PMATH 940: p-ADIC ANALYSIS NOTES

HEE-SUNG YANG

ABSTRACT. Electronic version of class notes for PMATH 940: p-adic Analysis.

1. INTRODUCTION

1.1. Introduction to valuation.

Definition 1. A map $|\cdot|$ from field K to \mathbb{R} is said to be a valuation if

(i) (Positive-semidefinite) For all $a \in K$, $|a| \ge 0$, and |a| = 0 iff a = 0.

(ii) (Multiplicativity) For all $a, b \in K$, $|ab| = |a| \cdot |b|$.

(iii) There exists C > 0 such that for all $a \in K$ with $|a| \leq 1$, then $|1 + a| \leq C$.

Remark 2. (iii) is often replaced by the triangle inequality.

Example 3. The ordinary absolute value $|\cdot|$ on \mathbb{C} . In this case, we can take C = 2.

Example 4. The p-adic valuation $|\cdot|_p$ on \mathbb{C} is defined in the following manner: Let p be a prime number. Let $\operatorname{ord}_p a$ (for $a \in \mathbb{Z}$) be the largest power of p dividing a. Extend this idea to \mathbb{Q} by putting $\operatorname{ord}_p(a/b) = \operatorname{ord}_p a - \operatorname{ord}_p b$. Now define $|\cdot|_p$ on \mathbb{Q} by letting $|0|_p = 0$ and $|a/b|_p = p^{-\operatorname{ord}_p(a/b)}$. In this case, we can take C = 1. Thus p-adic valuation is an example of a non-Archimedean valuation, which will be discussed in Section 1.3 in greater detail.

Example 5. Let k be a field and consider K = k(T), where T is transcendental over k. Let $\lambda \in \mathbb{R}$ with $0 < \lambda < 1$. Let $p(T) \in k[T]$ be irreducible. Observe that every nonzero element of K has a representation of the form $h(T) = p(T)^{q} \frac{f(T)}{g(T)}$ where $q \in \mathbb{Z}$ and (f, p) = (g, p) = 1. Note that q is uniquely determined. Define $|\cdot|$ on K by |0| = 0 and $|h(T)| = \lambda^{q}$. Axioms 1(i) and (ii) are immediate. For (iii), note that if $|h| \leq 1$, then $q \geq 0$ so $|1 + h| = \left|1 + p(T)^{q} \frac{f(T)}{g(T)}\right| \leq 1$. We can take C = 1.

Example 6. Let K be any field, and put a valuation $|\cdot|_0$ known as the trivial valuation, i.e., $|0|_0 = 0$ and $|a|_0 = 1$ for all nonzero $a \in K$. We can (trivially) take C = 1.

Example 7. Let K = k(T) as in Example 5. Let $\gamma \in \mathbb{R}$ with $\gamma > 1$. We define $|\cdot|$ first on k[T]. If

 $f(T) = a_0 + a_1T + \dots + a_nT^n \quad (a_n \neq 0)$

and $a_i \in K$ for all i, we put $|f| = \gamma^n$.

Extend this to elements f(T)/g(T) in K with $g \neq 0$ by putting $\left|\frac{f}{g}\right| = \frac{|f|}{|g|}$. As always, |0| = 0. One can check that $|\cdot|$ satisfies (iii) with C = 1.

Date: 25 November 2014.

1.2. Properties of valuation.

- (1) |1| = 1 (Note that $|1| = |1 \cdot 1| = |1| \cdot |1|$.)
- (2) If $|a^n| = 1$, then |a| = 1. Note that |-1| = 1 and |-a| = a for all $a \in K$.
- (3) If $K = \mathbb{F}_p$ then the only valuation on K is the trivial valuation, by (2).
- (4) If $|\cdot|$ is a valuation on K and $\lambda \in \mathbb{R}^+$, then $|\cdot|_1$ defined by $|a|_1 := |a|^{\lambda}$ for all $a \in K$ is also a valuation of K: take $C_1 = C^{\lambda}$.

Definition 8. If $|\cdot|$ and $|\cdot|_1$ are valuations on a field K, then we say they are *equivalent* if there exists $\lambda \in \mathbb{R}^+$ such that $|a|^{\lambda} = |a|_1$ for all $a \in K$. This gives us an equivalence class on a field K of valuations, and such an equivalence class of valuations is known as a place of K.

Lemma 9. A valuation $|\cdot|$ on K satisfies the triangle inequality if and only if for all $a \in K$ with $|a| \leq 1$, we have $|1 + a| \leq 2$.

Proof. (\Leftarrow) Suppose $a_1, a_2 \in K$. If $a_1 = 0$ or $a_2 = 0$ then clearly $|a_1 + a_2| \leq 2 \max(|a_1|, |a_2|)$. Suppose neither is zero, and without loss of generality, assume $|a_1| \geq |a_2|$. Then $|a_1 + a_2| = |a_1| \cdot |1 + a_2/a_1| \leq 2|a_1| = 2 \max(|a_1|, |a_2|)$. Thus, we have $|a_1 + a_2| \leq 2 \max(|a_1|, |a_2|)$ for any $a_1, a_2 \in K$. Now apply induction to $a_1, a_2, \ldots, a_{2^n}$ to derive

$$|a_1 + a_2 + \dots + a_{2^n}| \le 2^n \max(|a_1|, |a_2|, \dots, |a_{2^n}|).$$

Given $a_1, a_2, \ldots, a_N \in K$ where N is sufficiently large, we can choose n so that $2^{n-1} < N \leq 2^n$ and define $a_{N+1} = a_{N+2} = \cdots = a_{2^n} = 0$. Then for any $a_1, a_2, \ldots, a_N \in K$,

$$|a_1 + a_2 + \dots + a_N| \le 2^n \max(|a_1|, |a_2|, \dots, |a_N|) \le 2N \max_{1 \le j \le N} (|a_j|),$$

from which we can take $a_1 = a_2 = \cdots = a_N$ to derive $|N| \leq 2N$. Let b, c in K and $n \in \mathbb{Z}_+$. Then

$$\begin{aligned} |b+c|^n &= |(b+c)^n| = \left| \sum_{r=0}^n \binom{n}{r} b^r c^{n-r} \right| \le 2(n+1) \max_r \left| \binom{n}{r} b^r c^{n-r} \right| \\ &\le 4(n+1) \max_r \left| \binom{n}{r} \right| |b|^r |c|^{n-r} \quad \text{(since } |N| \le 2N) \\ &\le 4(n+1) \sum_{r=0}^n \binom{n}{r} |b|^r |c|^{n-r} \\ &\le 4(n+1)(|b|+|c|)^n. \end{aligned}$$

Thus, it follows that $|b+c| \leq (4(n+1))^{1/n}(|b|+|c|)$, and letting $n \to \infty$ gives us the triangle inequality.

