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1. Introduction

1.1. Introduction to valuation.

Definition 1. A map | · | from field K to R is said to be a valuation if
(i) (Positive-semidefinite) For all a ∈ K, |a| ≥ 0, and |a| = 0 iff a = 0.
(ii) (Multiplicativity) For all a, b ∈ K, |ab| = |a| · |b|.

(iii) There exists C > 0 such that for all a ∈ K with |a| ≤ 1, then |1 + a| ≤ C.

Remark 2. (iii) is often replaced by the triangle inequality.

Example 3. The ordinary absolute value | · | on C. In this case, we can take C = 2.

Example 4. The p-adic valuation | · |p on C is defined in the following manner: Let p be a
prime number. Let ordp a (for a ∈ Z) be the largest power of p dividing a. Extend this idea
to Q by putting ordp(a/b) = ordp a − ordp b. Now define | · |p on Q by letting |0|p = 0 and
|a/b|p = p− ordp(a/b). In this case, we can take C = 1. Thus p-adic valuation is an example of
a non-Archimedean valuation, which will be discussed in Section 1.3 in greater detail.

Example 5. Let k be a field and consider K = k(T ), where T is transcendental over k.
Let λ ∈ R with 0 < λ < 1. Let p(T ) ∈ k[T ] be irreducible. Observe that every non-

zero element of K has a representation of the form h(T ) = p(T )q f(T )
g(T )

where q ∈ Z and

(f, p) = (g, p) = 1. Note that q is uniquely determined. Define | · | on K by |0| = 0 and
|h(T )| = λq. Axioms 1(i) and (ii) are immediate. For (iii), note that if |h| ≤ 1, then q ≥ 0

so |1 + h| =
∣∣∣1 + p(T )q f(T )

g(T )

∣∣∣ ≤ 1. We can take C = 1.

Example 6. Let K be any field, and put a valuation | · |0 known as the trivial valuation, i.e.,
|0|0 = 0 and |a|0 = 1 for all nonzero a ∈ K. We can (trivially) take C = 1.

Example 7. Let K = k(T ) as in Example 5. Let γ ∈ R with γ > 1. We define | · | first on
k[T ]. If

f(T ) = a0 + a1T + · · ·+ anT
n (an 6= 0)

and ai ∈ K for all i, we put |f | = γn.

Extend this to elements f(T )/g(T ) in K with g 6= 0 by putting
∣∣∣fg ∣∣∣ = |f |

|g| . As always,

|0| = 0. One can check that | · | satisfies (iii) with C = 1.
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1.2. Properties of valuation.

(1) |1| = 1 (Note that |1| = |1 · 1| = |1| · |1|.)
(2) If |an| = 1, then |a| = 1. Note that | − 1| = 1 and | − a| = a for all a ∈ K.
(3) If K = Fp then the only valuation on K is the trivial valuation, by (2).
(4) If | · | is a valuation on K and λ ∈ R+, then | · |1 defined by |a|1 := |a|λ for all a ∈ K

is also a valuation of K: take C1 = Cλ.

Definition 8. If | · | and | · |1 are valuations on a field K, then we say they are equivalent if
there exists λ ∈ R+ such that |a|λ = |a|1 for all a ∈ K. This gives us an equivalence class
on a field K of valuations, and such an equivalence class of valuations is known as a place
of K.

Lemma 9. A valuation | · | on K satisfies the triangle inequality if and only if for all a ∈ K
with |a| ≤ 1, we have |1 + a| ≤ 2.

Proof. (⇐) Suppose a1, a2 ∈ K. If a1 = 0 or a2 = 0 then clearly |a1 + a2| ≤ 2 max(|a1|, |a2|).
Suppose neither is zero, and without loss of generality, assume |a1| ≥ |a2|. Then |a1 + a2| =
|a1| · |1 + a2/a1| ≤ 2|a1| = 2 max(|a1|, |a2|). Thus, we have |a1 + a2| ≤ 2 max(|a1|, |a2|) for
any a1, a2 ∈ K. Now apply induction to a1, a2, . . . , a2n to derive

|a1 + a2 + · · ·+ a2n| ≤ 2n max(|a1|, |a2|, . . . , |a2n|).
Given a1, a2, . . . , aN ∈ K whereN is sufficiently large, we can choose n so that 2n−1 < N ≤ 2n

and define aN+1 = aN+2 = · · · = a2n = 0. Then for any a1, a2, . . . , aN ∈ K,

|a1 + a2 + · · ·+ aN | ≤ 2n max(|a1|, |a2|, . . . , |aN |) ≤ 2N max
1≤j≤N

(|aj|),

from which we can take a1 = a2 = · · · = aN to derive |N | ≤ 2N . Let b, c inK and n ∈ Z+.
Then

|b+ c|n = |(b+ c)n| =

∣∣∣∣∣
n∑
r=0

(
n

r

)
brcn−r

∣∣∣∣∣ ≤ 2(n+ 1) max
r

∣∣∣∣(nr
)
brcn−r

∣∣∣∣
≤ 4(n+ 1) max

r

∣∣∣∣(nr
)∣∣∣∣ |b|r|c|n−r (since |N | ≤ 2N)

≤ 4(n+ 1)
n∑
r=0

(
n

r

)
|b|r|c|n−r

≤ 4(n+ 1)(|b|+ |c|)n.

Thus, it follows that |b+ c| ≤ (4(n+ 1))1/n(|b|+ |c|), and letting n→∞ gives us the triangle
inequality.

(⇒) This is immediate, since |1 + a| ≤ |1|+ |a| ≤ 2. �

Corollary 10. Every valuation on K is equivalent to a valuation satisfying the triangle
inequality.

1.3. Non-Archimedean valuation.

Definition 11. A valuation | · | on a field K is said to be non-Archimedean if we can choose
C = 1 in Definition 1(iii). Otherwise, it is called Archimedean.
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Remark 12. Observe that any valuation equivalent to a non-Archimedean valuation is also
non-Archimedean.

Lemma 13. A valuation on K is non-Archimedean if and only if | · | satisfies the strong
triangle inequality for all a, b ∈ K.

Proof. (⇒) Without loss of generality, suppose a, b ∈ K with |a| ≤ |b|. Note that we have
|a + b| = |b(1 + a

b
)| = |b||1 + a

b
| ≤ |b| · |1|, according to Definition 11. Thus |a + b| ≤ |b| =

max(|a|, |b|), as required.
(⇐) Again, we assume that a, b ∈ K with |a| ≤ |b|. Thus, by the strong triangle inequality,

we have |a + b| = |b||1 + a
b
| ≤ |b|. This implies that |1 + a

b
| ≤ 1 for any a, b ∈ K, so we can

choose C = 1. Therefore | · | is non-Archimedean. �

Lemma 14. Let | · | be a valuation on a field K. Then | · | is non-Archimedean if and only
if |e| ≤ 1 for all e ∈ RK, where RK denotes the ring generated by 1 in K.

Remark 15. We cannot assume that the ring generated by 1 in K is Z, since that is no longer
the case if K has a positive characteristic.

Proof. (⇐) Any non-Archimedean valuation is equivalent to a non-Archimedean valuation,
and since any non-Archimedean valuation satisfies the triangle inequality, one can replace
the original valuation to the one satisfying the triangle inequality. Suppose e ∈ RK and
|e| ≤ 1. Apply the triangle inequality:

|1 + e|n = |(1 + e)n| ≤
n∑
j=0

∣∣∣∣(nj
)∣∣∣∣ |e| ≤ n∑

j=0

|a| ≤ n+ 1.

Take the n-th root on both sides and let n→∞ to get |1 + e| ≤ 1 for any e ∈ RK . Thus we
can take C = 1, as required.

(⇒) This is immediate, since |1 + 1| ≤ |1| by the triangle inequality. Apply induction to
derive |e| ≤ 1 for all multiples of 1. �

Corollary 16. If K and k are fields with k ⊆ K, and | · | a valuation on K, then | · | is
non-Archimedean on K if and only if its restriction to k is non-Archimedean also.

Proof. Apply the previous lemma for the ⇐ direction. The ⇒ direction is immediate. �

Corollary 17. If |·| is a valuation on a field K with charK > 0, then |·| is non-Archimedean.

Proof. This follows from the fact that the only valuation on the finite field Fp is the trivial
valuation, and the trivial valuation is (trivially) non-Archimedean. �

2. Ostrowski’s Theorem

Theorem 18 (Ostrowski’s Theorem). All non-trivial valuations on Q is equivalent to either
the ordinary absolute value or the p-adic valuation, where p is a prime.

Proof. Let | · | be a valuation on Q. By Corollary 10 we may assume that | · | satisfies
the triangle inequality. Let b > 1 and c > 0 with b, c ∈ Z. Write c in terms of b: c =
cmb

m + cm−1b
m−1 + · · · + c0, where c0, . . . , cm are taken from {0, 1, . . . , b − 1} and where

cm 6= 0. Note that m ≤ log c/ log b. By the triangle inequality,

|c| ≤ (m+ 1) max
0≤i≤m

|ci|max(1, |b|m) ≤ (m+ 1)M max(1, |b|m)
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where M −max(|1|, . . . , |b− 1|). Let a ∈ Z+ and put c = an for n ∈ Z+. Then

|a|n = |an| =
(
n log a

log b
+ 1

)
M max(1, |b|

n log a
log b ).

Take n-th roots and let n→∞:

|a| ≤ max(1, |b|
log a
log b ). (1)

Suppose first that there is some positive a with |a| > 1. Then from (1), we see that |b| > 1
for all b > 1 with b ∈ Z. Interchanging the roles of a and b in (1), we see that

|a|1/ log a = |b|1/ log b.

Thus, there exists a real number λ with λ > 1 such that for all positive integers a, we have
|a| = aλ and hence | · | is equivalent to the ordinary absolute value on Q (i.e., |a/b| = |a/b|λ∞,
where |a/b|∞ denotes the ordinary absolute value).

Now suppose that |a| ≤ 1 for all positive integers a. If |a| = 1 for all positive integers a
then | · | is the trivial valuation. Thus there is a smallest positive integer a for which |a| < 1.
Notice that a is a prime by the multiplicative property of valuations.

Let c be an integer such that p - c. We can write c = up + v with v ∈ {1, 2, . . . , p − 1}.
Then |v| = 1 since p is the smallest positive integer with valuation less than 1. Furthermore,
|up| = |u| · |p| < 1. Since |a| ≤ 1 for all a ∈ Z+, we see that | · | is non-Archimedean.
Therefore |c| = |up + v| = |v|. This means that the valuation on Q is determined once we
know that its value on p. Thus it is equivalent to the p-adic valuation, as desired. �

We will give a criterion for the two valuations on a field K to be equivalent.

Proposition 19. Let K be a field and let | · |1 and let | · |2 be valuations in K. If | · |1 is not
the trivial valuation and for a ∈ K

|a|1 < 1⇒ |a|2 < 1,

then | · |1 and | · |2 are equivalent.

Proof. By taking inverse we see that |a|1 > 1 implies |a|2 > 1. Next suppose that |a|1 = 1
and |a|2 > 1. Since our valuation | · |1 is not a trivial valuation, these exists c ∈ K \ {0} with
c 6= 0 and |c|1 < 1. Then for each n ∈ Z+ we have

|can|2 = |c|2|an|2 > 1 for n sufficiently large.

But |can|1 = |c|1|a|n1 < 1 for all n ∈ Z+ and this contradicts our assumption. We thus
conclude that |a|1 < 1 ⇒ |a|2 < 1 and |a|1 > 1 ⇒ |a|2 > 1. Since | · |1 is non-trivial there
exists a c ∈ K with c 6= 0, |c|1 > 1. Then |c|2 > 1. Now let a ∈ K, a 6= 0 and define γ by

|a|1 = |c|γ1 . Let m,n ∈ Z+ with m/n > γ. Then |a|1 < |c|m/n1 . Hence∣∣∣∣ancm
∣∣∣∣
1

< 1⇒
∣∣∣∣ancm

∣∣∣∣
2

< 1.

Therefore |an|2 < |cm|2 so |a|2 < |c|m/n2 .
Similarly if m/n < γ we have

|a|2 > |c|m/n2 .
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Therefore |a|2 = |c|γ2 . Thus γ = log |a|1/ log |c|1 = log |a|2/ log |c|2 and so

log |a|1
log |a|2

=
log |c|1
log |c|2

is equal to λ for some λ ∈ R, |λ| > 0. Accordingly, |a|1 = |a|λ2 , completing the proof. �

Given any function | · | on a field K satisfying axioms (i) and (ii) in Definition 1 we can use
it to define a topology on K. For each ε > 0 and x0 ∈ K we defined the fundamental basis
of neighbourhoods of x0 by the inequalities |x− x0| < ε. Axiom (iii) in Definition 1 ensures
that our space is Hausdorff. We can define a metric d on K by putting d(a, b) = |a− b|.

Remark 20. The induced topology is the discrete topology whenever | · | is the trivial valua-
tion.

Proposition 21. Let | · |1 and | · |2 be valuations on a field K. | · |1 and | · |2 induce he same
topology on K if and only if they are equivalent.

Proof. (⇒) We may suppose that both | · |1 and | · |2 are non-trivial valuations on K. Suppose
that a in in K with |a|1 < 1. Thus |a|1 < 1⇒ |a|n|1 → 0 as n→∞. Since |·|1 and |·|2 induce
the same topology , |an|2 → 0. But then |a|2 < 1. The result now follows by Proposition
19. �

Inequivalent valuations on a field K are independent in the following sense:

Proposition 22. Let | · |1, . . . , | · |H are non-trivial valuations on a field K with pairwise
non-equivalence. Then there exists a ∈ K such that

|a|1 > 1 while |a|j < 1

for all 2 ≤ j ≤ H.

Proof. The proof is via induction on H. Let H = 2 (base case). Since | · |1 is not the trivial
valuation and | · |1 and | · |2 are not equivalent, there exists some b ∈ K with |b|1 < 1 and
|b|2 ≥ 1. Similarly, since | · |2 is non-trivial, there exists c ∈ K such that |c|2 < 1 and |c|1 ≥ 1.
Then we can take a = cb−1. Notice that |a|1 > 1 and |a|2 < 1.

Suppose that H > 2 and the result holds for j = 2, . . . , H − 1. Then there exists, by the
inductive hypothesis, b ∈ K with |b|1 > 1 but |b|j < 1 for all j = 2, . . . , H − 1. We can
also consider | · |1 and | · |H , and by the inductive hypothesis one can find d ∈ K such that
|d|1 > 1 while |d|H < 1.

