PMATH 745: REPRESENTATION THEORY OF FINITE GROUPS

HEESUNG YANG

1. SEPTEMBER 8: REVIEW AND QUICK DEFINITIONS

In this section we review classical linear algebra and introduce the notion of representation.
N.B. Unless otherwise specified, all the vector spaces will be over C.

Definition 1. Let V' be a C-vector space.
(i) A linear operator ¢ on V is a linear map ¢ : V — V.
(ii) We define GL(V') to be the set of invertible linear operators on V.
(iii) We define GL,(C) be the set of invertible n x n matrices over C.

Proposition 2. Let V' be a C-vector space.
(i) If dim¢ V =n, then V = C".
(i) If B = {by1,ba,...,b,} is a basis for V and v € V, then there exist a unique
(21,...,2n) € C" s0 that v = 210y + 29by + -+ - + 2,by,.
(iii) If fo : V — C™ is defined by fz(v) = [v]g = (21,22,...,2n), then fg is a vector
space isomorphism, and every isomorphism V = C" is of this form.

Suppose that h : V = W is an isomorphism (as vector spaces). Then h “lifts” in a natural
way to an isomorphism h* : GL(V) — GL(W). Note that, if f € GL(V) and g € GL(W)
and h*(f) = g, then the diagram

v Ltsw

fT Jg

Vv <—h_1 w
must commute, hence h*(f) = ho foh L
Proposition 3. h* is a group isomorphism.

Proof. To prove that h* is bijective, it suffices to find an inverse for each element g € GL(W).
The commutative diagram above implies that A~ o goh € GL(V) is the inverse: indeed, we
have h*(h™'ogoh) = ho(h togoh)oh™! = g. To show that h* is a group homomorphism,
note that 7*(f) o h*(g) = (k"o foh)o(h™togoh) =h""o(fog)oh=h(fog), as
required. 0
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Corollary 1. If dim(V') = n, then GL(V) = GL(C").
Proof. Apply Proposition [3| and the fact that V' = C". O

Recall the correspondence between linear operators on V' and n-by-n matrices over C
(classical linear algebra fact!). Given an n x n matrix M € M,,(C), define Ly, : C* — C"
be the linear operator represented by the matrix M (with respect to the standard basis,
WLOG), i.e., Ly(v) = Mwv. Recall also that Ly, is linear and invertible if and only if M
is an invertible matrix. Note that, to show that GL,(C) = V for any V with dimcV = n,
we need to have GL,(C) = GL(C"). And this relationship between the linear operators and
the matrices gives us the group isomorphism we are looking for.

Proposition 4. Let L : GL,(C) — GL(C") be the map defined as M +— Ly;. Then L is a
group isomorphism from GL,(C) to GL(C").

Proof. First we show that L is bijective by explicitly constructing its inverse, L=!. Let
& ={e1,ea,...,e,} be the standard basis of C". Given f € GL(C"™), we define

) T T o7
My = fler) flea) fles) --- flen) |,
L A

which is the matrix representing f, with respect to the standard basis. Note that My is
unique (up to a basis), since My’s action is determined entirely by its action on each basis
element. Define L' : GL(C") — GL,(C) as f — M;. Now we prove that L is a group
homomorphism. This follows from the fact that Ly y = Ly o Ly, i.e., L(MN) = Lyn =

Lyro Ly = L(M)o L(N), as required. O
Corollary 2. If dim¢c V' = n, then GL,(C) = GL(V).
Proof. Follows from Propositions [3| and [4] O

Definition 5. Let GG be a group.
(i) A linear representation of G is a pair (V, p) where:
(a) V is a vector space (over C); and
(b) p is a group homomorphism from G to GL(V).
(ii) The degree of a representation is dim (V).
For the sake of notational cleanness, we shall write p(g) as p, for each g € G.

Observe that Definition |5 formulates a linear representation from the perspective of an
“action” of a group on the space of linear operators. The following alternate definition of
linear representations focuses on the behaviour of the map p itself:

Definition 6. A linear representation of G is a vector space over C together with a family
of linear bijections (p, = g € G) such that if g9, = g, then p,, o py, = p,.

Proposition 7. Definitions 4 and[f are equivalent.

Proof. @ = 5|) This is immediate, since g1g2 = g = pg, © pg, = py implies that p is a group

homomorphism.

= [6) Since p is a group homomorphism, we have p(g192) = p(g1) © p(g2), as desired. That

each p, is a linear bijection follows from the fact that p, is a invertible linear operator for

all g € G. O
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2. SEPTEMBER 9
2.1. Examples of representations.

Example 1. Consider Cg, cyclic group of order 6. In this example we will construct a repre-

sentation of degree 2. Start off with a linear map L : C> — C? which maps ((1)) — () and

(0) — (:12”2), where w denotes a primitive cubic root of unity. Thus the matrix representation

o% L (call it Myp) is
My, = < (1J __ZZ)UQ ) :

One can calculate that M3} = I, hence L? = idc2. Hence, the map p satisfying the following
forms a Cg-representation (C?, p) (one can verify that p is indeed a group homomorphism):
0,3 — id@2
1,4— L
2,5 — L2

Alternatively, one can write this representation in the following way: (C?, (id, L, L?,id, L, L?)).

Ezxample 2. In this example, we consider a permutation group S3. For each m € Ss, define
pr: C3 — C3 by

Pn(zl, 22, 23) = (Zn—1(1)7 Zw—1(2)72ﬂ—1(3))-
Observe that p, is indeed a linear map: p, can be expressed using a matrix, namely the
identity matrix with columns permuted by 7~'. For instance, if 7 = (123), then we have

PW(Z1>Z2,Z3) = (23,2’1,22) and

0 0 1 21 Z3
1 00 29 - 21 )
010 z3 29

which is what we would expect. As we would expect from the matrices, each p, is invertible.
Now it remains to show that (C3, (p, : m € S3)) is a representation of S3. That is, we need
to show that p is a group homomorphism from S3 to GL(C3?).

It is helpful to think of each element of z € C* as a map z : {1,2,3} — C (for instance,
(1,2,3) > (21, 29, 23)). We claim that p, o z = z o7 !. Indeed, in the case of m = (123), we
have pr(2)(1) = pa(21, 22, 23)(1) = (23,21, 22)(1) = 23 and zo w1 (1) = (21, 22, 23)(3) = 23, as
desired. Do this for other elements and each 7 to verify the claim.

Now for any \,7 € S3 and z € C?, we need to prove that py.r = pi © pr, which is
enough to show that p is a group homomorphism. Indeed, we have pyor(2) = zo (Aom)™! =

zomloA = (zom ) o X! = p(2) 0 A~ = pa(pa(2)) = (pa 0 pr)(2), as required.

Definition 8. Suppose (V, p) and (W, A) are two representation of the same group G. Then
a morphism (also called an intertwining or a G-linear map) from (V, p) to (W, A) is a linear
map h : V — W which preserves the operators p, and o, in the following sense: for each
g € G and for all v € V, we have h o p,(v) = o,0 h(v) for all ¢ € G. Also, if h is an
isomorphism, then we define h* : GL(V) — GL(W) as p, + hop,oh™ = g,.

Definition 9. A bijective homomorphism is called an isomorphism.
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Lemma 1. Suppose (V,p) is a representation of G and h : V. = W is some vector space
isomorphism. Suppose h* : GL(V') — GL(W) is the “conjugation” isomorphism. Then:

(1) (W, h* o p) is a representation of G.

(2) (V.p) = (W,h* 0 p = 0).
Proof. The first part follows from the fact that h* is an isomorphism, as it implies that
h* o p is a group homomorphism. As for the second part, we start with A isomorphism.

First, observe that o, = h* o p(g9) = h*(p,). For any g € G, we have 0,0 h = h*(p,) o h =
(hopyoh ™) oh=hop,, as required. O

Corollary 3. Every representation (V, p) of degree n is isomorphic to (C", o) for some o.

Proof. Use the linear map fg : V — C" for basis # and apply the previous lemma. U

3. SEPTEMBER 11

Definition 10. Suppose (V) p) is a representation of G and W < V. Then
(i) W is G-invariant or G-stable if p, (W) C W for all g € G.
(ii) If W is G-invariant, then p|y denotes the map with domain G given by (p|w)(g) =

pg‘W'

Lemma 2. If (V,p) of G and W is a G-invariant subspace of V', then (W, p|lw) is a repre-
sentation of G.

Proof. We need to prove that p|y : G — GL(W) is a homomorphism. For this, we need to
verify the multiplicativity of p|y. (Need to fill in the details!)

To prove that p|y is bijective, we note that p, is a bijection, so py|w is injective. For
subjectivity, use the fact that W is G-invariant, and that ¢~' € G: p,-1(W) C W, hence
W C pg(W). Thus, p,(W) =W, as required. O

4. SEPTEMBER 15 & 16: PROOF OF MASCHKE’S THEOREM AND IRREDUCIBLE
REPRESENTATIONS

Recall that if (W, p), (W1, 0) are representations of G, then (W, p) & (W1, 0) is the rep-
resentation (V, p @ o) where:

[ ] V = WO @ W1
o (pB0o)y=p,Po,:V =V given by (p, ® o,)(wo + w1) = py(wo) + o4(wy) where
w; € WZ

Example 3 (Representation of Z/6Z). (C?, p) = (C?, (idce, L, L?,idc2, L, L*)) where L : C* —

C? defined by
0 —w
1 —w? )

where w = e2™/3. In fact, this matrix is diagonalizable, with eigenvalues 1 and w. If E; and
E,, are the eigenspaces, then C* & E, ¢ E,,, and F; and E,, are Z/6Z-invariant. This gives
us the decomposition

(C% p) = (Er, pli,) ® (B, pl)- (1)
We want to know what (E1, p|g,) and (E,, p|g,) signify. To start off, examine each map.
Then p|g, maps (0,1,2,3,4,5) — (idg,, L|g,, L?|p1,idg, L|g,, L?|5,). But since L|g, =
L?|p1 = idg,, we see that (Ey, p|g,) is the trivial representation, i.e., = (C, 7).
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As for p|g,, we see that p|g, is a multiplication map (by w). Thus (E,,plg,) = (C,0)
where o(a) = multiplication map by w®™°43. Thus (C2,p) = (C,7) @ (C, o).

Note that can be stated in a more general way:

Lemma 3. Suppose that (V,p) is a representation of G. If V.= Wy @& Wy and both Wy, W,
are G-invariant. Then (V, p) = (Wo, plw,) ® (W1, plw,)-

Definition 11. A representation (V, p) of G is irreducible if V' # {0} and V' has no non-trivial
G-invariant subspaces. If it is not irreducible, then that representation is called reducible.

Lemma 4. Suppose p is a projection of V onto W and h € GL(V'). Then h*(p) := hopoh™!
is also a projection of V' onto h(W).

Proof. We need to show two things:
() 1 (p)(V) = h(W)
Since h is an isomorphism, it follows h*(p)(V) = (hopoh™')(V) = (hop)(V) = h(W),
as required.
(ii) For all x € h(W), we have h*(p)(x) =
Let x € h(W), say, x = h(w) for some w € W. Then h*(p)(X) = h*(p)(h(w)) =

(hopoh™)(h(w)) = h(w) = z.
Thus h*(p) is a projection also. O

Theorem 1 (Maschke’s Theorem). Suppose (V, p) is a representation of G where G is finite.
Suppose that W <V is G-invariant. Then W has a complement which is also G-invariant.

Proof. Tt suffices to find a projection of V' onto W whose kernel is G-invariant, i.e. some
map p : V — V so that p(w) = w for all w € W and im(p) = W. Let f be an arbitrary
projection of V' onto W. Then for each g € G, we have p, € GL(V). Let f, := p}(f). By
Lemma [4] f, is also a projection of V onto py(W) = W. Define

f?
P

i.e., the “average” of all the f, € End(V). We claim that f is a projection of V onto W.

Clearly, smce f is composed of linear maps, f is clearly linear. For any z € V, we have
flx) = |G‘ Z fo(x). Note that each f,(w) € W, so > f,(x) € W also. Thus f( ) e W.

Also, for w E W, we need f(w) = w. Since

- 1
f(w):@gez(;fg( |G|Z ofo pg |Zw

geG gelG

this claim follows. To finish the proof, we need to prove that ker( f) is G-invariant. Let
g € G and w € ker(f). We need to show that f(p,(w)) = 0. Since Py © f = fop, (see

Lemma [ for proof), we have f(p,(w)) = (f o py)(w) = (py o F)(w) = py(F(w)) = p,(0) = 0.

So ker(f) is our G-invariant complement to W. O

Lemma 5. For all g € G, we have p, of =fo Pg-
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Proof. equivalently, we have p, o f o pyt = f, ie., p;(f) = f for all ¢ € G. Choose some
h € G. Then

pi(f) = pno fop,'

(m@fg)
thOfQOPh

gEG

yg|zphopgofopg

geG

thg ophg

gEG

|G| Z Pro(f |G| Zpg =T 0

geG geqG

Corollary 4. Suppose that G is finite, (V, p) is a representation of G, with dim(V) =n > 0.
Then (V, p) can be written as a direct sum of irreducible representations (of G).

Proof. We prove by induction on n. Every representation of degree 1 is automatically irre-
ducible, hence the base case. Now suppose that the conclusion is true for n > 1. If (V,p)
is irreducible, then the conclusion is immediate, so suppose otherwise. Then there exists a
proper subspace W <V with W a G-invariant subspace. Apply Mascke’s theorem to get a
G-invariant complement, say V;. Thus V = W @ V;. Since W and V; are both G-invariant,
it follows that (V, p) = (W, plw) @ (V1, p|1;). Note that W <V, so dim(W) < dim(V) = n,
and since W # 0, the dimension of W must be positive. Hence 0 < dim(V}) < n also.
By the inductive hypothesis, both (W, p|lw) and (Vi, p|y,) can be written as a direct sum of
irreducible representations. 0

5. SEPTEMBER 16 & 18: TENSOR PRODUCTS

For C™ and C", define C™*" = {all m x n matrices over C} as a vector space over C.
Define + : C™ x C* — C™ " by t(u,v) = wv’. The map ¢ is in fact bilinear: that is, ¢
is linear on both first and the second variables, i.e., ((cx + y,v) = c(x,v) + ¢(y,v) and
t(u,cx +y) = c(u, ) + t(u, y).

We start with the standard basis: C™ = span{ey, e, ..., e, } and C" = span{e], e}, ... e }.
Now we define the tensor product:

Definition 12. Define i(e;, ;) = (an) where ay = 1 only when (k,1) = (i, j) and 0 other-
wise. We denote ¢(u,v) as u® v. We call C"™*" the tensor product of C™,C" (via ¢) and we
denote it as C™ ® C". Also, u ® v is called a simple tensor.

Remark 1. Note that not all tensor are simple, i.e., cannot be written in the form u ® v.

Proposition 13. {i(e; €)1 1 <i <m,1 < j <n} is a basis for C™*".
6



Proof. Observe that 1 = ® : C" xC" — C™®C" is a bilinear map, and that {ei®e;- |1<i<
m,1 < i< n}is a basis for C™ ® C". Observe also that ¢ is neither injective nor surjective,
sinceu®@0=0®v =0 C™" for all u € C"™ and v € C". ¢ is not surjective either since
t(u,v) = wvl is always of rank < 1, i.e., (im(¢) = {all rank < 1 matrices in C™*"}. It is also
true that span(im(z)) = C™" = C™ & C".

In fact, every x € C™ ® C"(= C™*") is a sum of simple tensors. Hence write z = (m; ;) €
Cm ™. It is known that the matrix can be written as follows:

(1) = S e )= Tl ) 0.

Z?]

and (m; je;) ® €}. This completes the proof. O

5.1. Universal property of tensor products.

Proposition 14. Suppose V' is a C-vector space, and fir m,n € Z. Ifa : C™" x C" = V s
a bilinear, then there exists a unique linear map @ : C" ® C" — V such that @ o1 = «.

Proof. @ot = a implies that for all (u,v) € C™ x C", we have a(u®v) = a(u,v). Uniqueness
is clear from Proposition |13} recall that @ is determined by its actions on simple tensors, and
that {e; @ ¢’} is a basis for C™ @ C". So there exists a unique linear map C™ @ C" — V' such

that e; @ €} — a(e;, €}). Let @ be this map. So it remains to prove that a(u ® v) = a(u,v)
foralluE(Cm veCn
Start with u € C™,v € C". So u = ) use;, v = Y v;e’; for some (u;)i2; and (v;)j_;. Then

() (5) 5o (5)
_Zuz <Z (e; @€ >:%:uivj(ei®e;).