(⇒) This is immediate, since $|1 + a| \le |1| + |a| \le 2$.

Corollary 10. Every valuation on K is equivalent to a valuation satisfying the triangle inequality.

1.3. Non-Archimedean valuation.

Definition 11. A valuation $|\cdot|$ on a field K is said to be *non-Archimedean* if we can choose C = 1 in Definition 1(iii). Otherwise, it is called *Archimedean*.

Remark 12. Observe that *any* valuation equivalent to a non-Archimedean valuation is also non-Archimedean.

Lemma 13. A valuation on K is non-Archimedean if and only if $|\cdot|$ satisfies the strong triangle inequality for all $a, b \in K$.

Proof. (\Rightarrow) Without loss of generality, suppose $a, b \in K$ with $|a| \leq |b|$. Note that we have $|a + b| = |b(1 + \frac{a}{b})| = |b||1 + \frac{a}{b}| \leq |b| \cdot |1|$, according to Definition 11. Thus $|a + b| \leq |b| = \max(|a|, |b|)$, as required.

 (\Leftarrow) Again, we assume that $a, b \in K$ with $|a| \leq |b|$. Thus, by the strong triangle inequality, we have $|a + b| = |b||1 + \frac{a}{b}| \leq |b|$. This implies that $|1 + \frac{a}{b}| \leq 1$ for any $a, b \in K$, so we can choose C = 1. Therefore $|\cdot|$ is non-Archimedean.

Lemma 14. Let $|\cdot|$ be a valuation on a field K. Then $|\cdot|$ is non-Archimedean if and only if $|e| \leq 1$ for all $e \in R_K$, where R_K denotes the ring generated by 1 in K.

Remark 15. We cannot assume that the ring generated by 1 in K is \mathbb{Z} , since that is no longer the case if K has a positive characteristic.

Proof. (\Leftarrow) Any non-Archimedean valuation is equivalent to a non-Archimedean valuation, and since any non-Archimedean valuation satisfies the triangle inequality, one can replace the original valuation to the one satisfying the triangle inequality. Suppose $e \in R_K$ and $|e| \leq 1$. Apply the triangle inequality:

$$|1+e|^n = |(1+e)^n| \le \sum_{j=0}^n \left| \binom{n}{j} \right| |e| \le \sum_{j=0}^n |a| \le n+1.$$

Take the *n*-th root on both sides and let $n \to \infty$ to get $|1 + e| \le 1$ for any $e \in R_K$. Thus we can take C = 1, as required.

(⇒) This is immediate, since $|1 + 1| \le |1|$ by the triangle inequality. Apply induction to derive $|e| \le 1$ for all multiples of 1.

Corollary 16. If K and k are fields with $k \subseteq K$, and $|\cdot|$ a valuation on K, then $|\cdot|$ is non-Archimedean on K if and only if its restriction to k is non-Archimedean also.

Proof. Apply the previous lemma for the \Leftarrow direction. The \Rightarrow direction is immediate. \Box

Corollary 17. If $|\cdot|$ is a valuation on a field K with char K > 0, then $|\cdot|$ is non-Archimedean.

Proof. This follows from the fact that the only valuation on the finite field \mathbb{F}_p is the trivial valuation, and the trivial valuation is (trivially) non-Archimedean.

2. Ostrowski's Theorem

Theorem 18 (Ostrowski's Theorem). All non-trivial valuations on \mathbb{Q} is equivalent to either the ordinary absolute value or the p-adic valuation, where p is a prime.

Proof. Let $|\cdot|$ be a valuation on \mathbb{Q} . By Corollary 10 we may assume that $|\cdot|$ satisfies the triangle inequality. Let b > 1 and c > 0 with $b, c \in \mathbb{Z}$. Write c in terms of b: $c = c_m b^m + c_{m-1} b^{m-1} + \cdots + c_0$, where c_0, \ldots, c_m are taken from $\{0, 1, \ldots, b-1\}$ and where $c_m \neq 0$. Note that $m \leq \log c/\log b$. By the triangle inequality,

$$|c| \le (m+1) \max_{0 \le i \le m} |c_i| \max(1, |b|^m) \le (m+1)M \max(1, |b|^m)$$

where $M - \max(|1|, \ldots, |b-1|)$. Let $a \in \mathbb{Z}_+$ and put $c = a^n$ for $n \in \mathbb{Z}_+$. Then

$$|a|^n = |a^n| = \left(\frac{n\log a}{\log b} + 1\right) M\max(1, |b|^{\frac{n\log a}{\log b}})$$

Take *n*-th roots and let $n \to \infty$:

$$|a| \le \max(1, |b|^{\frac{\log a}{\log b}}). \tag{1}$$

Suppose first that there is some positive a with |a| > 1. Then from (1), we see that |b| > 1 for all b > 1 with $b \in \mathbb{Z}$. Interchanging the roles of a and b in (1), we see that

$$|a|^{1/\log a} = |b|^{1/\log b}.$$

Thus, there exists a real number λ with $\lambda > 1$ such that for all positive integers a, we have $|a| = a^{\lambda}$ and hence $|\cdot|$ is equivalent to the ordinary absolute value on \mathbb{Q} (i.e., $|a/b| = |a/b|_{\infty}^{\lambda}$, where $|a/b|_{\infty}$ denotes the ordinary absolute value).

Now suppose that $|a| \leq 1$ for all positive integers a. If |a| = 1 for all positive integers a then $|\cdot|$ is the trivial valuation. Thus there is a smallest positive integer a for which |a| < 1. Notice that a is a prime by the multiplicative property of valuations.