Notice that if |b|H < 1 we are done, since we can take a = b. If |b|H = 1 then we can take
a = bnd for n sufficiently large. If |b|H > 1 we can take a = bn

1+bn
d. a works for sufficiently

large n since

bn

1 + bn
=

1

1 + b−n
→

{
1 (| · |1 and | · |H)

0 all other valuations
.

This completes the proof. �
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3. September 25: Approximation theorem and completion

3.1. Approximation theorem.

Theorem 23 (Approximation theorem). Let | · |1, . . . , | · |H be pairwise inequivalent, non-
trivial valuations. Let b1, . . . , bH ∈ K. Let ε > 0 be a positive real number. Then there exists
an element a ∈ K so that |a− bi|i < ε for i = 1, 2, . . . , H.

Proof. By Proposition 22, there exist cj ∈ K(1 ≤ j ≤ H) with |cj|j > 1 and |cj|i < 1 for all
i 6= j. Notice that for j = 1, . . . , H,∣∣∣∣ cnj

1 + cnj

∣∣∣∣
i

→

{
1 if i = j

0 if i 6= j.

as n→∞. The result now follows from the triangle inequality by taking

a =
H∑
j=1

cnj
1 + cnj

bj. �

Remark 24. This can be viewed as an analogue of the Chinese Remainder Theorem.

Definition 25. Let K be a field and | · | be the valuation on K. We say that a sequence
(a1, a2, . . . ) of elements of K converges to a limit b in K with respect to | · | if given ε > 0
there exists n0(ε) such that for n > n0(ε) we have |an − b| < ε.

Remark 26. By axiom (i) of Definition 1, if the limit exists it is unique.

Definition 27. We define a Cauchy sequence (z1, z2, . . . ) to be a sequence such that for each
ε > 0 there exists n1(ε) such that whenever m,n > n1(ε) we have |am − an| < ε. Note that
if (a1, a2, . . . ) has a limit then it is a Cauchy sequence.

Definition 28. A sequence (a1, a2, . . . ) is said to be a null sequence with respect to | · | if it
has limit zero.

Definition 29. A field K is complete with respect to | · | if every Cauchy sequence in K has
a limit in K.

Remark 30. Q is not complete with respect to | · |∞ (the ordinary absolute value on Q),
since, for example, one can choose a Cauchy sequence which converges to

√
2.

So, what about Q and | · |p? Let p = 5. We now will construct a sequence with respect to
the 5-adic valuation | · |5 which does not have a limit in Q. Here, | · |5 is normalized so that
|5|5 = 5−1. To show that Q is not complete with respect to | · |5, we construct a sequence
of integers (a1, a2, . . . ) satisfying a2n − 6 ≡ 0 (mod 5n+1) and an+1 ≡ an (mod 5n) for all
n ∈ N. Define b0, b1, . . . from {0, 1, 2, 3, 4} inductively. Let b0 = 1 and choose b1 so that
(1 + b15)2 ≡ 1 + 2b15 ≡ 6 (mod 52). Thus 2b1 ≡ 1 (mod 5) so we can choose b1 = 3. More
generally suppose that b0, b1, . . . , bn have been chosen hence determining a1, . . . , an. Then
a2n = (b0 + b15 + · · · + bn5n)2 ≡ 6 (mod 5n+1). Thus (an + bn+15

n+1)2 ≡ a2n + 2bn+15
n+1 ≡

6 + c5n+1 + 2bn+15
n+1 ≡ 6 + (c+ 2bn+1)5

n+1 (mod 5n+2) for some integer c. Thus it suffices
to choose bn+1 so that c + 2bn+1 ≡ 0 (mod 5). Observe that such bn+1 can be found. Thus
a2n+1 ≡ 6 (mod 5n+2). Further, we have an+1 ≡ an (mod 5n+1). This completes the inductive
construction.
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Notice that (a1, a2, . . . ) is a Cauchy sequence with respect to | · |5 since an+1 ≡ an
(mod 5n+1) for n = 1, 2, . . . . If (a1, a2, . . . ) converged to a limit d in Q, then since |a2n−6|5 ≤
5−n+1 we see that |d2−6|5 = 0. In other words, d =

√
6 ∈ Q and this is a contradiction. One

can show in a smilier manner that Q is not complete with respect to any p-adic valuation
| · |p. Plainly, the sequence (5n)∞n=1 is a null sequence with respect to | · |5 but is not a Cauchy
sequence with respect to | · |∞ or any p-adic valuation | · |p where p 6= 5.

Definition 31. Let K be a field with a valuation | · |. Let L be a field containing K. A
valuation | · |1 on L extends | · | on K if |α|1 = α for all α ∈ K.

Definition 32. Let K be a field with a valuation on | · |. We say that a field L together
with a valuation | · |1 with extends on K is a completion of K if L is complete and L is the
closure of K in the topology induced by | · |1.

Given a field K with valuation | · |, how do we construct a completion of K with respect
to | · |? First suppose that | · | satisfies the triangle inequality. The Cauchy sequences of
elements of K form a ring (call this ring R) under term-wise addition and multiplication,
i.e. (an) + (bn) = (an + bn) and (an) · (bn) = (anbn). Then the set of all null sequences of
elements in K with respect to | · | (call this set N) forms a maximal ideal in the ring R.
Thus L := R/N formulates a field. We now define a valuation | · |1 on L in the following
way. If α ∈ L, then α = (a1, a2, . . . ) +N where (a1, a2, . . . ) is a Cauchy sequence in K with
respect to | · |. Define |α|1 = lim

n→∞
|an|. However, we need to ensure that | · |1 is well-defined.

We first check that the limit exists, and then that the limit does not depend on our choice
of representative of the equivalence class we choose. We first check that (|an|)n is a Cauchy
sequence. Notice by the triangle inequality that:

• |an| ≤ |an− am|+ |am| ⇒ |an| − |am| ≤ |an− am| and |am| − |an| ≤ |an− am|. Hence,
||an| − |am||∞ ≤ |an − am|. Thus we see that the sequence (|an|) is Cauchy and so
converges to a limit.
• Now we need to show that the choice of a representative does not matter (well-

defined). Note that if (a1, a2, . . . ) ∼ (b1, b2, . . . ), then we must show that lim |an| =
lim |bn|. But then

||an| − |bn||∞ ≤ |an − bn|. (2)

Since (an − bn)n is a null sequence we see from (2) that lim |an| = lim |bn|.
Finally, we must check that | · |1 is a valuation on L but this is routine. First, we can
(naturally) embed K in L with the map ϕ : K → L by ϕ(a) = (a, a, a, . . . ) + N . Then ϕ
is an injective field homomorphism satisfying |a| = |ϕ(a)|1. Let K ′ = ϕ(K). Then K ′ is
everywhere dense in L. For let α = (a1, a2, . . . ) ∈ L, then given ε > 0 there exists n0(ε) such
that for all n > n0(ε), we have |α− ϕ(an)|1 < ε since (a1, a2, . . . ) is a Cauchy sequence.

We now verify if L is complete. Let (an)n be a Cauchy sequence in L. Since K ′ is
everywhere dense in L, there exists a sequence (ϕ(an))n such that |ϕ(an)− an|1 < 1

n
. Thus,

the sequence (ϕ(an) − an))n is a null sequence in L. Hence (ϕ(an))n is a Cauchy sequence
in L. Thus (an)n is a Cauchy sequence in K. In particular, it determines an element β in L
with

lim
n→∞

|ϕ(an)− β|1 = 0.

Thus limn→∞ |an − β|1 = 0 so (an)n converges to an element in L.
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4. September 30

Let | · |p be the p-adic valuation on Q normalized so that |p|p = p−1. We will denote by
Qp “the” completion of Q with respect to | · |p. We say “the” to refer to the construction
described previously. Further, we will denote the valuation | · |1p on Qp by | · |p.

Theorem 33. Every α ∈ Qp with αp ≤ 1 has a unique representative Cauchy sequence (an)n
such that:

• an ∈ Z for all n = 1, 2, 3, . . .
• 0 ≤ ai < pi for i = 1, 2, . . .
• ai+1 ≡ ai (mod pi) for i = 1, 2, 3, . . . .

Proof. We first prove uniqueness. Suppose that (an)n and (bn)n are two such sequences
representing some α ∈ Qp. If (an)n 6= (bn)n then for some integer i, we have ai 6= bi. But then
for n > i, it is known that an ≡ ai (mod pi) and bn ≡ bi (mod pi). Hence an 6≡ bn (mod pi)
therefore |an − bn|p ≥ p−i. Thus (an − bn) is not a null sequence, hence a contradiction. It
remains to show that each element in Qp has such a representation. To do so, we will need
the following result:

Lemma 34. If x ∈ Q and |x|p ≤ 1 then for any positive integer i there exists an integer c
with 0 ≤ c < pi such that |x− c|p ≤ p−i.

Proof of Lemma. The result is immediate when x = 0. So suppose x 6= 0. Now write x = a/b
with (a, b) = 1. Since |a

b
|p ≤ 1, we see that p - b. Thus there exist integers m and n such

that mb+ npi = 1. Put c1 = am. Then∣∣∣a
b
− c1

∣∣∣
p

=
∣∣∣a
b

∣∣∣
p

∣∣∣∣1− c1b

a

∣∣∣∣
p

= |1−mb|p ≤ p−i.

We now choose c with 0 ≤ c < pi so that c ≡ c1 (mod pi). �

Now we are ready to prove existence. Suppose that (bn)n a Cauchy sequence which rep-
resents α. Then for each positive integer j there exists an N(j) such that |bi − bk|p ≤ p−j

whenever i, k > N(j). We may suppose, without loss of generality, that N(1) < N(2) < · · ·
so N(j) ≥ j. Further, |bi|p ≤ 1 for i ≥ N(1) since for all k > N(1) we have (by the strong
triangle inequality)

|bi|p = |(bk) + (bi − bk)|p ≤ max(|bk|p, |bi − bk|p) ≤ max

(
|bk|p,

1

p

)
.

But |α|p ≤ 1 and |bk|p → |α|p as k →∞ hence |bi|p ≤ 1.
We now use Lemma 34 to find a sequence of integers (an)n with 0 ≤ aj < pj for j = 1, 2, . . . ,

and

|aj − bN(j)|p ≤ p−j.

We now show that aj+1 ≡ aj (mod pj). We have

|aj+1 − aj|p = |(aj+1 − bN(j+1)) + (bN(j+1) − bN(j)) + (bN(j) − aj)|p
≤ max(|aj+1 − bN(j+1)|p, |bN(j+1) − bN(j)|p, |bN(j) − aj|p)
≤ max(p−j+1, p−j, p−j) ≤ p−j.
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Therefore aj+1 ≡ aj (mod pj). Further, (ai − bi)i is a null sequence since for each positive
integer j we have, for i > N(j),

|ai − bi|p = |(ai − aj) + (aj − bN(j)) + (bN(j) − bi)|p
≤ max(|ai − aj|p, |aj − bN(j)|p, |bN(j) − bi|p)
≤ max(p−j, p−j, p−j) = p−j.

Thus |ai − bi|p → 0 as i→∞.
If a ∈ Qp and |a|p > 1 then for some integer k, |pka|p ≤ 1. We can find an appropriate

representative for pka, say (ai)i. We then represent a by (p−kai)i. Now suppose that α ∈ Qp

with |α|p ≤ 1. Let (ai)i be a sequence as in Theorem 33 which represents α. We can represent
ai in base p, i.e., ai = b0 + b1p+ · · ·+ bi−1p

i−1 where b0, b1, . . . , bi−1 ∈ {0, 1, . . . , p− 1}. Since
ai+1 ≡ ai (mod pi) we have ai+1 = b0 + b1p+ · · ·+ bip

i. Thus we can view α has having the
unique power series expansion α = b0 + b1p+ b2p

2 + · · · . Further, if a ∈ Qp and |α|p = pk for
k ∈ Z+ then α has the power series expansion α = b−kp

−k + b−k+1p
−k+1 + · · · + b0 + b1p +

b2p
2 + · · · . �

Remark 35. This is a natural representation in terms of digits {0, 1, 2, . . . , p − 1}. There
are other “natural” representations, for instance the Teichmüller representation. It is worth
noting that each element α ∈ Qp has a unique base p expansion. Contrast this with the base
10 expansion of elements R. Then of course 1.0000 . . . and 0.999 . . . are both equal to 1.

Definition 36. Zp is the set of p-adic integers and is defined by

Zp := {x ∈ Qp, |x|p ≤ 1}.
Addition, subtraction, multiplication, and division can be performed as in R but with car-
rying taken from right to left instead of left to right.

Let k be a field and P an indeterminate over k. Let k(T ) be the field of rational functions
in T with coefficients in k. Let γ be a real number with 0 < γ < 1. For any α ∈ k(T ), we
can write

α = T a
f(T )

g(T )

where f, g ∈ k[T ] with f(0), g(0) 6= 0 and a ∈ Z. We define a valuation | · | on k(T ) by
|α| = γa.

Let k((T )) be the completion of k(T ) with respect to | · |. Denote the expansion of | · |
from k(T ) to k((T )) by | · |. Let N ∈ Z+ and let (fN , fN+1, . . . ) be a sequence of elements
of k. Then put

f (m) =
m∑

n=N

fnT
n

for m = N,N+1, . . . . Note that f (m) ∈ k[T ] for m = N,N+1, . . . . The sequence (f (m))∞m=N

is a Cauchy sequence of elements of k(T ) with respect to | · |, since

|f (i) − f(j)| ≤ γmin(i,j)+1.

Denote the element of k((T )) of which f (m) for which (f (m))∞m=N is a representative by

f(T ) =
∞∑

m=N

fnT
n.

9



5. October 2

Recall that k((T )) is the completion of k(T ) with respect to |·|. Let f(T ) =
∞∑
n=N

fnT
n, fn ∈

k. f is the limit of (f (m))∞m=N where f (m)(t) is the partial sum from N to m. Conside the
set S of all expressions ∑

n�−∞

fnt
n,

where fn ∈ k. When we say n� −∞, we mean that there exists some integer N ∈ Z such
that fn = 0 for n < N . S forms a commutative ring with identity under the usual rules for
multiplying and adding the power series.

