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1. SEPTEMBER 14: SOME BASICS

For the sake of completeness, we are going to review some basics first.

Definition 1. For n € N = {1,2,3,...}, let p, be the n-th prime. That is, p; = 2,p; =
3.

Theorem 1 (Euclid). There are infinitely many primes.
Proof. Suppose that there are only finitely many primes, say p1,...,p,. Consider
m:=pips...pn+12>2.

By the fundamental theorem of arithmetic, m is a product of primes. Thus p | m for
some k € N with 1 < k& < n. Then py | (m — pip2...p,) = 1. Then py | 1, which is a
contradiction. 0

Remark 1. There are many different ways to prove Theorem [I] - for instance, using topology.
See Furstenberg’s work (doi:10.2307/2307043).

Definition 2. For = € R, let
m(x) := #{p < x : p prime}.

By Theorem [1} we have 7(z) — oo as x — co. Our goal is understand how “large” (z)
is.

Proposition 2. Forn € N, we have p, < 22".

Proof. We prove this result by induction. For k =1, clearly p; =2 < 22" = 4. Suppose that
the result holds for 1 < k£ < n. We have seen in the proof of Theorem (1| that

Prt1 < p1p2 - pn+ L
Thus by the induction hypothesis, it follows

Pt < 2210292 41 =022 < 92"
By induction, the result follows. .

Corollary 3. For z € R with x > 2, we have w(x) > loglog x.
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First proof. Clearly the result holds for 2 <z < 4. For x > 4, let s € N satisfy
22" < < 2%

By Proposition [2| we have p, < 22" < x. Thus 7(z) > s. By taking logarithms twice, we see
that
<22

= logz < 2°"log 2

log (122

log 2 < s+ 1.
It follows that
m(x) > s> M — 1 >loglogx.
- log 2
The last inequality is left as an exercise (Hint: log2 < 1 and calculus). O

Second proof. Note that for all primes p, we have
-1_1 1\
P= s s (1 . —) <2

Thus for x > 2, we have

I (R =y

p<lz p<lz n<z

Thus

log log
> _© o7
mw) 2 log 2

as required. O

> loglog z,

Conjecture (Fermat; proved to be false). The numbers of the form 22" +1 for n € NU{0}
are primes.

Definition 3. The numbers of the form F,, := 22" + 1 are the Fermat numbers.

Remark 2. Fermat’s conjecture is false. Indeed, F, is a prime for n = 0,1, 2, 3,4. However,
F5 is not, since 641 | F5 (proved by Euler in 1732). Also, it is known that Fg,..., Fy are
composite.

Claim 1. F,|(F,, — 2).
Proof. We have F,, — 2 = 22" — 1. Write z = 22". Then

— 2k 2
= = — ...—1€eN.
i Tl T x +

The claim now follows. O

Theorem 4 (Pélya). For m,n € N with n < m, we have (F,, F,,) = 1.
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Proof. Let m = n + k for some k € N, and let d = (F,, F},). Since d| F,, and d | F,,, by
Claim (1| we have d|(F,, —2). Thus d|2 so d is either 1 or 2. But since 2{F,,, indeed d = 1,
as desired. O

Remark 3. From Theorem [4, we obtain another proof of Theorem [I] and Proposition [2]

2. SEPTEMBER 16

Theorem 5. For x > 2, we have

log x
> .
(@) = 5109

Also, for n > 1, we have p, < 4™.

Proof. Let 2 = p1,ps,...,p; be the primes less than or equal to . For n € N with n > z,
write n = n?m with n; € N and m square-free. That is, m = p{* - - -p;j such that e; € {0,1}
for each 1 = 1,2,...,7. Thus, there are at most 2/ possible values for m. and at most \/z
possible values for n. Thus it follows that 27\/r > z, or

20 > \/x. (1)

But then recall that j = m(z), so indeed we have (from (I])) that m(z)log2 > logz/2. Hence
the first claim follows.

Also, take x = p,. Then j = n = 7(p,). So again from , we have 2" > /p,, or

equivalently 4™ > p,. O

In 1896, Hadamard and de la Vallée Poussin proved independently the prime number
theorem. More precisely, they showed that (conjectured by Gauss),

Let n € N and p a prime. Then the exact power dividing n! is

lognJ
log p
n n
IR}
E>1 L? 1 P
Claim 2. We have
H p?=0 (mod N),

p<2n
where N = (2:), where 1, € NU {0} satisfies p'» < 2n < p'»*1,

Proof. Note that the exact power of p dividing (2n)! is
> (7]
k ?
=1 LP

and the exact power of p dividing n is



Thus the exact power of p dividing (2") is

n

(5] [5]) =

since

The claim now follows. O

Theorem 6. For x > 2, we have

3log2 x x
log 2 :
( 8 )logm<ﬁ(w)<<6 o8 )logm

Proof (Erdds). Consider first a lower bound for m(z). Note that the binomial coefficient
2 !
n\ _ (2n) cN.
n (n!)?

2n
< " < (9 7r(2n).
()< T v <o

p<2n

From Claim 2] we have

Note that

Cee 2> 97

2n\  (2n)2n—1)---(n+2)(n+1) n+1 n+2
( )_ 1-2.--..-m, -1 9

By the above two inequalities,

n

nlog2 log 2 2n
2n) > = .
m(2n) 2 log(2n) ( 2 ) log(2n)

Note that z(log z)™! is increasing for z > e. For # > 6, let n € N satisfy %x < 2n < z. Then

log 2 2 log2) 2 log 2
W(ZE)Z?T(2TZ)Z(Og)< " )Z(Og) 43; ZBOg L
2 log(2n) 2 ) log (3x) 8 log x

Also, we can check that the lower bound holds for 2 < x < 6. We now consider an upper

bound. Note that
2n
I+ /(7))
n

n<p<2n
Therefore [] p < (141)*" =22". On the other hand, we have the following lower bound:

n<p<2n
H p> n7r(2n)—7r(n)‘

n<p<2n

Hence,

It follows that
n7r(2n)—7r(n) < 2271'
4



Thus,
7m(2n)logn — w(n)logn < (log2)2n.
In other words,
7(2n)logn — w(n) log <g) < (log2)2n + (log 2)m(n) < (3log2)n.
Take n = 2*. Then
(28 1) log 2F — w(2%)log 257! < (3log 2)2"
m(2¥)log 2871 — w(2"1) log 2772 < (3log 2)2F !

7(8)log4 — m(4)log2 < (3log 2)4,
so upon adding those inequalities we see that
(2 1) log 28 < (3log2)(2F + 21 .- +4) + 21og2 < (3log 2)2~ .
Thus

il 9k+1
(2" < (3log 2) (log2k> .

So for x > 2, let k € N with 2¥ < 2 < 21, Then 7(z) < m(281). Hence for x > e,

k+1 2k T
) < (3log2) 2 o < Glog?) (15 ) < (61og

Also, we can check that the upper bound holds for 2 < z <e. O

3. SEPTEMBER 18

In 1845, Bertrand showed that there is always a prime p in the interval [n,2n] for n € N
provided that n < 6 - 10°. He conjectured that this is always holds. Chebyshev proved this
in 1850.

Proposition 7. Forn € N, we have [] p < 4™.

p<n

Proof. We prove this result by induction. The claim holds when n = 1 and n = 2. Suppose
that the result holds for 1 < k& <n — 1. Since for n > 2, if n is even then

1[r=11»
p<n p<n—1
Thus we can consider only when n is odd. Write n = 2m + 1 and consider (2";:1). We have
2m +1
I » -
m
m+1<p<2m+1
Note that (Zmﬂ) and (2"”1) occur in the binomial expansion of (1 + 1)*"*1 and (2"::1) =

m m+1

(27;”111). Thus (2":;“1) < @ = 4™, By our induction hypothesis, we see

Hp:(H?)( 11 p)s4m+1.4m:42m+1,

p<2m—+1 p<m+1 m+1<p<2m+1
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as required. [l
For o € NU {0}, we write p®||b to mean that p*|b but p>*14b.

Proposition 8. If n > 3 and p is a prime with %n <p<n then pT(Q:)

Proof. Since n > 3, if p satisfies 2?” < p < mn, then p > 2. Thus p and 2p are the only
multiples of p with p < 2n and so p? || (2n)!. Since %”'< p < n, we have p || nl. Hence
p?|| (n!)%. The result follows upon noting that (*") = % O

4. SEPTEMBER 21: CHEBYSHEV’S THEOREM

Theorem 9 (Chebyshev). Forn € N there exists a prime p with n < p < 2n.

Proof (Erdds). Note that the result holds for n = 1,2,3. Suppose that the result is false
for some n € N with n > 4. Let p be a prime dividing (2") and p* || (27?) By our

n

assumption, p < n. Also, by , we have p < %n Let 7, be defined in the proof of Theorem
@, ie, p» < 2n < p'»*. We have seen in the proof of Theorem 6 that «, < r,. Thus
pr < p'» < 2n. If oy > 2, then p? < 2n, i.e., p < v/2n. By Proposition , we have

2n 2 2
< (e < 437 w(v/2n) < 437 Zn.
() < [ TTo| | TLo | < a3 eoro™ < aivn
p<2n p<2n
ap<l1 ap>2

Note that (") is the largest (2n + 1) terms in the binomial expression of
2n 2n 2n
1+1)* = :
o= () (7)o ()

2n 22n
> .
n)  2n+1
Combining the above inequalities, we have

4n
2n+1

Therefore,

< 437 (2n)V?",
so we have

45 < (2n)V¥'(2n 4+ 1) < (2n)V22,
Taking logarithms, we find that

g log4 < (V2n + 2)log(2n).

By calculus (exercise!) one can show that the above inequality is false for n > 512. This

implies that the statement of the theorem holds for n > 512. By checking all cases for

n < 512, we see that the result holds for all n € N. [l
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5. SEPTEMBER 21: MOBIUS FUNCTION AND VON MANGOLDT FUNCTION

Notation: let f and g be functions from N or R, to R, and suppose that g maps to R.

Definition 4. The big-O notation f = O(g) means that there exist ¢, C' € R, such that for
x > c we have |f(x)| < Cg(x). The little-O notation f = o(g) means that
f(z)

lim —= = 0.
=00 g(x)

Finally, f(x) ~ g(z) (i.e., “f is asymptotic to ¢”) means

m 18 _
g

Ezample 1. 20z = O(z),sinz = O(1), [ &5 du = O(z™'), z = o(2?), sin(z) = o(log z)

x

’ (105;1)2
0 (@); r+1~x,x+ /v~ 2 Also, recall the prime number theorem:

X

m(x) ~ gz’

Definition 5. The Mobius function p is defined by

(n) (—1)" if nis a product of r distinct primes and is square-free
n) —
a 0 otherwise.

Ezample 2. 12 is not square-free, so u(12) = 0. On the other hand, u(15) = u(3-5) =
(1) = L and pu(30) = p(2)u(3)p(5) = (-1)° = 1.

Definition 6. Let n = pi* - - - p?” be the unique factorization of n into distinct prime powers.
Then N := p1ps - - - p, is called the radical of n.

1 ifn=1
Proposition 10. ) u(d) = {O ifn .
dn otherwise

Proof. If n = 1, then the result is immediate from the definition of u(n). If n > 1, let
n =pi'---pd be the unique factorization of n into distinct prime powers, and let N be the
radical of n. Since p(d) = 0 unless d is square-free, we have

S uld) =3 )
dln d|N

Note that the divisors of N are in one-to-one correspondence with the subsets of {p1,...,p,}.
Thus the latter sum contains 2" summands. The number of k-element subsets is (2) and the
corresponding divisor d of such a set satisfied p(d) = (—1)*. Therefore

>t = ki%(—l)'f(;) —(-1y =0,

so the claim follows. O



6. SEPTEMBER 23

Remark 4. Some analogous relations between Z and F,[¢]:

Z Iy 1]
units {1} F,
norm |a| =absolute value |f] = qi87
it : . =
unique factorization every positive mtgger > 1 every monic polyngm}al of dggree >1 .
is a product of primes is a product of monic irreducible polynomials
Z Tdegf: H <1+Tdegv+T2degv+n_>
fER[Y] vEF,[]
f monic v monic irred
_ H (1 _ Tdegv)—l
vER[t]
v monic irred
oo
=[Ja-7")"
d=1

Proposition 11 (Mobius inversion formula). f(n) = (1 % g)(n) = %g(d) if and only if
g(n) = (px f)(n) = %M(d)f(n/d).