Let c be an integer such that $p \nmid c$. We can write c = up + v with $v \in \{1, 2, ..., p-1\}$. Then |v| = 1 since p is the smallest positive integer with valuation less than 1. Furthermore, $|up| = |u| \cdot |p| < 1$. Since $|a| \leq 1$ for all $a \in \mathbb{Z}_+$, we see that $|\cdot|$ is non-Archimedean. Therefore |c| = |up + v| = |v|. This means that the valuation on \mathbb{Q} is determined once we know that its value on p. Thus it is equivalent to the p-adic valuation, as desired. \Box

We will give a criterion for the two valuations on a field K to be equivalent.

Proposition 19. Let K be a field and let $|\cdot|_1$ and let $|\cdot|_2$ be valuations in K. If $|\cdot|_1$ is not the trivial valuation and for $a \in K$

$$|a|_1 < 1 \Rightarrow |a|_2 < 1,$$

then $|\cdot|_1$ and $|\cdot|_2$ are equivalent.

Proof. By taking inverse we see that $|a|_1 > 1$ implies $|a|_2 > 1$. Next suppose that $|a|_1 = 1$ and $|a|_2 > 1$. Since our valuation $|\cdot|_1$ is not a trivial valuation, these exists $c \in K \setminus \{0\}$ with $c \neq 0$ and $|c|_1 < 1$. Then for each $n \in \mathbb{Z}_+$ we have

 $|ca^n|_2 = |c|_2 |a^n|_2 > 1$ for *n* sufficiently large.

But $|ca^n|_1 = |c|_1 |a|_1^n < 1$ for all $n \in \mathbb{Z}_+$ and this contradicts our assumption. We thus conclude that $|a|_1 < 1 \Rightarrow |a|_2 < 1$ and $|a|_1 > 1 \Rightarrow |a|_2 > 1$. Since $|\cdot|_1$ is non-trivial there exists a $c \in K$ with $c \neq 0, |c|_1 > 1$. Then $|c|_2 > 1$. Now let $a \in K, a \neq 0$ and define γ by $|a|_1 = |c|_1^{\gamma}$. Let $m, n \in \mathbb{Z}_+$ with $m/n > \gamma$. Then $|a|_1 < |c|_1^{m/n}$. Hence

$$\left|\frac{a^n}{c^m}\right|_1 < 1 \Rightarrow \left|\frac{a^n}{c^m}\right|_2 < 1.$$

Therefore $|a^n|_2 < |c^m|_2$ so $|a|_2 < |c|_2^{m/n}$.

Similarly if $m/n < \gamma$ we have

$$|a|_2 > |c|_2^{m/n}$$

Therefore $|a|_2 = |c|_2^{\gamma}$. Thus $\gamma = \log |a|_1 / \log |c|_1 = \log |a|_2 / \log |c|_2$ and so

$$\frac{\log |a|_1}{\log |a|_2} = \frac{\log |c|_1}{\log |c|_2}$$

is equal to λ for some $\lambda \in \mathbb{R}, |\lambda| > 0$. Accordingly, $|a|_1 = |a|_2^{\lambda}$, completing the proof.

Given any function $|\cdot|$ on a field K satisfying axioms (i) and (ii) in Definition 1 we can use it to define a topology on K. For each $\varepsilon > 0$ and $x_0 \in K$ we defined the fundamental basis of neighbourhoods of x_0 by the inequalities $|x - x_0| < \varepsilon$. Axiom (iii) in Definition 1 ensures that our space is Hausdorff. We can define a metric d on K by putting d(a, b) = |a - b|.

Remark 20. The induced topology is the discrete topology whenever $|\cdot|$ is the trivial valuation.

Proposition 21. Let $|\cdot|_1$ and $|\cdot|_2$ be valuations on a field K. $|\cdot|_1$ and $|\cdot|_2$ induce he same topology on K if and only if they are equivalent.

Proof. (\Rightarrow) We may suppose that both $|\cdot|_1$ and $|\cdot|_2$ are non-trivial valuations on K. Suppose that a in in K with $|a|_1 < 1$. Thus $|a|_1 < 1 \Rightarrow |a|^n|_1 \to 0$ as $n \to \infty$. Since $|\cdot|_1$ and $|\cdot|_2$ induce the same topology, $|a^n|_2 \to 0$. But then $|a|_2 < 1$. The result now follows by Proposition 19.

Inequivalent valuations on a field K are independent in the following sense:

Proposition 22. Let $|\cdot|_1, \ldots, |\cdot|_H$ are non-trivial valuations on a field K with pairwise non-equivalence. Then there exists $a \in K$ such that

$$|a|_1 > 1$$
 while $|a|_i < 1$

for all $2 \leq j \leq H$.

Proof. The proof is via induction on H. Let H = 2 (base case). Since $|\cdot|_1$ is not the trivial valuation and $|\cdot|_1$ and $|\cdot|_2$ are not equivalent, there exists some $b \in K$ with $|b|_1 < 1$ and $|b|_2 \ge 1$. Similarly, since $|\cdot|_2$ is non-trivial, there exists $c \in K$ such that $|c|_2 < 1$ and $|c|_1 \ge 1$. Then we can take $a = cb^{-1}$. Notice that $|a|_1 > 1$ and $|a|_2 < 1$.

Suppose that H > 2 and the result holds for j = 2, ..., H - 1. Then there exists, by the inductive hypothesis, $b \in K$ with $|b|_1 > 1$ but $|b|_j < 1$ for all j = 2, ..., H - 1. We can also consider $|\cdot|_1$ and $|\cdot|_H$, and by the inductive hypothesis one can find $d \in K$ such that $|d|_1 > 1$ while $|d|_H < 1$.

Notice that if $|b|_H < 1$ we are done, since we can take a = b. If $|b|_H = 1$ then we can take $a = b^n d$ for n sufficiently large. If $|b|_H > 1$ we can take $a = \frac{b^n}{1+b^n}d$. a works for sufficiently large n since

$$\frac{b^n}{1+b^n} = \frac{1}{1+b^{-n}} \to \begin{cases} 1 & (|\cdot|_1 \text{ and } |\cdot|_H) \\ 0 & \text{all other valuations} \end{cases}$$

This completes the proof.