Let f ∈ S \ {0}. Then f(T ) = T ab(1 +
∞∑
n=1

gnT
n) for a ∈ Z and b ∈ k \ {0}. Put

h(T ) = T−ab−1

(
1 +

∞∑
m=1

(
−
∞∑
n=1

gnT
n

))
=
∑

n�−∞

hnT
n.

Further, f(T )h(T ) = 1. Thus S is a field. Note that k(T ) ⊆ S and the closure of k(T ) with
respect to | · | is contained in S Thus S is isomorphic to k((T )).

Definition 37. We define k[[T ]] to be the element of k((T )) with |f | ≤ 1. Then f ∈
k[[T ]]⇔ f =

∑
fnT

n. k[[T ]] is a subring of k((T )). It is the ring of formal power series with
coefficients in k.

Definition 38. f ∈ Q[[T ]] with f =
∞∑
n=0

fnT
n is said to satisfy Eisenstein’s condition if there

is a non-zero integer l such that lnfn is an integer for all n ≥ 0.

Theorem 39 (Eisenstein’s theorem). Let f ∈ Q[[T ]]. If f satisfies a non-trivial polynomial
equation with coefficients in Q[T ] then f satisfies Eisenstein’s condition.

Proof. We may suppose that f satisfies g0(T ) + g1(T )f(T ) + . . . gJ(T )f(T )J = 0. Not all of
the gj’s are the zero polynomial and gj ∈ Q[T ] for j = 0, 1, . . . , J . Let us suppose that J is
minimal. For indeterminates X and Y , put

H(X) =
J∑
j=0

gj(T )Xj ∈ Q[T,X],

and H(X + Y ) = H(X) + H1(X)Y + · · · + HJ(X)Y J where Hj(X) ∈ Q[T,X]. Since J is
minimal, we have H1(f) 6= 0. Of course H(f) = 0. Now define the integer m as follows:
|H1(f)| = γm. Obviously we have m ≥ 0. Put

f(T ) = u(T ) + Tm+1v(T ),

where u(T ) = f0+f1T+· · ·+fm+1T
m+1 ∈ Q[T ] and v(T ) = 0+fm+2T+fm+3T

2+· · · ∈ Q[[T ]].
Notice that it suffices to show that v(T ) satisfies Eisenstein’s condition. Since H(f) = 0, we
have

0 = H(u+ Tm+1v) = H(u) + Tm+1H1(u)v +
∑
j≥2

T (m+1)jHj(u)vj. (3)
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We have H(u), H1(u), . . . , Hj(u) are in Q[T ]. Since |H1(f)| = γm we see that T 2m+1 divides
H(u) and so divide the terms in (3) by T 2m+1 to get

0 = h+ h1v + h2v
2 + · · ·+ hJv

J (4)

where h, h1, . . . , hJ are in Q[T ], h1(0) 6= 0, hj(0) = 0 for 2 ≤ j ≤ J . Without loss of
generality, we may suppose that h, h1, . . . , hJ are in Z[T ] by multiplying both sides of (4)
by an appropriate non-zero integer. Let l = h1(0) so l is a non-zero integer. Recall that
v(0) = 0. Write v(T ) = 0 + v1T + v2T

2 + · · · and re-label fm+2 as v1, etc. We prove via
induction on n that lnvn is an integer. To see this it suffices to examine the coefficients on
T n in the expansion (4). In particular, from (4),

0 = (a
(0)
0 + a

(0)
1 T + · · ·+ a

(0)
N0
TN0)

+(a
(1)
0 + a

(1)
1 T + · · ·+ a

(1)
N1
TN1)(v1T + v2T

2 + · · · )
...

+(a
(J)
0 + a

(J)
1 T + · · ·+ a

(J)
NJ
TNJ )(v1T + v2T

2 + · · · )J .

Note that a
(i)
0 = 0 for all i = 1, 2, . . . , J . Therefore, lvn is a sum of terms of the form

a
∏
m<n

vrmm , where a ∈ Z and
∑
m<n

mrm < n since hi(0) = 0 for all 2 ≤ i ≤ J . Then the result

follows by induction. �

Notice that, for example, f(T ) =
∑

Tn

n
∈ Q[[T ]] does not satisfy non-trivial a polynomial

expansion over Q(T ) by Eisenstein’s theorem. Therefore it is not algebraic over Q(T ).

Remark 40. The natural question to ask is what the value of l will look like. Quantita-
tive results refining the theorem have been given by Coates, Schmidt, Dwork, and van der
Poorten.

6. October 7

Theorem 41 (Ostrowski’s theorem). Let k be a field which is complete with respect to an
archimedean valuation | · | on k. Then k is isomorphic to C or R, and the valuation is
equivalent to | · |∞, the ordinary absolute value.

Proof. k is of characteristic 0 (since otherwise the valuation must be non-archimedean), so
it contains the rationals. Thus there exists the valuation induced on Q by | · |, and | · | is
archimedean and equivalent to the ordinary absolute values | · |∞ on Q. Since k is complete
it contains the completion of Q with respect to | · |. This completion is R and | · | restricted
to R. Clearly | · | is equivalent to | · |∞ on R. We now distinguish two cases:

(1) k contains a solution to i2 + 1 = 0
(2) k does not contain a solution to i2 + 1 = 0

We shall now prove some technical propositions. Our aim is to reduce the proof to the
case when k is an extension of C. We shall show that if k is different from C we get a
contradiction.

Lemma 42. Any archimedean valuation | · | on C is equivalent to the ordinary absolute value
| · |∞ on C.
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Proof of Lemma 42. Without loss of generality we may suppose that | · | on C satisfies the
triangle inequality. Since | · | induces an archimedean valuation on Q it is equivalent to | · |∞
on Q and hence to | · |∞ on R. Thus there exists some λ > 0 such that for all a ∈ R, we have
|a| = |a|λ∞. Let α = a+ ib with a, b ∈ R. We have |a|∞ ≤ |α|∞ and |b|∞ ≤ |α|∞. Thus

|α| = |a+ ib| ≤ |a|+ |ib| ≤ |a|+ |b| ≤ |a|λ∞ + |b|λ∞ ≤ 2|α|λ∞. (5)

If | · | and | · |∞ are inequivalent, then given ε > 0 we can find β ∈ C such that |β|∞ < ε and
|β| ≥ 1. But this contradicts (5) when ε is sufficiently small. The result follows. �

We will now show that if k does not contain i, in other words T 2 + 1 is irreducible over k
then we can extend our valuation to k(i).

Lemma 43. Let k be a field which is complete with respect to an archimedean valuation | · |.
Suppose that T 2 + 1 is irreducible over k. Then there is a positive real number θ such that
for all a, b ∈ k, we have

|a2 + b2| ≥ θmax(|a|2, |b|2) (6)

Proof. Again suppose | · | satisfies the triangle inequality. We shall show that we can take

θ = |4|
1+|4| . Observe that we may suppose that a, b 6= 0. By homogeneity of (6), it suffices to

show that if there exists c1 ∈ k with |c1| ≤ 1 and |c21 + 1| < θ then T 2 + 1 is reducible over
k. Put δ1 = |c21 + 1|. By the triangle inequality,

1 = |1| = |c21 + 1− c21| ≤ |c21 + 1|+ |c1|2,
so |c1|2 ≥ 1 − δ1 > 1 − θ. Put c2 = c1 + h1 where h1 ∈ k and to be chosen. Then

c22 + 1 = c21 + 2c1h1 + h21. We choose h1 = − c21+1

2c1
and put δ2 = |c22 + 1|. We have

δ2 = |c22 + 1| = |h21| =
|c21 + 1|2

|4||c1|2
= |c21 + 1| |c

2
1 + 1|
|4||c1|2

= δ1γ,

where γ =
|c21+1|
|4||c1|2 <

θ
|4|(1−θ) ≤ 1.

Having constructed c2 now we can repeat this process to construct c3, c4, . . . , with δ3 =
|c23 + 1| ≤ δ2γ ≤ δ1γ

2 and more generally, δn = |c2n + 1| < θγn−1 for n = 2, 3, . . . . Further,

|cn+1 − cn|2 = |hn|2 = δn+1 ≤ θγn.

Therefore, |cn+1 − cn| <
√
θγn. Notice that then (cn)∞n=1 is a Cauchy sequence with respect

to | · | and since k is complete with respect to | · | we see that the sequence converges to an
element c ∈ k. But then |c2 + 1| = lim

n→∞
|c2n + 1| = 0 so c2 + 1 = 0. Thus T 2 + 1 is reducible

over k. �

Lemma 44. Let k be complete with respect to an archimedean valuation | · |. Suppose that
T 2 + 1 is irreducible in k[T ]. Then there is an extension of | · | to k(i) where i2 = −1.

Proof. We define the function | · |1 on k(i) by |a+ ib|1 = |a2 + b2|1/2, for all a, b ∈ k. We now
check that | · |1 is a valuation on k(i) which extends | · | on k. First, note that | · |1 agrees
with | · | on k. It remains to show that | · |1 is a valuation on k(i).

Note that since i /∈ k we see that property (i) of Definition 1 holds for | · |1. Property (ii)
is immediate. For property (iii) suppose |a+ ib| ≤ 1 with a, b ∈ k. Then by Lemma 43,

|a|, |b| ≤ θ−1/2,
12



and so

|1 + a+ ib|21 ≤ |(1 + a)2 + b2| = |1 + 2a+ a2 + b2| ≤ 1 + |2||a|+ |a|2 + |b|2

≤ 1 + 2θ−1/2 + 2θ−1 = C2,

as required. �

We are now able to conclude the proof of Ostrowski’s theorem. By Lemma 44, we may
suppose that k contains C and observe that our valuation | · | on k is equivalent to | · |∞
when restricted to C. Suppose then that C ( k. We shall show that this is impossible.
Accordingly, let α ∈ k \ C. Consider the map f : C → R given by f(a) = |α − a|. Observe
that f is continuous. Considering f on the compact subset of C given by a with |a| ≤ 3|α|
we see that f achieves on absolute minimum at some element b ∈ C. Put β = α− b. Notice
that |β| > 0 since α /∈ C. Now pick a non-zero element c ∈ C with 0 < |c| < |β|. Next let n
be a positive integer. Then

βn − cn

β − c
=
∏
ζn=1
ζ 6=1

(β − ζc).

Observe β − ζc| ≥ |β| hence ∣∣∣∣βn − cnβ − c

∣∣∣∣ ≥ |β|n−1.
Thus

β − c
β
≤ |β

n − cn|
|β|n

=

∣∣∣∣1− ( cβ
)n∣∣∣∣ ≤ 1 +

∣∣∣∣ cβ
∣∣∣∣n ≤ 1 +

(
|c|
|β|

)n
.

Since |c| < |β| we see on letting n → ∞ that |β − c| ≤ β. Therefore |β − c| = |β|. We can
repeat this argument now with β − c. in this way we find that for each m ∈ Z+, we have
|β −mc| = |β. Thus, now apply the triangle inequality on mc:

m|c| = |m||c| = |mc| ≤ |β|+ |β −mc| ≤ 2|β|,
for all m ∈ Z+. But |c| > 0 and this is a contradiction. Hence, we can’t extend this valuation
beyond C. �

7. October 9: Focus on non-archimedean valuation

Let | · | be a non-archimedean valuation on a field k. We denote by

θ = {a ∈ k : |a| ≤ 1},
and the ring of | · |-integers. The set

p = {a ∈ k : |a| < 1}
is a maximal ideal in θ, since if we add any element a ∈ θ \ p with |a| = 1 then a−1 ∈ p so
1 ∈ p.

Definition 45. We call θ/p the residue class field. The set of values {|a|, a ∈ k} assumed
by elements of a under the valuation is known as the valuation group.

Definition 46. We say that the valuation is discrete if the valuation group is a discrete
subset of R+ under the usual topology on R.
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Remark 47. Note that the valuation group is a subgroup of R+. Observe that the valuation
group of k under | · | is the same as the valuation group of k under | · | where | · | denotes
the extension of | · | to k since if |b| < |c| then |b + c| = |c|. This is discrete if there exists a
δ > 0 such that 1− δ < |a| < 1 + δ implies |a| = 1.

Lemma 48. A non-archimedean valuation | · | is discrete if and only if the maximal ideal p
is principal.

Proof. (⇐) Since p is principal there is an element π ∈ k such that p = (π). Suppose that
a ∈ k with |a| < 1. Then we have a = πb for some b ∈ Q. Therefore |a| = |πb| = |π| · |b| ≤
|π| < 1. Similarly, if a ∈ k with |a| > 1 then |a−1| < 1 so |a−1| ≤ |π|. Thus |a| ≥ |π|−1.
Accordingly, if a ∈ k with |π| < |a| < |π|−1 then |a| = 1 as required.

(⇒) If the valuation | · | is discrete, then the set {|a| : a ∈ k, |a| < 1} attains its maximum
for some π ∈ k. Then if a ∈ k with |a| < 1 we have a = πb with |b| ≤ 1 hence p = (π). �

Definition 49. Let |·| be a discrete non-archimedean valuation on a field k .Then an element
π for which p = (π)i said to be a prime element for the valuation. Then for any element
b ∈ k with b 6= 0 we have that |b| = |πn| = |π|n for some integer n. n is known as the order
of b and denoted by ordp b.

Definition 50. Suppose that a1, a2, . . . are in k. Then the infinite sum
∑
an converges to

s with respect to the valuation | · | if

s = lim
N→∞

N∑
n=1

an.

Since ∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣ ≤ max
1≤n≤N

|an|,

we have ∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣ ≤ max
π
|an|.

Lemma 51. Suppose that k is complete. Then
∞∑
n=1

an converges⇔ lim
n→∞

|an| = 0.

Proof. (⇒) lim
n→∞

an = lim
n→∞

sn+1 − sn = lim
n→∞

sn+1 − lim
n→∞

sn = s− s = 0.

(⇐) Suppose |an| → 0. Let M > N . Then

|SM − SN | = |aN+1 + · · ·+ aM | ≤ max
N+1≤i≤M

|ai|.