Proof. (<) Suppose that g(n) =>_ u(d)f(n/d). Then we have
din

S o) =S Y utels (¢)

dln din e|ld

= S s (les=1)

est=n

=D f(s)Y nle).

s|n el
(*)
The claim follows upon noting that (x) is 1 if n = s and 0 otherwise.
(=) Suppose f(n) = > g(d). Then we have

dln
> s (2) = Y uia Yot
dln dn el
= 3" udgle) = g(e) Y u(d) = g(n). U
des=n eln d|%

Definition 7. For n € N, the von Mangoldt function, denoted by A(n) is defined by

0 otherwise
8

1 if n = p” f
A(n):{ng ifn=p orsomekzeN'



Also for x € R, we define

O(x) =Y logp = log (Hp>

p<w p<w

Yl)y= Y logp=> An).

ph<z n<x
for some k € N

Note that

p<xz
Also p? < z is equivalent to p < x'/?; similarly, p® < z is equivalent to p < z'/? and so
forth. Thus we have ¥(z) = 0(z) + 0(z"/?) + 0(z*/3) + ---. Since 2™ < p™ < x we see that
0(z*/™) = 0 provided that m > f}%. Thus

Llog x
log 2

U= D2 o),

k=1
Since
O(z) = Zlogp < zlogz,
p<w
we see that
ks s3] g |
0(z'/*) < 2 *log(2M*) < £1/? “logz = O(z'?(log x)?).
;()_; g(z’") < ’;kg (z/*(log z)%)
Therefore
U(x) = 0(x) + O(z*(log )?). (2)

But what we don’t know at this point is whether #(x) is the dominant term, which is what
we want. We have seen in Theorem |§| that m(z) < clﬁ for some ¢; > 0. Thus

0(z) = Zlogp < m(x)logz < ¢z
p<z

Combine this with , we see that ¢(x) < cox for some ¢ > 0. Also, we have seen in the

proof of Theorem [6] that
2n 2n
2" < T'p
) (1
p<2n
with p™» < 2n < p™»*1. It follows that

2 log 2
nlog2 = log(2") < log ( n) < Z L o8 nJ logp < 9(2n).
n

p<2n

For x > 2, let n € N with 2n < x < 2n + 2. Then we have

(@) > 9(2n) > nlog2 > T2

9

log 2.



Thus there exists ¢3 > 0 such that ¢(z) > c3z. Again, combine this with (2)), we see that
0(z) > cya for some ¢y > 0.

7. SEPTEMBER 25

Theorem 12. 7(z) ~ 22 L)

log z logz*

lo

Remark 5. By Theorem , to prove that 7 (x) ~ = it suffices to show that m(z) ~ 6(z) ~ .

Proof of Theorem[13. We have seen that 1(x) = 0(x) + O(x'/%(log z)?). Since 0(x) > cyx it
follows that
() ()

log = ~ logx’
Thus it suffices to show that m(z) ~ 22 Note that

logz*®

Thus

that is,

Note that for any ¢ > 0, we have

0(z) =) logp>log(z' ") > 1> (1-d)loga(r(x)—n(z'")).

p<w a0 <p<a
Thus
0(z) + (1 = &) logx(z'~%) > (1 — §)(log z)ma
% + 217° > 7(z)
1 N v %logx _ w(x)logx
1—-946 O(x) —  O(x)
Given any £ > 0, we can choose § > 0 so that 15 < 1+ £. Since 6(x) > ¢yz for some ¢4 > 0
there exists xg € R such that for x > x, % < 5. Thus for x > xy, we have
T <1t
Since
1< mo)logz 1+e,
0(x)
by choosing e to be arbitrarily close to 0 the result follows. 0

The following summation formula by Abel is useful:
10



Proposition 13 (Abel’s summation formula). Let {a,}°; be a sequence of complex num-

bers. Let f be a function from {x € R:x > 1} to C. For x € R, we write

~Yan

n<x

If f has a continuous first derivative for x > 1, then
S anf () = Aw)0) - | A
1

Proof. Let N = |x]. Then
Y anf(n) = AQ)F(1) + (A@2) = AL)F(2) + - + (AN) = AN = 1) f(N)

n<N

=AM = fR)+--+ AN = DN = 1) = f(N)) + AN) f(N

Note that for i € N and v € R with ¢ < wu < i+ 1, we have A(u) = A(¢). Thus

Q@) — i+ 1) = [ A ) du
It follows that
S auf(n / A(u) f'(u) du -+ A(N)F(N).

n<N

Also, for x > u > N, we have A(u) = A(N). Thus

/Nw A(u) f'(u) du — A(z)(f(z) = f(N)) = A(x) f(z) — A(N) f(N).

or equivalently

Combine and , then we get

S anf(n) = 3 anf(n) = Ale) () — / " A f () du,

n<z n<N

as required.

).

O

Definition 8. Given z € R, we denote {z} the fractional part of x. That is, {z} := 2 — |z].

The Euler-Mascheroni constant (or Euler’s constant) v is
—1—/ {} =0.57721...).

Theorem 14. > 1 =logz+ v+ O(z ™).

n<x

Proof. Take a,, = 1 and f(u) = u~'. Then

:letxj

n<x

11



By Abel’s summation formula,

Yasn )

n<x

:1—|—O(:c1)+/ —du — Mdu
1 U

o u?

=1+0(z7") +logx — (/loo%du—/:o%du>

— -1 = u]

=logz +v+O(x )—i—/x ?du
<1

§10gx+’7+0(x_1)—|—/ ﬁdu.

xT

Note that [ & du < < so the integrand is indeed O(z~'). The result follows.

8. SEPTEMBER 30

Let’s recall the Abel summation formula:

S anf(n) = A@)f(x) — / " A(w) () du

n<x

where A(z) = > a,.

n<x

Theorem 15. We have

Z # =logz + O(1).

n<x

Proof. Let a, = 1 and f(n) =logn. By Abel’s summation, we have

Zlogn: |x] logx—/lm [Jw) du

u

n<x

:(x—{x})logx—/xu_—{u}du

1 u
=zlogx + O(logx) — (z — 1) —i—/ @du
1 u

=zlogx —x + O(log x).
12



Furthermore,

n<x p<zx k=1 p
x x
= hJ logp =) bJ (n)
<=z nsz

Since Y A(n) = ¢(x) = O(x), it follows that

n<lz
A

Zlogn = xzﬂ + O(x).

n<x n<x n
S0

M) g+ 0
zZT =zlogz + O(x),
n<x
or % =logz + O(1), as desired.
n<x
1

Theorem 16. Z 8P _ logz 4+ O(1).

p<w

Proof. By Theorem [15] we have

lo A(n lo
SoREL_y ALy 5 e

p<z p n<z m>2pm<zx

=logz 4+ O(1) — Z Z l(;%np‘

m>2pm<x
Note that
log p 1 1
D> <> (st ) loep
m=>2pm <z p P p p
log p = logn
— < O(1
2p-1 = L1 O
Combining the above two inequalities, it follows ij L =logx+ O(1)
psz

13



Theorem 17. There exists 5 € R such that

Z% = loglogz + 3+ O((logz)™").

p<z

Proof. Let

10% if n = pis a prime

a =
" 0 otherwise.

Write

“Yan

n<x

By the Abel summation formula, we have

1 Alr) 7 Au) ’
Z]_? ~ logx +/1 u(logu)2d '

p<w

By Theorem , we can write A(z) = ) k’% = log x + y(x), where

p<z

y(z) = Z loip —logz = O(1).

p<z

Also, we note that A(u) =0 for 1 <wu < 2. Thus
1 1

Z 1_ <_) N / logu+7(w)
ol log x 9 u(log u)

| v 1

= 1+/ du +/ du+ O

5 ulogu 9 (logu log =

It follows that

lel—l—ﬂoglog:c—loglogQ)—i-/ L)d —i—O( )
2 u( log x

P log u)?
R ((D) F o) 1
= logl 1 —loglog2 ————du — du
oglogz + oglog2) +/2 u(log u)? “ /x u(log u)? +O <logx
—0(35%)

log =
1
=loglogz+ 5+ O (—) :
log x

where =1 —loglog2 + f2 s du is a constant.

logu
Definition 9. The constant 3 is called Merten’s constant.
Remark 6. One can show that there is a relationship between 8 and . More specifically,
1 1
B=v+ Zlog (1——> + -] =0.261497. . .,
> p p

where 7 is the Euler-Mascheroni constant.
14



9. SEPTEMBER 30: RIEMANN (-FUNCTION

For s € C, consider the series

which converges absolutely if Re(s) > 1.

Definition 10. For s € C with Re(s) > 1, the Riemann zeta-function is defined by

[e.9]

Remark 7. Note that
1\ 11
H(l——s) :H<1+—S+TS+"')-
» p » p p

Since a typical term in the above product is of the form
1 1 1

a1S8 ars -

pl .. pk (p(lll .. pzk)s ns

(where n = pi* - - - pi¥), by the fundamental theorem of arithmetic for Re(s) > 1 we have

o0

M(i-2) -SL-co

p n=1

-1

Definition 11. The product ] (1 — pi) is called the FEuler product representation for
p

¢(s).

10. OCTOBER 2

Theorem 18. The following are true:
(1) For s € C with Re(s) > 1, we have

((s) = s Oo{u}du.

s—1 1 u5+1
Therefore it follows
lim (s — 1){(s) = 1.

s—1+

(2) ((s) has analytic continuation to Re(s) > 0 with s # 1. It is analytic except for a
simple pole at s = 1.

Proof. For (a), apply Abel’s summation formula with a, = 1 and f(x) = 7°. Then we have

1 x
Lol ey,
n<zx n® ° 1 'L(,S+

15



By letting © — oo we see that for Re(s) > 1,

<1
_S/ —du — {}
1 us 1 us—l—l
s * {uj
1 ¢ 1 us+1du

Therefore (s — 1)¢(s) = s — s(s — 1) [~ {:fl du. Since {u} = O(1), the above integral
converges for Re(s) > 0. It follows that hrg(s —1)((s) = 1.
5—

As for part (b), we see that from the identity theorem for analytic functions, since

I j:fl du converges for Re(s) > 0, ((s) has an analytic continuation to Re(s) > 0 with
s # 1. OJ

Theorem 19. ((s) has no zero in the region Re(s) > 1.

Proof. If Re(s) > 1 we will show in Assignment #2 that ((s) # 0. Recall that |u| < 1, we
have

—log(1 —u)) u_
n

Thus

log ((s) = log (H (1 - 5)) = Zi% | p,1w~

Write s = 0 4 it with o,t € R. Then
p it = emMtoer — cos(—ntlogp) + isin(—ntlogp) = cos(ntlogp) — isin(nt log p).
Thus Re(p~™) = cos(nt log p). It follows that
" cos(ntlo
Re(log (o + it)) Zzp ( gp)‘

n

p n=l1

Note that for 6 € R,
0<2(1+4cosh)? =2+4cost +2cos?f + 3+ 4cos b + cos(20).
Thus

g g b ( (ntlogp) + cos(2ntlogp)) > 0.
n
p n=l1
This implies that

Re(3log ((o) + 4log(o + it) + log(o + 2it)) > 0.
Particularly, for ¢ > 1 and ¢ € R, we have

1C(0)PI¢(o + it)[*I¢ (o + 2it)] > 1. (%)

16



Recall that lim+(5 —1)¢(s) = 1. Hence

s—1
li = li — 17
lim [¢(o)] = lim [(o —1)7]
Suppose that 1+ itg is a zero of ((s) of order m > 1, i.e., when o + it — 1 + ity we have
C(o+it) = ((o +it) — (1 4 ity))go + it)

for some function g with g(1 + itg) # 0. Since ((s) has a pole at s = 1,ty # 0. Also, by
taking ¢t =ty we have

lim |((o +ity)| = C4

o—1t

for some constant C # 0. Hence
Tim, [¢(o + itg)| = T [Ci(7 — 1))
Also, since 1+ 2it( is not a pole of ((s) there exists Cy such that
o—1t

Since m > 1, we have
lim_|¢(o)° - [C(e +ito)[* - [¢(0 + 2ito)| = lim [(o — 1) cj(o — )™ - e =0,
o—1t o—1t
but this contradicts (). Therefore ((s) has no zeros in Re(s) > 1. O

11. OCTOBER 5

We proved last class that:
(1) the analytic continuation of {(s) to Re(s) > 0
(2) the non-vanishing of ((s) on Re(s) = 1.

These are the main ingredients to prove the prime number theorem.

Theorem 20 (Donald J. Newman). Let a,, € C with |a,| <1 forn € N. Consider the series

00
)
ns

n=1

which converges to an analytic function, say F(s) for Re(s) > 1. If F(s) can be analytically
continued to Re(s) > 1, then the series converges to F(s) for Re(s) > 1.

Proof. Let w € C with Re(w) > 1. Thus F(z + w) is analytic for Re(z) > 0. Choose R > 1
and let 0 = §(R) > 0 so that F'(z + w) is analytic on the region. Define

I':={zeC:Re(z) > —0d,|z| < R}.

Let M denote the maximum of |F(z 4+ w)| on T, and let I’ denote the contour obtained by

following the boundary of I' counterclockwise.
Let A be the part of I" with Re(z) > 0 and B the remainder part of I'. For N € N,
consider the function

z  R?
17

F(z 4 w)N~* (1 + i) ;



which is analytic on f, except a (possible) simple pole at z = 0. Then by Cauchy’s residue
theorem, we see

2 F(w) = /FF(z +w)N? (1 + ﬁ> i

:/,4F(z+w>Nz(1+@) dz+/BF(z+w)Nz (2+%) dz.  (5)

We see that on A, F'(z + w) is equal to its series.

Split the series as
N

An
SN(Z + ’LU) - Z nFtw

n=1

and

Ry(z+w)=F(z4+w) — Sy(z +w).
Note that Sy(z 4+ w) is analytic for z € C. Let C be the contour given by the path |z| = R
taken in counterclockwise direction. Thus by Cauchy’s residue theorem, we have

DriS(w) — /CSN(Hw)NZ (1 +ﬁ) dz.

Note that C = AU (—A) U {iR, —iR}. Thus

. (1 (1 z
QWZSN(w):/ASN(z—I—w)N ( +ﬁ) dz—i—/ASN(z+w)N <Z+ﬁ) dz.

By changing variable z to —z in the above integral, we see that
(1 1 z
/_ASN(Z—l—w)N ( RQ) dz—/SN —z4+w)N~* (;—i_ﬁ) dz.

