha_i} x = 0\}$ for each $1 \leq i \leq n$. Then N_i is a submodule of M with annihilator $p_i^{\alpha_i}$ and is the submodule of M consisting of all elements annihilated by some power of p_i . We have

$$M = N_1 \oplus N_2 \oplus \cdots \oplus N_n$$
.

If M is finitely generated, then each N_i is a direct sum of finitely many cyclic modules whose annihilators are divisors of $p_i^{\alpha_i}$.

Proof. The result is known if M is finitely generated (just group together all factors $R/(p^{\alpha})$, with the same p and varying α). In general, it is easy to prove that N_i is a submodule with annihilator $(p_i^{\alpha_i})$. If R is a PID, then $(p_i^{\alpha_i})$ and $(p_j^{\alpha_j})$ is comaximal if $i \neq j$. Therefore by the Chinese remainder theorem it follows $M = N_1 \oplus N_2 \oplus \cdots \oplus N_n$.

Lemma 23.1. Let R be a PID, p a prime in R, and let F = R/(p) which is a field. Then

- (1) If $M = R^r$, then $M/pM \cong F^r$.
- (2) If M = R/(a) and $a \neq 0$, then

$$M/pM \cong \begin{cases} F & (if \ p \mid a \ in \ R) \\ 0 & (if \ p \nmid a \ in \ R). \end{cases}$$

(3) $M = R/(a_1) \oplus \cdots \oplus R/(a_k)$ where $p \mid a_i \text{ for all } i, \text{ then } M/pM \cong F^k$.

Proof. (1) Consider the map $\pi: R^r \to F^r = (R/(p))^r$ defined by $(\alpha_1, \ldots, \alpha_r) \mapsto (\overline{\alpha_1}, \ldots, \overline{\alpha_r})$ where $\overline{\alpha_i} = \alpha_i \mod (p)$. π is a surjective R-module homomorphism and $\pi(\alpha_1, \ldots, \alpha_r) = 0$ if and only if $p \mid \alpha_i$ for all $i = 1, 2, \ldots, r$. Therefore $\ker \pi = pR^r = pR \oplus \cdots \oplus pR$. Hence $R^p/pR^r \cong F^r \cong M/pM$.

(2) Let M = R/(a). Then pM = pR/(a) = ((p) + (a))/(a). If $d = \gcd(p, a)$, then (p) + (a) = (d). So putting the two things together, we have

$$M/pM \cong \frac{R/(a)}{((p)+(a))/(a)} \cong R/((p)+(a)).$$

Therefore if $p \mid a$, then R/(p) = F. If $p \nmid a$, then gcd(p, a) = d = 1 so (d) = R. Therefore in this case M/pM = 0.

(3) If $M = R/(a_1) \oplus \cdots \oplus R/(a_k)$ such that $p \mid a_i$ for all i, then let $\pi : R/(a_1) \oplus \cdots \oplus R/(a_k) \to R/(p) \oplus \cdots \oplus R/(p)$ be $(u_1+(a_1), \ldots, u_k+(a_k)) \to (u_1+(p), \ldots, u_k+(p))$ where $u_1, \ldots, u_k \in R$. Note that $(u_1+(a_1), dots, u_k+(a_k)) \in \ker \pi$ if and only if $p \mid u_i$ for each i; this is also equivalent to saying that $u_i + (a_i) \in pR/(a_i)$. This means that

$$\ker(\pi) = pR/(a_1) \oplus \cdots \oplus pR/(a_k) = pM.$$

Therefore $M/pM = M/\ker \pi \cong F^k$.

24. April 5

Definition 24.1. If R is a ring, and M an R-module, then the p-primary submodule of M is the submodule of M consisting of elements annihilated by a power of p.

Theorem 24.1 (Fundamental theorem of finitely generated modules over a PID – uniqueness). Two finitely generated modules M_1 and M_2 over a PID R are isomorphic if and only if they have the same free rank and the same list of invariants. Also, two finitely generated modules M_1 and M_2 over a PID R are isomorphic if and only if they have the same free rank and the same set of elementary divisors.

Proof. (\Leftarrow) This direction is evident (for both invariant factors and elementary divisors).

 (\Rightarrow) Suppose that $M_1 \cong M_2$, with an isomorphism $\varphi : M_1 \to M_2$. Note that then $\varphi(\text{tor}(M_1)) = \varphi(\text{tor}(M_2))$ since $am_1 = 0$ if and only if $a\varphi(m_1) = 0$. Hence

$$R^{r_1} \cong M_1/\operatorname{tor}(M_1) \cong M_2/\operatorname{tor}(M_2) \cong R^{r_2}.$$

So by the invariant rank property of free modules over a PID, we see $r_1 = r_2$. Hence we may assume that M_1 and M_2 are both torsion modules. Suppose p is a prime, $\alpha \in \mathbb{Z}^+$, and p^{α} an elementary divisor of M_1 . Suppose that $M_1 \to M_2$ is an isomorphism. Then there exists $m_1 \in M_1$ such that $p^{\alpha}m_1 = 0$, so $p^{\alpha}\varphi(m_1) = 0$. Thus the p-primary submodule of M_1 is

isomorphic to the p-primary submodule of M_2 . Observe that the p-primary component of M_1 is a direct sum of $R/(p^{\alpha})$ for various α , and the same goes for M_2 .