Given ε > 0 we can find N0(ε) such that for M,N > N0(ε), we have |SM − SN | < ε. Thus
(sn) is a Cauchy sequence in k. Since k is complete it converges to a element s in k. �

Lemma 52. Let k be complete with respect to a discrete valuation | · | and let π be a prime.
Let A ⊂ θ be a set of representatives for θ/p. Then every element a in θ has a unique
representative in the form a =

∑
anπ

n where an ∈ A for n = 0, 1, 2, . . . . Further, every
infinite sum of this form converges to an element a with a ∈ θ.
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Proof. The last assertion follows since |an| ≤ 1 and |π| < 1. Thus lim
n→∞

|anπn| = 0 and k is

complete.
For our first claim, note that the valuation of she differences of two distinct elements of A

is 1 hence for any a ∈ θ there is at most one element a0 ∈ A for which |a − a0| < 1 by the
strong triangle inequality. There is at least one such a0 since A is a full set of representatives.
Then a − a0 = πb1 for some b1 ∈ θ. Similarly, there is precisely one element a1 ∈ A such
that |b1− a1| < 1. So we have b1 = a1 + πb2 for b2 ∈ θ. Thus for every positive integer N we
have

a = a0 + a1π + a2π
2 + · · ·+ aNπ

N + bN+1π
N+1

with bN+1 ∈ θ and ai ∈ A for i = 0, 1, . . . , N . Since |bN+1π
N | → ∞ as N → ∞ the result

follows. �

Remark 53. The p-adic case is a special case of Lemma 52, with Zp with the valuation | · |p
and π = p,A = {0, 1, . . . , p− 1}.

Remark 54. Also note that we can extend this result to k since every non-zero element a ∈ k
has πNa ∈ θ for some N ∈ Z.

Lemma 55. Let k be complete with respect to a discrete valuation. If the residue class field
θ/p is finite then θ is compact.

Proof. Since | · | induces a metric on θ compactness is equivalent to sequential compactness.
Thus it is enough to show that every sequence (a(j)) has a convergent subsequence. For each
j consider the representation

a(j) =
∞∑
n=0

aj,nπ
n (aj,n ∈ A).

Since A is finite then there exists an element a0 ∈ A for which aj,0 = a0 for infinitely many
positive integers j. We can then find infinitely many integers j for which aj,0 = a0 and for
which aj,1 = a1 for some a1 ∈ A. Continuing in this way we find an element a = a0+a1π+· · ·
in θ which is the limit of a convergent subsequence. �

8. October 14

Lemma 56 (Hensel’s Lemma). Let k be a field complete with respect to a discrete, non-
archimedean valuation | · |, and let f ∈ θ[X]. Let a0 ∈ θ which satisfies

|f(a0)| < |f ′(a0)|2. (7)

Then there exists an a ∈ θ for which f(a) = 0.

Example 57. In Z5 we showed that f(X) = x2 − 6 has a root. By Lemma 56, it is enough
to note that 1

5
= |f(1)|5 < |f ′(1)|2 = 1.

Proof. Let fj(x) (j = 1, 2, . . . ) be defined by the identity

f(x+ y) = f(x) + f1(x)y + f2(x)y2 + · · · (8)

Observe that f ′(x) = f1(x). Now by (7), |f ′(a0)| > 0 hence f ′(a0) 6= 0 and

|f(a0)|
|f ′(a0)|

< |f ′(a0)| ≤ 1.

15



Thus there exists b0 ∈ θ such that

f(a0) + b0f1(a0) = 0.

Therefore by (8),

|f(a0 + b0)| = |f2(a0)b2 + f3(a0)b
3 + · · · | ≤ max

j≥2
|fj(a0)bj|.

Since fj ∈ θ[X], a0 ∈ θ then |fj(a0)| ≤ 1. Therefore

|f(a0 + b0)| ≤ |b0|2 =
|f(a0)|2

|f ′(a0)|2
≤
(
|f(a0)|
|f ′(a0)|2

)
· |f(a0)| < |f(a0)|.

Also, we can expand fi(x+ y) as we did for f to conclude that

|f1(a0 + b0)− f1(a0)| ≤ |b0| =
|f(a0)|
|f ′(a0)|

< |f ′(a0)| = |f1(a0)|.

By the ultrametric inequality,

|f1(a0 + b0)| = |f1(a0)|.
We now put a1 = a0 + b0 and repeat the process. Observe that

|f(a1)| < |f(a0)| < |f ′(a0)|2 = |f ′(a1)|2.
In this way we generate a sequence a0, a1, a2, . . . and b0, b1, b2, . . . of elements on θ. We have
that an = an−1 + bn−1 for n = 1, 2, . . . and that

|f1(an)| = |f1(a0)|
for n = 1, 2, . . . . Further, |f(an)| < |f(an−1)| for n = 1, 2, . . . . And since the valuation is
discrete we see that

lim
n→∞

|f(an)| = 0.

Furthermore,

|an+1 − an| = |bn| =
|f(an)|
|f1(an)|

=
|f(an)|
|f1(a0)|

tends to 0 a n → ∞. Thus (an)∞n=1 is a Cauchy sequence and since k is complete it has a
limit a in k. Since |an| ≤ 1 for n = 0, 1, 2, . . . we see that a ∈ θ. Finally,

lim
n→∞

|f(an)| = |f(a)| = 0,

so f(a) = 0. �

Example 58. Let p 6= 3, and let b ∈ Zp with |b|p = 1 (i.e., b is a p-adic unit). If b ≡ c3

(mod p) for some integer c then b = a3 for some a in Zp.

Proof. Let f(x) = x3− b so f ′(x) = 3x2. Then |f(c)|p < |f ′(c)|2 = 1. The result now follows
by Hensel. �

Lemma 59. Let k be complete with respect to a non-archimedean valuation | · |. Let bij ∈ k
for i, j ∈ {0, 1, 2, . . . }. Suppose that for each ε > 0, there exists a τ(ε) such that for
max(i, j) > τ(ε) we have |bij| < ε. Then the series∑

i

(∑
j

bij

)
and

∑
j

(∑
i

bij

)
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both converge and the sums are equal.

Proof. For each i with 1 ≤ i ≤ τ(ε),
∑
j

bij converges since |bij → 0 as j → ∞. Further, for

i > τ(ε), ∣∣∣∣∣∑
j

bij

∣∣∣∣∣max
j
|bij| < ε.

Thus
∑
i

(
∑
j

bij) converges, and one can use the similar argument to prove that
∑
j

(
∑
i

bij)

converges. Finally, ∣∣∣∣∣∣
τ(ε)∑
i=0

τ(ε)∑
j=0

bij −
∞∑
i=0

(
∞∑
j=0

bij

)∣∣∣∣∣∣ < ε

and ∣∣∣∣∣∣
τ(ε)∑
j=0

τ(ε)∑
i=0

bij −
∞∑
j=0

(
∞∑
i=0

bij

)∣∣∣∣∣∣ < ε.

Hence ∣∣∣∣∣
∞∑
i=0

(
∞∑
j=0

bij

)
−
∞∑
j=0

(
∞∑
i=0

bij

)∣∣∣∣∣ < ε,

as required (since the inequality holds for any arbitrary ε). �

Let ai ∈ k for i = 0, 1, 2, . . . , and define the power series f by

f(x) := a0 + a1x+ a2x
2 + · · · .

Write
R−1 = lim sup

n
|an|1/n,

so 0 ≤ R ≤ ∞. For b ∈ k, the series
∞∑
n=0

anb
n converges if and only if |anbn| → 0 as n→∞.

Let D be the domain of convergence of the series
∑
anx

n. Then:
• if R = 0 then D = {0}.
• if R =∞ then D = k.
• if 0 < R <∞ and |an|Rn → 0 then D = {b ∈ k : |b| ≤ R}
• if 0 < R <∞ and |an|Rn 6→ 0 then D = {b ∈ k : |b| < R}.

Lemma 60. Let f(x) =
∞∑
n=0

anx
n be a power series with coefficients in k, a field which is

complete with respect to a non-archimedean valuation |·|. Let D be the domain of convergence
of f . Let c ∈ D. For m = 0, 1, 2, . . . , put

gm =
∑
n≥m

(
n

m

)
anc

n−m.

Then the series

g(x) =
∞∑
m=0

gmx
m

has domain of convergence D and f(b+ c) = g(b) for all b ∈ D.
17



Proof. Observe that the series defining gm converges since |
(
n
m

)
| ≤ 1 and c ∈ D. Now let

b ∈ D. Then

f(b+ c) =
∑
n

an(b+ c)n =
∑
n

∑
m≤n

(
n

m

)
anc

n−mbm.

This sum converges and by Lemma 59 we can rearrange so that

f(b+ c) =
∞∑
m=0

(∑
n≥m

(
n

m

)
anc

n−m

)
bm =

∞∑
m=0

gmb
m = g(b).

Thus the domain of convergence of g includes D.
Reversing this argument we see that if b is in the domain of convergence of g and c ∈ D,

then b+ c is in D. Thus b ∈ D and the domain of convergence of g equals that of f . �

Corollary 61. A function f defined by a power series is continuous in its domain of con-
vergence.

Proof. We have f(b+ c) = g(b) and g is continuous at 0. The result follows. �

9. October 16

Theorem 62 (Strassman’s theorem). Let k be complete with respect to a non-archimedean
valuation | · |, and let

f(x) =
∞∑
n=0

anx
n.

Suppose that |an| → 0 as n → ∞ with not all an’s zero. Then there is at most a finite
number of b ∈ θ such that f(b) = 0. In fact, there are at most N such b where N satisfies

|aN | = max
n
|an| and |an| < |aN | for n > N.

Proof. We prove by induction on N . Suppose first that N = 0. Then notices that b ∈ θ with
f(b) = 0. We have

0 =
∞∑
n=0

anb
n,

hence

a0 = −
∞∑
n=1

anb
n. (9)

Observe that ∣∣∣∣∣−
∞∑
n=1

anb
n

∣∣∣∣∣ ≤ max
n≥1
|anbn| ≤ max

n≥1
|an| < |a0|

which contradicts (9).
Suppose then that N > 0 and f(b) = 0 with b ∈ θ. Let c ∈ θ. Then

f(c) = f(c)− f(b) =
∞∑
n=0

an(cn − bn)

= (c− b)
∑
n≥1

∑
j<n

anc
jbn−1−j.

18



By Lemma 59, we can sum over powers of c, hence f(c) = (c− b)g(c), where g(x) =
∞∑
j=0

gjx
j

and gj =
∑
r≥0

aj+1+rb
r. Now we observe that

|gj| ≤ max
r
|aj+1+r| ≤ |aN |.

Further, |gN−1| = |aN | and |gn| < |aN | for n > N − 1. Thus by our inductive hypothesis, g
has at most N − 1 zeroes in θ and thus f has at most N zeroes in θ. The result follows. �

Corollary 63. Suppose f and g are power series over k which both converge in θ, and that
g(b) = f(b) for infinitely many b ∈ θ. Then f ≡ g.

Proof. f(x) − g(x) has infinitely many zeroes in θ. If not f 6≡ g, then f − g can only have
finitely many zeroes in θ, a contradiction, by Starssman’s theorem. The result follows. �

Corollary 64. Suppose that k has characteristic zero. Let f(x) be a power series over k
which converges in θ. If f(x) = f(x+ d) foursome d ∈ θ, then f is constant.

Proof. Apply Strassman’s theorem upon recognizing f(x) = f(x+d) = f(x+ 2d) = · · · . �

For any n ∈ Z+ and any prime p, we have |n!|p = p−N , where

N =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · .

Thus since ⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · < n

p
+ · · · = n

p− 1
.

So we have
|n!|p > p−

n
p−1 .

Lemma 65. Let p be a prime. Let b ∈ Qp with |b|p ≤ p−1 for p 6= 2 and with |b|w ≤ 2−2.
Then there is a power series

Φb(x) =
∞∑
n=0

γnx
n

with γn ∈ Qp for which |γn|p → 0 as n→∞ and such that

(1 + b)r = Φb(r)

for all r ∈ Z.

Proof. We will first consider the case when r ≥ 0. Then

(1 + b)r =
r∑
s=0

(
r

s

)
bs =

∞∑
s=0

r(r − 1)(r − 2) · · · (r − s+ 1)
bs

s!
.

Observe that ∣∣∣∣bss!
∣∣∣∣
p

≤
|b|sp
p−

s
p−1

= |b|spp
s
p−1 → 0 as s→∞.

Thus the power series converges and we may express it as
∞∑
s=0

(
s∑
j=1

θjr
j

)
bs

s!
,
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and so by Lemma 59 we may rearrange it to get

(1 + b)r = s

∞∑
s=0

r(r − 1) · · · (r − s+ 1)
bs

s!
= 1 +

(
θ
(s)
1

∞∑
s=1

bs

s!

)
r +

(
θ
(s)
2

∞∑
s=2

bs

s!

)
r2 + · · · .

Put γ0 = 1 and γj = θj
∞∑
s=j

bs

s!
for j = 1, 2, . . . , and then

(1 + b)r =
∞∑
j=0

γjr
j

where γj ∈ Qp and |γj|p → 0 as j → ∞. Suppose that r ∈ Z−. Observe that for some

positive integer m, we have r+ pm > 0. Furthermore, since (a+ b) =
∞∑
j=0

γjr
j we see that for

m ∈ Z+,

lim
m→∞

(1 + b)p
m

= 1.

Note that since r + pm > 0 we have

(1 + b)r+p
m

=
∞∑
j=0

γj(r + pm)j.

Letting m→∞ we see that

(1 + b)r+p
m → (1 + b)r,

and
∞∑
j=0

γj(r + pm)j →
∞∑
j=0

γjr
j

because
∑
γjr

j is continuous in its domain of convergence, and |pm|p → 0 as m→∞. �

Let r and s be integers and u0 and u1 be integers. Suppose un = run−1 + sun−2 for
n = 2, 3, . . . . The sequence (un)∞n=0 is a binary recurrence sequence with initial terms u0, u1.
Suppose s 6= 0 and r2 + 4s 6= 0. Also suppose that u0, u1 not both 0. Let α, β be the roots
of the associated polynomial x2 − rx − s. By induction one can show that un = aαn + bβn

for all n ≥ 0, where

a =
u0β − u1
β − α

, b =
u1 − u0α
β − α

.

Observe that if |α| > |β then |un| → ∞ as n → ∞. If |α| = |β| and α/β is not a root of
unity then again |un| → ∞ as n→∞ but this is not as obvious.

Consider the sequence (un)n, where un = un−1−2un−2 for n = 2, 3, . . . , and u0 = 0, u1 = 1.
Then

(un)∞n=0 = (0, 1, 1,−1,−3,−1, 5, 7,−3,−17,−11, 23, 45,−1,−91,−89, . . . ).