3. September 25: Approximation theorem and completion

3.1. Approximation theorem.

Theorem 23 (Approximation theorem). Let $|\cdot|_1, \ldots, |\cdot|_H$ be pairwise inequivalent, nontrivial valuations. Let $b_1, \ldots, b_H \in K$. Let $\varepsilon > 0$ be a positive real number. Then there exists an element $a \in K$ so that $|a - b_i|_i < \varepsilon$ for $i = 1, 2, \ldots, H$.

Proof. By Proposition 22, there exist $c_j \in K(1 \le j \le H)$ with $|c_j|_j > 1$ and $|c_j|_i < 1$ for all $i \ne j$. Notice that for $j = 1, \ldots, H$,

$$\left| \frac{c_j^n}{1 + c_j^n} \right|_i \to \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

as $n \to \infty$. The result now follows from the triangle inequality by taking

$$a = \sum_{j=1}^{H} \frac{c_j^n}{1 + c_j^n} b_j.$$

Remark 24. This can be viewed as an analogue of the Chinese Remainder Theorem.

Definition 25. Let K be a field and $|\cdot|$ be the valuation on K. We say that a sequence (a_1, a_2, \ldots) of elements of K converges to a limit b in K with respect to $|\cdot|$ if given $\varepsilon > 0$ there exists $n_0(\varepsilon)$ such that for $n > n_0(\varepsilon)$ we have $|a_n - b| < \varepsilon$.

Remark 26. By axiom (i) of Definition 1, if the limit exists it is unique.

Definition 27. We define a *Cauchy sequence* $(z_1, z_2, ...)$ to be a sequence such that for each $\varepsilon > 0$ there exists $n_1(\varepsilon)$ such that whenever $m, n > n_1(\varepsilon)$ we have $|a_m - a_n| < \varepsilon$. Note that if $(a_1, a_2, ...)$ has a limit then it is a Cauchy sequence.

Definition 28. A sequence $(a_1, a_2, ...)$ is said to be a *null sequence* with respect to $|\cdot|$ if it has limit zero.

Definition 29. A field K is complete with respect to $|\cdot|$ if every Cauchy sequence in K has a limit in K.

Remark 30. \mathbb{Q} is not complete with respect to $|\cdot|_{\infty}$ (the ordinary absolute value on \mathbb{Q}), since, for example, one can choose a Cauchy sequence which converges to $\sqrt{2}$.

So, what about \mathbb{Q} and $|\cdot|_p$? Let p = 5. We now will construct a sequence with respect to the 5-adic valuation $|\cdot|_5$ which does *not* have a limit in \mathbb{Q} . Here, $|\cdot|_5$ is normalized so that $|5|_5 = 5^{-1}$. To show that \mathbb{Q} is not complete with respect to $|\cdot|_5$, we construct a sequence of integers (a_1, a_2, \ldots) satisfying $a_n^2 - 6 \equiv 0 \pmod{5^{n+1}}$ and $a_{n+1} \equiv a_n \pmod{5^n}$ for all $n \in \mathbb{N}$. Define b_0, b_1, \ldots from $\{0, 1, 2, 3, 4\}$ inductively. Let $b_0 = 1$ and choose b_1 so that $(1 + b_1 5)^2 \equiv 1 + 2b_1 5 \equiv 6 \pmod{5^2}$. Thus $2_b 1 \equiv 1 \pmod{5}$ so we can choose $b_1 = 3$. More generally suppose that b_0, b_1, \ldots, b_n have been chosen hence determining a_1, \ldots, a_n . Then $a_n^2 = (b_0 + b_1 5 + \cdots + b_n 5^n)^2 \equiv 6 \pmod{5^{n+1}}$. Thus $(a_n + b_{n+1} 5^{n+1})^2 \equiv a_n^2 + 2b_{n+1} 5^{n+1} \equiv 6 + c5^{n+1} + 2b_{n+1} 5^{n+1} \equiv 6 + (c + 2b_{n+1})5^{n+1} \pmod{5^{n+2}}$ for some integer c. Thus it suffices to choose b_{n+1} so that $c + 2b_{n+1} \equiv 0 \pmod{5}$. Observe that such b_{n+1} can be found. Thus $a_{n+1}^2 \equiv 6 \pmod{5^{n+2}}$. Further, we have $a_{n+1} \equiv a_n \pmod{5^{n+1}}$. This completes the inductive construction.

Notice that $(a_1, a_2, ...)$ is a Cauchy sequence with respect to $|\cdot|_5$ since $a_{n+1} \equiv a_n \pmod{5^{n+1}}$ for n = 1, 2, ... If $(a_1, a_2, ...)$ converged to a limit d in \mathbb{Q} , then since $|a_n^2 - 6|_5 \leq 5^{-n+1}$ we see that $|d^2 - 6|_5 = 0$. In other words, $d = \sqrt{6} \in \mathbb{Q}$ and this is a contradiction. One can show in a smiller manner that \mathbb{Q} is not complete with respect to any p-adic valuation $|\cdot|_p$. Plainly, the sequence $(5^n)_{n=1}^{\infty}$ is a null sequence with respect to $|\cdot|_5$ but is not a Cauchy sequence with respect to $|\cdot|_\infty$ or any p-adic valuation $|\cdot|_p$ where $p \neq 5$.

Definition 31. Let K be a field with a valuation $|\cdot|$. Let L be a field containing K. A valuation $|\cdot|_1$ on L extends $|\cdot|$ on K if $|\alpha|_1 = \alpha$ for all $\alpha \in K$.

Definition 32. Let K be a field with a valuation on $|\cdot|$. We say that a field L together with a valuation $|\cdot|_1$ with extends on K is a *completion of* K if L is complete and L is the closure of K in the topology induced by $|\cdot|_1$.