2miSn(w) =€4 (Sn(z +w)N* + Sy(—z +w)N %) (1 + i) dz.

Thus

z  R?
Combining this with , we have

2mi(F(w) — Sy (w)) = /A (Ry(z + w)N* — Sn(—2 + w)N~?) (1 + i) dz

z  R?
. 1
+ [ F(z+w)N R2 dz
B

We now need to show that Sy(w) — F(w) as N — oo. Write z = = + iy with z,y € R.
Then for z € A, we have |z| = R and thus

1 n z 2z
=z R? RY
Since |n*| = n” we have
. 1 =~ 1 > 1 1
RaGolS Y mmm s Y —ms [ omae-
n=N+1 n=N+1

18



Also, we have
N

Nl'
|Sn(—z + w)| Z $1_N$1+Zux Ydu < N*7t 4 —.

T

n=1 n=1

Therefore [Sy(—z + w)| < N* (+ 4+ 1). Combining the above estimates, we have

1

/(RN(z+w)NZ—SN(—z+w)N_Z)( RQ) dz
A

1 1 1
< x o - o
_/A(WCN PN (N+x>zv )Rde

2 1 4 2z
—/IA(E—FN)ﬁdZ /A(E—FNR2> dz

_47T+27T
 R?2 N’

We now estimate the integral over B. Divide B into two parts: Re(z) = —¢ and —§ <

Re(z) < 0. For z € B with Re(z) = —0 since |z| < R we have
1z 1 )_ ‘ m 2|2 < 2
=0 R?) — 4

TR
Y a
SN<Z+w) - anZw’
where Re(w) > 1. We have shown that
1
2mi(F(w) — Sy (w)) :/(*)dz+/ F(z—i—w)Nz( + 2) dz.
A B R

T 27T
<F+R

Let

(6)

Divide B into two parts: Re(z) = —¢ and —) < Re(z) < 0. For z € B, |% + Z| <257

Since |F(z + w)| < M for z € B, we have

/BF(,erw)J\fz(1 R2> dz

2
[ T
/ MN™ 5d2+2‘/ MN Qd‘

AMR 4M v
S—(;Né +ﬁ ‘/;(SSUN dx

(108%1\7_N<S lloga:)(ex)
AMR 4Mé
< + .
~— ON° = R2logN

Combining (??) and (7)) gives us

47 27  4MR AM 6
2mi(F — < 4 —
2ri(Flw) — Sx()| < T+ 5+ 50 + e




or equivalently
2 1 MR 2M§

RTN TN T Blog N
Given € > 0, choose R = 2. Then for N sufficiently large, we have |F(w) — Sy(w)| < e. It
implies that Sy(w) — F(w) as N — oo, as required. O

|F(w) = Sn(w)] <

12. OCTOBER 7
Theorem 21. Let p be the Mobius function. Then

Proof. Fro Re(s) > 1, we have
1 1 -
=11 (1 - —s) = M
C(8) ) iime p*) = on
We have seen in Theorems (18| and [19| that the function (s — 1){(s) = f(s) is analytic and

nonzero in Re(s) > 1. Thus
1 s—1

C(s)  fls)’
which is analytic in Re(s) > 1. In particular, it converges at s = 1. Since ((s) has a (simple)
pole at s = 1, then ((s)~! has a zero at s = 1. It follows that

) 1
2o T

as required. O

Theorem 22. ) pu(n) = o(x).

n<x

Proof. Take a,, :== p(n)/n and f(u) = u. Then
A =31 o

n<x

by Theorem Now the theorem follows immediately from the Abel summation formula:
note that

Zu(n) = zA(z) — / A(u) du = o(x). O
n<x 1

Definition 12. We say (z1,...,x,) € R™ is a lattice point if x; € Z for all i = 1,2,...,n.
Theorem 23. Let d(n) be the number of positive divisors of n. We have then

n n n
d(m) = H —nl 2y — 1)n + O(v/7),
3~ ) = 37| 2] = wiogn + (27~ )+ O
where 7y is the Fuler-Mascheroni constant.
20



Proof. Let D, := {(z,y) € R? : z > 0,y > 0,7y < n}. Let (z,y) € D, be a lattice point.
Note that each lattice point in D, satisfies zy = m for some m € N with 1 < m <n. Thus

n

>~ is the number of lattice points in D,,. Note that each fixed z € {1,...,n}, there are | 2|

m=1
many y with xy < n. Hence

>odm) =Y |2
Divide the lattice points in D,, intomt;llree disjoiflglregions:
Dy = {(z,y) e N* 2y <n,z <y}
Dyo = {(v,y) e N* 2y < n,z >y}
Dy 3= {(v,y) e N* 2y < n,z =y}
We have |D,, 1| = |Dpal|. Let (z,y) € D,1. Then 2? < 2y < n, or z < /n. Also, for a fixed
2, the number of y satisfying zy < n and y > x is \_%J — |z]. Also, |D,, 3| = |v/n]. Also,

n

a
S (2] =23 (|2 1) e

r=1

= 2n(log [ /i +7 + O(n™1/%) —2 <W (L) + 1>> oW,

with the last equality following from Theorem [14}
Since [/n] =+/n —{y/n} and log(1 — r) = O(r) for 0 < r < 1 we have

log(|v/n]) = log(v/n — {v/n}) = log (\/ﬁ (1 - %)>

=log v/n + log (1 — {—j_z}) = logv/n + O(n~Y?).

Combining all the estimates presented here, we get

S dm) =" EJ = 2n(log Vit + 7 + O(n~Y2)) — n+ O(v/n)

=1

=nlogn + (2y — 1)n + O(+v/n). O
13. OCTOBER 9
Proposition 24. Given a function f: R, — C, let

=31 ()

n<x
Then

@)= umF (%)

n<x

21



Proof. By Proposition [10}, we have

f@) =" (Zu(k)) 7(5)

n<z \ kin
= > uhf ()
kl<z

k<z <z

z
logz*

Theorem 25 (Prime number theorem). m(x) ~

Proof. By Theorem [12] it suffices to prove that

Y(x) = logp~ .

pF<z

Let

By Proposition [24] we have

v(@) = o) +29 =Y umF ().
that is,
V(@) = +0(1) + Y pm)F (%)

Our goal is to show that

We have

= > ulk) (Zf (%)) - éuw (5)-



Note also that

o (z )

:%A(m) L%_m

L (1)
= log(|z]!) = ;logn

P pk

Note that the sum L%J + {%J +--- ends at LiJ where p* || z.
We have seen in the proof of Theorem [15] that

Zlogn =zlogz — z + O(log z),

n<x

from which it follows

Zzﬁ(%) =zlogz — x + O(log ). (9)

n<x

By Theorem [23]

n=1
Note that
[ l2)] < 522 < 37 | Let+ 2
> =2z =[5
Therefore
=]
3 [Z] = sloga + (23 - 1o+ O(”) (10)
n=1

Combining , @D, and gives

F(z) = (zlogx —x + O(logz)) — (zlogz + (g?:y — 1)z + 0(z?) + (2yz + O(1)) = O(z'/?).



Hence there is a constant ¢ > 0 such that for > 1, we have |F(z)| < cz'/?

and t > 2. Then

e ()| < S ()< 2e(;)"

n<t (11)

=/t dy z\ 1/2 cx
<21 / Y 2 (149 <—> _9) <2
<cx ( + e =S cr + / W/

Observe that F' is a step function. In particular, if a € Z with ¢ < x < a + 1 then
F(z) = F(a). Thus

S umF (T)=FQ) Y p)+F@) Y a4+ FE=1) Y uln).

. Suppose t € N

So we have

AN
~
)
E
\_/
e
N
=
S

2<i<t

c¢i'/? - max Z p(n)| = o(t¥? - x).

=1

Hence for any given € > 0, choose t = t(¢) so that t% < £. Then by (11)),

Sur (2) <%

Now, for (some fixed) ¢ and ¢, we can choose z sufficiently large so that o(t*?z) < <. Also,
since

T<n<z

from the two aforementioned inequalities we have

S o ()‘ o(a). 5

n<x

14. OCTOBER 14 & 16

Remark 8. In 1896, Hadamard and de la Vallée Poussin proved that
x

m(z) ~ logx’
24



Let

1 T k!
L. = ~
i() /2 logt dt log x Z (log x)*

k=0
T T 2x

72 Qogay ©

In 1899, de la Vallée Poussin proved that as x — oo, there exists a > 0 such that

- log x + (log x

m(x) = Li(z) + O(wve~aV18®),

Remark 9. The main ingredient in the proof of the prime number theorem (Theorem is
that

S uln) = ofa),

n<x

which is a consequence of the analytic continuation and non-vanishing of ((s) at Re(s) = 1.
The Riemann hypothesis (RH) states that the non-trivial zeroes’ of ((s) all have real part
%. In 1901, Helge von Koch proved that RH is true if and only if

m(x) = Li(x) + O(y/x log ).
Remark 10. We proved in Assignment #1 that

1
dln

Thus we have

In other words, the “Riemann hypothesis in F,[¢]” is true.

Definition 13. For n € N, let w(n) denote the number of distinct prime factors of n, and
let Q(n) denote the number of prime factors of n counted with multiplicity.

Ezample 3. It n =23 - 3% 52 then w(n) =3 and Q(3) =3 +5+ 2 = 10.
For k € N and x € R, define

(z) = #{n <z :Q(n) =k}
m(x) = #{n <z :w(n) =Q(n) =k},

i.e., squarefree with k& prime factors. Note that w(x) = m(x) = 7 (2).

Theorem 26 (Landau (1900)). For k € N, mp(z) ~ 73,(x) ~ % z_ . (loglogx)*—1.

(k—1)! " logz
25



Proof. Define

L= S —

pPip2 - - - Dk

1P ST
’
p1pr<T
’
Ok(z) = Z log(p1 - - - pr)s
p1pr<x

where Y signifies that the sum is taken over all k-tuples of primes (p1, . .., pr) With pips - - - pp <
x. Note that different k-tuples may correspond to the same product p; ... pg.
For n € N, let

Cn = Cn(k) = #{k-tuples(py, ..., pr) 1 p1p2 - px = n}.
Then I (z) = > ¢, and Ok(z) = > ¢, logn. Note that

n<lzx n<lz

B {0 if n is not a product of k£ primes
" k! if nis squarefree and w(n) = Q(n) = k.
Also, 0 < ¢, < kl'if Q(n) = k and n is not squarefree. It follows that
Elmg(x) < g(z) < klmg(x) (12)
For k > 2, note that
Ti(2) — m(x) = #{n <z : Q(n) = k and n is not squarefree}.
Thus

T(2) — mi(x) = Z 1< (I;) Z 1= (g) Mg () (13)

P1p2.--Pp<T P1P2--Pk—1<T
pi=p; for some iz£j

By and , to prove that

M) ~ 7o) ~ 7 Lo

k—1) log

l 1 k—1
x( oglogz)™ ",

it suffices to show that
z(loglog z)*!

i) ~ k log x

for all k € N. Let a,, = ¢, and f(u) = logu. By Abel’s summation
11
Ok(z) = ch logn = Tlg(x)log x — / i (u) du.
1

u
n<x

Observe that
() < Klmp(x) < kKl
Thus I (u) = O(u). it follows that

Ok(z) = llx(x) logx + O(x).
26



Thus to prove , it suffices to show that for all k£ € N,
O () ~ kx(loglog z)"*

We will prove this by induction on k. For & = 1, by the prime number theorem we
have 6,(x) = 6(z) ~ x (by the prime number theorem). Assume now that Oy(x) ~
kx(loglogz)*~1. Consider ©,,;. Note that for k > 1, we have
k k
1
> 1) <nws (z) |
p<x1/k p<xz p

By Theorem [17]

(Z 1—1?> ~ (loglog z)"

p<z
and

1
Z | ~ (loglogz'*)* = (loglogz — log k)* ~ (loglog z)*.

p<zl/k

Thus Li(x) ~ (loglog x)*. Tt follows that

Ori1(2) — (k4 Da(loglog z)* = O4y1(x) — (k + )aLi(x) + o(z(loglog z)¥).
Note that

klog(pipa - - prprsr) = log(pliph - - pkpk )
k+1

= Z log(p1p2 -+ P+ PkPr+1)s

where pips -« p; -+ prprs1 denotes the product of all py,...pgr1 with p; being omitted (or
equivalently, the above sum is over all k-subsets of {1,2,...,k+ 1}). Thus we have

!/

kOri1(z) = Z k- log(p1 -« prt1)

P1-Pr4+15T
/ k+1

= Z Z log(pip2 -+~ Pi -+ PrPr+1)

p1Pr+1<T 1=1

=(k+1) Z Z log(p2 - - - Pr+1)

P1<T po--ppy1< - P1

=(k+1) 29k< )

Next, we put Ly(z) = 1, and note

Li(z) = Z _Z Lkl(—>.

1°
p1pE<T p p<a:

27



Therefore by the above two estimates,
1 T T T
Ouin(a) ~ (h-+ Datale) = (h+ ) Y (100 (2) = Zos (2))
p1<z
by the induction hypothesis. So we have
Or(y) — kyLi-1(y) = o(y(loglogy)* ).
Thus given € > 0, there exists xo = xo(g, k) such that for y > x, we have
1Ok(y) — kyLi-1(y)| < ey(loglogy)" .
Further, there exists ¢ = ¢(g, k) > 0 such that for y < x,
Ok(y) — kyLi—1(y)| < C.