Therefore

au®u)=a (Z wv;(e; ® e}))

= Z uv;a(e; @ €) = Z uvjoe;, €,
i3 i,J

so @ is linear. Similarly,

a(u,v) = « (Z Ui, Zvje;) = Zuia <ei, Zvje;)
_Zul <ZUJ ale;, e j) Zulv] ale;, €)) = alu @ w),

as required. [l



5.1.1. One application of Proposition . Let f:C™ — CF and g : C* — C' linear. Let
V = CF @ C'. Define a : C™ x C" — V by a(u,v) = f(u) ® g(v). We claim that this is
bilinear.

Claim. « is bilinear.

Proof. « is linear on the first variable:

a(z +y,v) = fle+y)@g(v) = (f(z) + f(y)) ®g(v) (f is linear)
= f(z) ® g(v) + f(y) ® g(v) (® is bilinear)
= a(z,v) + a(y,v).

We can apply the same argument on the second variable as well to prove the claim. O

Now apply Proposition (14, Thus, there exists a linear map @ : C™ x C" — V so that
@or=a. We call this@ = f ® g. Therefore, with f : C™ — CF and g : C* — C!, one can
form f®g:C™ @ C" — C* @ C' satisfying (f ® ¢9)(u ® v) = f(u) ® g(v). In particular, if
k =m and [ = n and both f and g are invertible, then so is f ® g (See Assignment 2.). In
other words, given f € GL(C™),g € GL(C"), we get f ® g € GL(C™ @ C").

5.2. Tensor product and representation.

Definition 15. Suppose that (C™, p), (C", o) are representations of G. Define p @0 : G —
GL(C"™®C™) given by (p®0), = py@0,. Then p®o is a group homomorphism. Therefore,
(C™® C" p® o) is a representation of G. (C™ ® C", p ® o) is called the tensor product of
(€™, p), (C",0).

Example 4. Let (C3,p) be the representation of Sz from Example . We want to compute
(C%p) @ (C%p) = (CP@ C%p®p). First, “find” puaz) @ pazs) = (p X p)azs). Let z €
C3? ® C* = C**3. Then

(Pa23) ® pazs)) (e ® e;) = pazz)(e:) @ pazs)(€j) = €iv1 @ ej41.

Thus the given tensor map shifts the entries to the right by one unit and then down by one
unit, i.e.,

211 <12 <13 <33 231 <32
(P(123) & P(123)) 221 %22 %23 = <13 %11 %12
<31 32 %33 223 %21 %22

More generally, we have (pr ® pr)([2i]) = [2r-1(:),x—1(j)]- Thus
(C?,p)?? = (C% p) ® (C°, p)
“is” the space of 3-by-3 matrices, with S35 acting on rows and columns.

Definition 16 (for this example). We define Sym?(C?) and Alt*(C?) as follows:
Sym?*(CH = {2 e C*@C? :x =2T}, Alt*(C*) = {zr € C* @ C? : 27 = —2}.

Both Sym?(C?) and Alt*(C?) are subspaces of C* ® C?, and that (C3)®? = Sym?(C?) ®
Alt*(C?). Also, both Sym? and Alt* are Ss-invariant.
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6. SEPTEMBER 22

Definition 17. Given V, W complex vector spaces, a tensor product of V with W is a pair
(7, X') where:
(i) X is a complex vector space
(ii) i : V x W — X is bilinear.
(iii) If « : V. x W — Y is any bilinear map, then there exists a unique linear map
a: X — Y such that @01 = a.

Proposition 18. If (i1, X;) and (iz, X3) are tensor product for V- with W, then there exists
a unique isomorphism X1 = Xy such that

Vx W1 X,

N

Xo
i.e., for any (v,w) € V. x W, we have (f oi1)(v,w) = is(v,w).

Denote any tensor product of V with W by X := V ® W and write v ® w := i(v,w).
Recall from last week that there exists a tensor product of C™ with C" (X = C™ " i(v,w) =
v w=ovw’.).

In general, if V, W are finite-dimensional spaces (say dim¢ V' = n, dim¢ W = n by choosing
bases, we can identify V ~ C™ and W ~ C*", and VW ~ C" @ C* = C™"™. Thus VW
exists for all finite-dimensional spaces.

Proposition 19. For any finite-dimensional V, W, X :
(1)) VW=WaeV
() VeoWeX)Z(VeW)e X
(iii)) VoWaeX) 2 (VeW)s (Ve X).

Proof of (i). Say dimV = m,dim W = n. Then dim(V ® W) = dim(V) dim(W) = mn =
dim(W ® V). However, what is more important is that there is a natural isomorphism.
Namely, we have an isomorphism sending v ® w +— w ® v. In concrete case: this would be a

transpose map. In general, we call the isomorphism V@ W = W ® V the transpose, denoted
with 7. O

As in the concrete case, if f: V] — V5, g : W7 — Wy are linear, then there exists a unique
linear map f®g: V) @ Wi — Vo ® Wy such that v @ w +— f(v) ® g(w). So given f € GL(V})
and g € GL(13), get f®g € GL(V; ®V3). Thus, given a finite group G, with representations
(V.p), (W, 0), get a representation (V@ W, p®@ ) = (V,p) @ (W,0) with (p @ o)y = pg ® 0.
Definition 20. Suppose that V is a finite-dimensional vector space. Then

Sym*(V)={z e VeV :z' =2}
Al*(V)={zeVaV a2l =—x}



Lemma 6. For any V and any f € GL(V), both Sym*(V) and Alt*(V) are f ® f-invariant.
Proof (for Alt*(V)). Let x € Alt>(V). Soxz € V@V, 2T = —z, i.e., z + 27 = 0. Write

n

r = Z(ul ® v;).

=1

n T n
2zl = (Z(m@vl)) :Z u; @ ;)" ZUZ(X)uZ
=1

=1

Then

We are also given that
> (wi @) + (v @) = 0. (2)
Let y = (f ® f)(z). We must show that y € Alt>(V). Then we have

n

y=@fN)x)=(ef) (Zuz@@vz):Z(f@f)(ui@w)

= Zf(uz') ® f(vi).

Thus

n

y" = Zf(vi) ® f(u;).

=1

Now apply f® f to :
0=(f2N0) = (f& ) (P wov)+ o)

=2 flw) @ f(v) + 3 fv) @ flw)

=y+y. O
Corollary 5. If G is a finite group and (V, p) a representation of G (of finite degree), then:
(i) Sym*(V), Alt*(V) are G-invariant with respect to (V, p) @ (V, p).
(ii) (V,p) @ (V,p) = (Sym*(V), (p @ p)lsym2vy) & (AL*(V), (0 X p)lsym>v))-

Example 5. Let (C3, p) be a representation of S (as in Example [2]). Then from Assignment
#1, we know that (C3 p) 2 B@ 1, where B := (C? o) and 1 := (C,7) as defined in the
solution to Assignment #1. Consider

(C.p)e(Cp=Bel)eBol)
~BeB@®Be1)e(1eB) @ (1e1)
~BeB)eBaoBa1.

Recall also that
B ® B = (Sym*(C?), O lsyme(c2)) @ (Alt*(C?), | ar2(c))-
For notational simplicity, let

(Sym*(C?), Olsym2(c2)) = Sym, (Alt*(C?), U|A1t2(C)) =: Alt. (3)
10



Note that Sym is of degree 3 while Alt is of degree 1. Thus Alt is an irreducible represen-
tation.
First, examine Alt. Since Alt?>(C?) is a set of all skew-symmetric matrices, the basis is

0 1
-1 0 /)
Meanwhile, o acts on C? via matrices:

01 -1 -1
M(12):(1 0>7M(123):< 1 0 >

o ® o acts on C? ® C2. Use basis €11, €12, €21, €22. Computations show that o ® o acts by
matrices

0 0
1 -1

®2 _ —_
M(12) - -1 - 1
0 0

This shows that

cen((G0)) =)

Hence (0 ® o)(x) = —x for all 2 € Alt*(C?). Thus, Alt # trivial rep.

7. SEPTEMBER 23: INTRODUCTION TO CHARACTER THEORY

7.1. Some linear algebra review.

Definition 21. Let M = (a;;) be a n x n matrix over C.
(i) The characteristic polynomial of M is p(x) = det(xI,, — M).

(ii) The roots of the characteristic polynomial are the eigenvalues of M (up to multiplic-
ity).

(iii) p(z) = (x — A1) (x — A2) X -+ X (z — A,). Hence constant coeff = (=1)"A;--- \,,, and
coeff of "1 = —(A\; + -+ + \,).

(iv) Adr... A, =det(M), Ay + -+ + A\, = tr(M).

(iv) If M, N are similar (i.e., there exists invertible ) such that N = QMQ~!, then M, N
have the same characteristic polynomial, and hence same eigenvalues, determinant,
and trace.

If V is finite-dimensional (dim(V) = n) and f : V' — V linear map, then by choosing a
basis for V| one can identify f with a matrix; then we can get char. poly., determinant,
eigenvalues, and trace for f. By (v) in Definition they are independent of basis. Let
det(f) be the determinant of f and tr(f) the trace of f.

Definition 22. Let (V,p) be a finite-dimensional representation of a finite group G. The
character of (V, p) is the function x : G — C given by x(g) = tr(p,).
11



Example 6. Let (C?, p) = B as in Example i Each o is given by a matrix M,:

10 01
Mid = ( 0 1 ) 7M(12) = ( 1 0 >
-1 -1 1 0
M(13) = ( 0 1 > ;M(23) = ( -1 -1 )
-1 -1 0 1
M(123) = ( 1 0 ) 7M(132) = ( ~-1 =1 ) :

The character of B is map y : S35 — C given by
T \ id (12) (13) (23) (123) (132)
x(m)]2 0 0 0 -1 -1

Proposition 23. Let (V,p) be a representation of degree n of a finite group G. Let x be its
character. Then

(1) x(1) =
(2) x(g7") = x(g) for all g € G.
(3) x is constant on conjugacy classes of G, i.e., x(aga™') = x(g) for all a,g € G.

Proof. For (1), pick a basis for V' so that [p;] = I,,. So x(1) = tr(py) = tr({,,) = n.
As for (2), consider p, and p,-1 = (py)~'. Let Ai,..., A, be the eigenvalues of p,. Then
At oo At are the eigenvalues of (p,) L. Tt is known (by assignment #2) that

Nl =1, so Xt =\,
| | ) 1

Therefore,

X(g7) = tr(pg1) = tr((pg) ™) = Z Z A

=1
Finally, to prove (3), we start by picking a,g € G. SO Paga—1 = Pa © Pg © (pa)~t. Pick a basis
for V. And let M = [p,] and N = [paga-1]. Note that M and N are similar: let N = QMQ™*

and Q = [p,). So p(g) = tr(py) = tr(M) = tr(N) = tr(paga—1) = x(aga™). O
For any two matrices, we have tr(AB) = tr(BA). Thus, tr(pag) = tr(peopy) = tr(pgop.) =

tr(pga)-

Definition 24. Let G be a finite group. A class function on G is any function « : G toC

which is constant on conjugacy classes. We write

ClaFun(G) := {all class functions on G}.

Observe that ClaFun(G) is closed under:
(1) pointwise addition. That is, if o, 8 € ClaFun(G), then (a + 8)(g9) = a(g) + B(g).
(2) pointwise multiplication, i.e. (a---0)(G) = a(G) - B(G).
(3) complex scalar multiplication, i.e., (ca)(g) = c(a(g)).

Proposition 25. Suppose that G is finite, and (V, p) and (W, o) are finite-degree represen-
tations of G. Let x,, X, be their characters.
(1) X, + Xo is the character of (V,p) & (W, 0).
(2) X, Xo is the character of (V, p) @ (W,0).
12



Proof. Let e = (eq,...,e,) and € = (€},...,¢€)) be bases for V and W. Then we see that
e A€ is a basis for V@ W. For any g € GG, we have

(0@ o)l = (L4240,

Let x be the character of (V,p) & (W,0) = (V& W, p & o). Then we have

o) = l(p @ ),) = or (L0 ))

= tr([pgle) + tr([ogler) = tr(py) + tr(oy) = X,(9) + Xo(9)- O

8. SEPTEMBER 25: CONTINUATION OF CHARACTER THEORY

Proposition 26. Suppose G is finite and (V, p), (W, o) are representations of G (finite de-
gree), with characters x,, Xo. Then:

(1) The character of (V,p) & (W,0) is X, + Xo-
(2) The character of (V,p) ® (W,0) is X, - Xo-

Proof. Fix g € G. Let e = (e, €9,...€y,) be a basis for V and € = (€],...,¢]) be a basis
for W. Let [pgle = (ai;) and [0]er = M. Recall that (e; ® €}) is a basis for V @ W, where
1<i<m,1<j<n. And

anM  apM - ay, M

CL21M a22M s CLQmM
[pg ® Ug] - : : .. :

amlM amgM s a/mmM

Thus if yx is the character of (V,p) ® (W, o), then
x(9) =tr((p® o)) = tr(pg ® )

pg ® 0'g Z Qi tr

= tr((ay)) - tl"(M) = tr([pgle) - tr([ogler)
= tr(pg) . tI"(O'g> = Xp(g) “Xo(9)-
0

Proposition 27. Suppose that (V,p) is a finite-degree representation of a finite group G.
Let x be its character, xs the char of (Sme(V),p®2]Symz(V)) < (V,p)®2%, and xa the char of

(Ath(V),p®2|Alt2(V)) < (V,p)®2. Then for all g € G:

(1) xs(g) = 5(x(9)*> + x(g%))
(2) xa(9) = 3(x(9)* — x(¢%))
(3) xs(9) + xalg) = x(9)*

Proof. Note that (3) follows from Proposition . Fix g € G. Then p, is diagonalizable (i.e.,
there exists a basis for V' consisting of eigenvectors for p,. See also Assignment #3). Let

B = (e1,...,e,) be a basis for V' consisting of eigenvectors for p,. Let A\; € C be such that
13



polei) = Niei. Sotr(pg) = A +- -+ \,. Also, py2 is also diagonalized by 5, and py2(e;) = Ale;
and tr(pgz) = > A2
i=1
Bs={ei®e;+e;®e; i <}

is a basis for Sym?(V). Then we claim that P |sym2(vy 18 diagonalizable with respect to .
Observe that

P e ®ej+e;®e;) = (pg @ py)(e; @ ej +€; @ ;)
= py(€i) @ pgle;) + pgle;) @ pglei)
= )\,-ei & )\jej + )\jej X )\ie,-
= )\7)\3(6Z X €; + €; X 61').

This shows that

tr(p;®2‘8ym2(V)) = Z )\1)\]

1<j
Thus,
XS(g) = tr<p;7®2|8ym2(V)) = Z )\1)\]
1<j
=D N+ AigAiN
1 ’ 1
=3 (Z >\i> + D0 | =500 +x(¢),
as required. (2) can be proved in a similar manner. U

Example 7. Let B = (C?,0) be a degree-two irreducible representation of Ss;. Recall that

01 -1 -1
M(12)2|:1 O:|7 M(123):|:1 O:|7

and

Recall that

B ® B =Sym ® Alt
14



(Refer to (3] for the definitions of Sym and Alt.). Apply Proposition to get the character
tables for Sym and Alt. For Sym:

Xs(id) = 2 (x(id)? + x(id?) = T2 =3
Xs(ab) = S (x(ab) + x((@by) = *72 =1
xs(abe) = S(x(abe) + x((abe))) = 4 =0.

7w |id|(ab)|(abec)
Xs () ‘ 3 ‘ 1 ‘ 0o
In a similar manner, one can obtain the following table for Alt:
7 |id|(ab)|(abc)
O[T -1 1
Finally, we claimed on Monday that Sym = B @ 1. Verify that ys = x + x1-

9. SEPTEMBER 29

Definition 28. Let GG be a finite group. Define
(1) C% := the set of all functions G — C
(2) If a, B € CY, then
(a] B) = Z

gEG
where z* denotes the complex conjugate of z.