Given a field K with valuation $|\cdot|$, how do we construct a completion of K with respect to $|\cdot|$? First suppose that $|\cdot|$ satisfies the triangle inequality. The Cauchy sequences of elements of K form a ring (call this ring R) under term-wise addition and multiplication, i.e. $(a_n) + (b_n) = (a_n + b_n)$ and $(a_n) \cdot (b_n) = (a_n b_n)$. Then the set of all null sequences of elements in K with respect to $|\cdot|$ (call this set N) forms a maximal ideal in the ring R. Thus L := R/N formulates a field. We now define a valuation $|\cdot|_1$ on L in the following way. If $\alpha \in L$, then $\alpha = (a_1, a_2, \ldots) + N$ where (a_1, a_2, \ldots) is a Cauchy sequence in K with respect to $|\cdot|$. Define $|\alpha|_1 = \lim_{n \to \infty} |a_n|$. However, we need to ensure that $|\cdot|_1$ is well-defined. We first check that the limit exists, and then that the limit does not depend on our choice of representative of the equivalence class we choose. We first check that $(|a_n|)_n$ is a Cauchy sequence. Notice by the triangle inequality that:

- $|a_n| \leq |a_n a_m| + |a_m| \Rightarrow |a_n| |a_m| \leq |a_n a_m|$ and $|a_m| |a_n| \leq |a_n a_m|$. Hence, $||a_n| - |a_m||_{\infty} \leq |a_n - a_m|$. Thus we see that the sequence $(|a_n|)$ is Cauchy and so converges to a limit.
- Now we need to show that the choice of a representative does not matter (well-defined). Note that if $(a_1, a_2, ...) \sim (b_1, b_2, ...)$, then we must show that $\lim |a_n| = \lim |b_n|$. But then

$$||a_n| - |b_n||_{\infty} \le |a_n - b_n|.$$
(2)

Since $(a_n - b_n)_n$ is a null sequence we see from (2) that $\lim |a_n| = \lim |b_n|$.

Finally, we must check that $|\cdot|_1$ is a valuation on L but this is routine. First, we can (naturally) embed K in L with the map $\varphi : K \to L$ by $\varphi(a) = (a, a, a, ...) + N$. Then φ is an injective field homomorphism satisfying $|a| = |\varphi(a)|_1$. Let $K' = \varphi(K)$. Then K' is everywhere dense in L. For let $\alpha = (a_1, a_2, ...) \in L$, then given $\varepsilon > 0$ there exists $n_0(\varepsilon)$ such that for all $n > n_0(\varepsilon)$, we have $|\alpha - \varphi(a_n)|_1 < \varepsilon$ since $(a_1, a_2, ...)$ is a Cauchy sequence.

We now verify if L is complete. Let $(a_n)_n$ be a Cauchy sequence in L. Since K' is everywhere dense in L, there exists a sequence $(\varphi(a_n))_n$ such that $|\varphi(a_n) - a_n|_1 < \frac{1}{n}$. Thus, the sequence $(\varphi(a_n) - a_n))_n$ is a null sequence in L. Hence $(\varphi(a_n))_n$ is a Cauchy sequence in L. Thus $(a_n)_n$ is a Cauchy sequence in K. In particular, it determines an element β in L with

$$\lim_{n \to \infty} |\varphi(a_n) - \beta|_1 = 0.$$

Thus $\lim_{n\to\infty} |a_n - \beta|_1 = 0$ so $(a_n)_n$ converges to an element in L.

4. September 30

Let $|\cdot|_p$ be the *p*-adic valuation on \mathbb{Q} normalized so that $|p|_p = p^{-1}$. We will denote by \mathbb{Q}_p "the" completion of \mathbb{Q} with respect to $|\cdot|_p$. We say "the" to refer to the construction described previously. Further, we will denote the valuation $|\cdot|_{1_p}$ on \mathbb{Q}_p by $|\cdot|_p$.

Theorem 33. Every $\alpha \in \mathbb{Q}_p$ with $\alpha_p \leq 1$ has a unique representative Cauchy sequence $(a_n)_n$ such that:

- $a_n \in \mathbb{Z}$ for all $n = 1, 2, 3, \ldots$
- $0 \le a_i < p^i \text{ for } i = 1, 2, \dots$
- $a_{i+1} \equiv a_i \pmod{p^i}$ for $i = 1, 2, 3, \dots$

Proof. We first prove uniqueness. Suppose that $(a_n)_n$ and $(b_n)_n$ are two such sequences representing some $\alpha \in \mathbb{Q}_p$. If $(a_n)_n \neq (b_n)_n$ then for some integer *i*, we have $a_i \neq b_i$. But then for n > i, it is known that $a_n \equiv a_i \pmod{p^i}$ and $b_n \equiv b_i \pmod{p^i}$. Hence $a_n \not\equiv b_n \pmod{p^i}$ therefore $|a_n - b_n|_p \ge p^{-i}$. Thus $(a_n - b_n)$ is not a null sequence, hence a contradiction. It remains to show that each element in \mathbb{Q}_p has such a representation. To do so, we will need the following result:

Lemma 34. If $x \in \mathbb{Q}$ and $|x|_p \leq 1$ then for any positive integer *i* there exists an integer *c* with $0 \leq c < p^i$ such that $|x - c|_p \leq p^{-i}$.

Proof of Lemma. The result is immediate when x = 0. So suppose $x \neq 0$. Now write x = a/b with (a, b) = 1. Since $|\frac{a}{b}|_p \leq 1$, we see that $p \nmid b$. Thus there exist integers m and n such that $mb + np^i = 1$. Put $c_1 = am$. Then

$$\left|\frac{a}{b} - c_1\right|_p = \left|\frac{a}{b}\right|_p \left|1 - \frac{c_1 b}{a}\right|_p = |1 - mb|_p \le p^{-i}.$$

We now choose c with $0 \le c < p^i$ so that $c \equiv c_1 \pmod{p^i}$.

Now we are ready to prove existence. Suppose that $(b_n)_n$ a Cauchy sequence which represents α . Then for each positive integer j there exists an N(j) such that $|b_i - b_k|_p \leq p^{-j}$ whenever i, k > N(j). We may suppose, without loss of generality, that $N(1) < N(2) < \cdots$ so $N(j) \geq j$. Further, $|b_i|_p \leq 1$ for $i \geq N(1)$ since for all k > N(1) we have (by the strong triangle inequality)

$$|b_i|_p = |(b_k) + (b_i - b_k)|_p \le \max(|b_k|_p, |b_i - b_k|_p) \le \max\left(|b_k|_p, \frac{1}{p}\right).$$

But $|\alpha|_p \leq 1$ and $|b_k|_p \to |\alpha|_p$ as $k \to \infty$ hence $|b_i|_p \leq 1$.