Write

un =
αn − βn

α− β
, where α =

1 +
√
−7

2
, β =

1−
√
−7

2
.
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10. October 21

Let α = 1+
√
−7

2
, β = 1−

√
−7

2
. Put un = αn−βn

α−β for n = 1, 2, . . . . Then the characteristic

polynomial of the binary recurrence sequence (un)n is x2 − x+ 2.

Theorem 66 (Nagell). Let (un) be as above. Then un = ±1 only for n = 1, 2, 3, 5, 13.

Proof. Put f(x) = x2 − x+ 2. Observe that

11−1 = |22|11 = |f(5)|11 < |f ′(5)|11 = |9|11 = 1

11−1 = |44|11 = |f(7)|11 < |f ′(7)|11 = 1.

By Hensel’s lemma, there exist α and β in Q11 which are roots of f(x) with

α ≡ 5 (mod 11), β ≡ 7 (mod 11).

Further by the proof of Hensel’s Lemma we have f(5) + b09 = 0, so 22 + b09 = 0, so b0 ≡ 11
(mod 112). Thus α ≡ a0 + b0 ≡ 16 (mod 112). Also, f(7) + b0 · 13 = 0 hence β = 7 + 99
(mod 112). We wish to apply Lemma 65. Accordingly by Fermat’s little theorem, we have
α10 ≡ 1 (mod 11) and β10 ≡ 1 (mod 11).

Put A = α10 and B = β10. We write n = r + 10s with 0 ≤ r ≤ 9. So

ur+10s =
αrAs − βrBs

α− β
.

First note that ur+10s ≡ ur (mod 11) for s = 1, 2, . . . . By considering the first 10 values of
our sequence we se that we can restrict our attention to r = 1, 2, 3, 5. Put α10 = A = 1 + a
and β10 = B = 1 + b so that a ≡ 99 (mod 112) and b ≡ 77 (mod 112). In fact, we have

r αr (mod 112) βr (mod 112)
1 16 106
2 14 104
3 103 13
5 111 21
10 100 78

We now use Lemma 65 to develop

(α− β)(ur+10s ∓ 1) = αr(1 + a)s − βr(1 + b)s ∓ α− β (10)

as a power series in s. Say c0 + c1s+ c2s
2 + · · · , where ∓ in (10) indicates that we take −1

for r = 1, 2 and +1 for r = 3, 5. Notice that for 1, 2, 3, 5, we have c
(r)
0 = 0. We shall now

suppress the index r and write c
(r)
n as cn for n = 0, 1, 2, . . . . We now recall from the proof of

Lemma 65 that

(1 + b)r =
∞∑
n=0

γnr
n

with γn =
∑∞

s=n θs
bs

s!
where θs ∈ θ. Thus if |b|11 ≤ 11−1 then

|γn|11 ≤ 11−2 for n ≥ 2

|γn|11 ≤ 11−3 for n ≥ 3.

Thus |cn|11 ≤ 11−2 for n ≥ 2, and |cn|11 ≤ 11−3 for n ≥ 3. Thus it remains to estimate c1
and c2.
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We have

c1 = αr

(
∞∑
s=1

(−1)s−1
as

s!

)
− βr

(
∞∑
s=1

(−1)s−1
bs

s!

)
≡ αra− βrb (mod 112).

For r = 1 we have

c1 ≡ αa− βb (mod 112)

≡ 16 · 99− 106 · 77 (mod 112)

≡ 11(16 · 9− 106 · 7) (mod 112),

but 16 · 9− 106 · 7 ≡ 7 (mod 11), so |c1|11 = 11−1. Thus by Strassman, the function defined
by power series expansion (10) has at most one zero in Q11. In fact, it has exactly one zero
for r = 1 given by s = 0.

For r = 2, note that

c
(2)
1 = c1 ≡ α2a− β2b (mod 112)

≡ 14 · 99− 104 · 77 (mod 112),

so |c1|11 = 11−1. By Strassman, this is exactly one zero given by s = 0.
For r = 5, we have

c1 = α5a− β5b ≡ 111 · 99− 21 · 77 (mod 112)

so |c1|11 = 11−1. Again by Strassman, there is exactly one zero of the power series in Q11

given by s = 0. Finally if r = 3 we have c1 ≡ α3a− β3b ≡ 0 (mod 112), so we need to look
into c2 as well. We have

γ2 =
∑
s≥2

(
s−1∑
i=1

(−1)s(s− 1)!

i

)
bs

s!

in the notation of Lemma 65. Thus γ2 ≡ b2

2
(mod 113) hence c2 ≡ α3 a2

2
− β3 b2

2
(mod 113).

Computation of α and β by Hensel’s lemma yields α ≡ 137 (mod 113) and β ≡ 1195
(mod 113). Once we have computed α we can determine β mod 113 immediately since
α + β = 1.

Next observe that α10 ≡ (137)10 ≡ 1189 (mod 113). So a ≡ 1188 (mod 113). Further
β10 ≡ 199 (mod 113), so b ≡ 198 (mod 113). Now since 2c2 ≡ α3a2 − β4b2 (mod 113) 6≡ 0
(mod 113). Thus |c2|11 = 11−2. Therefore by Strassman’s theorem, the power series at most
has two zeroes. In fact it has actually 2 zeroes given by s = 0, 1. These zeroes correspond
to u3 = −1 and u13 = −1. Now that we dealt with all the possible arithmetic progressions,
the proof is complete. �
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11. October 23 & October 28

Theorem 67. The only solutions to

x2 + 7 = 2m (11)

for integers x and m are those with m = 3, 4, 5, 7, 15. The equation (11) is known as the
Ramanujan-Nagell equation.

Proof. Plainly, for any solution of (11), x is an odd integer. Put x = 2y − 1. Then (11)

becomes y2 − y + 2 = 2m−2. Let α = 1+
√
−7

2
and β = 1−

√
−7

2
so

y2 − y + 2 = (y − α)(y − β). (12)

Let K = Q(α). Then OK (the ring of integers of K) is a Euclidean domain with respect to
the norm map. Thus OK is a UFD. The only units in OK are ±1. From (12), if we have a
solution then

(y − α)(y − β) = (αβ)m−2.

Then since α + β = 1 we see the α and β are coprime in OK . Thus either y − α = ±αm−2
or y − α = ±βm−2. Consider the first situation. Then we have y − β = ±βm−2 and so
−(α− β) = (y − α)− (y − β) = ±αm−2 − (±βm−2) hence

αm−2 − βm−2

α− β
= ±1. (13)

But by our previous result, we only have m− 2 = 1, 2, 3, 5, 13. Then similarly, in the second
situation, we again recover (13). This completes the proof. �

11.1. Quick historical detour. Ramanujan in 1913 asked if m = 3, 4, 5, 7, 15 give the
complete set of solutions of the Ramanujan-Nagell equation. The first proof was given by
Nagell in 1948. Later, Beukers proved using the hypergeometric method that if D is a
positive odd integer, then the equation

x2 +D = 2m

has two or more solutions in positive integers x and n if and only if D = 7, 23, or 2k − 1 for
k ≥ 4. For D = 23, (x, n) = (3, 5), (45, 11). For D = 2k − 1 (k ≥ 4), we have (x, n) = (1, k)
or (2k−1, 2k − 2).

11.2. Back to our main aim. Our aim is to construct Qp – but note that we can already
define many familiar functions over Qp. First, let us define the analogues of the exponential
and logarithm functions over R, but now over Qp. We have

exp(x) =
∞∑
n=0

xn

n!
for x ∈ R

and

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
for |x| < 1.
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We will define expp(x) and logp(1 + x) over Qp by means of these power series. For what
regions in Qp do they converge? Recall that∣∣∣∣ 1

n!

∣∣∣∣
p

= pb
n
pc+

⌊
n
p2

⌋
+···

< p
n
p−1 .

Thus expp(x) =
∞∑
n=0

xn

n!
converges for x in Qp with |x|p < p−

1
p−1 . Further, logp(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
converges for |x|p < 1. Notice that we have

log(1 + x) + log(1 + y) = log((1 + x)(1 + y)) = log(1 + x+ y + xy)

as an equality of (formal) power series and so

logp(1 + x) + logp(1 + y) = logp(1 + x+ y + xy)

for |x|p < 1 and |y|p < 1. Also, as an equality of formal power series,

exp(x) exp(y) = exp(x+ y),

and

exp(log(1 + x)) = 1 + x, log(1 + (exp(x)− 1)) = x.

Thus:
• expp(x+ y) = expp(x) expp(y) for |x|p, |y|p < p−

1
p−1

• expp(logp(1 + x)) = 1 + x for |x|p < p−
1
p−1

• logp(1 + (expp(x)− 1)) = x for |x|p < p−
1
p−1 .

Similarly, we can define

sinp x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cosp x =
∞∑
n=0

(−1)n
x2n

(2n)!

for |x|p < p−
1
p−1 .

Remark 68. Notice that | − 2|2 < 1. This tells us that if we look at

log2(1− 2) + log2(1 + 2) = log2(1) = 0.

Thus 2 log2(−1) = 0 so log2(−1) = 0. But

log2(−1) = log2(1− 2) =
∞∑
n=1

−2n

n
.

Thus if SN =
∑

1≤n≤N

2n

n
=

pN
qN

with (pN , qN) = 1. Then 2KN | pN for some KN , where

kN →∞ as N →∞.
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Lemma 69. Let F := Fq, and let f := [F : Fp]. Let K be an algebraic closure of Fp which
contains F . Then q = pf , and F is the only field of q elements contained in K. And F is
the set of roots of xq − x = 0. Conversely, for any power of q = pf of p, the roots of xq − x
in K form a field of q elements.

Proof. (⇒) Since F is an f -dimensional vector space over Fp, we see that q = pf . Next, any
field of q elements has q− 1 non-zero elements. The non-zero elements form a multiplicative
group of order q − 1. Thus for any x in the group, the order of x divides the order of the
group, so xq−1 = 1 hence xq = x for all x ∈ F . But there can be at most q solutions of
xq − x = 0 in F so we are done. In particular, F is the set of roots of xq − x in K.

(⇐) Conversely, given any q = pf , the set of elements in K such that xq − x = 0 is a
subfield S of K for it is closed under addition since if a, b ∈ S then a + b ∈ S because
(a+ b)q = aq + bq. Similarly, S is closed under multiplication, i.e., a, b ∈ S ⇒ ab ∈ S. Hence
S is a field and it remains to show that S has q elements. All the roots of xq−x are distinct
in K since the formal derivative of qxq−1 − 1 = −1 is coprime with xq − x. Since any two
algebraic closures of Fp are isomorphic, any two fields of q = pf elements are isomorphic.
We let Fq denote one of these fields. Note that F×q , the subgroup of non-zero elements of Fq,
has q − 1 elements. In fact, it is a cyclic group of order q − 1. To see this, observe that if
x ∈ F×q then the order of x, say d, divides q−1. Thus xd−1 = 0. The polynomial xd−1 has

at most d roots in Fq and they are given by x, x2, . . . , xd = 1. Of these roots, ϕ(d) of them
have order d. But

∑
d|q−1

ϕ(d) = q− 1. Since F×q has exactly q− 1 elements there are precisely

ϕ(d) elements of order d in F×q hence ϕ(q − 1) elements of order q − 1. Since ϕ(q − 1) ≥ 1
we see there is one elements of order F×q of order q − 1. Thus F×q is cyclic. �

Definition 70. Recall that if X is a metric space then we say that X is locally compact if
every point x ∈ X has a neighbourhood which is compact.

Example 71. R is locally compact but not compact. Similarly, Qp with the metric given by
|·|p is also locally compact but not compact.Too see this, note that {y : |y−x|p ≤ 1} = x+Zp
is compact since Zp is compact.

Let F be a field with a non-archimedean valuation | · |. Assume that F is locally compact,
with respect to the metric induced by the valuation. Let V be a finite-dimensional vector
space over F . By a valuation | · | on V which extends | · | on F we mean a map | · | : V → R≥0
such that:

(1) |x| = 0⇔ x = 0
(2) |ax| = |a||x| for all a ∈ F and for all x ∈ V
(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ V .

Remark 72. If V is a field K which is a finite-dimensional extension of F and |·| is a valuation
on K which extends | · | on F , then certainly | · | is a valuation on K as a vector space over F .
The converse, however, is not true. To see this, consider the example given by K = Qp(

√
p).

Then {1,√p} forms a basis for K over Qp. If we define |x|p = |a + b
√
p|p = sup{|a|p, |b|p}

then we can check that this is a vector space valuation but it is not a field valuation since
|√p|p · |

√
p|p 6= p−1 = |p|p.

We say that the two valuations | · |1 and | · |2 on a vector space V are equivalent if a
sequence of vectors from V is Cauchy with respect to | · |1 if and only if it is Cauchy with
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respect to | · |2. This is true if and only if there exist positive real numbers c1 and c2 such
that for all x ∈ V , we have c1|x|1 ≤ |x|2 ≤ c2|x|1.
Theorem 73. If V is a finite-dimensional vector space over a locally compact field F with
valuation | · | then all valuations on V extending | · | on F are equivalent.

Proof. Let {v1, . . . , vn} be a basis for V over F . Define the sup valuation | · |sup on V by

|x|sup = |a1v1 + · · ·+ anvn|sup := max{|a1|, . . . , |an|}.
One can check that | · |sup is a vector space valuation on V which extends | · | on F . We now
show that if | · | is another valuation on V which extends | · | on F then there exist positive
real numbers c1 and c2 such that

c1|x| ≤ |x|sup ≤ c2|x|
for all x ∈ V . Thus any valuation is equivalent to the sup valuation and so any two valuations
are equivalent. Notice that for v ∈ V ,

|v| = |a1v1 + · · ·+ anvn| ≤ |a1v1|+ |a2v2|+ · · ·+ |anvn|

≤
n∑
i=1

|ai||vi| ≤ n
(

max
i
|ai|
)
·max

i
|vi|

= nmax |vi| · |v|sup.