Thus for z sufficiently large (note: = > o < 2%).

< xo
k+1 T z\ "
Oksa(x) = (k+ DaLp()| < —— | Y e—(loglog— ] + > ¢
k > Pl b1 -
P1<% %SPISHU

3 g L

< 2ez(log log x) p% . + 2cx
< 4ex(loglog z)* + 2cx
< 5ex(loglog )F.

Thus Oy () — (k + 1)z Li(z) = o(z(loglog z)*), from which we conclude that

Opr1(z) ~ (k4 1)z(loglog z).

15. OCTOBER 19

Theorem 27. The following statements hold:

Zw(n) = xloglogz + Bz + o(x)

n<x

Z Q(n) = xloglogz + Bz + o(x),

n<x

where 3 is Merten’s constant and B =06+> zﬁ'
p

Proof. Let S(z) := > w(n) and T(x) := > Q(n). By Theorem , we have

S(z) :;;1:; EJ :x§%+0<w(;¢))

= x(loglogz + 5+ 0(1)) + O(w(x)) = xloglog x + fx + o(x).
28



Note that

T(x) — S(x)= Y L%J: Z;—m+o Y1

p" <z pT <z pm>w
m>2 m>2 m>2

Note also that 2™ < p™ < x and thus m < logx/log2. Also, p? < p™ < z implies that
p < +/z. Thus

T(x)—S(x)==x Z ]% + O(z'*log z)

"<z
m>2
(L) o L o)
p> P p™ s
p P>z

Note also that

Therefore

By our estimate of S(z) we have

T(x) = zloglogx + (ﬁ + Zﬁ) z + o(x),

4

v~

B

as required. O
Definition 14. Let A C N. For n € N, let
A(n) == AN{1,2,...,n}.

Then the upper asymptotic density of A, denotes d(A), is defined by

d(A) := limsup M

n—00 n

Similarly, we define d(A) the low asymptotic density of A by

d(A) = liminf M
n—00 n

If d(A) = d(A), we say A has an asymptotic density, and we say d(A) = d(A) = d(A).

Ezample 4. If P is the set of primes, then d(A) = d(A)) = 0. If A := {n € N,5|n},

then d(A) = d(A) = 1. If B = {n € N,n not of the form k? + 1 for some k € N}, then

d(B) = d(B) = 1.
29



Ezxample 5. Let D = {a € N: (2k)! < a < (2k+1)! for some k € N}. Then for n = (2k+1)!
any a satisfying (2k)! < a < (2k + 1)! will be counted. Thus

D((2k+1)) _ (2k+1)!— (k) 2k

1> = .
- (2k+1)! — (2k +1)! 2k+1
Thus as kK — oo we have
D !
((2k+ 1)) 1
(2k + 1)!

Hence d(D) = 1. On the other hand, if n = (2k)!, then we only count a up to (2k — 1)!.
Thus

D((2k)!) _ (2k—1)! 1
O =om ST @ o
Hence as kK — oo we have as k — oo
D((2k)Y)
(2k)!

So d(D) = 0. Therefore D has no asymptotic density.

Definition 15. Let f(n) and F(n) be functions from N to R;. We say that f(n) has normal
order F(n) if for any € > 0 the set

Ae)={neN:(1—-e)F(n) < f(n) < (1+¢)F(n)}
has the property that d(A(e)) = 1.
Definition 16. Let f(n) and F(n) be functions from N to R. We say that f(n) has average

order F(n) if
D )y~ F).
i=1 i=1
Ezample 6. Let

1 ifn#kl'forall ke N
f(n) = { 4

n ifn=Ek.
Then f has normal order 1, but not average order 1. Similarly, if
2 ifn=1 (mod?2
g(n) = in = ( )
0 ifn=0 (mod?2),
then ¢ has average order 1 but does not have normal order 1. The third example is
h(n) logn + (logn)*/? ifn=1 (mod 2)
n) =
logn — (logn)'/?  ifn=0 (mod 2).
h(n) has both normal and average order logn.

From Theorem , we see that w(n) and Q(n) have average loglogn. Note that > loglogn ~
n<x
xloglogx). We will prove next class that they have normal order log logn.
30
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We proved last time that
Zw(n) = zloglogz + O(x).
n<lz

Also note that
Zloglogn = Z loglogn + Z loglogn = O(z'/*loglog z) + Z log log n.

n<z n<gl/2 x1/2<n<z zl/2<n<z
Note that
Z loglogn > (loglogx — log 2) Z 1 = zloglogz + O(z'/?loglog z)
zl/2<n<x zl/2<n<x
Z loglogn < loglogx Z 1 = zloglogz + O(z?loglog ).
xl/2<n<a xt/2<n<z
Thus

Z loglogn = zloglog z + O(z'/?loglog ).
n<z

Thus the average order of w(n) is loglog n.
Theorem 28. We have
Z(w(n) —loglogz)* = O(xloglog z).

n<x

Proof. Note that

Z(w(n) —loglogz)? = ZwQ( - 210g10g:1:2 (loglog z) Z 1

n<lx n<x n<x n<x

(loglogm) +O((log10gx)2)
By Theorem [27] we have

2loglog x Z z(loglog z)* 4+ O(xloglog ).

n<x

We now consider the sum of w?(n). W ehave

Sy => (D] (Do) =D [ Do+t

n<z n<z pln qln n<z \ pg|n pln
P#q
T
= Z Z 1+ Zw(n) = Z {—J + O(xloglog z)
pg<z n<z n<z pg<z Pq
p#q pgln p#q
=z Z — + O(z) + O(z loglog z)
pg<x Pq
P#q
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Also we have

YLy loy oy iion

pq<a: pq<a: p2<x pq<x
P#q

Observe that

2

1

> ) <xae(Th)-
p<zl/2 pglz pq p<lz p

By Theorem [17] we have

(Z l) = (loglog 93)2 + O(loglog x)

p<z
and
2
1
Z ~ | = (loglogz'/? + O(1))* = (loglog z — log 2 + O(1))? = (loglog x)? + O(loglog x).
p<al/2
Therefore .
Z — = (loglog z)* + O(loglog ).
pgsz P
Combining the above estimates gives
Zw ) = z(loglog z)? + O(z loglog x).
n<z

It follows that

Z( (n) — loglog x)? Zw —210glogxz + (log log ) Zl

n<w n<w n<w n<w
= z(loglog z)? + O(z loglog z) — 2x(log log x)* + x(log log x)?
= O(zloglogx). O
Corollary 29. Let § > 0. Then
#{n < z:|w(n) —loglogn| > (loglogn)'/>*}
is o(x). Thus the normal order of w(n) is loglogn.

Proof. The number of n < x'/2is o(x). Also, for /2 < n < z we have loglogz > loglogn >
loglog x — log 2. Thus to prove the corollary it suffices to show that

E(x) = #{n <z : |w(n) — loglogz| > (loglog z)/*"°} = o(x).
By Theorem 28] we have
E(z) - (loglog )™ < Z(w(n) —loglog z)* = O(xloglog ).

n<x

E(x) =0 ((”mﬂ) — o(z),

log log x:)1+20
as required. O
32
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Corollary 30. The normal order of Q(n) is loglogn.
Proof. By Theorem [27], we have

n<x
Thus #{n < z : Q(n) — w(n) > (loglogn)/?*%}. Then the results follows from Corollary
291 U

Remark 11. Since the average order of w(n) is loglogn, which is asymptotic to loglog x for

almost all n, we can view Y (w(n) — loglogz)? as the square of the standard deviation of
n<x

w(n). On Assignment #3 we shall prove that actually
Z(a}(n) —loglog x)* ~ xloglog x.

n<x

Thus the standard variation of w(n) is about /loglogn.

Definition 17. Let ) ,
t2
G(’}/) = E/ e 2 dt

Then G(7) is called the Gaussian normal distribution.
Remark 12. In 1934, Erdés and Kac proved that

1 —logl
_#{ngx:w(n) oglogn
T

Vvloglogn

17. OCTOBER 23

< 7} =G(y).

Recall that the normal order of w(n) and Q(n) is loglogn. Let d(n) be the number of
positive divisors of n. If n = p{*---p% with ay,...,a, € N and py,...,p, distinct primes
then w(n) =r and Q(n) =a1 +--- +a, and d(n) = (a1 + 1) --- (a, + 1).

Theorem 31. For e > 0, define the set
S(e) := {n e N,209)leslosn - g(p) < gll+e)loglogny
Then S(g) has asymptotic density 1.
Proof. Note that for a € N, we have 2 < 1+ a < 2% Thus we have
2¢() < d(n) < 29,
Then the result follows from Corollaries 29 and B0 O

Remark 13. Recall that

Zd(n) ~ zlog .

n<x
Thus the average order of d(n) is logn. However, by the above theorem, for almost all n,
d(n) satisfies

(logn)°8*¢ < d(n) < (logn)e*e
for any ¢ > 0.
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18. OCTOBER 23: QUADRATIC RECIPROCITY

Definition 18. For n € N, the Euler-totient function is defined by
p(n) =#{1 <m <n:(m,n)=1}
Theorem 32 (Euler’s theorem). Let a € N and (a,n) = 1. Then
a?™ =1 (mod n).
Proof. Let c1,¢a, ..., Cpm) be a reduced residue system mod n. Since (a,n) = 1, the set
{acy, ... acym} is also a reduced residue system mod n. Thus
€102+ Co(m) = (aci)(aca) -+ (ace(n)  (mod n)
C1C2 "+~ Cp(n) = aw(”)(clcg o Cpm)) (mod n)
a?™ =1 (mod n). O
Corollary 33 (Fermat’s little theorem). Let p be a prime. Then for any a € Z with pta we
have a?~* =1 (mod p).
Theorem 34 (Wilson’s theorem). Let p be a prime. Then
(p—1!'=-1 (mod p).
Proof. Consider the polynomial 2~! — 1 in (Z/pZ)[x]. By Corollary 1,2,...,p— 1 are
its roots. Thus in (Z/pZ)[x] we have
P l=(—-1D(z—-2)-(z—(p—1)).
Consider the constant coefficients on both sides; we see that —1 = (=1)(=2)--- (—=(p—1)) =
(=1)P~Y(p—1)! (mod p). If p = 2 then the result holds since —1 =1 (mod 2). Otherwise if
p is odd then (—1)P~! =1 so the result follows. O
Definition 19. Let p be a prime and let a € Z with (a,p) = 1. We define the Legendre
symbol (%) by the rule

<a) B {1 if z2=a (mod p) has a solution

]_) —1 otherwise.

If (%) = 1 then a is a quadratic residue mod p. Otherwise, then a is a quadratic non-residue

mod p.
Theorem 35 (Euler’s criterion). Let p be an odd prime and let a € Z with (a,p) = 1. Then

a7 = (%) (mod p).

Proof. The congruence 2 = 1 (mod p) has at most two solutions mod p. Two cases:

a

(1) Suppose that there is a solution, say b. Then (5) = 1. Since * = a (mod p), we

have
p—1

az =b"1'=1 (modp).

Thus "z = 1= <g> (mod p).
34



(2) Suppose that there is no solution. In this case, (%) = —1. Since (a,p) = 1, for each

fixed r € (Z/pZ)*, there exists a unique s € (Z/pZ)* such that rs = a (mod p).
Since z* = a (mod p) has no solution, we see that r # s. Split elements in (Z/pZ)*
into 251 pairs (r,s) with r # s and rs = a (mod p). Thus

p—1

(p—1D!'=az (mod p).

P

But Theorem |34]says a z = —1

(%) (mod p), so the claim follows. O

19. OCTOBER 26
Theorem 36. Let p be an odd prime and let a,b, € Z. Then

()G -G

(%) (1)

Note that if a € Z and p|a, then we extend the definition of the Legendre symbol by letting
(2 —0.
;)

Proof. The statement holds if p|ab (i.e., p|a or p|b). Thus we may assume pta and ptb. By
Euler’s criterion we have

()07 25524 () () i

Since (“—b) , <9> , (g) € {—1,1} and p is an odd prime, the result follows. Again, by Euler’s

p p
criterion we have

Also,

<__1) = (-1)"7  (mod p).

p
Since (%) € {—1,1} and p is an odd prime, it follows that

() =0 =y,

as required. 0

Theorem 37 (Gauss’s lemma). Let p be an odd prime and a € 7Z with (a,p) = 1. Let u
be the number of integers from {a, 2a,. .., (;%1) a} whose residues mod p of least absolute

value (i.e., in [—25, 221] ) are negative. Then

()

Ezample 7. If p =5 and a = 2 then we have {2, 4}, or equivalent {2, —1}. Therefore u = —1.
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Proof. We first replace the integers a, 2a, 3a, . . ., ’%1& by their residues of least absolute value.
Denote the negative ones by —s1, —ss, ..., —s, and the positive ones by r1,...,rp—1_ . Since
2

1 < s < ’%1, no two r;’s are equal and no two s;’s are equal. We further claim that
r; # s; for all 7, j. To see this, note that if mya = r; (mod p) and mea = —s; (mod p) with
r; = 8;, then (my +mg)a = 0 (mod p). Since (a,p) = 1, it follows that p | m; + my. But

.. .. . -1 .
this is a contradiction since 1 < my, my < P5=. Since r; # r; and s; # s; and 7; # s; for all

i # j, we see that si,...,5,,71,... S is a rearrangement of 1,2, ..., ’%1. Thus
-1 -1
a.2a..... 1)— azlz ....... p— (_1)“ (modp)
2 2
sa'T = (=1)*  (mod p)

by Euler’s criterion (and also that (—1)*, ( > € {1} and p is odd). O

a
p

Corollary 38. If p is an odd prime, then

(B)-er

Proof. Consider the set {2,4,6,..., ;%1 -2}. Note that
p—1 p—1
r < — s r < —.