We now use Lemma 34 to find a sequence of integers $(a_n)_n$ with $0 \le a_j < p^j$ for j = 1, 2, ...,and

$$|a_j - b_{N(j)}|_p \le p^{-j}.$$

We now show that $a_{j+1} \equiv a_j \pmod{p_j}$. We have

$$|a_{j+1} - a_j|_p = |(a_{j+1} - b_{N(j+1)}) + (b_{N(j+1)} - b_{N(j)}) + (b_{N(j)} - a_j)|_p$$

$$\leq \max(|a_{j+1} - b_{N(j+1)}|_p, |b_{N(j+1)} - b_{N(j)}|_p, |b_{N(j)} - a_j|_p)$$

$$\leq \max(p^{-j+1}, p^{-j}, p^{-j}) \leq p^{-j}.$$

Therefore $a_{j+1} \equiv a_j \pmod{p^j}$. Further, $(a_i - b_i)_i$ is a null sequence since for each positive integer j we have, for i > N(j),

$$|a_i - b_i|_p = |(a_i - a_j) + (a_j - b_{N(j)}) + (b_{N(j)} - b_i)|_p$$

$$\leq \max(|a_i - a_j|_p, |a_j - b_{N(j)}|_p, |b_{N(j)} - b_i|_p)$$

$$\leq \max(p^{-j}, p^{-j}, p^{-j}) = p^{-j}.$$

Thus $|a_i - b_i|_p \to 0$ as $i \to \infty$.

If $a \in \mathbb{Q}_p$ and $|a|_p > 1$ then for some integer k, $|p^k a|_p \leq 1$. We can find an appropriate representative for $p^k a$, say $(a_i)_i$. We then represent a by $(p^{-k}a_i)_i$. Now suppose that $\alpha \in \mathbb{Q}_p$ with $|\alpha|_p \leq 1$. Let $(a_i)_i$ be a sequence as in Theorem 33 which represents α . We can represent a_i in base p, i.e., $a_i = b_0 + b_1 p + \dots + b_{i-1} p^{i-1}$ where $b_0, b_1, \dots, b_{i-1} \in \{0, 1, \dots, p-1\}$. Since $a_{i+1} \equiv a_i \pmod{p^i}$ we have $a_{i+1} = b_0 + b_1 p + \dots + b_i p^i$. Thus we can view α has having the unique power series expansion $\alpha = b_0 + b_1 p + b_2 p^2 + \dots$. Further, if $a \in \mathbb{Q}_p$ and $|\alpha|_p = p^k$ for $k \in \mathbb{Z}_+$ then α has the power series expansion $\alpha = b_{-k} p^{-k} + b_{-k+1} p^{-k+1} + \dots + b_0 + b_1 p + b_2 p^2 + \dots$.

Remark 35. This is a natural representation in terms of digits $\{0, 1, 2, \ldots, p-1\}$. There are other "natural" representations, for instance the Teichmüller representation. It is worth noting that each element $\alpha \in \mathbb{Q}_p$ has a unique base p expansion. Contrast this with the base 10 expansion of elements \mathbb{R} . Then of course 1.0000... and 0.999... are both equal to 1.

Definition 36. \mathbb{Z}_p is the set of *p*-adic integers and is defined by

$$\mathbb{Z}_p := \{ x \in \mathbb{Q}_p, |x|_p \le 1 \}.$$

Addition, subtraction, multiplication, and division can be performed as in \mathbb{R} but with carrying taken from right to left instead of left to right.

Let k be a field and P an indeterminate over k. Let k(T) be the field of rational functions in T with coefficients in k. Let γ be a real number with $0 < \gamma < 1$. For any $\alpha \in k(T)$, we can write

$$\alpha = T^a \frac{f(T)}{g(T)}$$

where $f, g \in k[T]$ with $f(0), g(0) \neq 0$ and $a \in \mathbb{Z}$. We define a valuation $|\cdot|$ on k(T) by $|\alpha| = \gamma^a$.

Let k((T)) be the completion of k(T) with respect to $|\cdot|$. Denote the expansion of $|\cdot|$ from k(T) to k((T)) by $|\cdot|$. Let $N \in \mathbb{Z}_+$ and let $(f_N, f_{N+1}, ...)$ be a sequence of elements of k. Then put

$$f^{(m)} = \sum_{n=N}^{m} f_n T^n$$

for $m = N, N+1, \ldots$ Note that $f^{(m)} \in k[T]$ for $m = N, N+1, \ldots$ The sequence $(f^{(m)})_{m=N}^{\infty}$ is a Cauchy sequence of elements of k(T) with respect to $|\cdot|$, since

$$|f^{(i)} - f(j)| \le \gamma^{\min(i,j)+1}.$$

Denote the element of k((T)) of which $f^{(m)}$ for which $(f^{(m)})_{m=N}^{\infty}$ is a representative by

$$f(T) = \sum_{\substack{m=N\\9}}^{\infty} f_n T^n.$$

5. October 2

Recall that k((T)) is the completion of k(T) with respect to $|\cdot|$. Let $f(T) = \sum_{n=N}^{\infty} f_n T^n, f_n \in k$. f is the limit of $(f^{(m)})_{m=N}^{\infty}$ where $f^{(m)}(t)$ is the partial sum from N to m. Conside the set S of all expressions

$$\sum_{n \gg -\infty} f_n t^n$$

where $f_n \in k$. When we say $n \gg -\infty$, we mean that there exists some integer $N \in \mathbb{Z}$ such that $f_n = 0$ for n < N. S forms a commutative ring with identity under the usual rules for multiplying and adding the power series.