Now take c1 =
(
nmax

i
|vi|
)−1

and we see that |v|sup ≥ c1|v| for all v ∈ V . To prove that

| · |sup ≤ c2|v| for some c2 > 0, we first let

U := {x ∈ V : |x|sup = 1}.
We claim that U is compact with respect to the metric induced by | · |sup, since V is finite-
dimensional over a locally compact space. It suffices to remark that every sequence of
elements in U has a convergent subsequence in U . The idea is to find a coordinate which
has infinitely many tuples such that | · | = 1. Next, assume that there is no c̃2 > 0 such that
c̃2 < |x| for all x in U . Then we can find a sequence (xi)i with xi ∈ U such that |xi| → 0.
Since U is compact, we can find a subsequence xij which converges in the sup valuation to

some x ∈ U . For every j we have |x| ≤ |x− xij |+ |xij | ≤ c−11 |x− xij |sup + |xij |. But xij → x
in the sup valuation and xij → 0 with respect to | · | as j → ∞. Thus |x| ≤ 0 so |x| = 0
hence x = 0. But x ∈ U hence x 6= 0. Thus these exists c̃2 > 0 such that |x| > c̃2 for all
x ∈ U . Let v ∈ V . Then v = a1v1 + · · · + anvn. Note that |v|sup = |ai| for some i with
1 ≤ i ≤ n. Then | v

ai
|sup = 1, so | v

ai
| > c̃2 so |v| > c̃2|ai| = c̃2|v|sup, hence c̃2

−1|v| > |v|sup.

Take c2 = c̃2
−1 and the result follows. �

Corollary 74. Let V = K be a field. Then there is at most one field valuation | · | on K
which extends | · | on F .

Proof. By Theorem 73, any two field valuations on K ar equivalent. Suppose that we have
two such valuations | · |1 and | · |2 on K. If they are distinct then there exists an x ∈ K with
|x|1 6= |x|2. We may suppose that |x|1 < |x|2. Then since the valuations are equivalent there
is a positive number c1 such that |y|1 > c1|y|2, for all y ∈ K. But notice that for N ∈ Z+

sufficiently large, we have |xN |1 = |x|N1 < c1|x|N2 = c1|xN |2, which is a contradiction. Thus
|x|1 = |x|2 for all x ∈ K. �
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12. October 30

Suppose that K is a finite extension of a locally compact field F with a valuation | · | on
F . We have already seen that there is at most one (field) valuation on K which extends | · |
on F . Suppose also that K = F (α) and that the minimal polynomial of α over K is f(x) =
xn + an−1x

n−1 + · · · + a0 with ai ∈ F . We may suppose that the characteristic polynomial

of F is zero and so the roots of f are distinct (say α = α1, . . . , αn). So f(x) =
n∏
i=1

(x − αi).

We define the norm from K to F of α, denoted NK/F (α), by

NK/F (α) :=
n∏
i=1

αi = (−1)na0.

Observe that K is an n-dimensional vector space over F and multiplication by α is a F -linear
map from K to K. Consider the basis {1, α, α2, . . . , αn−1}. We can represent multiplication
by α with respect to this basis by the matrix Aα

Aα =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


Notice that, by expanding by the first row,

det(Aα) = (−1)n+2a0 = (−1)na0 = NK/F (α).

The determinant is unchanged if we pick a different basis. Suppose next that β ∈ K but
F (β) ( K. We wish to define NK/F (β). Define

NK/F (β) :=
(
NF (β)/F (β)

)[K:F (β)]
.

We claim that with this definition that the determinant of the matrix Aβ which represents
the map from K to K given by multiplication by β is NK/F (β). To see this first, let Bβ be
the matrix associated with the multiplication by β map on F (β) with respect to the basis
{1, β, β2, . . . , βd1} where d1 = [F (β) : F ]. Next put d2 = [K : F (β)]. Let γ be a primitive
element for K over F (β), so K = F (β)(γ). Then

1, β, β2, . . . , βd1−1, γ, γβ, . . . , γβd1−1, . . . , γd2−1, γd2−1β, . . . , γd2−1βd1−1

forms a basis for K over F . The matrix Aβ given by multiplication by β with respect to the
above basis is

Aβ =


Bβ

Bβ

. . .
Bβ

 .
Thus det(Aβ) = (detBβ)d2 = NK/F (β). We now observe that NK/F ( ) is a multiplicative
map on K since, for any α, β in K,

NK/F (αβ) = detAαβ = det(AαAβ) = det(Aα) det(Aβ) = NK/F (α)NK/F (β).
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Our problem is to figure out how to extend | · |p on Qp to a valuation on Qp, the algebraic
closure of Qp. Let α be algebraic over Qp and suppose that K = Qp(α) is a finite Galois
extension of Qp and let α ∈ K. What should |α|p be? If ‖ · ‖ is a valuation extending | · |p
on K and σ is an automorphism of K which fixes Qp then we can define another valuation
‖ · ‖′ on K which extends | · |p on Qp by defining for x in K,

‖x‖′ = ‖σ(x)‖.
It is a valuation since for all x, y ∈ K we have:

(1) σ(xy) = σ(x)σ(y)
(2) σ(x) = 0⇔ x = 0
(3) σ(x+ y) = σ(x) + σ(y).

But since there is at most one possible extension of | · |p to K we see that ‖ · ‖ is the same
as ‖ · ‖′. Thus

|NQp(α)/Qp(α)|p = ‖NQp(α)/Qp(α)‖ =
∏

σ∈Aut(K/Qp)

‖σ(α)‖ = ‖α‖n

‖α‖ = |NQp(α)/Qp(α)|1/np = |NQp(α)/Qp(α)|[Qp(α):Qp]−1

More generally, if K is a finite extension of Qp(α) then

‖α‖ = |NK/Qp(α)|[K:Qp]−1

p .

Theorem 75 (Hensel’s Lemma II). Suppose f ∈ Zp[x], and let f be the reduction of f mod

p to an elements of Zp/pZp[x]. Suppose also that f is not identically zero. If g0, h0 ∈ Zp[x]

with g0, h0 relatively prime in Zp/pZp[x] such that

f(x) ≡ g0(x)h0(x) (mod p),

then there exist polynomials g(x), h(x) ∈ Zp[x] such that f(x) = g(x)h(x) with g(x) ≡ g0(x)
(mod p), h(x) ≡ h0(x) (mod p) and deg(g) = deg(g0).

Proof. We may assume that g0 is a monic polynomial of degree r since if

g0(x) = axr + · · · with a 6= 0,

we can replace g0 by a−1g0 and h0 by ah0. Further, without loss of generality, we may
suppose that deg(g0) = deg(g0). We now construct two sequences of polynomials (gi) and
(hi) in Zp[x] with the gi’s of degree r and such that

f ≡ gtht (mod pt+1), (14)

and

gt ≡ gt−1 (mod pt) and ht ≡ ht−1 (mod pt).

If we make this construction, then we can take g = lim
t→∞

gt and h = lim
t→∞

ht. Further,

g ≡ g0 (mod p) and h ≡ h0 (mod p).

Having constructed gt and ht, how do we product gt+1 and ht+1? Put

gt+1 = gt + pt+1u

ht+1 = ht + pt+1v,
(15)
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where u, v ∈ Zp[x] are to be chosen. Now by (14), f − gtht = pt+1z with z ∈ Zp[x]. By (15),

gt+1ht+1 − f = (gtht − f) + pt+1(htu+ gtv) + p2t+2uv.

Thus we need to choose u and v so that

h0u+ g0v ≡ z (mod p). (16)

Hence so that −z + htu+ gtv ≡ 0 (mod p). Since ht ≡ h0 (mod p) and gt ≡ g0 (mod p), it
suffices to choose u and v so that h0u + g0v ≡ z (mod p). Since h0 and g0 are coprime in
Zp/pZp[x], there exist l andm in Zp[x] for which lh0+mg0 ≡ 1 (mod p) hence lh0z+mg0z ≡ z

(mod p). Write lz = kg0 + u∗ where deg u∗ < deg g0 = r. Let u be a polynomial in Zp[x]
such that u = u∗ and such that deg u = deg u∗. Further,

h0u+ (h0k +mz)g0 ≡ z (mod p)

and we see that if v = h0k +mz, then (16) holds and the result follows. �

13. November 4

Corollary 76. If f(x) = anx
n + · · · + a1x + a0 ∈ Qp[x] with an 6= 0 and f is irreducible,

then

max
i

(|ai|p) ≤ max(|a0|p, |an|p).

Proof. Suppose maxi(|ai|p) = |aj|p where 0 ≤ j ≤ n and j is chosen to be maximal. Then
|aj|p = p−N . Put t(x) := p−Nf(x), so that t(x) = b0 + b1x + · · · + bnx

n. Notice that bj 6≡ 0
(mod p). Then put

g0(x) = b0 + b1x+ · · ·+ bjx
j,

and h0(x) = 1. Notice that ḡ0 and h̄0 are coprime in Zp/pZp[x]. By Hensel’s Lemma II, there
exist g(x), h(x) ∈ Qp[x] with t(x) = g(x)h(x) so f(x) = pNg(x)h(x). Since f is irreducible
we see that j = 0 or j = n. Thus the claim follows, as desired. �

Theorem 77. Let K be a finite extension over Qp. The map | · |p : K → R≥0 given by

|α|p = |NK/Qp(α)|1/np where n = [K : Qp] is the unique valuation which extends | · |p on Qp.

Proof. Certainly | · |p extends the valuation on Qp. Further, it suffices to show that | · |p
is a valuation on K since we have already proved that there can be at most one such
valuation on K. Plainly, αp = 0 ⇔ α = 0. Furthermore | · |p is multiplicative on K
since NK/Q is multiplicative. Thus it remains to check that for all α, β ∈ K, we have
|α + β|p ≤ max{|α|p, |β|p}.

We may assume α and β are non-zero. On dividing through by β we see that it suffices
to prove that if γ ∈ K then

|γ + 1|p ≤ max(|γ|p, 1).

Let xm +am−1x
m−1 + · · ·+a0 be the minimal polynomial for γ over Qp. Then |γ|p = |a0|1/mp .

Further, the irreducible polynomial of γ + 1 over Qp is

(x− 1)m + am−1(x− 1)m−1 + · · ·+ a0,

and so

|γ + 1|p = |(−1)m + am−1(−1)m−1 + · · ·+ a0|1/mp .
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By Corollary 76, we have

|γ + 1|p ≤ max(1, |a0|p)1/m ≤ max(1, |a0|1/mp ) = max(1, |γ|p).

Therefore, | · |p is indeed a valuation on K, as required. �

Recall that the algebraic closure Qp over Qp is a union of the finite extensions of Qp. Also,
if α is algebraic over Qp we have that |α|p does not change when we pass to field extensions

of Qp(α). By virtue of these two facts, we see that | · |p extends to a valuation on Qp. Hence

if α ∈ Qp with minimal polynomial xm + am−1x
m−1 + · · ·+ a0 then

|α|p = |a0|1/mp .

Let K be a finite extension of Qp with [K : Qp] = n. For αinK we define ordp α by

ordp α := − log |α|p
log p

= −
log |NK/Qp(α)|1/n

log p
= − 1

n
·

log |NK/Qp(α)|p
log p

.

The image of K under the map ordp is a subset of 1
n
Z. Even better, this is not just a subset,

but is a subgroup. For any α, β ∈ K we have ordp αβ = ordp α + ordp β, so the image is a
subgroup of 1

n
Z and has the form 1

e
Z for the smallest positive integer e.

Definition 78. The integer e as defined above is called the index of ramification of K over
Qp. if e = 1 we say that K is unramified over Qp. If e = n then we say that K is totally
ramified over Qp.

Remark 79. If π ∈ K with ordp π = 1
e

then any x ∈ K with x 6= 0 we can write it uniquely
in the form πmu with m ∈ Z and u such that |u|p = 1. Then e · ordp x = m.

Definition 80. Let

f(x) = xe + ae−1x
e−1 + · · ·+ a0, (17)

with ai ∈ Zp and ai 6= 0 (mod p) for i = 0, 1, . . . , e− 1 and a0 6= 0 (mod p2). Then f is an
Eisenstein polynomial and by Eisenstein’s criterion f is irreducible.

Lemma 81. If K is a totally ramified finite extension of Qp and π ∈ K with ordp π = 1
e

then
π satisfies an Eisenstein equation. Conversely, if α is a root of an Eisenstein polynomial as
in (17) over Qp then Qp(α) is a totally ramified extension of Qp.

Proof. Since the coefficients ai of the minimal polynomial of π over Qp are elementary sym-
metric polynomials in the conjugates of π, we see that |ai|p < 1 for i = 0, 1, . . . , e − 1.
Further, since ordp π = 1

e
, we see that |a0|p = p−1.

Now conversely, suppose that α is a root of an Eisenstein polynomial as in (17). Then
α is of degree e over Qp since f is irreducible over Qp. Further, |π|ep = |a0|p = p−1. Thus,

|α|p = p−1/e and so Qp(α) is totally ramified. �

Definition 82. We say a totally ramified extension of Qp is tame if p - e and wild if p | e.
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14. November 6

Lemma 83. Let K be a finite extension of Qp. K is complete with respect to | · |p.

Proof. Let w1, w2, . . . , wn be a basis for K over Qp. Let (γi)
∞
i=1 be a Cauchy sequence of

elements of K. Then we have γi = a1iw1 + · · · + aniwn with a1i, . . . , ani ∈ Qp. Since
|γi− γj|p → 0 as min(i, j)→∞ and since all finite-dimensional vector space valuations over
Qp are equivalent, we see by the sup vector space valuation on K that (aji)

∞
i=1 is a Cauchy

sequence in Qp for j = 1, 2, . . . , n. Since Qp is complete, there exists Aj ∈ Qp such that
Aj = lim

i→∞
aij for j = 1, 2, . . . , n. Therefore (γi)

∞
i=1 converges to A1w1 + · · · + Anwn which is

in K. �

Notation. Let K be a finite extension of Qp. Define A := {x ∈ K : |x|p ≤ 1} and
M := {x ∈ K : |x|p < 1}.

Remark 84. Consider the quotient A/M consisting of elements a+M with a ∈ A. There is
a natural inclusion of Zp/pZp into A/M given by ϕ(a + pZp) = a + M . We will now show
that A/M is of finite degree over Fp. If n = [K : Q] then in fact [A/M : Fp] ≤ n. For any
element a ∈ A, let A be the element a + M in A/M . To see why [A/M : Fp] ≤ n, we will
show that if a1, . . . , an+1 ∈ A/M then they are linearly dependent over Fp.