T=Ty Y=y

Thus the number of integers on the set whose residues of least absolute value is negative is
equal to
p—1 |p—1
|

Note that if p = +1 (mod 8) then pu is even; if p = £3 (mod 8) then p is odd. By Gauss’s

lemma, we have <%> = (—=1)*. Thus w is a quadratic residue if p = +1 (mod 8) and is a

quadratic non-residue if p = +3 (mod 8). O
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Theorem 39 (Law of quadratic reciprocity). If p,q are distinct odd primes, then

()

Brample 8. (1) = (-1)"7 77 (1) = () = (55) = 1

13
Example 9. We claim that 5 is a quadratic residue mod p if and only if p = £1 (mod 10).

Indeed, note that
()-co== -0
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and that

<p>_ 1 if p=+1 (mod 10)
-1 ifp=+3 (mod 10).

Proof. By Gauss’s lemma, we have (%) = (—=1)" and (%) = (—1)¥, where p is the number of

integers from {p, 2p, - - - , (‘15—1) p} whose residue mod ¢ of least absolute value is negative and

v is the number of integers from {q, 2q, ..., (p%l) q} whose residue mod p of least absolute
value is negative. Thus to prove the claim, it suffices to show that

ptv= (p;l) (q;l) (mod 2).

Claim 3. Forx € Z with1 < x < % there exists a unique y € Z such that — < xp—qy <
1. Furthermore, y > 0 (note that xp — qy 1is the residue mod q of the least absolute value of

xp).
Proof of Claim 3. Note that

We claim that

q q zp 1 zp 1
—I<ap—Yg< B —— — - <~y < ——+ . *
5 < —YI<g P R (x)
Thus y is uniquely determined. Also, we note that if y < 0 then xp — yq > ¢. Since

rp —yq € (—g, %) we see that y > 0. O

q—1

Note that if y = 0 there is no contribution from zp—yq to p since xp > 0. Also, if v = 5=,

then from @, we have
xp 1 (—qgl)p 1 p/lfg—1 1 p+1
< — — = —_ = = —_— - —
sy g Tty )Tt e

’%1. Thus the number p corresponds to the number of combinations
of x and y from the sequences (A) 1,2,..., q;21 and (B) 1,2,..., p%l respectively such that
-t < xp—yq < 0 or equivalently 0 < yg—ap < {. Similarly, v is the number of combinations
of z and y from the sequences (A) and (B) respectively, for which —£ < yq —xp < 0. So for
any other pairs (z,y) with = from (A) and y from (B), either yq —xp < =% or yq —xp > .

Let p be the number of pairs (x,y) for which yg —xp < —% and A be the number of pairs

(w,y) for which yq — xp > 4. Then

qg—1 p—1Y\
() (55 v

As x and y run through (A) and (B) respectively,

since y € Z,y <

1
x/:%—xandy':——y



run through (A) and (B) respectively but in reserve order. Note that yq — zp < —% if and

only if
/ / p 1 q 1
Va—ap=(—F——y)a— (5 —=z]p

Then p = A. It follows that

-1 -1
(q )(p >:M+V+2)\E,M+V (mod 2). O

2 2
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Ezample 10. The equation z* — 17y* = 2w? has no integral solution. Suppose otherwise,
that is there exist x,y,w € Z such that % — 17y* = 2w?. Without loss of generality, we can
assume (z,y) = 1. Thus = and w are coprime. Note that if p is an odd prime which divides

w, since x? = 17y* (mod p), i.e., 17 = (2?y=2)? (mod p) we have (%) = 1. By the law of

quadratic reciprocity,
(ﬂ) = (-1 LA
17 P

Thus an odd prime p dividing w is a quadratic residue mod 17. Also by Corollary [38| we

have
2 1721
(1—7> =(-1)"% =1,

so 2 is a quadratic residue mod 17. By the above arguments, we see that any prime (either 2
or p) dividing w is a quadratic residue mod 17. Therefore we have w = t* (mod 17) for some
t € Z. Note that 17fw and that 17tt. Now, since x* — 17y* = 227, it follows that 2/ = 2t*
(mod 17). Thus 2 = z*~* (mod 17), that is there exists 7 € Z such that 2 = r* = 17, which
is a contradiction. One can generalize it to 2* — ay* = bw?, i.e., determining with what kind
of a and b would this will work.

Example 11. Ts the congruence 3x? + 7z — 42 = 0 (mod 391) solvable? First, multiply
both sides by 12 to get 3622 + 84z — 516 = 0 (mod 391), or (6x + 7)? = 565 (mod 391).
Thus it suffices to consider y?> = 174 (mod 391). Note that 391 = 17 - 23. We see that
y> = 174 (mod 17) & y?> = 4 (mod 17) which has a solution. Also, note that y*> = 174
(mod 391) < y* = 13 (mod 23). By the law of quadratic reciprocity, we have

()0 (3)-(3)- (3) (3)- () () -

Thus ? = 13 (mod 23) has a solution. Since y* = 13 (mod 17) and y* = 13 (mod 23), by
the Chinese remainder theorem, y* = 174 (mod 391) has a solution.

Ezxample 12. What is (%)?

Note that 713 = 23 - 31. Then by Theorem [36] we have

713\ [ 23 31
1009 ) \ 1009 1009 /) -
38



By the law of quadratic reciprocity, it follows
(- (52)-
e (2) <
Similar argument yields
31 2 7
(om) = (%) () =1 0=

(f%%)::(_1x_1):1.

Remark 14. In the above calculation, we are given the fact that 713 = 23-31. However, it is
not always easy to find the prime factorization of an integer a. Yet, it is possible to evaluate

(5)-)-&)

Hence

a

<1_9> without knowing the prime factorization of a. The idea is to ‘flip’ the Legendre symbol

to (£) even when a is not a prime.

Definition 20. Let a € Z and n € Z be odd. If n = - por. we define the Jacobi symbol

to be i .
() ::g(%) |

Theorem 40 (Generalized law of quadratic reciprocity). Let a,b € N be odd. Then
(1) -1\ _J1 ifb=1 (mod 4)
b ) -1 ifb=3 (mod4).

1 ifb=1 or7 (mod 8)
(2) ( ) { if b=3 or5 (mod 8).

1
a b) ifa=1 (mod 4) orb=1 (mod 4)
(%) (E) { (&) ifa=b=3 (mod 4).
Proof. Exercise! O

FExample 13. Now compute (%) using the generalized law of quadratic reciprocity. Since

713 =1 (mod 4) and 713 =1 (mod 8), we have

713\ _ (1009\ (296 _ (2°-37\ (37
1009) \ 713 ) \713) \ 713 ) \713)°

Now, since 37 =1 (mod 4) and 37 =5 (mod 8), we have
il
37)°

(3)-(2)-()-()3) -

Since 5 =1 (mod 4), we have

(3)-()-() -




713
Theref — | =1
erefore (1009)

22. NOVEMBER 2: PRIMITIVE ROOTS

We recall the Euclidean algorithm: for a,b € Z, there exist z,y € Z such that ax + by =
(a,b).
Theorem 41 (Chinese remainder theorem). Let my,...,my € Z with (m;,m;) = 1 for all
1% j, and let m =mq---my. Let by,... by € Z. Then the simultaneous congruences

r=b; (mod my)

r=0b (mod my)

has a unique solution modulo m.

Proof. Let n; = m/m; (1 <i <t). Then (m;,n;) = 1. Then there exist r;, s; € Z such that
rin; +s;m; =1 (1 <i <t). Let ; = rn;. Then e; =0 (mod m;) and e; =1 (mod m;) for
it # j. Consider now
¢
Ty — Zblez
i=1

Then xy = b; (mod m;) for each 1 < i < t. That is, it is a solution of the simultaneous
congruences. To prove the uniqueness of zy, suppose that z; = b; (mod m;) forall 1 <i <t.
Then m; | (x1 — o) (1 < i < t). Since (m;,m;) =1 for i # j and m = my ... my, we have
m|(xy — xp), i.e., 11 = 29 (mod m). O

For n € Z, let (Z/nZ)* denote the invertible elements in Z/nZ. That is, they are the
congruence classes (r +nZ) for which there exists (s +nZ) with (r +nZ)(s+nZ) = 1+ nZ.
This is equivalent to saying that (r,n) = 1.

Theorem 42. Let my,...,m; € N with (m;,m;) =1 for i # j, and let m = mymgy ... my.
Then
Z]mZ = ZL]miZ X - -+ X L/myZ
as rings. Also,
(Z/mZ) = (Z)miZ)* X -+ x (Z)my )"

as groups.

Proof. Let ¢ : Z — Z/myZ X - - - X Z/myZ defined by ¥(n) — (n+miZ,...,n+mZ). It is
a straightforward verification that v is a ring homomorphism. Note that ¢ is surjective and
ker ¢) = mZ, by the Chinese remainder theorem. Thus by the first isomorphism theorem for
rings, the first claim follows. Now let A : (Z/mZ)* — (Z/miZ)* X - - - X (Z/m;Z)* be defined
by AMr +mZ) = (r + m\Z,...,r +mZ). Note that (r,m) = 1 if and only if (r,m;) = 1
for all 1 < i < t. Thus the map is well-defined. It is straightforward to verify A is a group
homomorphism. It is also bijective by the Chinese remainder theorem. U

Corollary 43. Let my,...,m; € N with (m;,m;) =1 for i # j, and let m = mymy...my.

Then o(m) = (ma)p(ma) - - - o(my).
40



Proof. Note that p(m) = |(Z/mZ)*| and @(mq)---p(my) = [(Z/miZ)*|- - |(Z/mZ)*|

(Z/miZ)* % - x (Z/mZ)*|. So now the result follows from Theorem [42] O
Corollary 44. Let m = pi*---p}*, where py...p; are distinct primes and ay,...,a; € N.
Then
d 1
w(m) = mH (1 - —)
i=1 pi

w(m):ﬁso(p?)zp‘fl---p? (1—l)---<1—l> =m il (1—2%). O

i=1 P
Proposition 45. Let p be a prime. Ifd|(p—1), then 2% =1 (mod p) has exactly d solutions
mod p.

Proof. Write p — 1 = dk with k € N. Then

o1 @l ety gt 1 o) € (20Tl

rd—1  zd—1
By Fermat’s little theorem, 2P~! — 1 has p — 1 distinct roots in Z/pZ. This (z¢ — 1)g(x)
factors into linear factors in (Z/pZ)[z]| and the result follows. O

Theorem 46. (Z/pZ)* is a cyclic group.

Proof. For each divisor d of p—1, let A\(d) denote the number of elements of (Z/pZ)* of order
d. By Prop [45] there are exactly d elements whose order divides d. Thus

d=> ).
cld
By the Mobius inversion formula, we have
uie uic 1
A(d) :Z%d:d2¥ =d]] (1—1—)> = o(d).
cld cld pld

Thus there are ¢(p — 1) elements of (Z/pZ)* of order p — 1. In particular, (Z/pZ)* is
cyclic. 0

Remark 15. For a general n € N, the group (Z/nZ)* is not always cyclic. For example,
(Z/8Z)* ={1,3,5,7}, but none of the elements have order 4.

23. NOVEMBER 4

Definition 21. Let n € N and a € Z. We say a is a primitive root modulo n if a + nZ
generates (Z/nZ)*.

Ezxample 14. w is a primitive root mod 5 but is not a primitive root module 7, since 23 = 1
(mod 7).
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Remark 16. We have seen in the proof of Theorem {6| that for a prime p, (Z/pZ)* is cyclic.
Thus there exists a primitive root mod p. In fact, we see from the proof of the theorem,
there are @(p — 1) primitive root modulo p. Note that if a € N is a square, then it is a
quadratic residue mod p. Thus a is not a primitive root mod p.

Conjecture (Artin’s primitive root conjecture). If a € N is not a perfect square, then a isa
primitive root mod p for infinitely many primes p.

Remark 17. The conjecture still remain open, but some progress has been made. In 1967,
Hooley proved that the conjecture is true under the assumption of the generalized Riemann
hypothesis (GRH). In 1980’s, using sieve theory, Gupta, K. Murty, R. Murty, and Heath-
Brown showed unconditionally that given any non-square a,b,c € N, then at least one of
them is a primitive root mod p for infinitely many primes p. For example, one of 2,3,5 is a
primitive root mod p for infinitely many primes p. However, the result is not constructive,
and thus we do not know which one satisfies the condition.

Proposition 47. Let p be a prime and | € N. If a =b (mod p'), then a? = P = p!*L.
Proof. Write a = b + cp' for some ¢ € Z. Then

a? = (b+cp' )’ =P + (?) ¥lep! + @) P2 (ep )2+ + (ﬁ) (cph)P.

Since p'! | ()bP~tep! and p [ p® for 2 < i < p, it follows that a? = b (mod p'T). O

Proposition 48. Let p be an odd prime and | € N with | > 2. Then for a € Z, we have
(14ap) ” =1+ap™" (mod p').