Let
$$f \in S \setminus \{0\}$$
. Then $f(T) = T^a b(1 + \sum_{n=1}^{\infty} g_n T^n)$ for $a \in \mathbb{Z}$ and $b \in k \setminus \{0\}$. Put
$$h(T) = T^{-a} b^{-1} \left(1 + \sum_{m=1}^{\infty} \left(-\sum_{n=1}^{\infty} g_n T^n\right)\right) = \sum_{n \gg -\infty} h_n T^n.$$

Further, f(T)h(T) = 1. Thus S is a field. Note that $k(T) \subseteq S$ and the closure of k(T) with respect to $|\cdot|$ is contained in S Thus S is isomorphic to k((T)).

Definition 37. We define k[[T]] to be the element of k((T)) with $|f| \leq 1$. Then $f \in k[[T]] \Leftrightarrow f = \sum f_n T^n$. k[[T]] is a subring of k((T)). It is the ring of formal power series with coefficients in k.

Definition 38. $f \in \mathbb{Q}[[T]]$ with $f = \sum_{n=0}^{\infty} f_n T^n$ is said to satisfy Eisenstein's condition if there is a non-zero integer l such that $l^n f_n$ is an integer for all $n \ge 0$.

Theorem 39 (Eisenstein's theorem). Let $f \in \mathbb{Q}[[T]]$. If f satisfies a non-trivial polynomial equation with coefficients in $\mathbb{Q}[T]$ then f satisfies Eisenstein's condition.

Proof. We may suppose that f satisfies $g_0(T) + g_1(T)f(T) + \ldots g_J(T)f(T)^J = 0$. Not all of the g_j 's are the zero polynomial and $g_j \in \mathbb{Q}[T]$ for $j = 0, 1, \ldots, J$. Let us suppose that J is minimal. For indeterminates X and Y, put

$$H(X) = \sum_{j=0}^{J} g_j(T) X^j \in \mathbb{Q}[T, X],$$

and $H(X+Y) = H(X) + H_1(X)Y + \cdots + H_J(X)Y^J$ where $H_j(X) \in \mathbb{Q}[T,X]$. Since J is minimal, we have $H_1(f) \neq 0$. Of course H(f) = 0. Now define the integer m as follows: $|H_1(f)| = \gamma^m$. Obviously we have $m \geq 0$. Put

$$f(T) = u(T) + T^{m+1}v(T),$$

where $u(T) = f_0 + f_1 T + \cdots + f_{m+1} T^{m+1} \in \mathbb{Q}[T]$ and $v(T) = 0 + f_{m+2} T + f_{m+3} T^2 + \cdots \in \mathbb{Q}[[T]]$. Notice that it suffices to show that v(T) satisfies Eisenstein's condition. Since H(f) = 0, we have

$$0 = H(u + T^{m+1}v) = H(u) + T^{m+1}H_1(u)v + \sum_{j\geq 2} T^{(m+1)j}H_j(u)v^j.$$
(3)

We have $H(u), H_1(u), \ldots, H_j(u)$ are in $\mathbb{Q}[T]$. Since $|H_1(f)| = \gamma^m$ we see that T^{2m+1} divides H(u) and so divide the terms in (3) by T^{2m+1} to get

$$0 = h + h_1 v + h_2 v^2 + \dots + h_J v^J$$
(4)

where h, h_1, \ldots, h_J are in $\mathbb{Q}[T], h_1(0) \neq 0, h_j(0) = 0$ for $2 \leq j \leq J$. Without loss of generality, we may suppose that h, h_1, \ldots, h_J are in $\mathbb{Z}[T]$ by multiplying both sides of (4) by an appropriate non-zero integer. Let $l = h_1(0)$ so l is a non-zero integer. Recall that v(0) = 0. Write $v(T) = 0 + v_1T + v_2T^2 + \cdots$ and re-label f_{m+2} as v_1 , etc. We prove via induction on n that $l^n v_n$ is an integer. To see this it suffices to examine the coefficients on T^n in the expansion (4). In particular, from (4),

$$0 = (a_0^{(0)} + a_1^{(0)}T + \dots + a_{N_0}^{(0)}T^{N_0}) + (a_0^{(1)} + a_1^{(1)}T + \dots + a_{N_1}^{(1)}T^{N_1})(v_1T + v_2T^2 + \dots) \vdots + (a_0^{(J)} + a_1^{(J)}T + \dots + a_{N_J}^{(J)}T^{N_J})(v_1T + v_2T^2 + \dots)^J.$$

Note that $a_0^{(i)} = 0$ for all i = 1, 2, ..., J. Therefore, lv_n is a sum of terms of the form $a \prod_{m < n} v_m^{r_m}$, where $a \in \mathbb{Z}$ and $\sum_{m < n} mr_m < n$ since $h_i(0) = 0$ for all $2 \le i \le J$. Then the result follows by induction.

Notice that, for example, $f(T) = \sum \frac{T^n}{n} \in \mathbb{Q}[[T]]$ does not satisfy non-trivial a polynomial expansion over $\mathbb{Q}(T)$ by Eisenstein's theorem. Therefore it is not algebraic over $\mathbb{Q}(T)$.

Remark 40. The natural question to ask is what the value of l will look like. Quantitative results refining the theorem have been given by Coates, Schmidt, Dwork, and van der Poorten.

6. October 7

Theorem 41 (Ostrowski's theorem). Let k be a field which is complete with respect to an archimedean valuation $|\cdot|$ on k. Then k is isomorphic to \mathbb{C} or \mathbb{R} , and the valuation is equivalent to $|\cdot|_{\infty}$, the ordinary absolute value.

Proof. k is of characteristic 0 (since otherwise the valuation must be non-archimedean), so it contains the rationals. Thus there exists the valuation induced on \mathbb{Q} by $|\cdot|$, and $|\cdot|$ is archimedean and equivalent to the ordinary absolute values $|\cdot|_{\infty}$ on \mathbb{Q} . Since k is complete it contains the completion of \mathbb{Q} with respect to $|\cdot|$. This completion is \mathbb{R} and $|\cdot|$ restricted to \mathbb{R} . Clearly $|\cdot|$ is equivalent to $|\cdot|_{\infty}$ on \mathbb{R} . We now distinguish two cases:

- (1) k contains a solution to $i^2 + 1 = 0$
- (2) k does not contain a solution to $i^2 + 1 = 0$

We shall now prove some technical propositions. Our aim is to reduce the proof to the case when k is an extension of \mathbb{C} . We shall show that if k is different from \mathbb{C} we get a contradiction.