Then for any a1, a2, . . . , an+1 ∈ K, for which the reductions are a1, . . . , an+1 ∈ A/M ,
respectively, we have since [K : Qp] = n that there exist b1, b2, . . . , bn+1 ∈ Qp such that
a1b1 + · · · + an+1bn+1 = 0. By multiplying through by pN for an appropriate integer N we
can suppose that bi’s are in Zp and at least one has p-adic order zero. Then we have

a1b1 + · · ·+ an+1bn+1 = 0.

Since not all of the bi’s are zero, we see that a1, . . . , an+1 are linearly dependent over Fp.
Thus [A/M : Fp] ≤ n.

Definition 85. THe degree of [A/M : Fp] is called the residue field degree and is denoted
by f .

Lemma 86. Let K be a finite extension of Qp with ramification index e and residue field
degree f . Let A and M be as defined in Notation 14. Let (πi)

∞
i=−∞ be a sequence of elements

in K with ordp πi = i
e

for i ∈ Z. Let 0, c1, . . . , cpf−1 be elements of A such that 0 + M, c1 +
M, . . . , cpf−1 + M are distinct in A/M . Let α ∈ K with ordp α = n

e
. Then there exists a

unique representation α of the form
∞∑
t=n

citπt,

where cit is chosen from {0, c1, c2, . . . , cpf−1}.

Proof. We will first show that α has such representation. Note that | α
πn
|p = 1. Thus

α

πn
≡ cin (mod M).

Further, we have M = πA, and we have∣∣∣ α
πn
− cin

∣∣∣
p
< 1.
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Put α1 = α
πn
− cin . If α1 = 0 we are done. Otherwise, let ordp α1 = b1

e
for some positive

integer b1. Thus

α = cinπn + α1πn.

Then ordp α1πn = n+b1
e

. We have ∣∣∣∣ α1πn
πn+b1

∣∣∣∣
p

= 1

so there exists a representative cin+b1 such that∣∣∣∣ α1πn
πn+b1

− cin+b1

∣∣∣∣ < 1.

We now put α2 = α1πn
πn+b1

− cin+b1 ∈M . We have

α1πn = α2πn+b1 + cin+b1πn+b1

with ordp α2πn+b1 >
n+b1
e

. Thus

α = cinπ)n+ cin+b1πn+b1 + α2πn+b1 .

Containing in this way we obtain a Cauchy sequence of partial sums which converges to α,
and this gives us the representation. It is immediate to check that this representation is
unique. �

Lemma 87. Let [K : Qp] = n. Suppose that the index of ramification of K is e and the
residue field degree is f . Then n = ef .

Proof. Let π be an element of K with ordp π = 1
e
. Let w1, . . . , wf be elements of A such that

w1 +M, . . . , wf +M form a basis for A/M over Fp. Then {u1w1 + · · ·+ufwf +M : 0 ≤ ui <
p for i = 1, 2, . . . , f} is just A/M . Let the ci’s in the previous proposition be the elements
u1w1 + · · ·+ ufwf . Then for any α ∈ K we have a unique representative of the form

α =
∞∑
t=m

citπt,

where πt = pb
t
ecπt−eb

t
ec. Put rt = t− e

⌊
t
e

⌋
so that 0 ≤ rt ≤ e− 1. Then

α =
∞∑
t=m

(u1tw1 + · · ·+ uftwf )π
rtpb

t
ec.

Therefore (note that we can rearrange the terms since the sum is convergent)

α =

f∑
j=1

e−1∑
s=0

 ∞∑
l=bme c

ij,s,lp
l

wjπ
s,

for ij,s,l chosen appropriately. Thus {wjπs : j = 1, 2, . . . , f, s = 0, 1, . . . , e− 1} spans K over
Qp. In particular, we see that n ≤ ef . Note, however, that if we have∑

j,s

aj,swjπ
s = 0,
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with aj,s ∈ Qp not all zero, then we can first suppose that the terms aj,s are in Zp by
multiplying by an appropriate power of p with some |aj,s|p = 1. Since w1 + M, . . . , wf + M
are linearly independent over Fp, we see that∣∣∣∣∣∣

∑
aj,s

πs

∣∣∣∣∣∣
p

≤ p−1

for j = 1, 2, . . . , f . But for some pair j, s we have |aj,s|p = 1 and so

|aj,sπs|p = p−
s
e ≥ p−

e−1
e

since 0 ≤ s ≤ e− 1. But then ∣∣∣∑ ajsπ
s
∣∣∣
p

= p−
e−1
e ,

but this is a contradiction. �

15. November 11

Proposition 88. Let K be a finite-degree extension of Qp with residue field degree f . Then
K contains all of the pf − 1 roots of unity. In particularly, K contains a primitive pf − 1-th
root of unity.

Proof. As usual, put A = {x ∈ K : |x|p ≤ 1} and M = {x ∈ K : |x|p < 1}. SInce the residue
field degree is f , we have A/M ∼= Fpf . Recall that F×

pf
is a cyclic group. Then there exists

a0 ∈ A such that a0 generates A/M . Thus α0, α0
2, . . . , α0

pf−1 are all distinct in A/M . Let
π ∈ K with ordp π = e−1 where e is the index of ramification of K. Then M = πA. We claim

that there exists α ∈ K with α ≡ α0 (mod π) for which αp
f−1 = 1. Since α0, α1, . . . , α0

pf−1

are all distinct in A/M we see that α is a primitive pf − 1-th root of unity.
We now will construct inductively as in the proof of Hansel’s lemma (Theorem 75). Note

that we have αp
f−1

0 ≡ 1 (mod π). Consider α0 + α1π. We have

(α0 + α1π)p
f−1 ≡ (αp

f−1
0 − 1) +

(
pf − 1

1

)
αp

f−2α1π (mod π2).

Since αp
f−1

0 ≡ 1 (mod π) there exists a β0 such that αp
f−1 − 1 ≡ β0π (mod π2). Thus

(α0 + α1π)p
f−1 − 1 ≡ β0π + (pf − 1)αp

f−2
0 α1π (mod π2)

≡ β0π − αp
f−2

0 α1π (mod π2).

We now choose α1 so that

β0 − αp
f−2

0 α1 ≡ 0 (mod π).

That is, take α1 so that

α1 ≡
β0

αp
f−2

0

(mod π).

Therefore, (α0 + α1π)p
f−1 ≡ 1 (mod π2). Next, we need to choose α2 appropriately so that

(α0 + α1π + α2π
2)p

f−1 ≡ 1 (mod π3).
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Continuing in this way, we find a sequence α1, α2, · · · ∈ A such that the sequence α0, α0 +
α1π, α0 +α1π+α2π

2 + · · · is a Cauchy sequence which converges to an element α ∈ K with
the property that

αp
f−1 ≡ 1 (mod π) and α ≡ α0 (mod π).

We can preform the same construction for α0, . . . , α0
pf−1 to get all the pf − 1-th roots of

unity. �

Proposition 89. For each positive integer f there is exactly one unramified extension of
Qp of residue field degree f . It can be obtained by adjoining a primitive pf − 1-th root of
unity to Qp.

Proof. Let α0 be a generator of Fpf over Fp with minimal polynomial g(x) = xf +αf−1x
f−1+

· · ·+α0 where we may suppose that αf−1, . . . , α0 are such that af−1, . . . , a0 are elements of Zp.
Put g(x) = xf +af−1x

f−1 + · · ·+a0. Notice that g(x) ∈ Zp[x] is irreducible over Qp since g is
irreducible. Let α be a root of g(x) and put K = Qp(α). Note that [K : Qp] = f . Then the
residue field of K contains a root of g and so [A/M : Fp] ≥ f . But then [A/M : Fp] ≤ [K : Qp]
hence f = [K : Qp] = [A/M : Fp]. In particular, we see that K = Qp(α) is unramified over
Qp. Thus for each positive f there is an unramified extension of Qp of degree f over Qp. By
Proposition 88 every unramified extension K of Qp of degree f contains a primitive pf −1-th
root of unity (say β). Then Qp(β) ⊆ K. But [Qp(β) : Qp] = f and so K = Qp(β) since the
powers of β are distinct mod p. Thus the uniqueness follows. �

Notation. For any positive integer f , letKunram
f denote the field Qp(β) where β is a primitive

pf − 1-th root of unity.

Proposition 90. Let K be a degree n extension of Qp with index of ramification e and
residue field degree f . Then K = Kunram

f (π) where π is the root of an Eisenstein polynomial
with coefficients in Kunram

f .

Proof. We have [K : Qp] = n = ef . Let π be an element of K with ordp π = e−1. Plainly K
contains Kunram

f since the residue field degree is f . Let g(x) be the minimal polynomial of π
over Kunram

f . Then

g(x) =
t∏
i=1

(x− πi),

where π = π1. But we know that |πi|p = |π|p for i = 1, 2, . . . , t. Then

g(x) = xt + at−1x
t−1 + · · ·+ a0

with a0, . . . , at−1 in Kunram
f . Note that a0 = π1 . . . πt, and so ordp a0 = e−1 + · · ·+ e−1 = te−1.

But a0 ∈ Kunram
f so te−1 is an integer hence t is a positive multiple of e. Since [K : Qp] = ef

and [K : Qp] = [K : Kunram
f ] · [Kunram

f : Qp] = [K : Kunram
f ] · f , it follows that t = e.

Furthermore, |a0|p = p−1 and |ai|p < 1 for i = 0, 1, . . . , p − 1 since the ai’s are elementary
symmetric functions in the πi’s. Thus g is an Eisenstein polynomial. �

Corollary 91. Let [K : Qp] = n = ef , and let π ∈ K with ordp π = e−1. Then every
non-zero α ∈ K has a unique representation of the form

α =
∞∑
i=m

aiπ
i, (18)
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where m = e · ordp α, and the set of ai’s is the set of roots of xp
f − x in K.

Proof. This follows from the fact that there are pf ai’s and they are representatives of distinct
cosets mod M . �

Definition 92. The ai’s in (18) is known as the Teichmüller digits.

Remark 93. Qunram
p is the union of all unramified extensions of Qp. Then Zunram

p is the
integral closure of Zp in Qunram

p .

16. November 13

Lemma 94 (Krasner’s lemma). Let a, b ∈ Qp and let a = a1, a2, . . . , an be the conjugates of
a over Qp. If

|a− b|p < |a− ai|p
for i = 2, 3, . . . , n, then Qp(a) ⊆ Qp(b).

Proof. Assume that a /∈ Qp(b). Let σ be a non-trivial isomorphism of Qp(a, b) into Qp which
fixes Qp(b). Suppose, without loss of generality, that σ(a) = a2. Then for all x ∈ Qp(a, b),
we have |x|p = |σ(x)|p. Therefore

|b− a|p = |σ(b− a)|p = |σ(b)− σ(a)|p
= |σ(b)− a2|p = |b− a2|p.

Then
|a2 − a|p = |(a2 − b) + (b− a)|p ≤ max(|a2 − b|p, |b− a|p) = |b− a|p.

This is a contradiction, so the claim follows. �

Theorem 95. Qp is not complete with respect to | · |p.

Proof. We will give a Cauchy sequence of elements of Qp which does not converge to an

element of Qp. Since any finite extension K of Qp is complete with respect to | · |p, our
sequence will have to run through elements of arbitrarily large degree. First, we remark that
if i and j are positive integers with j < i then p2

j−1 | p2i−1. This follows, since y−1 | y2i−j−1

on taking y = 2j. Let bi be a primitive p2
i − 1-th root of unity for i = 0, 1, 2, . . . . Observe

that if j < i then bp
2i−1
j = 1, since p2

j − 1 | p2i − 1. Put N0 = 0 and a0 = b0p
N0 . We define

Ni and ai inductively by the following rule. Assume that Ni and

ai =
i∑

j=0

bjp
Nj

have been determined. Then we choose Ni+1 so that ai does not satisfy any congruence of
the form

αna
n
i + · · ·+ α0 ≡ 0 (mod pNi+1),

with αi ∈ Zp for i = 0, 1, . . . , n and such that not all αi ≡ 0 (mod p) for any non-negative
integer n with n < 2i. Such an integer Ni+1 exists since otherwise ai would be a root of a
polynomial of degree less than 2i over Qp. To see this, note that if there is no such Ni+1

then for each integer j with j > Ni, then ai satisfies a congruence

αn,ja
n
i + · · ·+ α0,j ≡ 0 (mod pj)
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with αk,j ∈ Zp for k = 0, . . . , n not all αk,j ≡ 0 (mod p). Then there exists an infinite
subsequence with

(αn,jt , . . . , α0,jt)

a fixed vector mod pj. Within this subsequence we can find a further infinite (sub)subsequence
with a fixed vector mod pj+1. In the limit, this gives us a polynomial of degree less than 2i

which has ai as a root. This cannot be the case, however, since the degree of ai over Qp is
2i. To see this, we argue as follows.

First, observe that Qp(ai) ⊆ Qp(bi) since bj ∈ Qp(bi) for j = 0, 1, . . . , i. Secondly, we note

that Qp(ai) = Qp(bi): otherwise, there exists a non-trivial embedding σ of Qp(bi) into Qp

which fixes Qp(ai). Thus

i∑
j=0

bjp
Nj = ai = σ(ai) =

i∑
j=0

σ(bj)p
Nj .

Notes that ordp p = 1 = e−1 with can apply Corollary 91 with π = p to see that our
representation of ai is unique. In particular, bj = σ(bj) for j = 1, 2, . . . , i. Hence bi = σ(bi).
But σ is non-trivial, so σ(bi) 6= bi. Thus Qp(ai) = Qp(bi), so the degree of ai over Qp is 2i.
We then have

ai+1 =
i+1∑
j=0

bjp
Nj .

The sequence (aj)j is a Cauchy sequence since |bj|p ≤ 1 for j = 1, 2, . . . . Thus it converges

to a ∈ Qp. Then a is the root of a polynomial of degree t over Qp. Thus αta
t + · · ·+α0 = 0,

with αj’s in Zp not all αj ≡ 0 (mod p). Take 2i > t. Ceratinly, a ≡ ai (mod pNi+1). Thus

αta
t
i + · · ·+ α0 ≡ 0 (mod pNi+1),

which contradicts our choice of Ni+1. The claim follows. �

17. November 18

Second proof of Theorem 95. We define bi as a primitive p2
i2 − 1-th root of unity and put

ci =
i∑

j=0

bjp
j.

The sequence (ci) is clearly a Cauchy sequence of elements of Qp. Suppose that the sequence

converges to an element c ∈ Qp. Let d be the degree of c over Qp, i.e., d = [Qp(c) : Qp].