Proof. We prove the result by induction on [. The result is immediate for [ = 2. Suppose
that the result holds for some [ € N with [ > 2. And we prove it for [ + 1. By Proposition
and the induction hypothesis, we have

(1—|—ap)pH = ((1+ap)pli2)p = (1+ap' ")V =1+ <p> ap 4+ <§> (ap'™")?  (mod modp™).

Note that for [ > 2 and k > 3, we have
20—-1)+1<3(1—-1)<k(l-1).

It follows that
p2(l—1)+1 | (apl—l)k:

for k = 3,...,p. Also, we note that

(p) (apl—l)Q _ p(p—1) (apl_l)Q _pr— 1ap2(l—1)+1
2 2 '

(5) @
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Note that 2(1 — 1) +1 >+ 1 for [ > 2. Thus p"*!|p*=D+1 Thus we have
(1+ ap)Pl_l =1+ (?) aplil + <§) (aplil)Q 4+ (i) (aplil)p

1+ (?) ap™ =1+ ap’ (mod p™t).

By induction, the result follows. 0J
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Proposition 49. If p is an odd prime, | € N with | > 2 and a € Z with (a,p) = 1, then
1+ ap has order p'=1 in (Z/p'Z)*.
Proof. Note that the group (Z/p'Z)* is of order p' — p!~! = p!~1(p — 1). By Proposition |48}
we have l
(1+ap)’  =1+ap™ (modp)).
Since (a,p) = 1, we have (1 + ap)plf2 # 1 (mod p'). Then by Proposition 48| again,
(1+ap)”  =1+ap (mod ph).
Thus (1 +ap)? ' =1 (mod p'). Tt follows that (1 + ap) has order p'~! in (Z/p'Z)*. O
Theorem 50. Let p be an odd prime and | € N with | > 2. Then (Z/p'Z)* is a cyclic group.
Proof. By Theorem [46] there exists a primitive root modulo p. Note that

_ - p—1\ p—1\ p—1\ ,_
(g+pP =g 1+( ) )g’” 2p+( ) )g” 3p2+---+( 1)1?” g
p —
If we assume that ¢?"! =1 (mod p?) then
p—1 _ p—1 p—2 2
(g+p)" =1+(", )9 "p (modp).
Since pf(p — 1) and (g,p) = 1 we see that
(g+p)P'#1 (mod p*).

Thus at least one of ¢! and (g + p)P~! is not congruent to 1(mod p?). Without loss of
generality, we may assume that g?~! # 1 (mod p?).

We claim that if g~ # 1 (mod p?), then g is a primitive root modulo p. We note that
once we prove this claim, we are home free. Time to prove this claim. Suppose that g has
order m in (Z/p'Z)*. Since |(Z/p'Z)*| = p' — p=! = p"~1(p — 1), we have m{p'~(p — 1).
Write m = dp® where d| (p — 1) and 0 < s < [ — 1. By Fermat’s little theorem, we have
g° = g (mod p). Thus ¢*" = g (mod p). Thus, ¢*" = g (mod p) for s € N. Since g™ = 1
(mod p') and thus ¢™ =1 (mod p), we have

=)=y

Since g is a primitive root mod p, we have (p — 1)|d. Thus d = (p — 1). Since g*! =1

(mod p) and ¢gF~! £ 1 (mod p?), there exists a € Z with (a,p) = 1 such that ¢! =1+ ap

(mod p?). By Proposition (49), 1+ ap has order p'~! in (Z/p'Z)*. Thus g has order (p—1)p',

which implies that (Z/p'Z)* is cyclic. O
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Theorem 51. Let [ € N.
(1) If 1 = 1,2 then (Z/2'Z)* is cyclic.
2) Forl >3, (Z/2'2)* =2 Z/27 x Z/2'7%Z. In particular, we have
(2) p

(z)2'2) = {(-1)*5" +2'Z :a € {0,1},b € {0,1,...,22 — 1} }.

Proof. 1t is straightforward to verify that (Z/27Z)* and (Z/47Z)* are cyclic. Thus we focus on
the second part.

Claim 4 (Claim 1). For1>3,5

Proof of Claim 1. We prove the claim by induction on [. For [ = 3, we have 5 = 1 + 22
(mod 23) as required. Suppose that the above congruence holds for some | € N with [ > 3

and we prove it for [ + 1. Write 52" = 1 + 2/~! + k2! for some k € Z. It follows that
5270 = (1421 + k21)?
=14+ @272+ (k22 +2- 27 42 k28 2. 20 k2!
1ol g poltl 922y po2 | 202
Note that 2(I — 1) > [+ 1 for [ > 3. Thus we have
5277 =142 (mod 2").

2l—3

=1+2""! (mod 2Y).

By induction, the claim holds. From the above proof, we see that 52~ # 1 (mod 2') and
5277 =1 (mod 2!). Thus 5 has order 2!=2 in (Z/2'Z)*. d
Claim 5 (Claim 2). For [ > 3, the numbers

(—=1)*5" with a € {0,1} and b€ {0,1,...,2"72 — 1}
are distinct modulo 2'.

Proof of Claim 2. Suppose that (—1)5% = (—1)®5% (mod 2!) with 0 < a; < 1 and 0 <

by < 27%i = 1,2). Then (—=1)15" = (—1)%25" (mod 4). Since 5 = 1 (mod 4), we see that

(=1)» = (=1)® (mod 4). Thus a; = az. We now have 5" = 52 (mod 2'). Since 5 has

order 272 in (Z/2'Z)* and 0 < b; < 2!72 it follows that b, = b,. O
Since (Z/2'Z)* = {(=1)*5° : a € {0,1},b € {0,1,...,2°72 — 1}} it follows that

(Z)2'7)* = (Z.)27) x Z.]2'*Z.

26. NOVEMBER 9

Theorem 52. The group (Z/nZ)* is cyclic (i.e. it has a primitive root) if and only if
n=1,24,p" 2p" with p being an odd prime and | € N.

Proof. Let n = 20p!' ... plr where Iy € NU{0} and I,...,l, € N, and p; distinct odd primes.
Then by Theorem [42]

@2y = @/2°2) x [/
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By Theorem , (Z/p“7Z)* is cyclic for 1 < i < r. By Theorem , (Z/217)* is cyclic for
0 <ly < 2 and is isomorphic to Z/27Z X Z/2l0_2Z for [ > 3. Thus, the order of any element
of (Z/nZ)* is a divisor of A(n) := lem(b, o(p%), ..., @(p')), where

- e(2l) 0 <1y <2
| Se(20)  ifly > 3.

Note that 2|(ph) for all 1 <4 < r. It thus follows that

An) < o(2)p(py) - o))
except in the cases n = 1,2,4,p',2p". Since (Z/nZ)* is cyclic if and only if \(n) =
©(20)p(plt) - - - p(plr), the result follows. O
Definition 22. The number

A(n) = lem(b, o(p), (%), ..., e(Pr))

is called the universal exponent of n.

Theorem 53. For n € N, let A\(n) be the universal exponent. Then for any a € Z with
(a,m) =1 we have
™ =1 (mod n).

Remark 18. Euler’s theorem states that for any a € Z with (a,n) = 1, then we have
a?™ =1 (mod n).
The above theorem gives a strengthening of Euler’s theorem.

Remark 19. Given a prime p, one can ask for an upper bound for the smallest positive integer
b which is a primitive root mod p. Hua proved that b < 2”(”*1)*1\/;5.

Theorem 54. If p is a prime of the form 4q + 1 with q an odd prime, then 2 is a primitive
root mod p.

Proof. Let m be the order of 2 mod p. By Fermat’s little theorem, m|(p—1) and thus m|4q.
It follows that m = 1,2,4, 2q, 4q. Since p is a prime of the form 4q + 1 with ¢ an odd prime,
we have p = 13 or p > 20. Thus m # 1,2,4. Also, by Euler’s criterion we have

p—1 2
2% =973 = (—) (mod p).
p
On the other hand, by Corollary since ¢ is odd we have

(2> = () = ()T = =
p

Thus 2% = —1 (mod p). That is, m # ¢,2q. It follows that m = 4g =p—1, ie., 2is a
primitive root mod p. U

Let k,l € N with (k,l) = 1. Dirichlet’s theorem states that there are infinitely many
primes p with p =1 (mod k). To prove this theorem, we will introduce later the notion of
L functions. However, for many pairs (k,1), we can prove Dirichlet’s theorem by elementary
means. For example on Assignment #1, we show that there are infinitely many primes p
with p =5 (mod 6).
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27. NOVEMBER 11 & 13
Theorem 55. Let n € N. There are infinitely many primes p with p =1 (mod n).

Proof. This proof is due to Birkhoff and Vandiver (1904). Let a € N with a > 2 and
¢, = e¥™/". Consider ®,,(a), the n-th cyclotomic polynomial evaluated at a, i.e.,

n

¢, (a) = [] (a—¢).
j=1

We recall that ®,,(z) € Z]z] and 2" — 1 = [[ ®4(x). We claim that:
dln
Claim 6. If p is a prime dividing ®,(a) then p|n or p =1 (mod n).

Proof of the claim. Note that p|(a” — 1) and thus pfa. Two cases:
(1) If pt(a® — 1) for all d|n with d # n. Then the order of @ mod p is n. By Fermat’s
little theorem, n|(p — 1) and p =1 (mod n).

(2) Suppose that p|(a? — 1) for some d|n with d # n. Note that ®,(z)| L= (in Z[z]).

Since p|®,(a), it follows that p|%=.
We have p
cﬁ:(y+mw—n3:1+%m¢—m+(fé)md—nz+~~h

Thus . Jd

a" — n n d

S 1)

1 da" ( 2 )(a )+
Since p | Z;Lj and p|(a? — 1), we conclude that p| Z. Thus we have p|n. This completes the
proof of the claim. 0

We are now ready to prove the theorem. Suppose that there are only finitely many primes
P1,--.,pp such that p; = 1 (mod n) for all 1 < j < 7. Write ®,(z) = 29 4 ... 4 £1.
Consider then @, (npips---p,m). We see that (®(np;...p,m),n) = 1. Also, since p; 1
O, (np1...p,m)(1 < 5 <r). Letting m — oo, we see that for m sufficiently large we have
®,,(np; ...p,m) > 2. Thus it has a prime divisor p, which is not equal to py,...,p.. By the
claim we have either p = 1 (mod n) or p|n. Since (®,(np;...p,m),n) = 1, we have ptn.
Thus p =1 (mod n). However p ¢ {p1,...,p,}, and this leads to a contradiction. O

Definition 23. Let GG be a finite abelian group. A character of G is a homomorphism
X : G — C*. The set of characters of G forms a group under the operation

(x1 - x2)(9) == xa(9)x2(9)-

This group is called the dual group of G and is denoted by G = {x : G — C* homomorphism}.

The identity of G is the principal character o, where xo(g) = 1 for all g € G. Note that if
|G| = n then ¢" = e (the identity element) for all g € G. It follows that (x(g))" = 1 and
thus x(g) is an n-th root of unity.

Theorem 56. Let G be a finite abelian group. Then
(1) 1G] = |G|

(2) G~G
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(3) We have
> x(9) = Gl d9=c
0 otherwise.

and
Z |G’ if X = Xo
x(g .
otherwise.
geG
Proof. Suppose that |G| = n. Since G is a finite abelian group, we have
G=Z/mZx ---xZ/n,Z.

Thus there exist gy, ..., g, € G such that g;l" =e(l < j <r) and every element g € G has
a unique representation in the form g = ¢{* - -- g% with 0 < a; < h;(1 < j <r). Note that
any character y is determined by its action on ¢y,...,¢,. Since (X(g])) = 1, we see that
x(g;) is an hj-th root of unity. Thus there are at most hy ...h, characters. On the other
hand, if w; is a h;-th root of unity, we can define x(g;) = w; for (1 < j < r and extend it
multiplicatively to all elements of G. Thus there are at least h; ... h; characters. It follows
therefore that |G| = |G.

For the second part, let x; be the character defined by x;(g;) =

Jj#k. Deﬁnegp.G—>Gby

e /M and y;(gr) = 1 for

One can check that ¢ is a group homomorphism. Also, since

Xit e xe(gy) = el

we see that x{' -+ x% = xo if and only if a; = h; for all 1 < j <. And this corresponds to
g .- gl = e, the identity of G. Thus ¢ is injective. Finally, since G is finite and |G| = |G|,

we see that ¢ is surjective also. Hence G = (G as desired.
For the last part, we start by letting
=> x(9)

xe@G
If g = e then x(e) =1 for all y € G. Thus
S(e) = |G| = |G|.

We now assume that g # e. By (2), there exists a character X1 € G such that Xl(G) # —1.
Also, since G = G,if x € G with X # Xo then there exists x~ ! € @ such that X ' =xo. In
particular, if x runs through all the elements of G so does x1x. Thus we have

= Zx(g) = Z X Zx )S(g)-

Since (1 — x1(g) # 0, it follows that S(g) = 0 as required. O
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Let T'(x) := >_ x(g). Then if y = xo then xo(g) = 1 for all g € G so T'(xo) = |G|. If
geG

X 7 Xo then there exists g; € G such that x(g;) # 1. Thus T'(x) = 0, since

T(x) =Y x(9) = Y x(019) = x(g1) Y x(9) = x(g91)T()-

geG geG geqG

Let k € N with & > 2. Let y be a character on (Z/kZ)*. We extend the definition of x to
Z, also denoted by x, by putting

a+ kZ) if (a,k) =1
A SO O
0 otherwise.

Definition 24. We call such x defined above a character mod k.