(3) If a, B € CY, then
@ |G| Pl

geG

Z = (8, ).

gEG
(4) If 8 € C%, then 8 € C%, where 3(g) := B(g~1)*. Obviously, 3(g7) = B(g)*.

Remark 2. We can make the following observations:

(1) CY “s” ClI¢l = C", where G = {g1, 92, - -+, gn}-

(2) C% is a complex vector space of dim n = |G].

(3) C% is a ring (with pointwise addition and multiplication).
(4) ClaFun(G) C C€.

(5) (| ) is a complex inner product on C% i.e.,

(041+042\5):(041|5) (a2 | B)

(ca| B) =cla|B) (ceC)

(8] a)=(a]p)

(a]B)eC

(a]a)>0 ((a]a)=0&a=0)

15



Suppose that (a | a) = 0. Then we have Y a(g)a(g)* = 0, or Y |a(g)]*> = 0

geG
Therefore, one has |a(g)| =0 so a = 0.
Remark 3.
(a] B) = Z
|G| =
Z (9)B(g7") = (. 5)
gEG

Remark 4. Which 3 satisfied § = 37 We need f to satisfy 8(g) = B(g~")* for all g € G. This
is equivalent to saying that 8(¢g~1) = 8(g)*. Characters have this property (see Proposition
23). So x = x for all characters x. Thus, for all characters the relation (| x) = (o, x)
holds true, for all @ € C¢ and all characters .

Suppose that (V, p) is a finite-degree representation of finite group G. Let x be its character
and € a basis for V. Then for all g € G, we get [p,]e = (1ij(g)). Thus we get a bunch of
functions r;; : G — C, i.e. r;; € CY.

For any character ¥,

x(g) = tr(pg) = tr([pgle) = tr(ri;(g Zrn =X = ZTu € C°.

This proves:

Theorem 2 (Fundamental Observation). If (V, p) is a finite-degree representation of a finite
group G and x 1is its character, and (r;;(g)) gives the family matrices representing the p,’s
with respect to some basis, then x = ri1 +rog + -+ + Tnn.-

Lemma 7 (Schur’s Lemma). Suppose G is a finite group, and (V, p), (W, o) are irreducible
representations. Suppose also that f : (V,p) — (W, o) is a morphism.

(1) [ is either an isomorphism or the constant zero map.
(2) If (W, o) = (V, p), then f is a scalar map, i.e., there exists A € C such that f(v) = v
forallveV.

Proof. (Part (1)) Assume that f is not the constant zero map. Let X = ker(f). We know
that X is G-invariant subspace of V. Since f # 0, X # V. Since (V, p) is irreducible, it
follows X = {0} so f is injective. Now let Y := im(f). We know that Y is G-invariant
subspace of W. Since f is injective, Y # {0}. Since Y is irreducible, we must have Y = .

(Part (2)) Assume that (W,0) = (V,p). So for f:V — V, we can choose an eigenvalue \
of f, say with eigenvector v. Let g : V' — V be g = f — Aidy, i.e., d(v) = f(v) — Av. Then g
is a morphism from (V, p) to itself. By (1), ¢ is either an isomorphism or the constant zero
map. Observe that if v # 0, then g(v) = 0, so ¢ must be the constant zero map. Hence
f(v) = Av, as required. O

10. SEPTEMBER 30
Definition 29. For a, 3 € CY, we have (o, 8) = & > gecalg™h)B(g)-

|G
16



Corollary 6. Let G be finite, and (V,p), (W, o) irreducible representations of G and f :
V — V be a linear map. Define fO:V — W by

|Zaglofopg

geG

Then:

(1) If (V. p) % (W,0) then f* = 0.

(2) If (V,p) = (W, 0), then f°(v) = \v, where A\ = ;rélf‘)/

Proof. Main step: prove that f° is a morphism of representations, i.e., f%(p,(v)) = 0,(f°(v))
forallv € V,g € G. Fix g € G. Then we have

O';lofOOO'g:O' <|G|Zahlof0ph>o g

heG

|Zgg 10p-1 fphpg |Za(hg 1fphg f :

heG heG

Now apply Schur to f°:

(1) Assume (V, p) % (W,0). Then f° is not an isomorphism. Apply Schur, then we get

fo=o.
(2) Now assume (V, p) = (W, ). Then by Schur, we get that f°(v) = Av for some .

On the first and, tr(f°) = Adim(V). On the other hand,

(fo <|G|Zpg fpg> |G|Ztr pg fpg

geG
1
Ztr “1pof) = g ) = (). O
gEG
Let dimV = m,dimW = n. Let e = (e, €9,...,¢,) be a basis for V and €' a basis for

W. Define [pyle = (761(9))mxm and [og4]ler = (5i;(9))nxn- Suppose h : V' — W is a linear map,
and we can write [h]$ = (Zj%)nxm- Note that ry,s; € CC.

Define f© as before. Then what is [f°]$? Define [f°]¢" := (cit)nxm. Formula for c;. Start
with f9 = ‘—é| %Ugflfpg So

& e

gEG

Czl |G‘ Z Sz] x]k (Tkl)

geG
17



For each (i,1), we have

Cil | ZG (Z sl] xjkrkz(g)) Z <|G| st Tkz ) Tk

= Z (|G| Zsz] Tkl ) Tk = Z<Sijarkl>xjk:-

jik
If (V,p) 2 (W, J), then fO = 0. Thus (¢;) is the zero matrix. That is, the sum
Z<Sij, Tk:l>-77jk = O
jik
This is true for all f, or for all (x;). Hence (s;;,r) = 0 for all 4, j, k,l. Thus we proved

Corollary 7. If (V,p),(W,o) are irreducible representations, then [ps] = (ru(9)), (04 =
(sij(g)) with respect to some basis. If (V,p) 2 (W, o), then (sij,ri) =0 for all i, j, k, .

Next, assume that (V, p) = (W, o). And let [p,] = (rir) = (145), [f] = (xr), [[*] = (ca). So
cii = » (1, Tr)xj5. By Corollary ﬁ, f%(v) = Av where \ = tr(f . Thus¢yis ANif i =1 and 0

g,k
f)= Z Ljj = Z kL gk

otherwise. Thus

So ¢ = 521( ) 5zl Zégk%k Z(%@ﬁjk}%k- Thus, for all ¢, 1,
7.k
1
Z<Tijarkl>xjk = Z (E(;iltsjk) T ;.
Jik g,k

Since this is true for all f (= for all (z;x)), it follows (r;;, r) = %&léjk for all 4, j, k, 1. Hence
this proves

Corollary 8. If (V,p) an irreducible representation and [p,] = (1x1(g)), then for all i, j, k,l,
(rijsTia) = Eéil(;jk = {m )

0 otherwise

11. OCTOBER 2

Corollary 9. (V, p), (W, o) irreducible and [p,] = (rii)g, [04] = (si;(g)) then (s;j,m) =0 for
all'i, j k. 1.

Corollary 10. Let (V, p) be irreducible and [py]] = (1(g)). Then
L ifi=14=k
(rij,h) = {dlmv J /

0 otherwise.

Corollary 11. Suppose (V, p) (W, o) are representations with characters x, X', respectively.
If (V.p) = (W, 0) then x = X.

Theorem 3. If G is a finite group, then
18



(1) if x is the character of an irreducible representation of G, then (x | x) = 1.
(2) If x, X" are the characters of irreducible representations (V, p), (W, o) of G and (V, p) #
(W, o), then (x | ) = 0.

Proof. For part (1), start with x, the character of (V,p). Pick a basis g for V. Write
[pgls = (7:5(g)). Recall that x =ry; + -+ ry, where n =dimV. Then (x | x) = (x,x) =

<Z Ty ;7’“> = Z<’f’“’,’f’j]’> = Z % =

=
S =
I

% ,J 2,] =1
As for part (2), write [og4]p = (si5(g9)) and X’ = s11+ - - + Sim, Where m = dim W. Then
we have (x [ x) = (x,X) = Z<Tn‘>8jj> =0. O
Z?]

Theorem 4. Let (V) p) be a finite-degree representation of G, with ¢ its character. Suppose
that (V, p) can be decomposed to

Vip) = (Vi,p1) @ @ (Vi pi)

where each (V;, p;) is an irreducible representation of G. Let x; be the character of (V;, p;).
Let (W, o) be any irreducible representation of G with character x. Then

(o [x) = Hi: (Vi,p) = (W, 0)}].
Proof. We know that ¢ = x1 + x%. So

(Plx)=0a++xlx)
=alx)++ 0 lx)
=i Oalx) =1 =Hi:xi =2}
= {i: (Vi,pi) = (W, p)}|. O
Corollary 12. Let (V, p) be a finite-degree representation of G. Any two decompositions of

(V, rho) as direct sums of irreducible representations, are the “same” up to rearrangements
and isomorphism of the individual summands.

Proof. For each irreducible (W, o) and char x, we have
(¢ | x) = (# of times (W, p) appears in any decomposition). O

Corollary 13. If (V, p), (W, o) are the finite-degree representations of G, with the characters
@, ¢, then (V,p) = (W,0) & ¢ =¢'.

Proof. (<) Assume ¢ = ¢'. Look at the direct sums of decompositions for (V, p) and (W, o).
By Theorem [d] for any irreducible (X, 7) (with character x), the number of times (X, )
occurs in either decompositions is (¢ | x) = (¢’ | x). So, up to isomorphism, (V,p) and
(W, o) have the same decompositions. So (V,p) = (W, o).

(=) This direction is immediate. O

Let (V, p) be a finite-degree representation, and suppose that

(V.p) = (@(wbpl)> S <@(W2,P2)> e (@(Wk,pk)> )

mi mo mg
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Let ¢ be a character of (V,p) and x; the character of (W;, p;). So ¢ = mix1 + -+ + miXk,

and
O 1x) = (ZWZ!Z%X]) :Zmimj(XﬂXj):Zm?-
2 i

Theorem 5. Let (V,p) be a finite-degree representation and ¢ its character. Then (¢ | ¢)
is a positive integer. Moreover, (¢ | ¢) = 1 if and only if (V, p) is irreducible.

Example 8. Let B = (C?, ) be the irreducible representation of Sz, and let x be its character.
The character table is as follows:
T |id (12) (13) (23) (123) (132)
x(m)|2 0 0 0 -1 -1

12. OCTOBER 6

Definition 30. An irreducible character of G is a character of an irreducible representation
of G.

Recall that if G is a finite group, then the set of irreducible characters of G is an orthonor-
mal set of ClaFun(G). This proves that G has only finitely many irreducible representations,
up to isomorphism. In particular, the number is bounded by dim(ClaFun(G)), which is the
number of conjugacy classes of G.

Ezxample 9. S3 has 3 conjugacy classes; hence S3 has at most 3 irreducible representations,
up to isomorphism. We have already seen 3: namely 1 and S of degree 1 and B of degree 2.
Thus we have found them all.

Let (V,p) be a finite-degree representation of G with character ¢. Let (W,0) be an
irreducible representation of degree GG with character y. Let

Vip)=Vi,p1) @ D (Vi, pi)

be the (essentially unique) direct-sum decomposition of (V,p) into a sum of irreducible
representations.

Definition 31. We say that (W, p) occurs in (V,p) if (W,o) = (V;, p;) for some i. The
multiplicity of (W, p) in (V,p) is [{i : (V,p;) = (W,0)}| (which may equal 0).

Remark 5. The multiplicity of (W, o) in (V, p) is (] x).

Definition 32. Given a finite group G, let V' be a complex vector space of dimension |G|
with basis & = {e, : ¢ € G} indexed by the elements of G. For each g € G define p, € GL(V)
by setting p,(en) = egn, and extending linearly to all of V. Then (V] p) is called the regular
representation of G, and we shall denote this character by rq.

Clearly, we have r¢(1) = dim(V) = |G|. Let g # 1. Then for each h € G, we have
pg(eh>:egh:0'61+"'+0'eh+"'+1'egh+"‘

Hence [p,]s has a 0 in the (h, h) position. Since h is arbitrary, it follows that all the diagonal

entries of [py]s are 0. Thus tr(p,) = 0, so we proved the following proposition:
20



Proposition 33. The character rg of the reqular representation of a finite group G is

TMF{“@=U

0 otherwise.

Corollary 14. Let G be finite and let (V, p) be its reqular representation. FEvery irreducible
representation (W, o) of G occurs in (V, p), with multiplicity dim(W).

Proof. Let x be the character of (W, o). Then the multiplicity of (W, o) in (V, p) is

1 dim(W) - |G|
610 = g S reloo) = greinth = T =i,

as required. O

Suppose that (Wi, 01), ..., (Wk, o) are the distinct irreducible representations of G, and
let n; = dim(W;) for each i. If x; denotes the character of (W;0;), then by the above corollary
the regular representation decomposes as

<V7 /0) = nl(Wlaal) D---D nk(Wk;Uk)-
Hence r¢ = nix1 + -+ + neXk-

Corollary 15. The following are true:
k
(1) Y ni=1G].
i=1

k
(2) For all g # 1, an‘Xi(g) =0.
i=1

Proof. Evaluating the displayed equation at ¢ = 1, we get dim(V) = ny dim(Wy) 4+ --- +
n, dim(Wy) = n? + -+ + n} as required. The second part also follows from the second
equation when g # 1. OJ

13. OCTOBER 7

Recall that

e dim(ClaFun(G)) = # of conjugate classes of G
e {irreducible characters for G} is an orthonormal set in ClaFun(G).

Today, we show that the set of irreducible characters spans ClaFun(G).
Fix a € ClaFun(G). For each finite-degree representation (V, p) of G, define

V=V
by

Jal |®Z“%

geG
Clearly, f? is linear. In fact,

Claim. fP is a morphism from (V p) to itself.
21



Proof. Must show that p,f = fp, for all g € G. Consider

1
Py fog=p," (@ Zahph) Py
h
1 ) 1
= @ Za(h) Py g = @ Za(h)pgflhg'

h h

Let u = g 'hg & h = gug™'. Then

What is tr(f)?

1

geG

=@Za(g)-w(g)=(als@*)-

Proposition 34. Suppose (V, p) is a degree n irreducible representation with x its cha,mcter
and if a € ClaFun(G), then f£ is a scalar mp (“multiplication by X”), where A = £ (a | x*).

Proof. f? is a morphism from (V,p) to itself. By Schur’s lemma, f? is scalar for some .
With respect to any basis for V', we have

A 0
[ = .
0 A
so tr(f£) = nA. But tr(f2) = (a | x*) = nA. Thus A = X (a | x*), as required. O

What if (V,p) is not irreducible? Time to consider that case. Decompose (V,p) =
(Wh,01) @ -+ - @ (Wy, ox), where each (W, ;) is irreducible.

Let n = dim V, m; = dim W;. Let x; be the character of (W;, ;). Fix a € ClaFun(G). We
have f£:V — V, and for each 4, 7 : W; — W, define f7i(w) = \w.

Claim. fP=fr @ - - D fIr.
22



Proof of Claim. Need to check that, for v € V', we can write v = wy + - - - wy, with w; € W;.

) = 7 2l

Za wy) + -+ (on)g(wr))
geG
Z Z (0)g(wi) = fof (w;)

= 5 @ fa+)(v). B
In general, for o € ClaFun(G) and with representation (V, p) with
(V,p) = Wi,00) @@ (Wi, 0%) and v = wy + -+ - + wg, w; € Wy,

we have
k
— E Aiwia
i=1

where \; = m% (| x7),m; = dim W;, x; = char of (W, o).
Theorem 6. The irreducible characters of G span ClaFun(G).

Proof. Let x1,..., Xk be irreducible characters of G. Suffices to show that
g € ClaFun(G), (x; | B) =0 Vi=1,2,... k,

then g = 0.

Suppose that § € ClaFun(G) and (x; | 8) = 0 for all . Let a = g*. It suffices to show
that a = 0. It is already known that (y; | o) = (| xf) =0 for all i = 1,2,... k. By our
analysis, for any finite-degree representations (V, p) of G, we have f? = 0. O

Apply this to the regular representations (V, p) of G, where V has basis e;, g € G such
that py(en) = egn. We get f? = 0. in particular, f?(e;) = 0. Calculate this using definition:

fh(er) = ’G‘Z - pgler) |G‘Z

geG geqG

Thus a(g) =0 for all g € G, so a = 0.

Theorem 7. If G is finite, then the number of irreducible representations of G (up to
isomorphism) is equal to the number of conjugacy classes of G.