Recall that [Qp(bi) : Qp] = 2i
2
, and that Qp(bj) ∈ Qp(bj+1) for j = 0, 1, 2, . . . . Thus

[Qp(bj+1) : Qp(bj)] = 2(j+1)2

2j2
= 22j+1. Consider

cd+1 =
d+1∑
j=0

bjp
j.

Since

c− cd+1 =
∑
j≥d+2

bjp
j,
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and further |bj|p = 1 for all j, it follows that |c−cd+1|p = p−(d+2). Let σ be an automorphism

of Qp which fixes Qp. Then

|c− cd+1|p = |σ(c− cd+1)|p = |σ(c)− σ(cd+1)|p = p−(d+2).

Note that 22d+1 ≥ d+ 1. Since the degree of Qp(bd+1) over Qp(bd) is 22d+1 we can find d+ 1

automorphisms σ1, . . . , σd+1 of Qp which fixes Qp(bd) and for which σ1(bd+1), . . . , σd+1(bd+1)
are distinct. Then if i ≤ l we have σi(cd+1) − σl(cd+1) = (σi(bd+1) − σl(bd+1))p

d+1. Since

σi(bd+1) and σl(bd+1) are distinct p2
(d+1)2−1-th roots of unity, we have |σi(bd+1)−σl(bd+1)|p = 1

hence

|σi(cd+1)− σl(cd+1)|p = p−(d+1).

Therefore,

|σi(c)− σl(c)|p = |(σi(cd+1)− σl(cd+1))− (σi(cd+1)− σi(c)) + (σl(cd+1)− σl(c))|p
= p−(d+1).

Thus we see that σi(c) 6= σl(c) whenever l 6= i. In particular, c has at least d+ 1 conjugates
contradicting the fact that the degree of c over Qp is d. �

Note that c is transcendental over Qp. The construction can be modified to give un-
countably many such c. For example, for each sequence (ε1, ε2, . . . ) with εi ∈ {0, 1} we can
associate to c(ε) = c(ε1,ε2,... ), where we put

c(ε) =
∞∑
i=0

b̂ip
i,

where

b̂i =

{
bi (i ≡ 0 (mod 2))

ε i+1
2
bi (i ≡ 1 (mod 2)).

We see that c(ε) is transcendental over Qp.

We now define Ωp to be the completion of Qp with respect to | · |p. Ωp is the set of

equivalence classes of Cauchy sequences of elements of Qp. Two sequences (ai) and (bi) are
said to be equivalent if and only if lim |ai − bi|p = 0. Ωp is in fact a field under the usual
definition of + and ·. Further we can extend | · |p by putting |[(ai)]|p = lim |ai|p. Note that
the limit exists since the sequence is Cauchy, and a = [(ai)] does not depend on the choice
of representative. Further, we define ordp on Ωp by

ordp a := − log |a|p
log p

.

Theorem 96. Ωp is algebraically closed.

Proof. Let f(x) = xn + an−1x
n−1 + · · · + a0 with ai ∈ Ωp. It suffices to show that f has a

root in Ωp. For i = 0, 1, . . . , n− 1, let (ai,j)j be a Cauchy sequence of elements of Qp which
converges to ai or equivalently which represents ai. Put

gj(x) = xn + an−1,jx
n−1 + · · ·+ a0,j
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for j = 1, 2, . . . . Let (ri,j)
n
i=1 be the roots of gj for j = 1, 2, . . . . We will prove that for each

j we can find an integer ij with 1 ≤ ij ≤ n so that (rij ,j)
n
j=1 is a Cauchy sequence. Let

r = [(rij ,j)
∞
j=1]. Then

f(r) = lim
j→∞

f(rij ,j) = lim
j→∞

gj(rij ,j) = 0,

as required. Now it remains to show that we can actually find a Cauchy sequence that works.
Note that if θ ∈ Qp and satisfies some equation, say,

θn + bn−1θ
n−1 + · · ·+ b0 = 0

with bi ∈ Qp. Then |θn|p = | − (bn−1θ
n−1 + · · ·+ b0)|p, and since | · |p is non-archimedean we

have

|θ|np ≤ max
0≤j≤n−1

(|bj|p|θ|jp).

Therefore, we have

|θ|p ≤ max
0≤j≤n−1

(1, |bj|p),

from which it follows

|θn|p ≤ max
0≤j≤n−1

(1, |bj|np ).

Thus if g ∈ Qp[x] and g(θ) = 0 then |θn|p ≤ C(g), where C(g) is a positive number which
depends on g only. We now show that we can choose the ij’s so that (rij ,j)

∞
j=1 is Cauchy.

Suppose that the first j terms rij have been chosen. Consider

|gj+1(rij ,j)− gj(rij ,j)|p = |gj+1(rij ,j)|p =
n∏
i=1

|(ri,j+1 − rij ,j)|p,

and

|gj+1(rij ,j)− gj(rij ,j)|p ≤ δj max(1, |rij ,j|p)n ≤ δjC(gj) ≤ δjC,

for some fixed positive number C and δj = max
0≤i≤n−1

|ai,j+1 − ai,j|p. But δj → 0 as j → ∞.

At each stage choose ri,j+1 to be the closest p-adically to rij ,j. Since δj → 0 as j → ∞ the
resulting sequence is indeed Cauchy, as required. �

Definition 97. Ωp is sometimes denoted by Cp.

18. November 20

Consider extending | · |p on Q to a finite extension K of Q. Suppose [K : Q] = n and that
α ∈ C for which K = Q(α). Let f be the minimal polynomial for α over Q. Suppose that

f(x) =
n∏
i=1

(x− αi),

where we may take α ∈ {α1, α2, . . . , αn}. We may order the roots αi of f so that α1, . . . , αr
are real and so that αr+1, . . . , αr+2s are not real with αr+i = αr+s+i for all i = 1, 2, . . . , s.
There are n embeddings of K in C which fix Q (say σ1, σ2, . . . , σn) where σi(α) = αi for all
1 ≤ i ≤ n. We define r + s archimedean valuations on K given by

|γ|i = |σi(γ)|
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for all γ ∈ K where | · | refers to the ordinary absolute value on C. This gives the complete
list of archimedean valuations of K up to equivalence. Note that these r + s valuations on
K extend | · | on Q.

As for non-archimedean valuations, there is the trivial valuation. Also we can consider
the extensions of | · |p. Let OK be the ring of algebraic integers of K. There is unique
factorization (up to ordering) of ideals of OK into prime ideals. Each prime ideals of OK
divides (p), the principal ideal generated by a prime element p. We have

(p) = pe11 · · · pett ,
where p1, . . . , pt are distinct prime ideals and e1, . . . , et are positive integers. For any prime
ideal p of OK , we define the ordp function for γ ∈ OK \ {0} to be the exponent of p in the
prime ideal factorization of the principal ideal generated by γ in OK . We can then extend
ordp to K \ {0} by writing an element θ ∈ K \ {0} as γ1γ

−1
2 where γ1, γ2 ∈ OK \ {0} and

putting ordp θ = ordp γ1−ordp γ2. On scan check that ordp is well-defined since the definition
does not depend on the choice of γ1 and γ2.

For any prime p of OK , we define the norm of p, say Np, to be the cardinality of OK/p.
Then Np = pfp for some positive integer fp. Further we have the norm is multiplicative so

N(p) = (Np1)
e1 · · · (Npt)

et ,

so

pn = pe1f1+···+etft ,

hence n = e1f1 + · · ·+ etft. We define | · |p for each prime ideal in OK by

|γ|p = Np
− ordp(γ)

epfp = p
− ordp(γ)

ep .

This defines a valuation on K. To gather with the trivial valuation, this gives us the complete
collection of non-archimedean valuations of K, up to equivalence. Notice that | · |pi extends
| · |p on Q, for i = 1, 2, . . . , t. Recall that for x ∈ Q \ {0} we have

|x|
∏
p

|x|p = 1.

This is the product formula for Q. But this doesn’t work for K! To recover the product
formula for K, we need a different way of normalization. We now put, for x ∈ K \ {0},

‖x‖i = |x|g(i)i

for i = 1, 2, . . . , r + s where

g(i) =

{
1 (i = 1, 2, . . . , r)

2 (i = r + 1, . . . , r + s).

further we put, for x ∈ K \ {0},
‖x‖pi = |x|epifpipi

for i = 1, 2, . . . , t. Then for all x ∈ K \ {0},
r+s∏
i=1

‖x‖i ·
∏

p∈OK

‖x‖p = 1. (19)
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Definition 98. The formula (19) is known as the product formula for K. The r+s valuations
‖ ‖i for i = 1, 2, . . . , r + s are said to be valuations with the prime at infinity. Note that

r+s∏
i=1

‖x‖i = |NK/Q(x)|.

18.1. A setting where p-adic analysis arises.

Definition 99. A quadratic form in n variables x1, . . . , xn is a homogeneous polynomial in
x1, x2, . . . , xn of degree 2.

There is a vast literature surrounding quadratic forms. First, consider forms over Z. One
might ask if the form represents every positive integer. This is not the case for x21 + x22 or
x21 + x22 + x23. But this can be done in four squares, as Lagrange showed in 1770.

Theorem 100 (Lagrange’s four-square theorem). Every positive integer is represented by
x21 + x22 + x23 + x24.

Ramanujan considered the question for forms ax21 + bx22 + cx23 + dx24 with a, b, c, d positive
integer. He found 54 triples (a, b, c, d) for which ax21 + bx22 + cx23 + dx24 represents all positive
integers. For instance, (a, b, c, d) = (1, 2, 5, 6) works. Recently, Bhargava and Hanke proved
a conjecture of Conway:

Theorem 101 (Bhargava, Hanke). A positive-definite integral quadratic form represents all
positive integers, provided that it represents all the integers up to 290, and 290 cannot be
replaced by a smaller number.

19. November 25 – the final lecture

MInkowski proved that if q(x1, x2, . . . , xn) is a quadratic form with rational coefficients
and q represents 0 with x1, x2, . . . , xn ∈ R and q represents 0 with x1, x2, . . . , xn in Qp for
each prime p then q represents 0 with x1, x2, . . . , xn ∈ Q. Therefore, “local” solutions imply
“global” solutions. Hasse extended this result to finite extensions of Q.

In general, the idea that one can pass from local to global solutions is known as the Hasse
principle. However, it does not always apply.

Theorem 102 (Selmer). 3x3 + 4y3 + 5z3 = 0 has a solution in R and in Qp for each prime
p but does not have a solution in Q.

Proof. (x, y, z) = (0, 0, 0) is a solution, so a solution is indeed in R. But the Qp case is less
trivial. For p = 3, take (x, z) = (0,−1). Then it suffices to show that 4y3 − 5 = 0 has
a solution in Q3. Put f(y) = 4y3 − 5. Then |f(2)|3 = 3−3 and |f ′(2)|3 = 3−1. Thus by
Hensel’s lemma there is a solution in Q3. For p = 5, take x = 1 and z = 0 and then we look
for a solution too g(y) = 4y3 + 3 in Q5. Then |g(2)|5 = 5−1 and |g′(2)|5 = 1, so the result
follows by Hensel. Suppose now that p 6= 3, 5. If 3 is a cubic residue in (Z/pZ)× then take
(x, y, z) = (θ, 1,−1) where θ is a root of 3x3 ≡ 1 (mod Qp), and apply Hensel’s lemma. If 3
is not a cube in (Z/pZ)× ten there are three possibilities. Either 5 is a cube in (Z/pZ)× in
which case there is a cube root of 5 in Qp and we take (x, y, z) = (θ,−θ, 1). If not, then we
have 5 ≡ 3t3 (mod p) or 5 ≡ 32t3 (mod p) for some integer t. In the first case we can use

Hensel to lift to a valuation θ of
(
5
3

)1/3
in Qp and then (x, y, z) = (θ, 0,−1) is a solution. In
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the second case, we use Hensel to show that there is an element θ1 =
(
5
9

)1/3
in Qp and then

(θ1, 0,−1) is a solution. This shows that there are local solutions always.
To show that there are no solutions over Q, Selmer showed that the given cubic form

defines an elliptic curve of rank 0 over Q and there are no rational points. �

Let us return to our construction of Ωp. Instead of completing Q to Qp and then taking

the algebraic closure extending | · |p to | · |p on Qp what if we first extend | · |p to Q then
complete? We consider a finite extension K of Q? Let f be the monic irreducible polynomial
defining K over Q. Consider f ∈ Qp[x] and let

f(x) = f1(x)f2(x) · · · fr(x),

where f1, f2, . . . , fr are irreducibles in Qp[x] of degree ei for i = 1, 2, . . . , r. Then the fi’s are

distinct since f has no repeated roots in Qp. To see this, note that f and f ′ are in Q[x] and
Q is of characteristic zero and f is irreducible, so f is separable.

Let α1, . . . , αn be the roots of f in Qp. Then there is an embedding σi of K in Qp for

i = 1, 2, . . . , n given by σi : K = Q[x]/f → Qp where σi fixes Q and sends x + (f) 7→ αi.

Suppose that we have an embedding σ of K into Qp and σ(K) = Q(α). If ‖ ‖ is a valuation
on K, which extends | · |p on Q, then under σ, ‖ ‖ is a valuation on Q(α) which extends
| · |p on Q. Then we may complete Q(α) with respect to | · | to a field K ′ and extend this
valuation to K ′. Notice that K ′ contains Qp with the valuation ‖ ‖ on Qp the same as the
valuation | · |p on Qp. Also it contains α. But there is a unique way of extending | · |p from

Qp to Qp(α) (actually, to Qp) and Qp(α) is complete under | · |p. Therefore K ′ = Qp(α) and
‖ ‖ is | · |p on Qp(α).

But α is a root of f(x) and the possible valuations are determined by the irreducible
polynomials f1, f2, . . . , fr ∈ Qp[x]. Therefore there are at most r distinct valuations on K

which extend | · |p on Q. To see that we get r distinct valuations, let α be a root of fi in Qp

for i = 1, 2, . . . , r. Then we have

Qp(αi)

Q(αi) Qp

|·|p

|·|p
Q

The above diagram determines a valuation on Q(αi) which extends | · |p on Q. But there are
r distinct valuations on K given by the prime ideals p1, . . . , pr which divide (p) in OK . This
gives them all the valuations. Therefore, we arrive at Qp or a field isomorphic to it, with
valuation | · |p whether we first complete and then take the algebraic closure or vice versa.
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