Theorem 57. Let x be a character mod k.
(1) If (n,k) = 1 then x(n) is a p(k)-th root of unity.
(2) The function x is completely multiplicative. That is, x(mn) = x(m)x(n) for all
m,n € 2.
(3) x is periodic modulo k, that is, x(n + k) = x(n) for alln € Z.
(4) We have that

Z x(n) = {gp(k‘) ifn=1 (mod k)

x char mod k 0 otherwise.

k .

k if y =
> x(n) = {g( ) Fx=xo
— otherwise.

and

(5) Let X denote the conjugate character to x, i.e., X(n) = x(n) for alln € Z. Let X’ be
a character mod k. Then for (m,k) =1 we have

Z ()R (m) = {cp(k) if n=m (mod k)

char mod k 0 otherwise.
X

and

k :
pk) X' =X
> ) = {0( ) |
" otherwise.
Proof. The first four parts follow either from definition or Theorem [56] So we focus on (5)
only. Note that x(m)x(m) =1 = x(m)x(m™!), where m™! is the multiplicative inverse of
m modulo k. Thus x(m) = x(m™1). It follows that

Y xx(m) = x(n)x(m™) =) x(nm™).
x char mod k X X

By Theorem [56)3), the last sum is (k) if and only if nm™ = 1 (mod k), or equivalently

n=m (mod k); and 0 otherwise.

Also, we note that if ¥’ = ¥, then yx’ = xo. Otherwise, yx’ is a non-principal character.

Thus the second result also follows, again from Theorem [56{3). O
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We now describe the group of characters mod k. By multiplicity, it is enough to discuss
the characters mod p' for a prime p.

(1)

Assume first that p is an odd prime and let ¢ be a primitive root mod p!. For n € Z
with (n,p) = 1, there exists a unique v € Z with 1 < v < (p') such that n = ¢~
(mod p'). For d € Z with 1 < d < o(p'), we define the character x%(n) by

2midy

d
X“(n) = exp (—)

e(p')
We get in this way ¢(p') different characters mod p!, and this gives the complete list
of characters mod p'.
Consider characters mod 2!. If [ = 1 then we only have the principal character. If
[ = 2, then we have the principal chracter and the character y4 which is defined by

1 ifn=1 (mod 4)
xa(n) =< -1 ifn=3 (mod4)
0 otherwise.
If I > 3, then (Z/2'Z)* is not cyclic. However, we have seen in Theorem [51| that for
each n € Z with (2,n) = 1, i.e., n + 2'Z € (Z/2'Z)*, there exists a unique integer
pair (a,b) with 0 < a <1 and 0 < b < 212 such that n = (—1)%5° (mod 2!). Thus
for d € Z with 1 < d < (2))

yin) = {exp (2mide 4 22db)  ifn=1 (mod 2)

0 otherwise.

We get in this way ¢(2!) different characters mod 2! and this gives the complete list
of characters mod 2'.

28. NOVEMBER 16: L-FUNCTIONS AND DIRICHLET’S THEOREM

Let k € N with £ > 2 and x be a character mod k. For Re(s) > 1, define

n

L(s,x) == Z X(?)

Let xo be the principal character.

Theorem 58. The following hold:

(1) If x # xo then L(s,x) has an analytic continuation to Re(s) > 0.
(2) If x = xo then L(s,xo) has an analytic continuation to Re(s) > 0 with s # 1. At

s =1, L(s,xo0) has a simple pole with residue @.

Proof. Let A(x) := > x(n) and

n<x

0 otherwise.
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Also, notice that

otherwise.

ix(n) _ {sO(k) if X = xo
0 .

By Theorem [57[(4), we have

p(k) +T(x) if x = Xxo
-0+ T(x) otherwise,

8 8
[

with |T'(z)| < ¢(k).
It follows that

Aw) = 80020+ R(),

where |R(z)| < 2p(k). Let f(n) =n~°. By Abel’s summation, we have
) AW [T AW,
ns xs 1 us+1
n<x
_ (k) 1 R(z) p(k) (w /
=B ko a1 + xs +sE(X) k s—1],
I R B S I 1 C.) / R(u
E(x) - (x4 1_8(x 1)+ e +s e d (14)

Now we prove each claim. As for (1), if x # xo then we have E(x) = 0. We see from ([14))

that .
M) R, [,

ns xs us—f—l

n<x

By letting © — oo, since |R(x)| < 2¢(k) for Re(s) > 0 we have
* R(u)
L(s,x) = 8/1 s du.

Since the integral converges for Re(s) > 0, it follows that L(s, x) has an analytic continuation
to Re(s) > 0.
We move on to (2). If x = xo then E(x) = 1. Thus by we have

Z$:$ (xl_u%(xl_s_l)) +¥+s/j S(fl) du.

n<x

Consider Re(s) > 1. By letting x — oo, we have

L(S,XO):@' > +S/100R<u)du.

ko s—1 ustl
Since the integral converges for Re(s) > 0, the function L(s, xo) has an analytic continuation
to Re(s) > 0 except at a simple pole at s = 1 with residue @. O

Definition 25. Let {\,}>° be a strictly increasing sequence of positive real numbers. For
z € C, a Dirichlet series attached to {\,}5°, is a series of the form

E a,e " n?

n>1
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where {a,},>1 is a sequence of complex numbers.

Theorem 59. If the Dirichlet series > a,e " converges for z = 2z then it converges
uniformly for Re(z — zp) > 0 and ]arg(znz—1 20)| < a with a < 3.

Proof. Without loss of generality, we may assume 2y = 0. Since Y. a, converges, for any

n>1

e > 0 there exists N = N(¢) € N such that if [,m > N then
Z la,| < e.
n=l|

m
Let A;,, = Y a,. By taking the convention that A4;; ; = 0, we have
n=l

m m
E -2 § -2
aneé "t = (Al,n - Al,n—l)e e

m—1
= E App(e™m e nh1?) 4 Ay e e
n=l

Thus for Re(z) > 0, we have

m m—1
E ane M| < g g e — g7 A1z 4
n=l

Note that e % — e~ A1z = 2 [ =tz gt Also, for z = z + iy with 2,y € R we have

A
le=%| = e7**. Thus we have '
Ant1
e — eTAnt1z| < g e dt
An
2|,y )
< —(e M — e i),
< =l )
Therefore we have
m

<e (M(e_)‘lr — e_’\m‘r) + 1) )

T

E a, e \n*

n=l

Note that for |arg(z)| < a, we have % < cfor some ¢ = c(a). Also, we have |[e™ % —e m?| <

2. It follows that

m

g ane_”\”z

n=l

< (2¢+ 1)e.

Therefore the Dirichlet series converges for Re(z) > 0 and |arg(z)| < «, as desired. O
51



29. NOVEMBER 18 & 20
Theorem 60. If

f(z) = i e
n=1

be a Dirichlet series with a,, € R and a,, > 0 for alln € N. Suppose that the series converges
for Re(z) > o with o9 € R. Suppose also that f(z) can be analytically continued in a

neighbourhood Y n=% of 0o. Then there exists a real number € > 0 such that Y. a,e~*** for
n>1

Re(z) > op — €.

Proof. Without loss of generality, we may assume that oy = 0. Since f(z) is analytic in a
neighbourhood of 0, by Theorem 59} it is analytic for Re(z) > 0. Since f(z) is analytic for
Re(z) > 0, and is also analytic in a neighbourhood of 0, there exists £ > 0 such that f is
analytic in |z — 1| < 1+ &. Note that for Re(z) > 0,

[e.9]

f(m)(z) = Z an(_An)me_Anz-

n=1

This implies that f(™ (1) = > a,(—A,)™e™*. Thus the Taylor series expansion of f(2)
around 1 in |z — 1] < 1+ ¢ is of the form

> flm)
Zf (1)(2—1)m.

m!

We now consider f(z) at the point z = —e. We have

Since a,, > 0 and all other terms are positive, we can switch the order of summation and
obtain

m=0

o0 o0 o0
= § :ane*/\n Cetn(lte) E :anexns _ Z ane(’A”)(*E).
n=1 n=1 n=1

Thus the series Y a,e~*"* converges to f(z) at z = —e. By Theorem [59|it converges to f(z)
for Re(z) > —e. O

f=e) =) ane™ <Z (An)mirlﬂnt e)m>

Theorem 61. For k € N with k > 2, let x be a character mod k. Then

(1) L(s,x) is non-zero for Re(s) > 1
(2) If x # xo, then L(1,x) is non-zero.
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Proof. (1) Note that L(s,x) converges absolutely for Re(s) > 1. Since x is completely
multiplicative, L(s, x) has a Euler product representation for Re(s) > 1 which is

Lo =] <1 B ><(p))_1

S
» p

for Re(s) > 1. Since

converges for Re(s) > 1, it follows that L(s, x) is non-zero for Re(s) > 1.
(2) We recall that for |u| < 1, we have

o0 n

—log(l —u) = u_

Thus for Re(s) > 1 we have

log L(s, x) = log< ( X;f))
L)
—ZZXW

p n=l1

Let | € Z with (I, k) = 1. By summing over all characters mod k we have

Z xX(0)log L(s, x) Zznpns

x char mod k p n=1
1
by ¥ ,
npns
n=1pr=l (mod k)

by Theorem (5) By taking [ = 1 and exponentiating both sides, we have

II L) =exp |k Z > n;m

x char mod & n=1 pn=1 (mod k)

> x(x")

x char mod k&

Thus if s € R with s > 1, then we have
II s>t
x char mod k
We now split into cases depending on if x is a real character or not.

(1) Suppose that L(1, x) = 0 where x is a non-real character. Since L(s,X) = L(s, x) for

s € R with s > 1, we have L(1,%) = L(1,x) = 0.
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We also recall that for s € R with s > 1, we have

II ZGso>t (15)

x char mod k&

We have seen in Theorem [58| that L(s, xo) has a simple pole at s = 1 and L(s, x)
does not have a pole at s = 1 for any x # xo. Thus as s — 17 on the real line, we
have

I[I Z6x0=0(s-D)7 s -1)?=0(s - 1),

x char mod k

which contradicts . Thus L(1, x) # 0 for x a non-real character.
Now suppose that L(1, x) = 0 with x a real character. For Re(s) > 1, define

¢(s)L(s, x)
¢(2s)

Consider the Euler product representation of g(s) for Re(s) > 1 we have
1 — p72s 1 _{_pfs
S) = — _—
99 =l =50 s ~ Ui
[ +») (Z x(pl)p‘“) H (1 + Z P+ x(p ))p‘“)
P 1=0
=11 (1 + Zb(pl)p"s> :
p =1

where b(p') = x(p"™!) + x(p') (I > 1). Since x is a real character, we have x(p) €
{0,+£1}. Since x is multiplicative, we have

g9(s) ==

0 ifx(p)=0or —1

b(p') = x(P' ") + x(0') = {2 if x(p) = 1.

In all cases, we have b(p') > 1 for all [ > 1. Thus

00 a,
s) = HZE’ (16)
n=2

with a, € Rx¢ for all n > 2. Since the zero of L(1, x) eliminates the pole of ((s) at

s =! and since ((2s) is non-zero and analytic for Re(s) > 3, it follows that g(s) has

an analytic continuation to Re(s) > % By Theorem we conclude that the series

defining g converges to g for Re(s) > 1 As s — —+ on the real axis, since ¢(2s) has

a pole at s = 3 we see that g(s) = O (s -1). But this contradicts as g(s) > 1

for Re(s) > 3. Thus L(1, x) # 0 for x real characters. O
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30. NOVEMBER 23
Theorem 62. Let I,k € Z with k > 2 and (I, k) = 1. Then the series
> v
p=l (mod k)
diverges. This implies that there are infinitely many primes p with p =1 (mod k).
Remark 20. For x € R, let
m(x; k1) =#{p <z :pisaprime and p =1 (mod k)}.

Then using similar method used by Newman for his proof of the prime number theroem, one
can prove that

1 x
k)~ —— - .
W(‘Tv ) ) (,O(k') lOgZE
This was proved by Valleé-Poussin. In the case when k is “small”, the Siegel-Walfisz theorem
gives a refinement of the above result. More precisely, define

Pkl = S A

n<zx
n=l (mod k)

If k < (logz)" for some N € N, then

(s k1) = ﬁ + O(z exp(—Cy (log 2)/2)),

where the constant Cy depends on N.

Proof. We have seen in the proof of Theorem [61] that

5 X el = > oy L a7

npns
¥ x char mod k n=1 p"=[ (mod k) P

We recall that

As s — 17 on the real axis, by Theorems |58 and , we see that (s — 1)) L(s, x) tends to
a finite non-zero limit. Thus E(x)log(s — 1) +log L(s, x) tends to a limit. It follows that as
s — 17 on the real axis, we have

log L(s,x) = —E(x)log(s — 1) + O(1).