Here is one neat consequence of Theorem [6} Let G be a finite group, and pick s € G and
let 0, be its conjugacy class. Define o : G — C such that

alg) = {1 (g € 8.)

0 otherwise.

By Theorem [6] « is a linear combination of irreducible characters of G. Let x1,...,xx be
the irreducible characters of G. Write o = ¢1x1 + -+ + cgxr, With ¢; = (a | xi). (to be

continued...)
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Fix G and x4, ..., xx irreducible characters. Fix s € G. Let 6, be the conjugacy class of
s. Define

fs:G—C
to be
1 (geb;)
Jsl9) = {0 otherwise '

Write

k

fs= Z Qi Xi-
i=1

Note that (£, | x1) = (Shoy anys | i) = zg;l a; (x; | xi) = a;. Also,

(fs ‘Xt = Zfs Xz

geG

|G|Zl ulo

g€l

N
Bl

Thus

fo= Z (o) x.

Evaluate at s:

A 16s|
fs( |G\ZX@ Xi( MZIXZ

Now suppose t € G \ §,. Evaluate at t:

105
O_fs ’G‘ZXZ ’L

Thus we proved the following proposition:

Proposition 35. Let x1,..., Xk be the irreducible characters of G, and let s € G.

(1) z o)l = 1

k
(2) If t € G\ 0, then ;Xi(s)*xi(t) =0.

Ezample 10. Let’s verify Proposition [35|when s = 1. Then x;(1) = n;, where n; is the degree
of representations for y;. Then we observe that

1) zn e
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(2) If t € G\ {1}, then ﬁ:nlxz(t) =0.

Note that we saw this already, from rg = nix1 + - -+ + nexz.
Ezample 11. Let’s find the irreducible characters of Ds (the dihedral group of order 10):

Ds=(r,s|r’=1=s%rs=sr1)

= (r)Us(r)

= {1,r, 7% 3 r*Y U {s, sr, 512, 57°, srt).

Conjugacy classes of Ds: {1},0, = {s,sr72 sr,sr? sr*}, 0, = {r,r=1},0,2 = {r? r3}. Thus,
D5 has four irreducible characters, call them 1, x2, X3, X4, say of degrees ni,ng, nz, ny re-
spectively. Without loss of generality, let n; < ny < nz < n4. There is only solution, namely
(n1,n92,n3,n4) = (1,1,2,2). Time for some character table. Let x; be the trivial character
and s the sign character:

2

1 s r
a1 1 1 1
all =1 1 1
X3|2 a c e
SInce (xs3 | xi) = 0 for ¢ = 1,2, we have
(xs|x1—x2)=0= |D5| Z x3(g —x2)(9))"

g€Ds

110(2 0° 1 5(a-2°) + 2(c - 0°) + 2(e - 0°) + 2(f - 0°)) =

Similar calculation shows that @ = b = 0. Now from (x3 | x1) = 0, we have

1
0= 10(2 L 45(0-17) +2(c- 1)+ 2(e- 1%)) = 24 2¢ + 2e,

so e = —c — 1. Similarly, we have f = —d — 1. Recall that n} + n3 + n2 + n3 = 10. Thus
since nyx1(r) + -+ naxa(r) = 0, we have 2c+2d =0,s0d = —c — 1.
By (2) from Proposition [35]

Z Xz z 07

s0 14+ 1+ c¢*(—c—1)+ (—c—1)*c = 0. Simplify this to get |c[* + Re(c) = 1. We also have

4

s |Dsl
Xai\r = :5a
> bt = 128

i=1

so 1+ 14 |c|*+]c+ 1> = 5. Solve for ¢ to get ¢ = #g = 2cos &
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Fix:
e finite group G
o (Wy,01),...,(Wg, o) the list of irreducible representations (up to isomorphism)

e y; = character of (W, 0;)
Let (V,p) be a finite-degree representation of G. How can we find G-invariant subspaces
Ui,..., U, of V so that

(Vip) = Uy, plty) @ -+ & (U, plur,)

with each (Uj, p|y,) irreducible?
Assume that we have such

(V7 P) - (Ulv p‘U1) S (UT(1)7 pUr(l)) D (UT(1)+17P|Ur(1)+1) DD
(Ur@)s U,y @ @ (Urirys Pl )
where we define (Vi, plv;) = (Ur(iy 415 pU,00) © -+ © (Urirn), plu, ) = (Wi, 04) for all .

Theorem 8. The subspaces Vi, ..., Vi do not depend on the particular decomposition V =
Uy & --- & U, from which they arose.

Proof. Start with a finite group of order |G| = pi* ---p*. Then G = H; & --- & Hj, such
that |H;| = p;*, and fix some ¢ = 1,2,... k. Let x; be the character of (W;,0;). Define
pi .V =V by
n; «
Pi=Ta sz'(g) Pg-
Gl 2=

Note that p; depends only on (V, p) and ;.
Define a € ClaFun(G) by o = n;x;. Note also that

1 p
P =T > alg)py = f2.

geG

Note also that

plu;
pilv, = folu, = fa Y. U; = Uj.

If (Uj, plu,;) = (Wi, o) for some [, then:
e the character of (Uj, p|y,) is xi
o dim(U;) =ny
e By Proposition f;)'Uj is a scalar map, namely by

1 * * *
A:;(O“Xl):(niXi | x7)
!

= N (Xi = .
Xi I Xt 0 otherwise,
by orthogonality.
Hence p; is the identity function on V;, and is the zero function on all other V; with [ # i.
So p; is the projection map onto V; with respect to V=V, & --- d V.
Thus V; = im(p;), and hence is determined intrinsically, as desired. O
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Definition 36. The decomposition
(‘/a p) = (‘/iap|V1) S D (V’c»p|Vk)

is called the canonical decomposition of (V, p).
We still want to further decompose each of (V;, p|v; ).

15.1. How to further decompose. Here we outline methods on how to further deco
each of (V;, plv;)-
(1) Fix i

mpose

(2) Have (W;,0;), and choose a basis e = (ey,...,e,) for W;. Note that n = n; in this

case.
(3) Let [(04)4)e = (7st(g))nxn- This gives us ry € CY, where 1 < s,t < n.
(4) Note that x; =711 + ... Tnn, and by Corollary

1

<7“st,7“uu> — {m I s U., U

0  otherwise.
Definition 37. For any representation (U, 1) of G, define, for 1 < s,t < n,
py U —=U
by

Suppose that (U, 7) is irreducible but not isomorphic to (W;, ;). Pick a basis e’ = (e, ...

for U.
[Toler = (Fuv(9))mxm-

pst ‘G‘ Zrts

geG

Then for each €.,

Then we have

Fulg) - Tim(9) () .
[Toler = : : e, = : ~ Zf@u(g)'
Fm1(9) = Tmm(9) () v=1

Then for each €], we have

pst ‘G’ Zrts Tg

geG
n m
B —1 /
- } Tts § Tvu(g)ey
geG v=1
§ : 2 : —1 /
=N, ( | Tts Tvu ) 61;7
geG

and (rys, 7ypy) = 0. Thus @ becomes 0. By Corollary ﬁ, 7|, since true for all e}, we have p
27
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Suppose G is finite, and (W7, 01), . .., (W}, ox) irreducible representations. Suppose 1, .- ., X
their characters. Let (V) p) be some random representation (finite-degree). Fix some 1 <14 <
k, and let n; := dim ;. Choose basis e = (e, ..., e,) for W;. Write [(0;)4]le = (75t(9))nxn-
Given a rep (U,7) and 1 < s,t < n, define

n _
pl, = |ElZnS(g 1)Tg U — U.
geG
Last time, we claimed that if (U, 7) is irreducible and % (W;, 0;) then all p, is 0.

Proof. Let €' be a basis for U. For each €, we have
p;&<€{u) =N, Z<Ttsy f’uu>e;.
v=1
Repeat this calc, but when (U, 7) = (W;, 0;), then let € = e. Then (74 (9))nxn = [(0i)gle =
(run(g)). Get:

n

pgg (€u) =Ny Z(rtsa rvu>€v

v=1
=n; i l5tu58v e, (by Corollary [8)
v=1 T
= 5tu Z 531)61) = 5tu€s-
v=1
When t # u, then we have pJj(e,) = 0; if ¢t = u, then pZ;(e;) = es. So (on W;), p%i sends e,
to e, and every other basis elements e, to 0. 0

Recall that our main goal is to decompose (V, p). Suppose hat we know a decomposition:

(V. 0) = (U, plvy) ® - & (Urqys plu, ) -+ @SU1+1,P|1+1) D---D (Ul+m7p|Ul+m>J@ R

=:V1%(W1,01) :Vig(WiaUz’)

We can find Vi,..., V. Goal : find candidates for Upyq,..., Ui Let pgy = po : V — V.
From calculations, we have:

(1) pulu, with (Ur, plu,) = (Wi, 01) = plo" = 0.

(2) Hence pyly, = 0if j # .
As for pylv;, write V; = Ui 1@Uppm, with each (U, plo,, = (Wi, 00). Let el ... e € Uy
be the image of e; ..., e, € W, under an isomorphism.

Observe that, on Uy, we have pst(egj)) = egj), and pst(eg)) = 0 if u # t. Hence, pp;
is a projection from V to span(egl), eﬁ”, e egm)) = V1, and p9 a projection from V' to
span(egl), e ,egm)) = V2, etc. Reverse-engineer this: Start with (V, p). Fix a basis e for ;.
Have (75:(9))nxn = [(0i)gle, S0 pst = 0l : V — V. Let Vi1 = range(p11). Next, pick a basis
for Vi1, say egl), e ,egm). For s =2,...,n, define

e = pa(el’)) € range(p,,) = Vi,
28



Now define Uy := Span(egl), cee eg), and define Uj,o,... in a similar manner. We need to
check that:

e cach Uy is G-invariant;

o Vi=U1 D ®Upm;

e Each (Ul+j7p|Ul+j) = (I/Vl?o-l)

17. OCTOBER 20

17.1. Subgroups and products. Suppose that (V, p) is a representation of G. So p : G —
GL(V). Let H < G. Then p|g : H — GL(V), so (V, p|g =: pu) is a representation of H.

Proposition 38. Suppose that H < G. Let k be the mazimum degree of irreducible repre-
sentations of H. Then every irreducible representation of G has degree < k - [G : H].

Proof. Let (V, p) be an irreducible representation of G. Then (V, py) is a representation of
H. Pick an irreducible subrepresentation (W, pg|w) of (V. pg). Note that dim(W) < k.
Look at all images of p,(WW) for all ¢ € G. Note also that if h € H, then py(W) = W.
If ¢H = goH, then in particular go = g1h for some h € H. Thus pg,(W) = p,n(W) =
(pgy © pr) (W) = pg, (W), since py(W) = W. Then the number of different p, (W) is at most
|G : H]. Let V'’ = span (UgeG pg(W)) < V. “Clearly”, V' is a G-invariant subspace of V/,
and dim V' > 1. But (V] p) is irreducible, so V' = V. So

dim(V) = dim(V’) < ) dim(p,(W))
PsW)  _dim(w)
= dim(W) - (# of distinct py(W)’s)
<k-[G:H]. O

Corollary 16. Suppose that G has an abelian subgroup A < G. Then every irreducible
representation of G has degree at most [G : A].

Proof. This follows from the fact that every irreducible representation of A has degree 1. [

One application: if D, is a dihedral group of order 2n, then D, has a cyclic subgroup of
order n. Thus every irreducible representation of Ds, has degree < 2.

17.2. Direct products. Suppose that G = G; x Gy, and let (V4, p'), (Va, p?) representations
of G; and G, respectively. Let 7, ™ to be canonical projections from G onto G and Gj,
respectively. By Assignment #4, (Vi, p' o, and (V5, p? o m3) are representations of G. Take
their tensor product: (V3 ® Vs, (p' o) @ (p? o ma)). Write p! K p? := (p' o my) ® (p? o ma).
So (V1 ® Va, pt & p?).

Note. If g = (g1, g2), then on simple tensors,

(p' W p*)g(v1 ® v2) = ((p' 0 m1)g @ (p* 0 72)g) (01 ® v3)
= (Pglh ® ,0?,2)(01 ® vg) = P}h (v1) ® P?n (v2).

Let x; and yo be the characters of (Vi, p') and (V3, p?) respectively. Then:
o (V1, p! o) has character x; o m

o (V4 p? o my) has character yo o ms.
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Thus (V; @ Va, pt X p?) has character (x; o my) - (x2 0 o).
Let ¢ = (x1o0m) - (x20m), and ¢ : G — C. If g = (¢1,92) € G, then ¢(g) =
(x10m)(g) - (x20m2)(9) = x1(g1) - X2(92)-

Theorem 9. Suppose G = Gy x Go. If (V1,p') and (Va, p?) are irreducible representations
of G, G, then (Vy @ Vi, pt W p?) is an irreducible representation of G.

Proof. Let ; be the character of (V;, p?), and ¢ the character of (V; ® V,, p! W p?). Tt suffices
to show that (¢ | ¢) = 1.

(¢ ]9 Z le(9) ‘G, > alg)xa(g)

QEG (91,92)€G1xG2

Z Ix1(90) 1 - [x2(g2)

9166'1
g2€G2

el (g;lbﬁ 91) ) (gzeZGQIXz 92) >
( |g; X1 (91)] )( |922€;2|ng2 )

=(x1 | x1) (2l x2) =1,
o(xilx)=hlx)=1 n

Remark 6. 1t (Vy, p'), (Va, p?) are arbitrary representations and (V; @ Vs, p' K p?) is irreducible,
then each (V}, p') must be irreducible.

18. OCTOBER 21

Suppose G = G X G, and (Vi p!) representations of Gy with char y,; similarly, (W;, o)
a representation of Gy with character yo. Then (Vi ® Wy, p' K a!) is a representation of G
with character x.

(1) x(9) = x1(g1) - xa(g2) for g = (g1, 92) € G

(2) (xIx) =0l xa) - (x| xe2)
(3) x is irreducible if and only if 1, x2 irreducible.

Define (Va, p?) to be a second representation of G| with character ¢; and (W3, 0?) a second
representation of Gy with character ,. Same recipe gives (Vo @ Wa, p? K 0?) with character
. And we can also get

(X 1) =0ale) (xale2)-
Lemma 8. In this situation, assume that (Vy, p'), (Va, p?), Wy, 0'), (Wa, 02) are irreducible.
Then
(Vi@ Wi, p' Ko') = (Vo @ Wa, p* K o?)
of and only iof
(Vi,p) = (Va, p?) and (Wh,0") = (Wy,0?).
30



Proof. (=) We prove the contrapositive. Assume without loss of generality that (V;, p') %
(Va, p?), with characters x1, ;. By irreducibility, we have (xi | 1) = 0. Then (x| ) =
(x1 | ¢1) - (x2 | v2) = 0. Therefore (V} @ Wy, ) 2 (Vo @ Wa, ), as desired.

(<) This part is immediate. O

Theorem 10. Suppose that G = Gy x Gs. Fvery irreducible representation of G is of the
form (= is isomorphic to) (Vi @ W1, pt K a'), for some (Vi, p') irreducible representation of
Gy and (Wy,ab) irreducible representation of Gs.

Proof. Let (V;, p') be the irreducible representations of Gy for 1 < i < k with character
¢1. Similarly, let (W;,07) be the irreducible representation of Gy for 1 < j < [ with
character ¢,. Our recipe gives kl non-isomorphic irreducible representations of G of the form
(V; @ Wy, p' K o). Let m; = dim(V;), n; = dim(W;). We know that m? + -+ +mj = |G|
and n? + -+ +n? = |Gy|. So Y_(degree of irreducible representation of G)* = |G].

Looking at the irreducible representation of G that we know,

Gl= ) dim(V,oW;)? =) (mmny)’

1<i<k ij

()i

= |Gh| - |G| = |G,

Thus, there are no other “room” for any other irreducible representations of G. O

18.1. Induced representations. If H is a subgroup of G and (V,p) is a representation
of G, then (V,ppy) is the corresponding representation of H. Let W be an H-invariant
subspace. Get (W, py|w) a representation of H. Let 0 = pylw : H — GL(W). Now,
for each g € G,p,(W) < V. As on Monday, if tH = goH, then py, (W) = pg,(W). Let
G/H = {all left cosets of H}. For each gH € G/H, define W,y := p,(W). Note that this
operation is well-defined.