So without loss of generality, we may assume that we have two modules M_1 and M_2 where $\operatorname{ann}(M_1)$ and $\operatorname{ann}(M_2)$ are both generated by a power of p – say $\operatorname{ann}(M_1) \cong \operatorname{ann}(M_2) = (p^k)$. We will prove by induction on k that M_1 and M_2 have the same list of elementary divisors.

If k = 0, then $M_1 = M_2 = 0$, so this completes the base case. Suppose k > 0. The. In M_1 and M_2 have elementary divisors $p, p, \ldots, p, p^{\alpha_1}, \ldots, p^{\alpha_s}$. In other words,

$$m \text{ times}$$

$$M_1 \cong (R/(p))^m \oplus R/(p^{\alpha_1}) \oplus \cdots \oplus R/(p^{\alpha_s}),$$

where $2 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_s$. Now the module pM has elementary divisors $p^{\alpha_1-1}, \ldots, p^{\alpha_s-1}$. Therefore,

$$pM_1 \cong R^m \oplus R/(p^{\alpha_1-1}) \oplus \cdots \oplus R/(p^{\alpha_s-1}).$$

Similarly, the elementary divisors of M_2 are $\underline{p, p, \dots, p}, p^{\beta_1}, \dots, p^{\beta_t}$ where $2 \leq \beta_1 \leq \dots \leq \beta_t$,

so the elementary divisors of pM_2 are $p^{\beta_1-1}, \ldots, p^{\beta_t-1}$.

If $M_1 \cong M_2$, then $pM_1 \cong pM_2$. Furthermore, $\operatorname{ann}(pM_1) \cong \operatorname{ann}(pM_2) = (p^{k-1})$. By the induction hypothesis, we have $\beta_1 - 1 = \alpha_1 - 1, \ldots, \beta_{t-1} = \alpha_s - 1$. Hence s = t and $\alpha_i = \beta_i$ for all $1 \leq i \leq s$.

Also, if F := R/(p), we have $F^{t+m} \cong M_1/pM_1 \cong M_2/pM_2 \cong F^{t+n}$ by Lemma 23.1, so t+m=t+n, or m=n. Hence M_1 and M_2 have the same set of elementary divisors $p, p, \ldots, p, p^{\alpha_1}, \ldots, p^{\alpha_t}$.

m times

We shall now show that M_1 and M_2 have the same invariant factors. If $a_1 | a_2 | \cdots | a_m$ are invariant factors of M_1 and $b_1 | b_2 | \cdots | b_n$ those of M_2 , then we can find elementary divisors of M_1 by factoring a_1, \ldots, a_m , and of M_2 by factoring b_1, \ldots, b_n . Since $a_1 | \cdots | a_m, a_m$ contains the largest power of each prime appearing in a_1, \ldots, a_{m-1} . Similarly, a_{m-1} contains the largest power of each prime appearing in a_1, \ldots, a_{m-2} , and so forth.

In a similar fashion, we get elementary divisors of M_2 from b_1, \ldots, b_n . Since the list of elementary divisors of M_1 and M_2 are the same, a_m and b_n can only differ by a unit (i.e., $a_m = ub_n$ for some unit $u \in R$). This hold for a_{m-1} and b_{n-1} , and so on. Hence m = n and $a_i = u_ib_i$ for all $1 \le i \le n$ where each u_i is a unit.

Corollary 24.1. Let R be a PID, and M a finitely generated R-module.

- (1) The elementary divisors of M are the prime power factors of the invariant factors of M.
- (2) The largest invariant factor of M is the product of the largest of the distinct prime powers amongst the elementary divisors of M; the next largest invariant factor of M is the product of the largest of the remaining distinct prime powers, and so forth.

Corollary 24.2 (Fundamental theorem of finitely generated abelian groups). If G is a finitely generated abelian group, then

- (1) there exist $r, n_1, \ldots, n_s \in \mathbb{Z}$ satisfying $G \cong \mathbb{Z}^r \oplus \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_s\mathbb{Z}$ such that: (a) $r \geq 0, n_j \geq 2$ for all j(b) $n_1 | n_2 | \cdots | n_s$.
- (2) The expression in (1) is unique.

Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Rd, Halifax, NS, Canada B3H $4\mathrm{R}2$

E-mail address: hsyang@dal.ca