Thus we have

LY xWlogLis,x) =

1 —
W log L(s, xo0) + W Z X(1)log L(s, x)

x char mod k
X#X0

1

(k)

—log(s — 1) + O(1).
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Combining this with we have

Z Z nl = _W(lk?) log(s — 1)+ O(1).

n=1 pn=l (mod k)

Thus

—F L = — L og(s —
)DIIVEED DI SRR LC

p=l (mod k) n=2 pn=| (mod k)

Note that for Re(s) > 1 and s € R,

> 1 1 & 1
2. 2 oS3 per

n=2 pn=l (mod k) n n=2 p"=l (mod k)
I/ 1 1
53 (ot ot
m=2
1o 1 1
< —
33w (=)
N | —~ 1 _n
< < — < —
< < =
Thus
Z . —Llog(s - 1)+ 0(1)
E mO ps (p<k;) '
As s — 17 on the real axis the quantity — log( —1) — oo. It follows that > p~!
p=l (mod k)
diverges. 0

31. NOVEMBER 23: WARING’S PROBLEM

In 1770, Edward Waring asserted without proof that every natural number is a sum of at
most 4 squares, 9 cubes, 19 biquadrates and so on. Waring’s problem states that: for £ € N
with k£ > 2, there exists a number s = s(k) such that every natural number is a sum of at
most s k-th powers of natural numbers, i.e., n = 2§ + -+ - + 2% with z; € NU{0} (1 <i < s).

Let g(k) denote the least s such that the above statement holds. Then Waring’s problem
states that g(k) < oco. In 1770, Lagrange proved that ¢g(2) = 4. By 1909, only known
cases were k = 2,3,4,5,6,7,8,10. In 1909, by a combinatorial method, Hilbert proved that
g(k) < oo for every k > 2. By the work of Vinogradov, we now have an almost complete
solutions to g(k).

Consider the integer



The most efficient representation for n is to use Q(%)kJ — 1)) many 2* and

o [)-) s

Thus we obtain a result of Euler that

g(k) > 2F + (g)k —2.

Indeed, the equality holds for all but finitely many k. In fact, the equality holds when

(3|

In 1957, Mahler showed that the above inequality holds for all but finitely many k.
Let G(k) be the least s such that for n sufficiently large we can write n = 2§ + -+ + z*.
In the following, we will establish g(2) = 4. Observe that as x runs over Z/8Z we have
2 =0,1,4 (mod 8). Since z7 + 23 + 23 £ 7 (mod 8) we see that g(2) > 4.

32. NOVEMBER 25
Recall that for k € N with & > 2, let g(k) denote the least integer s such that for allm € N
we have
n:x’f+x’§+~~+az’§

with z; € NU{0}. Our goal is to prove that g(2) = 4.

Theorem 63. If p is an odd prime then there exists integers x,y such that 1+ x> +y? = mp
where m € Z with 1 <m < p — 1.

Proof. Consider the sets
—1

and
—1
52:{—1—y2+pZ:y€Z,O§y§T}.

Note that 22 = z3 (mod p) if and only if z; = a5 (mod p). Since 0 < z < -1, all elements

in S are distinct, and so are Sp. Since |[Si] = |S2| = 21, we have S; N Sy # 0. Thus there

exist 2,y € Z with 0 < 2,y < Z1 such that 2> = —1 — y? (mod p), or 1+ 22 + 4> =0

Lta?+y? -
P

(mod p). Thus 1+ 2? + y* = mp for some m € Z. We also have 0 < m <
() (55
p

< p. ]

Theorem 64 (Lagrange). We have g(2) = 4. That is, every natural number can be written
as a sum of at most four squares.
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Proof. We have the Lagrange identity
(aF + @3 + a3+ 23) (47 +y5 + 93+ ui) = (T1y1 + 2292 + 23ys + 2aya)’
+ (w12 — Toy1 + T3ys — Tays)?
+ (213 — 31 + Tay2 — Tays)”
+ (@19s — 24y + Tays — T3y)°.

We see that the product of two members which are representable as a sum of four squares
is also representable as a sum of four squares. Thus it suffices to prove that every prime
can be written as a sum of four squares. Note that 2 = 12 + 12 + 02 4+ 0%2. Let p be an odd
prime. By Theorem there exist @1, z9, x3, 14 € Z such that =¥ + 22 + 22 + 22 = mp with
1 <m < p-—1. Let mg be the smallest natural number such that mgp is a sum of four
squares. It remains to show that mg = 1. Suppose that mg is even. Note that

2 2., .2, .2, 2
(x1+ 2o+ a3+ 24)° =27+ 25+ 25 + 25 + 2 E LT
1<i<j<4
Since x3 + 73 + 22 + 23 = myp is even, we see that x; + o + T3 + x4 is even also. Thus either
x1,To, X3, x4 are all even, all odd, or only two of them are even (without loss of generality,
let’s say =1 and x5 are even). In all cases, we see that
Ty + T2, T1 — T2, T3 + T4, Ty — T4

are all even. So it follows that

1 + o 2+ T, — To 2+ T3+ T4 2+ T3 — T4 2_x%+x%+x§+xi_@
2 2 2 2 - 2 RS

But this contradicts the minimality of my. Hence my is odd. Suppose now that mgy > 1.
Since z% + 23 + 22 + 22 = mgp and 1 < mg < p — 1, not all of xy, x9, x3, 74 are divisible by
my, for otherwise we would have m3|mgp, which is impossible since this would imply my | p.
Thus there exist by, by, b3, by € Z such that y; = x; — bymg and |y;| < 52 (1 <4 < 4) and not

7 m, 2 J—
all the y;’s are zero. Then 0 < y? + y2 + y2 + y3 < 4(70) =mand 7 +y5s +y5 +yi =
(mod myg). Thus there exist m; € N with m; < my such that

Y+ v5 + Y3 + yi = mom.

We recall that 2% + 23 + 22 + 22 = mop. Multiply the above two equalities together. By the
Lagrange identity, there exist z1, 29, 23, 24 € Z such that

2,2 .2 2 02
21 + 25 + 25 + 24 = mymap,

where z1 = x1y1 + Tays + x3y3 + T4y4 and etc. Since

4 4
=1 1=1

for some K € Z. Since 2% + 23 + 23 + 23 = myp we have mg | z;. Similarly, we see that
29, 23, 24 are all divisible by mg. Let t; = z;/mg (1 < i <4). Then
G+t + 5+t =mip

and 1 < m; < myg, which contradicts the minimality of mg. Thus mg = 1 for all odd primes
p. Thus we see that all primes are representable as a sum of four squares. [l
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Theorem 65. g(4) < 53.
Proof. We have the identity
6(a> + b+ +d*)?=(a+b)*+ (a—b)*+ (c+d)* + (c—d)*
+(a+)+(a—c)* +(b+d)* + (b—d)*
+(a+d)*+(@a—d)*+ (b+c)' + (b—)h.

Combining the above identity with Theorem , we see that every integer of the form 622
can be expressed as a sum of 12 fourth powers. Note that every natural number can be
written in the form 6k + r with £ € NU {0} and 0 < r < 5. Then by Theorem [64| we can
write k as a sum of four squares, say k = 2%+ 23+ z3 + 2. Then 6k = 62?4 623 + 623 + 627

Since each term in the above sum is a sum of 12 fourth powers, 6k can be expressed as a
sum of 48 fourth powers. Finally, we note that r = 1* + -+ 4 1% (r times). Since 0 < r <5,
it follows that 6k + r is a sum of 53 fourth powers as needed. O

33. NOVEMBER 27: HARDY-LITTLEWOOD CIRCLE METHOD

We recall that the number g(k) is determined by “small” numbers of special form. Thus
a more interesting question is to estimate G(k), defined to be the least integer s = s(k)
such that every sufficiently large integer is the sum of at most k-powers of natural numbers.
Clearly, we have G(k) < g(k). Also, a conjecture states that G(k) = max{k+1,To(k)} where
[o(k) is the least integers s such that for every prime p and m € N, we have n = a4 .. + 2"
has a soultion in mod p™ where (z1,p) = 1. For large k, Wooley proved in 1992 that
G(k) < klogk + O(kloglogk).

One can consider a more refined question: for fixed k£ € N with & > 2, let

Rn) = Rop(n) =#{n:ahf+ - +2% 2, e N 1<i<sh
Note that if the above equality holds, then z; < n'/*. Also the sum ¥ + --- + 2* ranges
from s to sn. Thus we expect that Ry(n) is of size
(nl/k)s . (sn i S)_l ~ ns/k—l.

Note that (n'/*)* denotes the choices for z1,. ..,z and (sn — s)~! the probability that their
sum is n. That is, we expect Ry(n) ~ C(s, k;n)n*/*~! for some appropriate constant C' > 0.
Let G(k) be the least integer s = s(k) such that the above asymptotic formula holds for
every sufficiently large integer n. Note that for G(k), we only need Rg(n) > 0. Thus we
have G(k) < G(k). To estimate R,(n), we apply the exponential function. For o € R, let
e(a) = e*™*. We have
e(a)e(B) = e(a + ).

Moreover, for h € Z we have the following orthogonal relation

! 1 ifh=0
/0 elah) dov = {o it h e 7\ {o}.

Define p = n'/* and



It follows that

/01 fla)’e(—na da—/ (Ze ax ) (—na) da

_Z Z/ oo+ 2% —n)) da = Ry(n).

z1<p Ts<P

)

Note that () is 1if n = 2} + -+ + 2% and 0 otherwise. Note that as o runs between 0 and
1, e(a) runs through the unit circl. This is why we call this approach the circle method.

34. NOVEMBER 30

Define G(k) the least integer s = s(k) such that the expected asymptotic formula holds
for every sufficiently large n.

Conjecture. G(k) = max{k+1,To(n)} where Ty(k) is the least integer s such that for every
prime p and m € N, we have
n= :B’f +-+ xf
has a solution in mod p™ with (x1,p) = 1.
For a € R, let e(a) := €*™@. Let p=n'* and f(a) = Y. e(ax’). We have seen

1<z<p

_ /O ' Ha)*e(—na) do.

Idea is to divide [0,1) into two parts: major arc 9 and minor arc m, where 9% contains
a € [0,1) that are “close” to a rational number of “small” denominators and m = [0,1) \ 9.
Consider o = . with (a,q) = 1. Write x = yq + r with 1 <r < g. We have

)55, 5 G

q 1<zlegp r=1 1-rc,<p-r
7 =¥=7g

(ark> p <a7‘k>
= E g el — | ~= el — ).
r=1 1— Lorcy<por q q r=1 q

q —Y— q

We need g < p for the ~ part to be true. To extend the above estimate to «[0,1) that is
close enough to %, we note that

) (o)) e

x<p *<p

To approximate f (% + cp*k> by f (%), we need e(cp~*z*) to be “close” to 1. Since p~Fzk <
1, it suffices to choose to be “small”. This motivates the following definition of the major

arcs.
60



Definition 26. Let 6 € R with 0 < ¢ < £, and let a,q € NU {0}. We define the major arcs
to be

Mm = U M(q,a)

0<a<q<p®
(a,q)=1

where

a—g' gpék}.
q

The remaining portion m = [0, 1) \ 9t is the minor arcs. One can show that

M(q,a) = {a €[0,1):

/ f(a)*e(—na)da ~ C(s, k,n)ki L.

A trivial bound for f(«) is

(@)l = > e(aa®)

z<p

< p

Suppose that we can show sup | f(«)| < p'™ where v = v(k) > 0. Then it follows that

< <s1€1£|f(a)|) [rda< @y

Here, we want to get < p*~*=* for some A > 0. For this, it suffices to have sv > k+ \. Thus
(p'7")* < p*F " < ni~17k. Now we need to show sv > k + X. Write s = 2r + 1. We see
that

—na) da| <

/f()da<<sup|f |/|f )2 da

acm

acm

~ pl—z/ . p2r—k‘

We need to find r sufficiently large, namely r ~ k2.

35. DECEMBER 2

Let a,q € NU{0}. Suppose that 0 < a < ¢ and (a,q) = 1. For a € M(q,a) C M we have
q<p°(0<d<3)and




Write o« = % + (. Then

Since e(-) is smooth, we have

> Bl )~ [ eaat s

1—r p—r “q
5 SysSe -

p—r

N/rq e(B(zq +1)*) dz
L
q/o e(By") dv,

where v := zq +r and dy = qd=z.
Define S(q,a) = ;q:le (%) and v(3) = [Je(fy*)dy. Then one can show that for
a € M(q,a) M,
fa) = oSla.a)o (o= 2) 42
Since f(a) ~ q71S(q,a) we have

| tare-nayia= 3 5 / fare (<22 e-ng) ds

_al_— S—k
1<q<p® a=0 |a q |—|,5‘§p

~ Z qzi (¢ 'S(q,a))% <—%> /ngv»kv(ﬁ)se(_nﬁ) dg.

1<g<ps  a=0
(a,g)=1

For @) > 0, define

5= 3 (Swaye (-2)

14<Q a0 4
and
Q
J(n,Q) = v(B)e(—np) dp.
-Q

Then one can show that

. f(a)*e(—na)da = &,(n,p°)Jy(n,p**) + O(p" ")
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for some u > 0.
Define the singular series

and the singular integral o
sy = [ v(sye(-np) s
One can show that for s > 2* there exists w > 0 so that
/m Fla)*e(—na) da = &4(n)Ju(n) + O(p*—+").

One can also show that for s > 2 we have

where I' is the gamma function defined by

[(x) = / t" et dt.
0
It remains to show that 1 < S4(n) < 1. One can show that

s.m= [ o

p prime
where -
o(p) = A" n)
n=0
and

Agm = 3 (S@a)e (-,

a=0 q

(a,9)=1
Indeed, o(p) corresponds to the p-adic solutions of z¥ + .-+ + 2¥ = n. More precisely,
if we let M,(q) = #{mk + -+ MF = n (mod ¢),1 < m; < g}, then we have o(p) =
hh_}rgo p"=) M, (p") > 0. Tt follows therefore that

/ fla)’e(—na) da = G4(n)———"—
m

for some w > 0.
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