Definition 39. Let (V,p), H,W,0 be as above. We say (W, 0) induces (V,p) if V is the
direct sum of (Wyy : gH € G/H). In other words, we have bases e,y for each W,y such
that:

(1) egu, ey n are disjoint if gH # ¢'H.
(2) The union of the e,y is a basis for V.

Ezample 12. Let (V, p) be the regular representation of G, i.e., we have a basis {e; : g € G}
for V., and p,(ep) = egn. Given H < G, let W =span({e, : he€ H}) < V.

What are the Wyg?
Won = pg(W) = py(span{e, : h € H})
= span{p,(ey) : h € H}
= span{ey, : h € H}.

If 0 = pg|w, then (W, 0) induces (V, p).
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Question 1. If G = G; x G, (V, p) an irreducible representation of G, then (V,p) = (X ®
Y, o X 1) for some irreducible representation (X, o) of Gy and (Y, 7) of G3. How can we find

(X,0),(Y,7)?

Answer 1. Say (Xy,0!),..., (X, o) be a list of the irreducible representations of G, and
let (Y1,71),...,(Y;, ) be a list of representations of Gy. Say x; = char(X;, 0;), ¢; = (Y;,7;).
Let 6 = char(V, p). Then

0((91,92)) = xi(91) - ¢;(g2) = character for (X; ® Y, o' X Tj).

Question 2 (Real question!). How do I find the isomorphism between (V,p) and (X; ®
Y;, 0" & 77)?

Answer 2. More generally, given irreducible representations (V,p), (W, o) of G, plus a
promise they are isomorphic. How can we find an isomorphism?

Fact 1. Hom := Hom((V,p),(W,0)) = {set of all morphisms from (V,p) to (W,0)} is a
[-dimensional vector space over C, consisting of

e constant zero map.

e continuum-many isomorphisms.

Proof. Pick an isomorphism ¢ : (W, o) = (V,p). Given h € Hom, the map ¢ oh : (V,p) —
(V, p) is scalar, say, (¢ o h)(v) = Apv. Now, randomly pick a linear map f: V. — W. Use
recipe from Corollary [6] Namely, define f°: (V, p) — (W, o) such that

1
fO — @20971 ofopg.
geG
Then f° € Hom. And “probably” f° # 0, and if so, we have that f° is an isomorphism from
(V.p) to (W, o). O

Recall from the October 21 lecture that if
e (V,p) a representation of G
e HSG
e H-invraitn subspace W of V/
then (V, py) is a representation of H. Let (W, pg|w) = (W, 0) is a subrepresentation. Now
we define the following notion:

Definition 40. We say that (W, 8) induces (V, p) if V' is the direct sum of Wy (¢H € G/H)
where Wy = p,(W). Also, if (V,p) is the regular representation of G (i.e., basis for V =
{eg: 9 € G}) and W :=span ({e, : h € H}) and 0 = py|w then (W,0) induces (V, p).

Remark 7. If H < G, then the regular representation of H induces the regular representation

of G.
19.1. Universal property of induced representations.

Lemma 9. Suppose that (V,p) is a representation of G and H < G. Let W be an H-
invariant subspace of V', and (W,0 := pglw) induces (V,p). Then for all representation
(X,0) of G and for all morphism f : (W,0) — (X, o), there exists a unique morphism
F:(V,p) = (X,0) extending f.
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Proof. We first start with uniqueness. Suppose that Fi, Fy : (V,p) — (X, o). Suppose also
that Fi|w = Fo|lw = f. To prove that F} = F», enough to prove that

F1|WgH = F2|WgH

for all gH. Fix an arbitrary gH. Consider Wy = p,(W). Let x € W,y. THen x = py(w)
for some w € W. Thus we have

Fi(z) = Fi(pg(w)) = o4(Fi(w)) (." Fy a morphism)

=0y(f(w)) (. Filw=[)

= Fy(x).
Now we move on to proving the existence. For this, it is sufficient to define Fly,, . Fix gH.
For x € Wy, choose w € W so that © = py(w). Define F(z) = o,(f(w)). We need to verify
first if (F|w,,) is well-defined, i.e. must not depend on g or w. Assume g;H = goH and
wy, wy € W so that x = p,, (W) = pg, (w2). We must show that o, (f(w1)) = o4, (f(w2)). Let
h=gy'gr € H. Then 0y(w1) = pa(w1) = py1,, (1) = (pg;) " (pg, (w)) = p!(x) = wa. So
f(wz) = f(On(w1)) = (om)n(f(w1)) = on(f(wr)). Therefore, og,(f(w2)) = og,(on(f(w1))) =
g, (f (w1)). m

20. OCTOBER 27

Theorem 11. Assume H < G. Let (W,0) be a representation of H. Then there exists a
representation (V, p) of G induced by (W, 0) and (V, p) is unique up to isomorphism.

Proof. For existence, we need the following lemmas:

Lemma 10 (Lemma A). Suppose that (W, 0) induces (V, p) and Wy is an H-invariant sub-
space of W. Let Vi 1= Z pg(Wh) (hence a subspace of V). Then:
gHEG/H
(1) Vi is G-invariant.
(2) (Wh,0\w,) induces (V1, plv;)-

Lemma 11 (Lemma B). Suppose (W1,0Y) and (W, 0%) are representations of H. Suppose
also that (W;,0%) induces (Vi, p') for i = 1,2. Then (Wy,0%) & (Ws, 0%) induces (Vi,p') &
(Va, p?).

Now let (I, 0) be a representation of H. Consider the following cases:

Case 1. (W, ) is irreducible. Then (W, ) is isomorphic to a subrepresentation of (W, 6)
of Ry. Recall that Ry induces Rg. Then by Lemma A, (W,0) = (W,0) induces some
representation of G.

Case 2. (W, 0) is not irreducible. Write (W,0) = (Wy,0') @ --- & (W, 0%), with each
(W;,0") irreducible. By applying Lemma B and Case 1, we get that (17, 6) induces some
representation of G.

For uniqueness, suppose that (W,0) is a representation of H and it induces (V,p) and
(V',p'). Note that W C V and W C V'. Also, we have dim(V) = [G : H|dim(W) =
dim(V’). Let ¢ : W — V’ be the inclusion map «(w) = w. As (W, 0) is a subrepresentation of
(Vipu), v : (W,0) — (V, py) is a morphism. Since (V, p) is induced by (W, ), the universal
property gives that there is a morphism F : (V,p) — (V' p') extending i (so if w € W then
F(w) = t(w)). N



Claim. For all gH € G/H, we have p, (W) C im(F).
Proof. Let x € pi (W), so x = py(w),w € W. Then z = p|(w) = p, (F(w)) = F(py(w)). O

Since
V= Z plg(W)’
gHeG/H
it impiles that F'is surjective hence is an isomorphism. [l

Definition 41. Given H < G, a representation (W,6) of H, let Ind%(W,#) denote the
representation of G induced by (W, ).

Ezxample 13. Define G = S5, H = ((123)). Let (C, 8) be this representation of H:
Oiqa = (z — )
9(123) = (ZL’ — W.T)

9(132) = (iL‘ — WQQT).

What is Ind5? (C,0)? We know that [Ss : H] = 2. So the underlying subspace of Ind3?(C, 6)
will have the form C® p(12)(C). Since 9%12) = id, we can choose C'(= p(12)(C)), an isomorphic
(C/
copy of C such that pus)(2) = 2/, p2)(?') = z and V = C @ C' with p(i23)|c = 0123y = (x
wzx). As for paagler, if 27 € C' then 2’ = pugy(z) (x € C). So puzs)(2’) = paas)(paz(z)) =
paz)(pasz (7)) = paz)(ws) = w?a’. Thus paog)le = (' = wa).
Thus, if e = (1,1’), a basis for V= C & C/, then

Pazle = ( ? (1) )

[ w O
[0(123)]e— 0 w2 |-

By Assignment #3 Problem #6, we have (V,p) = B, the unique irreducible representation
of S3 of degree 2.

21. OCTOBER 28

As usual, suppose H < G, and let (W, 6) representation of H and (V, p) := Ind$ (W, ).
Let R C G be a set of representatives of the left cosets of H (assume 1 € R. Then
|R| = |G : H|,RH = G. As usual, we have W < V. For r € R, define W, = p,.(W)
(fOI‘ 1, let W1 = pl(W) = W)

Let e; = (eq,...,ex) be a basis for Wi. For r € R, define e, = (p,(e1), ..., pr(ex)), a basis
for W,.. By definition, we have

V=w.

reR

For g € G, p, acts on W,’s, and let e = |J e,, which is a basis for V. Fix g € G,r € R.
reR
Then ¢ acts on the left cosets of H. Then g permutes R, i.e., g(rH) = sH, where s € R. If
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gr € g(rH), then gr € sH, thus gr = sh for some h € H. Take w' € W, = p(W), and write
w' = p,(w) for some w € W. Then we have

pa(w') = pg(pr(w)) = ps(pn(w))
= ps(Op(w)) (since py|w = 0)
= ps(On(p, 1 (W) € W,
ew

—_———
ew

Hence, p,(W,) € Wy. Thus,

pylw, = (pslw) © O o (prlw) "

This means that [pgle is a block-form matrix (row-blocks, column-blocks indexed by R).

That is, if p,(W,) = W, then

0
0
h
0
0

where the block [0p]e, is located in the “r-th” block column and “s-th” block row (note
that we assume gr = sh). Each row-block and each column-block have exactly one non-
zero block. If we have a non-zero block in row s, column r, then the block is [f)]e,, where
h e H,s tgr = h.

Let x¢ be the character of (W,6). Similarly, let x, be the character of (V,p). Fix g € G.
Recall that

xo(h)
Xo(9) = tr(pg) = tr([pgle) = > tr([Oh]e,)
reR
r—lgr=heH
_ 1 _
B R v
reR a€G
r~lgreH a~lgacH

(Note that if @ € 7H and r—'gr € H, then a~'ga € H, and in this case, they are conjugate
in H.)

Let 6(g) = conjugacy classes of g (in G). If 0(g) N H = 0, then x,(g9) = 0. Else, pick
heb(g)NH.

Claim. {a € G : a”'ga = h} is a right coset of Cg(g) = {h € G : gh = hg}, the centralizer
of g.
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So
Xe(9) = 757 Z Xxo(h)

heHNO(g)
ac{a€G:a"'ga=h}

Gl s

G5~ ). (1Cele)l = G110
)

Al 100, 2=

Ezample 14. If G = S3, H = ((123)), and the representation has degree 1 (say (C,#)), then
the character table for xq(h) is

ho|id (123) (132)
xo(h)| 1w w?
Let (V, p) = Ind%?(C,0) = B with the character x,. Using the formula, we get
g |id (abc) (ab)
Xelg)[ 777
Let g = id. Then 6(g) = {id}, so 6(g) N H # (. Thus
: 6 :
Xp(ld) = ﬂX@(ld) = 2.
As for (123) = g, we have 0(g) = {(123),(132)}. HN6H(g) # 0, so we use the given formula
again:

55 ((123)) + x0((132)) = w + w? = -1

() for g = (12), we have x,(g) = 0.

Xo((123)) =
Similarly, since the 6(g) N H

22. OCTOBER 30

To start off, let’s find all irreducible representation of As, with 1 identity, 20 three-cycles,
24 five-cycles, and 15 elements of the form (ab)(cd). There are five conjugacy classes:
{id}, {all 3-cycles}, 0((12345)), 0((21345)), {all (ab)(cd)}. Now we need two character tables,
one for irreducible representations and another for other representations.

We denote 1 the trivial representation of degree 1, with character x;. Then yx; is the trivial
character. Define P := (C°, p) with ey, es, . .., e5 the standard basis such that p,(e;) 1= ey
Thus, so far we have

| {id} (abc) (ab)(cd) (12345) (21345)
1

| {id} (abc) (ab)(cd) (12345) (21345)
xp| 2 1 0 0
Note that, if
| {id} (abc) (ab)(cd) (12345) (21345)
vl a b c d e
V| od b d d e/
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we have (¢ | ¢) = & (|al*> 4+ 20[b]* + 15]c|* + 12|d|* + 12|e[?), and since (xp | xp) = 2, P
is not irreducible! But since (xp | x1) = 1, we have P = 1 ¢ Q with Q some irreducible
representation, so xp = x1 + xq. Use this to compute xq.

Now consider Q ® Q = S @ A, where S := Sym*(Q), A := Alt*(Q). Note that we can
calculate xqeq from xq. Use the decomposition to calculate xs and xa:

1
(xs [ x1) = 5(10+20-1+15-2) =1

1
(xs [ xq) = 55 (40+20 1) = 1.
Therefore, S=1® Q® T, so xs = x1 + Xq + xT. Since

1
&mlxﬁ=7%@5+201+l54)21

Thus, T is irreducible. So far, our two character tables are as follows:
| {id} (abc) (ab)(cd) (12345) (21345)

w11 1 1 1
xo| 4 1 0 -1 -1
ol 5 -1 | 0 0
| {id} (abc) (ab)(cd) (12345) (21345)
% | 5 2 1 0 0
Xasq | 16 1 0 1 1
xs | 10 1 2 0 0
XA 6 0 -2 1 1

We need 5 irreducible representation, so we are yet to find 2 more irreducible representations.
Let the two remaining representations be B and C. If mg = deg(B) and m¢ = deg(C),
then 12 + 42 + 52 + m% + m& = |As| = 60. Therefore mp = mc = 3. Note that there is
no 1,Q, T in the decomposition of A, since (xa | x1) = (xa | Xxq@) = (xa | xT) = 0. Hence
Xa = XB + xc since A = B @& C. This implies that final values are b,c = %g Thus the
final character tables are:

{id} (abc) (ab)(cd) (12345) (21345)
w11 1 1 1
xo| 4 1 0 -1 -1
Yol 5 -1 1 0 0
xB| 3 0 —1 b c
xc| 3 0 -1 c b

| {id} (abc) (ab)(cd) (12345) (21345)
XP 5 2 1 0 0

XQeQ 16 1 0 1 1
xs | 10 1 2 0 0
Xa | 6 0 9 1 1

Question 3. What are T, B, C?
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Answer 3. T: We need a representation of K < A; of degree 1, where K is the Klein
4-subgroup.
Ay — GL(C)
g€ K —id
(123)K +— (z — wx)

other cosets — (2 — w?x)

Call this representation (C,0) of A;. Then Indﬁi(@, 0) is the representation of Aj of degree
D.

As for B or C, we start with the fact that As is isomorphic to the group of rigid symmetries
of the dodecahedron:

B or C l
GL(C?)
As has a nontrivial automorphism, 7, namely conjugation by (12).

Claim. G = group of rigid symmetries of dodecahedron “is” As.

Proof. 12 faces, and 5 rotations of a face, hence |G| = 60. Need to see how G acts on (some)
5-element. (Google the diagram!) O

23. NOVEMBER 3
23.1. Introduction to modules.

Definition 42. Let R be a ring (always with 1). A (left) R-module is an abelian group
(A, +) with a “scalar multiplication” operation R x A — A defined as (r, a) — ra, satisfying
the “usual” axioms:

o (r+s)a=ra+sa

e (rs)a =r(sa)

e la=a

e r(a+b)=ra+rb.
We write A if A is a left R-module.

Example 15. If F' is a field, then every F-module is a vector space over F'.

Ezample 16. Every abelian group (A, +) can be viewed as a Z-module, i.e., Z-modules =
abelian groups.

Ezample 17. R can be viewed as an R-module ,R.

Definition 43. Let ;A be an R-module. Then

(1) A submodule is a subgroup of (A, +) closed under scalar multiplication.
(2) Given a € A, the cyclic submodule generated by a is {ra : r € R} =: Ra.

Example 18. Some examples:
e Submodules of V are exactly the subspaces of V', and Fa = span{a}.

e Submodules of ;A = subgroups of (A, +) and Za = (a)
38



e Submodules of R = left ideals of R.

Definition 44. Suppose that A and B are R-modules. Then a module homomorphism
from pA to pB is a homomorphism h : (A, +) — (B, +) satisfying h(ra) = r - h(a).

Ezample 19. Some selected examples of (module) homomorphisms:

(1) If F'is a field, then any homomorphism from pV to VW is a linear map.

(2) Homomorphisms from ;A to ,B are just group homomorphisms.

(3) Consider pR. Let pA be any R-module. Given a € A, define h, : R — A by
he(r) = ra.

Claim. hg is a homomorphism from R R to pA.
Proof. For r,s € R:
ho(r+s) = (r+s)a
=ra-+ sa (. A is an R-module)
= ha(r) + ha(s).
For any 7, s € R, must show h,(rs) = rh.(s):
hqo(rs) = (rs)a
=r(sa) (.- gA is an R-module)
= rhg(s),
as required. O

Definition 45. We define Homp(R, A) to be the set of all R-module homomorphisms from
R to pA.
R R

Fact 2. Homg(R, A) = {h, : a € A}.

Fact 3. ;R is the free R-module on one generator (1) (in the category of all R-modules).
Given h: R — A, left a = h(1). Then h = h, (exercisel!).

Definition 46. Glven A, -, pAr R-modules, their (ezternal) direct sum is the group
Ay x -+ x Aj with scalar multiplication defined coordinate-wise:

r(ay,asg,...,a;) = (ray,...,rag).
This direct sum is denoted by pA; @ -+ ® p Ay it is an R-module.

Definition 47. Given A and By, ..., By submodules of A, we say that A is the internal
direct sum of By,..., By if every a € A can be uniquely expressed as as a = by + -+ - + by,
with b; € B;. We write in this case, yA = B, ® --- ® Bj.

Fact 4. Usual facts about the direct sums:

(1) If jA =By @ --- ® By, (internal direct sum) then A = By @ --- @ By (external).
(2) If gA = A1 @ -+ @ gA, (external) then there exist submodules By, ..., By with
rA = DB ®---® By, (internal) and, for all i, ;B; = R A;.
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23.2. Tensor products over noncommutative rings.

Remark 8. Tensor products over commutative rings are easily defined and have “beautiful”
properties. Unfortunately, over noncommutative rings it is messy and rather subtle. In this
course we will primarily focus on noncommutative rings.

Definition 48. Given R a ring, we can also define the notion of right R-module, with scalar
multiplication defined as A x R — A defined as a(rs) = (ar)s. Other key axioms can be
defined accordingly, with elements of R multiplied on the right-side rather than left.

Definition 49. Given rings R and S, an (R, S)-bimodule is an abelian group (A, +) with
two scalar multiple operations R x A — A and A x S — A so that A is a left R-module
(rA) and a right S-module (Ag), satisfying r(as) = (ra)s for all r € R,s € S,a € A. We
write pAg if A is an (R, S)-bimodule.

Ezample 20. If R is commutative, then every A is naturally a right R-module Ar and an
(R, R)-bimodule A, by ar := ra. To verify this, we need to verify four axioms. The only
less obvious one to verify is a(rs) = (ar)s:

a(rs) := (rs)a = (sr)a (.- R is commutative)
= s(ra) = (ar)s.
Similarly, one can check r(as) = (ra)s:

r(as) = r(sa) = (rs)a = (sr)a = s(ra) = (ra)s.
24. NOVEMBER 4

Ezample 21. More examples of R-modules:

(1) If R is commutative, then the left R-modules = right R-modules = (R, R)-bimodules

(2) More generally, if A is a left R-module, and C'is the centre of R then we can view 5 A
as an (R, C)-bimodule pA. Define (right-)multiplication as follows: if a € A,c € C,
define a - ¢ = ca (already defined). We can check that As is a right C-modue, i.e.
r(ac) = (ra)c for all r € R,c € C,a € A. Note that r(ac) = r(ca) = (rc)a = (cr)a =
c(ra) = (ra)e.

(3) Every ring R is an (R, R)-bimodule.

(4) If A is a left R-module, then we can view it as an (R, Z)-bimodule pA,.

(5) Given a bimodule pAg, then for any subrings Ry < R and S; < S, we get an
(Ri, S1)-bimodule A, (by “forgetting” some scalar multiplications).

s (
24.1. Tensor product of modules.
Definition 50. Let R be a ring, and let Ag be a right R-module and ;B a left R-module.
We say that F is a free abelian group with a basis {e@p) : (a,b) € A x B} if F' consists of
elements of the form nie(q, p,) + - + Mp€(ayp,) With k > 0, (a;,b;) € A x B,n; € Z. Let H
be the smallest subgroup of F' containing all:
(ay,a9 € A,b € B)

€(abr+bs) — C(abr) — E(aby) (@ € A b1, by € B)

€(ar,b) — €(a,rb) (CL e Abe B,r e R)

Then the tensor product of A and B, A ®g B, is defined as F//H.
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Definition 51. For (a,b) € Ax B, define a®b = e, p)+H € F/H. Definer: AxB — A®rB
by t(a,b) = a®b.

Definition 52. If C is an abelian group, and Ag right R-module and B left R-module,
then a function a : A x B — C' is middle R-bilinear (or R-balanced) if

e afa; + az,b) = alay,b) + alag,b)

[ J a(a, b1 + bg) = Oé(CL, b1> + Oé((l, bg)

e a(ar,b) = a(a,rd).

Clatim. 1 : A x B — A ®p B is middle R-bilinear.

Proof. Check t(ar,b) = t(a,rb). We have t(ar,b) = (ar) @ b = ey + H, and ¢(a,rb) =
a® (rb) = ey + H, and erp) + H = ey + H since e(qrp) — (o) € H.
Other axioms can be checked in a similar manner. 0

Claim. For any abelian group C, any middle R-bilinear map « : A x B — C, there exists a
unique group homomorphism @ : A ® g B — C' such that @ o = a.

Ax B—"=C
P 7
Ll P /3! @
A®g B
Namely, we want @ so that the diagram below commutes:
F—2% .0
l 7
Ve
14 v 5
e
F/H

Proof. Recall that F is a free abelian group. We can define a (unique )group homomorphism
a* : F — C satisfying o (e()) = a(a, b) for all (a,b) € A x B. Since « is middle R-bilinear,
ker(o*) contains €(q,4q4.,6) — €(ar,b) — E(as,b)> €tC. Since

(a1+a27 ) ((11, ) +O((a/2,b)
( (a1+a2,b) ) ( (a1,b) ) + O‘(e(amb)) = a(e(ahb) + e(azﬁ))'
Hence o (€(a,+a2,6)) — €(a1,6) — €(ap) = 0. Thus, H C ker(a*). O

Now we try to turn A ® g B into a module. Two possible methods:

Method 24.1. We will attempt to construct ¢A, and zB. Form A ®p B, and define an
action of S on left by s(a®b) = (sa)®b. This will turn A®g B into a left S-mobule (A®g B.

Method 24.2. We need a ring S, and R must be a subring of the centre of S. Then we
need two left S-modules ¢A and ¢B, and we will get a new S-submodule.

25. NOVEMBER 6

Let R be aring, Ar and B be modules. Then A®p B is an abelian group. Now we turn

A ®p B into a left S-module.
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Method 25.1. Went A is an (S, R)-bimodule (¢Az), then for s € S declare s(a ® b) =
(sa) ® b. Extend linearly to sums of simple tensors. Formally, given s € S, define ay :
AXx B — A®g B by ag(a,b) = (sa) ® b.

Clatm. «y is middle R-bilinear.
Proof. Additive in the first variable, since

ag(a; + ag, b) = s(a; + az) @b = (say + saz) b
= sa; ® b+ sas ® b= as(ar,b) + as(as, b).
ag(ar,b) = s(ar) @ b= (sa)r @b
=sa®1rb= as(a,rd).
By the universal property, there exists a unique group homomorphism a; : AQr B - A®r B
such that @ o1 = ag, i.e., @5(a ® b) = ay(a,b) = (sa) ® b, where 1(a,b) = a®b.

Define a left action of S on A®g B. For x € A®r B and sinS, let s-x = @;(z). You will
show in the assignment to show that this gives a left S-module ¢A ®p B. U

Definition 53. ¢A ®p B as defined in Method is called the left tensor product of ¢Ap,
with pB.

Method 25.2. Given gA and ¢B, and R a subring of the centre of S, we can view gA as
sAp and ¢B as pB. The idea is that for s € S, let s(a ® b) = (sa) ® (sb) (need to verify if
it’s well-defined) and then extend linearly.

To formalize this, define (for s € §) 85 : A x B — A®g B by Bs(a,b) := (sa) @ (sb).
Check middle R-bilinearity:

Bs(ar,b) = s(ar) ® (sb) = (sa)r @ (sb) = (sa
= (sa) ® (rs)b = (sa) ® (sr)b = (sa
= Bs(a,rd).

Thus ¢B is a left S-module as 7 is in the centre of S. Repeat this argument from Method 1
to obtain s : A®pr B — A®p B and define s - 2 = 5(x). This gives another left S-module
denoted

~— ~—
® &
w3
—~~
= »
S| o
— —

s(A®g B).

Remark 9. Upon comparing the two methods, the second method is nicer, which gives the
cleaner output ¢A ®x B, and is symmetric, i.e., (A ®p B) = (B ®r A). The first method
is uglier in nearly all respects, since it is not uniform and not symmetric. However, method
1 has no restrictions on R and S.

Ezample 22 (Application of the first method). Suppose that R and S are rings with R < S,
and that pB is given. It will be nice if we can make this an S-module. This is called the
extension of scalars.

Recall that we can consider S as ¢Sg and ¢S,. We can apply the first method to get
¢S ®p B =: ¢B, aleft S-module. Define +: B — B by 1(b) = 1®b.

Claim. 1 : 3B — 5B is an R-module homomorphism.
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Proof. For addition, we have
Ly +b2) =1 (b1 + b)) =1R@b; +1® by = 1(by) + ¢(ba).
As for multiplication, for » € R and the multiplication definition of S on S ®g B.
rd) =1 (rb) =1lreb=r1b=r(1®b) =r-u(b).

If ¢+ is injective, then B is 2 to a submodule of 5B, the restriction to R of ¢B.
Ezample 23. If S = R, then B = ,B. In fact, ¢ serves as an isomorphism.
Example 24. It F, K are fields and F' < K, and if ,V is a vector space over F', then

V= kKepV =V,
a vector space over K of same dimension as V.

Ezample 25. Let A be a finite abelian group. Then we can view A as a left Z-module ,A.
Let S = Q. Then ;A4 — gQ x ;4 = gA. And in the assignment, you will prove that, in fact,

}QZ| = 1, the zero vector space!

26. NOVEMBER 10: SEMISIMPLE RINGS AND THEIR MODULES

Definition 54. Let R be a ring. An R-module A is simple if:
e 44{0)

e its only submodules are {0} and pA.

FExample 26. If R = F' is a field, then simple F-modules are one-dimensional vector spaces
over F' (only one up to isomorphism).

Ezample 27. R = 7Z. Simple Z-modules are simple abelian groups, i.e., (Z/pZ,+), p prime.
Suppose that A is a simple R-module. Pick a € A,a # 0. Then
{0} 7é Ra S RA7

so A = Ra. Since cyclic, pA = (R, +)/I, for some left ideal I (by Assignment #6). The
submodules of a simple module ,(R,+)/I correspond to the left ideals of R containing I,
by the correspondence theorem. Therefore I is a maximal left ideal.

Lemma 12. Every simple zA is isomorphic to (R, +)/I, with I a mazimal left ideal of R.

If R = F is a field, and R = M, (F'), then one can find all the maximal left ideals [
of R. Thus one can determine, up to isomorphism, all simple R-modules. In fact, all are
isomorphic to (F,4)", with R acting on this group by left-multiplication by matrices. We
can also show that

Lemma 13. Let R = M,(F). Then »(R,+) can be written as a direct sum of simple
modules.

Proof. For i =1,2,...,n, let S; be the set of n x n matrices which are 0 everywhere except
for the i-th column. We can also show that:
e cach 5; is a submodule of (R, +)
e cach \5; is isomorphic to p(F,+)" (so is simple)
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¢ L(R+)=51D - DS,.
Then the claim follows. O

Definition 55. A ring R is semisimple if ,(R,+) can be written as a direct sum of simple
R-modules.

Theorem 12 (Wedderburn’s theorem I). Suppose that R is semisimple. Then every R-
module R A can be written as a direct sum of (possibly infinitely many) simple R-modules.

Proof (sketch, when R =M, (F)). Fori=1,2,...,n, let e; be matrix with 1 at (¢, 7)-position

and 0 elsewhere. we note the following facts about e;:
2

® € =¢€
o cie; =0foralli#j
[ ] 61+62+"'+€n:1.
Let S; = Re;. Now let A be an R-module, and let a € A.

Claim. Each S;a is a submodule of A, and S;a is a homomorphic image of ;.S;. Therefore,
S;a is either isomorphic to ,S; or is {0}.

Note that a € Sja+---+ Sya, since a = la = (e;+---+e,)a € Sja+-- -+ S,a. Therefore,
each a € A belongs to the sum of some simple submodules. Now, we apply Zorn’s lemma
(“Zornification (7)”). O

Remark 10. Note that everything about M,,(F) is true for M,,(D), where D is a division ring
(i.e. has all the properties of fields except that it need not be commutative).

26.1. Direct product of rings. Suppose R = Ry X Ry X -+ X Ry. Observe that if 5 A is

an R;-module, then it is naturally an R-module, via (ry,rs,...,7%) - a = r;a. Conversely, for
i=1,2,...,k, let ¢, =(0,0,...,0,1,0,...,0) € R (i.e., 1 in the i-th entry only).

Lemma 14. Let zA be an R-module. Fori=1,2,... k, let A; = e;A. Then:

(1) Each A; is a submodule of pA.
(2) Each A; is naturally an R;-module (i.e., r;a = (0,0,...,0,7;,0,...,0)a)
(3) RA=rA1 @ - ® gAg. (Morally, RA decomposes into p Ay, ..., g Ax.)

Definition 56. If R = Ry x --- X Rj, and
RA:RAl@"'EBRAka

then this decomposition is called the canonical decomposition of A, relative to R = R; X

e X Rk’
Corollary 17. If R, S are semisimple, then so is R X S.

Proof. Consider the canonical decomposition of (R x S, +):
axg(R X S, 4+)“ =7 (R, +) © 4(S,+). O
Theorem 13 (Wedderburn’s theorem II). Let R be a ring. Then:
(1) R is semisimple if and only if
R = M,, (D) x My,,(Dg) x -+ x My, (Dg)

for some division rings D1, Ds, ..., Dy and ny,no,...,n, > 1.

(2) If R is semisimple and R has a subring F', which:
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e is an algebraically closed field

e is contained in the centre of R

e and dimp(R) < 0,
th@nD1:D2:D3:"':Dk:F.

27. NOVEMBER 11: RETURN TO SERRE (CHAPTER VI)!

Now that we finished the excursion, time to remind ourselves of some usual notation: let
G be a finite group, and let V' be the vector space in the regular representation of G with
a basis {e, : ¢ € G}. Define a product operation on V', and the idea was that e, - e, = egp,.
Then we extend linearly to all the elements of V. If G = {¢1,92,...,9x}, and every v € V

can be written
n
V= E Ci€y;-
i=1

Formally expand the product:

(Z aie!]i) ' (Z bj69j> = Z aibjegigj
i=1 Jj=1
= Z Z aibj €g.

9€G \ gig;=9g

Definition 57. The structure (V,+, ) we just constructed is called the group ring of G over
C, and we write C[G] or CG.

Proposition 58. A few facts about group rings:
(1) It is a ring.
(2) A group ring is commutative if and only if G is abelian.
(3) Its identity element is e;.
(4) spang(er) = {ce; : ¢ € C} is a subring of C[G].
(5) spang(ey) = C (ring isomorphism,).
(6) spang(eq) is contained in the centre of C|G].

Proofs of (4) and (5). Define f : C — C[G] by f(c) = ce;. Obviously f(C) = spang(ey).
Check if f is a ring homomorphism. Clearly, f(c+d) = (c+ d)e; = ce; +dey = f(c) + f(d),
and f(cd) = (ed)ey = (cep) - (dey) = f(c)- f(d), by the definition of product in C[G]. Finally,
we have f(1) = le; = ey, which is the identity element, as required. Also, since f # 0 (not
constantly zero), f is injective (since C is a field). This proves both (4) and (5). O

Notational trick: we will identify each e, with ¢g. So, with this notational trick, elements

of V have form .
Z i g;,
i=1

and this puts G C V. So the identity of C[G] is 1. Secondly, identify each ¢l € spanc(1)
with ¢. And in doing so, this puts spang(1) = C, and C C C[G]. Modulo this notational
trick, we can re-write some of statements in Proposition [58| as follows:
(1) C[G] is a ring.
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(2) GUC C C[G]
(3) C is a subring sontained in the centre of C[G].
Now it’s time to talk about C[G]-modules. Let ¢ W be a left C[G]-module. Since C < C[G],

W is also a C-module, i.e., vector space over C. For each g € GG, we see that g “acts” on W
(by left multiplication). Define p, : W — W, p,(w) = gw.

Claim. p, € GL(W) (for each g € G), and p, o p, = pyn, where g, h € G.

Proof. We start with proving the second part of the claim: (p, o pp)(w) = py(pn(w)) =
py(hw) = g(hw) = (gh)w = pgp(w). The first part is slightly more complicated, and this
will be left as an exercise. 0

So if p : G — GL(W) defined by p(g) = pg, then (W,p) is a representation of G.
Conversely, let (W, p) be some representation of G. Take (W, +) and turn it into a C[G]-

module by
(Z cz-gz-> cw = Zcipgi(w) e Ww.

i=1 =1

Claim. (W,+) with the scalar multiplication as defined above is a left C[G]-module, and
there is a bijection between the set of representations of G and the set of left C[G]-modules.
This one-to-one correspondence can be characterized as: (W, p) > ;W and py(w) < gw.

Now we explain why this connection is very nice!

Lemma 15. Suppose (W, p), (X, o) are representations of G. Let cjgyW and ¢i X be their
corresponding C|G]|-modules. Suppose that f : W — X. Then f is a morphism from (W, p)
to (X,0) if and only if f is a (module) homomorphism from ciW to ¢ X

Proof. (=) Glven f is a morphism, we need to prove that f(w; +ws) = f(wy) + f(ws), and
that f(r-w) = r- f(w) for all w € W,r € C[G]. The first one is easy, since f is C-linear.
For the second claim, write
r= Z Cigi-
i=1

fir-w)=f ((Z Cigi> -w) =f (Z Cipgi(w))

- Z cif(pg;(w)) (by C-linearity)

Then we have

= Z ¢;iog4,(f(w)) (since f is a morphism)

= (Z Cz'gz') - f(w) € ggX

=T f(w)a
as required.

(<) Exercise! O
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Some correspondences:

Representations of G C[G]-modules
morphisms module homomorphisms
subrepresentations submodules
direct sums direct sums
tensor products symmetric tensor product over C (¢ig(W ®c X))
irreducible representations simple modules
regular representations cia)(ClG, +)

Theorem 14. Let G be a finite group. Then C[G] is semisimple.

Proof. Let R = C[G]. Consider (R,+) as a left R-module (R, +), i.e., the module corre-
sponding to the regular representation of G. The regular representation is of finite degree, so
it decomposes as a direct sum of irreducible representations. Thus, by our correspondence,
r(R,+) decomposes as a direct sum of simple modules. O

28. NOVEMBER 13

Recall that, if G is a finite group, then the group ring C[G] is a semisimple ring, and that C
is contained in the centre of C[G]. Additionally, dim¢(C[G]) = |G| < co. By Wedderburn’s
theorem, C|[G| = [[ M, (C). We hope to discover this isomorphism.

We explore the “real story” in the translation from (W, p) to ¢ W. Suppose that (W, p)

is a representation of degree n. So p : G — GL(W) is a group homomorphism preserving -
and 1.

Remark 11. Some facts:
(1) GL(W) C End(W) := Homc¢ (W, W)
(2) End(W) is naturally a ring (End(W), +, o) and is a vector space over C with dimen-
- 2
sion n*.
(3) End(W) =2 M,,(C) (both as a ring and as a vector space)
For any p: G — GL(W), extend p to p: C[G] — End(W) additively, i.e.,
"= chg = p(r) = chpg
geG geG
Lemma 16. p is a ring homomorphism and a C-linear map.
Proposition 59 (Prop A). Suppose that (W, p) is irreducible. Then p: C|G] — End(W) is
surjective.

Proof (sketch). Recall that the dual representation (W*,p*) (as from Assignment #5) is
irreducible. Thus (W ® w*, p X p*) is an irreducible representation of G x G. Note that
W* = Hom(W,C) and p; : W* — W* is defined as p;(L) = Lo py-1.

End(W) supports a representation (End(W),7) of G x G given (h,k) € G x G, where
Tihiy - End(W) — End(W) defined as 7(4,1)(f) = pn o f o pg-1.

Claim. (End(W), T) is a representation of G x G.

Recall from Assignment #5 that for any finite-dimensional V', we have

V@ W = Hom(V*, W)
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Also, naturally, we have V** 2 V. So W @ V* = V* @ W = Hom(V, W), and particularly
W @ W* = End(W). In fact, we have

(W & W*, p8 p*) = (End(W), 7),
as representations of G x G. Hence (End(W), 7) is irreducible also.
Claim. im(p) is a G x G-invariant subspace of (End(W), 7).

Clearly a subspace. If we let

r= chg e C[G],

geG
then

p(r) = Z CgPyg-

geG

Pick (h, k) € G; then we have

T(h,k) <Z Cgpg> = Ph© (Z Cng) 0 pp-1 = Z CgPhgk—1 € IM(p).

geG geG geG
Clearly, im(p) # {0}, since p(1) = p; = idw. Hence im(p) = End(W). O
Proposition 60 (Prop B). Suppose that (W, p) is irreducible. Let x be its character. Suppose

that
r=> alg)g,

geG
where a € ClaFun(G). Then p(r) is a scalar multiplication by
|G| .
Fim() (117

Proof. Recall

geG

and by Proposition [34]

1

@ Z a(g)py
geG

is scalar multiplication by

o (| )

dim(w) X

as desired. 0

Corollary 18. Suppose that (W1, p1) is an irreducible representation of G. Then there ezists
e € C[G] such that for every irreducible representation (W, p),

le) = {1 if (W, p) = (Wi, p1)

0  otherwise.
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Proof. Let x1 be the character of (W7, p1). Define
di
::—E%%QxiECMEm«ﬁ.

Let
e=Y alg)g € C[d],
geG

and let (W, p) be an irreducible representation with character x. By Proposition |60} p(e) is
a scalar multiplication by

G| \ G| dim(W) L,
dim W1
= T X )

_ {O if (W,p) 2 (Wi, p1)

1 otherwise.

Now, let (W1, p1), ..., (Wi, pr) be alist of irreducible representations of G. Define h : C|G] —
End(W;) x -+« x End(Wy) by h(r) = (p1(r), ..., pr(r)). It is easy to show that h is a ring
homomorphism and a C-linear map. So the dimension of [[ End(W;) is n? 4 - - - 4+ n? where
dim W; = n; whereas dim¢(C[G]) = |G|. But then it is already known that |G| = >_n?. So

it suffices to show that A is surjective. ([l

29. NOVEMBER 17

Let G be a finite group, and (W}, p;) be the irreducible representations of G, for 1 <i < k,
and as usual, suppose C[G] is the group ring of G. For i =1,2,... k, let p; : G — GL(W,),
and extend this map so that p; = C[G] — End(W;). Define

h: C[G] — [ [ End(W)

by
h(r) = (p1(r), ..., p(r))

a ring homomorphism and a vector space homomorphism.
Proposition 61. A is a ring isomorphism.

Proof. Since h is a ring homomorphism, it is enough to show that h is surjective (injectivity
follows from surjectivity). Let’s recall some facts:
(1) By Proposition each p; is surjective.
(2) We also know that the k-tuples of the form (1,0,0,...,0),(0,1,0,...,0),(0,0,1,0,...,0),
(0,0,...,0,1) are in range(h). In other words, there exists ey,...,e; € C[G] such
that

h(ed) = (Gile:), -, puler)) = (0,0,...,0,1,0,...,0)

(1 in the i-th entry), according to Corollary .
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Now surjectivity is “obvious”. Let’s see why it is. To prove that h is surjective, start off by
choosing

k
(fi.for oo fo) € HEnd(Wi).

Each p; is surjective, so there exists 1 € C[G] such that p;(r1) = fi. Thus the first entry of
h(ry) is f1, so we have

h(eiry) = h(er)h(r1) = (1,0,...,0) - (f1,%,...,%) = (f1,0,0,...,0).
Similarly, for all ¢ we can get r; so that
h(e;r;) = (0,0,0,..., f;,0,...,0).
So we can construct e;r1 + ..., €, so that
h(erry + - +exrr) = (f1, fo, -, fr)-
Therefore h is surjective. U
Remark 12. Therefore, Proposition [61] shows that
C|G] = End(W;) x -+ x End(W},) = My, (C) x --- x My, (C),

hence verifying Wedderburn’s theorem.
Note that this sheds light on the canonical decomposition of the regular representation of

G, ie.,
k

i=1 .
d;(canonical component)

and V = (C[G],+). The i-th canonical component of (V, p) is
h7H({0} x -+ x {0} x End(W;) x {0} x --- x {0}),
or to put in another way,
{r € C|G] : h(e;r) = h(r)}.
29.1. More about induced representations (well, not exactly...)

(1) Chapter VII in Serre
(2) Frobenius reciprocity
(3) Mackey’s criterion

One fact about induced representations:

Remark 13. Suppose H < G. Let (W, 0) be a representation of H and (V, p) the representa-
tion of G induced by (W, 8), i.c. (V,p) = Ind%(W,#). Then clearly C[H] < C[G], and if we
let ¢pyW is a C[H]-module corresponding to (W, 6) and ¢V a C[G]-module corresponding
to (V,p), then ¢V is the extension of scalars of ¢;W. In other words, we have

cia)V = i ClG] @ ¢ W,
by Method

We won’t talk about induced representations anymore, but we will talk about some subtle

arithmetical information about G that can be deduced from C[G].
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29.2. Characterization of the centre of C|[G]. Start with
u=">alg)g,
geG

where oo € C¢. Fix h € G. Then

hu =h <Z a(g)g) = Za(g)hg = Z a(h™g)g,

geG geG geG
and similarly,

uh = (Z Oz(g)g) h=>Y alggh=>Y a(gh™)g

geG geG geq

So hu = uh if and only if a(h™1g) = a(gh™') for all g € G. Let ¢ = h™lg, i.e., a(hg'h™) =
a(g') for all ¢’ € G. Therefore, hu = uh if and only if « is invariant under the conjugation
by h if and only if a € ClaFun(G). Now it’s easy to see that if u commutes with all g € G,
then u commutes with all z € C[G]. This proves that the centre of C[G] consists of

u=> a9y,

geG

where a € ClaFun(G).
Remark 14. If R = Z(C[G]) (the centre of C[G]), then:

(1) R is a commutative ring
(2) For each conjugacy class O of G, let eg = > g = > ay(g)g, where

g€eo geG
1 ifged
al9) = 0 else

This is a class function, so ey € R for all conjugacy classes 6.

Hence we can state the following: R = spanc{eg : € a conjugacy class of G}. In fact, these
eg’s form a C-basis for R, and the dim¢(R) = # of conjugacy classes of G, as a C-vector
space.

30. NOVEMBER 18: MORE ABOUT THE CENTRE OF C[G]

Let G be a finite group, and (W, p) an irreducible representation of G. As usual, let
p : C[G] — End(W) be the extension of p, and R C C[G] the centre of C[G]. Consider
plr : R — End(W), which is also a ring homomorphism. Recall Proposition which says

that if r = ) a(g)g and a € ClaFun(G) (i.e., if r € R), then p(r) is a scalar endomorphism,
geG
say by A.. Then we have

with x = char(W, p).



Define w, : R — C with w,(r) = A,. And this is a ring homomorphism. Note that:

(o | X7) |G|Z

geG
. S
S wp(r) = Ar = dim(W) |G 4 Z

Hence, we have:

Proposition 62. Let R be the centre of C[G]. Let (W, p) be an irreducible representation of
G. Then the map

w,: R— C,w, (Z a(g)g) = éZa(g)x(g) (o € ClaFun(G))

geqG geG
s a ring homomorphism.

Proof. Only need to check that w,(1) = 1. But then w,(1) = x(1)/d, and since x(d) is the
dimension of W, it follows that w,(1) = 1. O

31. NOVEMBER 18: SOME ALGEBRAIC NUMBER THEORY

Definition 63. Let R be a commutative ring containing Z and u € R.

(1) w is algebraic over Z if u is a root of some nonzero polynomial p(z) € Z[z].
(2) w is integral over Z if u is a root of some monic polynomial p(z) € Z[z].
(3) If R = C, then u € C is an algebraic integer if it is integral over Z.

Example 28. Examples of integral elements:
(1) Every integer n € Z is integral over Z.
(2) ¢/d € Q is integral over Z if and only if ¢/d € Z.
Proof. Suppose that ¢/d is a root of a monic polynomial with integer coefficients.
Say f(z) = 2" + ap12" ' + -+ + a1x + ap with a; € Z. If f(c/d) = 0, then
(¢/d)" + an_1(c/d)" ' + -+ ai(c/d) + ap = 0, or

A Fap 1A 4 aped” T 4 apd™ = 0.

divisigﬂe by p
Assume that ¢/d is in lowest terms. If ¢/d € Z, then there exists a prime that p | d
but p { c. But note that p | ¢", so p | ¢, and this is a contradiction. O

(3) Every n-th root of 1 is integral over Z.
(4) If R, S are commutative, then both contain Z. So if h : R — S is a ring homomor-
phism and v € R and u is integral over Z, then so is h(u).

Definition 64. Let R be a commutative ring.
(1) If uy, ..., u, € R then the span of Z is
spang(uy, ..., u,) = {aju; + -+ + ayuy, @ ay, ..., a, € Z}.

(2) Suppose that U is a subgroup of (R,+). Then U is finitely generated as a Z-module

iff there exist uy, ug, ..., u, € U such that spany(ui,...,u,) =U.
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(3) If w € R, then Z[u] is the subring of R generated by u. Equivalently, Z[u] =
spang {1, u,u®, v, ... } = {f(u) : f(z) € Z[x]}.

Proposition 65. Let R be a commutative ring containing Z. Let uw € R. Then the following
are equivalent:

(1) u is integral over Z
(2) Zu] is finitely-generated as Z-module
(8) there ezists a subring S < R withu € S such that S is finitely-generated as Z-module.

But, before going into the proof, need to mention the following theorem/big fact we will
use:

Theorem 15. Submodules fo a finitely-generated Z-module are finitely generated.

Proof of Proposition[69. ((1) = (2)) Assume that u is integral over Z. So say f(u) = 0
for some f(x) € Z[z], monic. For m > n = deg(f), take 2™ and divide it by f(z). Get
quotient ¢(z) and remainder r(z) (in Q[x]). Since f(x) is monic, by the division algorithm
we have q,r € Z[z]. Then 2™ = f(z)q(x) + r(x), so we have u™ = f(u)q(u) +r(u) =r(u) €
spang (1, u,u?, ..., u"1). Hence Z[u] = spany(1,u,u?, ... u""1).

((2) = (1)) Assume that Z[u| = spany(vq, ..., vg) is finitely-generated as Z-module. Each
v; € Z[u] = spany(1,u,u?, - ), so there exists N such that vy, ..., v € spang(1,u,u?, ... u").
Thus we have v € Z[u] = spany(1,u,u?, ..., u"), and this gives p(x) € Z[z], monic of
degree N + 1 such that p(u) = 0.

((2) = (3)) This is immediate: just let S = Z[u].

((3) = (2)) Given u € S, finitely-generated as a Z-module, then Z[u] < S. Thus Z[u] is
a subgroup of (S,4). Since S is finitely-generated, it follows that Z[u] is finitely-generated
also, by Theorem [15] O

32. NOVEMBER 20
Some consequences of Proposition |65}

Corollary 19. Suppose that R is a commutative ring containing Z and R is finitely-generated
as a Z-module. Then every u € R 1is integral over Z.

Proof. Apply statement (3) of Proposition |65 with S = R. O

Corollary 20. Suppose R is commutative containing Z. The set {u € R : u integral over Z} =
S is a subring of R.

Proof. Obviously 1 € S. Let u,v € S. So u, v are integral over Z so Z[u] = spany (1, u, u?, ...,

u™ 1) and Z[v] = spany(1,v,v?, ..., 9™ 1) for some m and N. Must show that u & v and
uv are integral over Z. Let T = spany({u'v’ : i <mn,j < m}. Then T is a finitely-generated
submodule of (R,+). We claim (without proof) that 7" is a subring of R. By the previous
corollary, every element of T is integral over Z. Thus u + v, uv are integral over Z. 0

Now we return to the representation (Section 6.5 in Serre):

Proposition 66. Let x be the character of (V,p) of G of finite degree. Then x(g) is an
algebraic integer for all g € G.
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Proof. If |G| = n, then x(g) = tr(p,) = sum of eigenvalues of p,, which are n-th roots of
unity. Every n-th root of unity is integral over Z, so their sum is integral over Z also. 0

Let R = Z(C|G]), the centre of C[G], i.e., a commutative ring containing Z.
Definition 67. We define

Z|G] = {ang ing € Z} C R.

geG

Note that Z|G] is a subring of C[G].
Lemma 17. Every element of RN Z|[G| is integral over Z.

Proof. Z|G| is a ring, finitely-generated as a Z-module. R N Z[G] is a subring of both,
so is a commutative ring. Also it is a submodule of Z[G]. By Theorem RN Z[G] is
finitely-generated as a Z-module. Thus by Corollary , every r € RN Z|[G] is integral over
Z. O

Ezxample 29. Let C' be the set of conjugacy classes of G. For 6§ € C,
€y — Z g.
g€eo

Lemma 18. Fach ey is integral over Z.

Proposition 68. Let G be a finite group, and o € ClaFun(G) such that each a(g) is an
algebraic integer (i.e., integral over 7). Let

u= Za(g)g € R.

geG

Then u is integral over Z.

Proof. For each 6 € C, let by be the constant value a(g),g € 6. Then

1= 3 (Soton) - X2 (L)

0eC \ geb 0eC \ geb
= E bg ( E g) = E 6969.
oeC geb peC

Recall that by is an algebraic integer and ey is integral over Z, and that all by, ey are in R
and integral over Z. Hence > bgeg is also integral over Z, by Corollary . U

Now let (W, p) be an irreducible representation of G. Let p : C[G] — End(W), and let
w, : R — C be a ring homomorphism. Recall that x := char(W, p) and d = dim(W). THen

w (Z a(9)9> = % > alg)x(g).

geG gelG

As w, is a ring homomorphism, we have
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Corollary 21. Suppose o € ClaFun(G) such that each a(g) is an algebraic integer. Let
(W, p) be an irreducible representation of G with character x. Then

éza(g)x(g)

geG

is an algebraic integer where d is the degree of (W, p).

Fix irreducible representation (W, p) with degree d and character y. Define a € ClaFun(G)
by a(g) = x(¢g7!) € ClaFun(G). Then all values of « are algebraic integers. Note that

é > alg)xlg) = é > x(g)x(g)

geqG geG
- ’%Y' (’—é’ gez;x(g‘l)x(g)> = ’%0090
= %;' (x [x) = %,

so it is an algebraic integer. So |G|/d € Z, i.e., d | |G|. Hence we proved:

Theorem 16 (Lagrange-like theorem). If (W, p) is an irreducible representation, then dim (W)
divides |G].

33. NOVEMBER 24

Suppose that G is a finite group and (W, p) is an irreducible representation of G' and
dim(W) = D. Then we know that
(1) d divides |G| (Theorem [34)
(2) If G has an abelian normal subgroup, say A, then d < [G : A]. (Corollary

Proposition 69 (Mackey). Let G be a finite group and let Z(G) be the centre of G. If
(W, p) is an irreducible representation, then dim(W) | [G : Z(G)].

Proof. Let d = dim(W),n = |G| and k = |Z(G)|. We will show that dk | n. Let h € Z(QG)
and observe that p, commutes with p, for all ¢ € G. This means that py, : (W, p) — (W, p)
is a morphism. By Schur’s lemma (Lemma , pr, 1s multiplication by some Aj,. This gives a
homomorphism A : Z(G) — C* defined as h +— \j.
Fix m > 1. By Theorem [J] the representation
<W®'”®M/)\pg'“&8)

Vv N~

is an irreducible representation of G™. Recall that if ¢ = (g1,92,...,9m) € G™, then
(P™)g(V1 @ -+ @ V) = pg, (V1) @ -+ @ g (Um). If b= (hy,ho, ..., hy) € (Z(G))™ then
(P (01 @ - @ V) = ppy (V1) ® + -+ @ pa,, (V)
= Ay (V1) @ -+ @ A, (Um)
= (/\hl/\hg - /\hm)(vl R ® Um)‘
Let H ={(h1,ha,...,hy) € Z(G) : hy----- hm =1}. Thus H < (Z(G))™ hence H<G™. By

the above calculation, we have (p™); = id for any h € H, since A, - - - - An,, = 1. Therefore
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H C ker(p™). This means that we get a well-defined homomorphism p : G™/H — GL(IW®™)
defined by gH +— (p™),. Thus (W®™ 7) is a representation of G™/H. In fact this is also
irreducible. If V- < W®™ is G™/ H-invariant, then it is also G™-invariant. Thus by Theorem
d™ | |G™/H]|, since d™ = deg((W®™ p)) and |H| = k™ !. So we have d™ divides
=, or d™k™ ' | n™ for all m. This implies that dk | n. To see why, suppose that
p*® || d. Similarly, define 8(p) and ~(p) so that p*® || k and p*® || n. Then we have
ma(p) + (m — 1)B(p) < my(p) for all m, or m(a(p) + B(p) — v(p)) < B(p) for all m, so
a(p) + B(p) — v(p) <0, as required. O

Definition 70. A representation (V, p) is isotypical if it is a direct sum of isomorphic irre-
ducible representations.

Ezample 30. If (V, p) is an arbitrary representation of finite degree and
(Vip) = (Vi,p1) & - & (Vi, i)

is its canonical decomposition, then (V;, p;) is isotypical.
Suppose that G is finite and N < G and (V,p) is a representation. Let (V| py) be the
representation restricted to N. Let

(Vipn) = (Vi,p1) @ - @ (Vi, pr)

be its canonical decomposition into isotypical components. Consider (V, p1). It decomposes
as

(‘/17p1) = (Uiao-,l) Q- D (Ul/claa;cl)

where the (U;,0}) are all isomorphic and irreducible. In Assignment #7 Problem #1, we
will prove that p, maps U, ..., U, to isomorphic subrepresentations. We are applying this
claim here. The point is that p, maps them all to the same isotypical component. Thus
py(V1) C V; for some j. With some calculations, we can actually show that p,(V;) = V.

Note that 1 is not special in this argument, so we have the following lemma.

Lemma 19. If G is a finite group and N <G and (V, p) is a representation of G of finite
degree, then for each g € G, p, permutes the isotypical components of (V, pn).

34. NOVEMBER 25

Suppose G is a finite group, and N < G, and (V, p) is a representation of finite degree.
On November 24 we talked about how G acts on Vi, Vs, ...V}, the isotypical components
of (V, pny) by permuting them. Suppose that (V, p) is irreducible. Then the action of G on
{V1,Va, ..., Vi } is transitive. Say, if 0 is the orbit of V; for every g € G and py(V1) =V, for

some i,. Then @V, is G-invariant.
geG
Pick one of the components, say Vi, and let H < G be the stabilizer of V; under this

action.ie., H = {g € G : p,(V1) = V1 }. By the orbit-stabilizer theorem, [G : H| = k and the
left cosets of H senD V; to distinct V.

Let 0 = pp|v,, so that (V1,0) is the representation of H obtained from (V] p) by restricting
to H and V;. Thus the previous discussion shows that distinct left cosets of H send V; to
distinct V;, and since V' is the direct sum of the V;, we have that (V},6) induces (V, p). Also,

note that N < H since Vj is N-invariant.
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Proposition 71. Suppose G is a finite group, N a normal subgroup, and (V,p) is an irre-
ducible representation. Then either one of the following claims holds:

(1) There exists:

(a) a proper subgroup H < G with N < H

(b) an irreducible representation (W,0) of H such that (V, p) = Ind% (W, 6)
(2) The restriction (V, py) of (V,p) to N is isotypical.

Proof. Let (Vi,p1) @ -+ @ (Vi, px) be the canonical decomposition of (V, py) into isotypical
components. If £ =1, then the second claim holds. So we will show that if £ > 1, then the
first claim will hold. If £ > 1, then the H constructed in the preceding discussion is proper.
So we need only show that (W, ) is irreducible.

Suppose that V] has a proper invariant space X. Define

X' = ZPQ<X)‘

geG

But since X* is G-invariant, we have

%)= o (S 0) = T na06) = ) = )
geG geG geG
Note that X* C X @ Vo @ --- @V}, since X is properly contained in V3, and that py(X) C X
if g € H. Also,
Vi (1>1)
pg(Vi) =V, otherwise,

pg(X) C {
so (V, p) is not irreducible. O

Corollary 22. Suppose G is a finite group and A< G is abelian. If (V,p) is an irreducible
representation of degree d then d | [G : A].

Proof. We prove it by induction on |G|. If |G| = 1, then let K = ker(p).

Case 0. |[K| > 1

Let G = G/K. Then (V,p) naturally gives an irreducible representation (V,7) on G.
Then A := AK/K is a normal subgroup of G. Since, by the Second Isomorphism Theorem,
A=AK/K = A/(AN K), it follows that A is abelian. Since k > 1, we have |G| < |G/, and
we can apply induction to get
G A= IC _ G- 4]
d|[G:A]=[|G: AK] = AR Al
so the claim follows.

If |K| =1, then p is faithful /one-to-one.

Case 1. There exists H < G with A < H, and an irreducible representation (W,0) of H
such that (V,p) = Ind$ (W, ). Note that A < H, so by induction, |H| < |G|. We get that
dim(W) divides [H : A]. Since dim(V) = d = dim(W) - [G : H], we have d | [G : H|[H :
Al =[G : Al

Case 2. (V, pa) is isotypical. Then (V,pa) = (Uy,01) & - -+ & (U, 0x) with the (U;, 0;) all
isomorphic to (U,o). (U, o) has degree 1, since A is abelian. So o, = A, for each a € A.

The same is strue for (U;, 0;) so pa is just multiplication by A,. It follows that p, commutes
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with p, for all g € G. Since p is injective as a homomorphism from G to GL(V), A < Z(G).
Then by Theorem , d | [G: Z(G)],so d | [G : A] since [G : A] =[G : Z(G)][Z(G) : A]. O

35. NOVEMBER 27

Lemma 20. Suppose that G is a finite group, (W, p) an irreducible representation of degree
d, and x is its character. Suppose G has a conjugacy class 8 whose size is coprime to d.
Then for all g € 8, either x(g) =0 or p, is scalar.

Proof. Fix ¢ = |0] and g € G and assume that x(g) # 0. By Corollary 21} we know that if
a: G — Cis a class function whose values are algebraic integers, then

=S ()

heG

is an algebraic integer.
Let a be the class function

0 otherwise.

a(h)_{1 if h e o;
Then

LS () = Sx(g)

dhEGX —dxg

is an algebraic integer. Choose s,t € Z such that sc+ td = 1, and scx(g) + tdx(g) = x(9)-
Divide by d:

s (gx(g)) +tx(g) = %-

Thus x(g)d™! is an integral linear combination of algebraic integers, making x(g)d~' an
algebraic integer also. Let ay := x(g)/d. Then a; = A\ + Ay + - - - + Ag where the \; are the
eigenvalues of p,. p, satisfies the equation 2l6l — I = O, so each ); is an n-th root of unity
where n = |G|. So

At Al [l A

= 1.
o d d
Since a; is an algebraic integer, we can find a monic p(z) € Z[z] which is the minimal
polynomial for a;. Let ay, ..., a; € C be the roots of p(z) and ¢, = €**/™ be a primitive n-th

root of unity, and let F' = Q(ay,...,ax,(,). Then F' is the splitting field of p(x)(z™ — 1).
Galois theory tells us that there is an automorphism of F' (say o;) satisfying o(a;) = a;, hence

d
So 0;(\;) is an n-th root of unity, so |o;(A;)| = 1. Thus the same argument as before shows
that |a;| <1 for all 4.

Since x(g9) # 0 and a; = x(g)/d # 0, so a; = 0;(a;) # 0. Hence ajas...a; # 0, but
+ajas ... ap = cp(x) for some constant coefficient ¢, whichever is an integer. So |ajay - - - ay| >
1, but we also have |ajas---ag| < 1, hence |ajay...ax| = 1. If |a;| < 1 then |a;| > 1 for
some ', so |a;| = 1 for all i. Hence |x(g)| = |a1d| = d. And since |\; + -+ + \y| = d, and
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each [A\i| < 1, we have \y = Ay = --- = A4s. Hence p, is a scalar. Thus, in a suitable basis
we have

A1 0

A
Pg . =M1,

0 Ad
as required. [l

36. DECEMBER 1

Lemma 21. If G is a finite group and (W, p) irreducible rep such that d = dim(W) and
x = char(W, p) and 0 a conjugacy class of G satisfying ged(|0|,d) = 1, then for all g € 0
either x(g) = 0 or p, is scalar.

Corollary 23. Suppose that G is a finite non-abelian simple group, and suppose also that 0
is a conjugacy class such that 0 # {1}. Then |0| is not a prime power.

Proof. Since G is non-abelian simple group, we have Z(G) = {1}. Assume also that |0| = p°
where p is a prime and ¢ > 0. Let rg be the character of the regular representation of G.

We know that i
ra = Z d;Xi,
i=1

where (W1, p1), ..., (Wi, pi) are the irreducible representations dim(W;) = d; and char(W;, p;)

xi- Also,
relg) = |G| ifg=1
G\I) = 0 otherwise.

Assume that (W3, p1) is these trivial representation of degree 1. So d; = 1 and x; = 1. Fix
g € 0. Then

k
0=ra(g) =1+ ZdiXi<g)'
i=2
So either p | d; or x;(g) = 0.

Claim. For i = 2,3,... k, if x;(g) # 0 then p | d;.

Proof of the claim. Assume that p 1 d;. Note that ged(|6],d;) = 1 since |#] = p°. So by
Lemma 21}, either x;(g) = 0 or (p;), is a scalar. Assume that x;(g) # 0. Then (p;), is scalar.
So (p;), commutes with (p;), for all h € G.

Consider (p;), : G — W;, and let N = ker(p;),. Note that N # G, since (W}, p;) is not the
trivial representation. So these simplicity implies that N = {1}. Hence (p;), : G = im(p;),-
Since (p;), commutes with (p; ), we see that g commutes with all h € G, hence g € Z(G) =
{1}. Hence g ¢ 6, a contradiction. The claim follows. O

The claim implies that if p { d; then x;(g) = 0. Equivalently, if x;(g) # 0 then p | d;.

p
—1= ZdiXi(g> = Z dixi(g) = Z peixi(9),

2<i<k Xi(9)#0
xi(9)#0
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where e; := d;/p € Z. Divide by p to get

—%: Z eixi(9),

xi(9)#0
so the right-hand side is an integral combination of an algebraic integer, but the left-hand
side is not an algebraic integer, a contradiction. This completes the proof. U

Theorem 17 (Burnside’s pq theorem, version I). If |G| = p®q® for p, q distinct primes, then
G is not a simple group.

Proof. Suppose G is simple. Let P < GG be a Sylow p-subgroup. Then |P| = p*. We know
that Z(P) # {1}. Pick a non-identity element g € Z(P). Let O be the conjugacy class of
g in G. By the orbit-stabilizer theorem, || = [G : Cs(g)], where Cg(g) :={h € G : hg =
gh} D P denotes the centralizer of g in G. Thus [G : P] = ¢® so [G : C5(g)] = ¢ for some
v < B. Therefore [G : Ci(g)] = || and this contradicts Corollary [23] O

Definition 72. A finite group G is solvable if there exists a chain of subgroups G = Ny >
Ni>---> N, = {1} such that N;/N;,; is abelian for all 1.

Theorem 18 (Burnside’s pg theorem, version II). If |G| = p*¢® with p and q primes, then
G is solvable.

Proof. The proof is by induction on |G|. G is not simple, so there exists at least one N such
that {1} < N <G such that N # G. By induction, N and G/N are both solvable. O
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