Lemma 42. Any archimedean valuation $|\cdot|$ on \mathbb{C} is equivalent to the ordinary absolute value $|\cdot|_{\infty}$ on \mathbb{C} .

Proof of Lemma 42. Without loss of generality we may suppose that $|\cdot|$ on \mathbb{C} satisfies the triangle inequality. Since $|\cdot|$ induces an archimedean valuation on \mathbb{Q} it is equivalent to $|\cdot|_{\infty}$ on \mathbb{Q} and hence to $|\cdot|_{\infty}$ on \mathbb{R} . Thus there exists some $\lambda > 0$ such that for all $a \in \mathbb{R}$, we have $|a| = |a|_{\infty}^{\lambda}$. Let $\alpha = a + ib$ with $a, b \in \mathbb{R}$. We have $|a|_{\infty} \leq |\alpha|_{\infty}$ and $|b|_{\infty} \leq |\alpha|_{\infty}$. Thus

$$\alpha| = |a+ib| \le |a| + |ib| \le |a| + |b| \le |a|_{\infty}^{\lambda} + |b|_{\infty}^{\lambda} \le 2|\alpha|_{\infty}^{\lambda}.$$
(5)

If $|\cdot|$ and $|\cdot|_{\infty}$ are inequivalent, then given $\varepsilon > 0$ we can find $\beta \in \mathbb{C}$ such that $|\beta|_{\infty} < \varepsilon$ and $|\beta| \geq 1$. But this contradicts (5) when ε is sufficiently small. The result follows.

We will now show that if k does not contain i, in other words $T^2 + 1$ is irreducible over k then we can extend our valuation to k(i).

Lemma 43. Let k be a field which is complete with respect to an archimedean valuation $|\cdot|$. Suppose that $T^2 + 1$ is irreducible over k. Then there is a positive real number θ such that for all $a, b \in k$, we have

$$|a^{2} + b^{2}| \ge \theta \max(|a|^{2}, |b|^{2})$$
(6)

Proof. Again suppose $|\cdot|$ satisfies the triangle inequality. We shall show that we can take $\theta = \frac{|4|}{1+|4|}$. Observe that we may suppose that $a, b \neq 0$. By homogeneity of (6), it suffices to show that if there exists $c_1 \in k$ with $|c_1| \leq 1$ and $|c_1^2 + 1| < \theta$ then $T^2 + 1$ is reducible over k. Put $\delta_1 = |c_1^2 + 1|$. By the triangle inequality,

$$1 = |1| = |c_1^2 + 1 - c_1^2| \le |c_1^2 + 1| + |c_1|^2,$$

so $|c_1|^2 \ge 1 - \delta_1 > 1 - \theta$. Put $c_2 = c_1 + h_1$ where $h_1 \in k$ and to be chosen. Then $c_2^2 + 1 = c_1^2 + 2c_1h_1 + h_1^2$. We choose $h_1 = -\frac{c_1^2 + 1}{2c_1}$ and put $\delta_2 = |c_2^2 + 1|$. We have

$$\delta_2 = |c_2^2 + 1| = |h_1^2| = \frac{|c_1^2 + 1|^2}{|4||c_1|^2} = |c_1^2 + 1|\frac{|c_1^2 + 1|}{|4||c_1|^2} = \delta_1\gamma,$$

where $\gamma = \frac{|c_1^2+1|}{|4||c_1|^2} < \frac{\theta}{|4|(1-\theta)} \leq 1$. Having constructed c_2 now we can repeat this process to construct c_3, c_4, \ldots , with $\delta_3 = |c_3^2+1| \leq \delta_2 \gamma \leq \delta_1 \gamma^2$ and more generally, $\delta_n = |c_n^2+1| < \theta \gamma^{n-1}$ for $n = 2, 3, \ldots$. Further,

$$|c_{n+1} - c_n|^2 = |h_n|^2 = \delta_{n+1} \le \theta \gamma^n.$$

Therefore, $|c_{n+1} - c_n| < \sqrt{\theta \gamma^n}$. Notice that then $(c_n)_{n=1}^{\infty}$ is a Cauchy sequence with respect to $|\cdot|$ and since k is complete with respect to $|\cdot|$ we see that the sequence converges to an element $c \in k$. But then $|c^2 + 1| = \lim_{n \to \infty} |c_n^2 + 1| = 0$ so $c^2 + 1 = 0$. Thus $T^2 + 1$ is reducible over k.

Lemma 44. Let k be complete with respect to an archimedean valuation $|\cdot|$. Suppose that $T^2 + 1$ is irreducible in k[T]. Then there is an extension of $|\cdot|$ to k(i) where $i^2 = -1$.

Proof. We define the function $|\cdot|_1$ on k(i) by $|a+ib|_1 = |a^2+b^2|^{1/2}$, for all $a, b \in k$. We now check that $|\cdot|_1$ is a valuation on k(i) which extends $|\cdot|$ on k. First, note that $|\cdot|_1$ agrees with $|\cdot|$ on k. It remains to show that $|\cdot|_1$ is a valuation on k(i).

Note that since $i \notin k$ we see that property (i) of Definition 1 holds for $|\cdot|_1$. Property (ii) is immediate. For property (iii) suppose $|a + ib| \le 1$ with $a, b \in k$. Then by Lemma 43,

$$|a|, |b| \le \theta^{-1/2}$$

and so

$$\begin{aligned} |1+a+ib|_1^2 &\leq |(1+a)^2+b^2| = |1+2a+a^2+b^2| \leq 1+|2||a|+|a|^2+|b|^2\\ &\leq 1+2\theta^{-1/2}+2\theta^{-1}=C^2, \end{aligned}$$

as required.

We are now able to conclude the proof of Ostrowski's theorem. By Lemma 44, we may suppose that k contains \mathbb{C} and observe that our valuation $|\cdot|$ on k is equivalent to $|\cdot|_{\infty}$ when restricted to \mathbb{C} . Suppose then that $\mathbb{C} \subsetneq k$. We shall show that this is impossible. Accordingly, let $\alpha \in k \setminus \mathbb{C}$. Consider the map $f : \mathbb{C} \to \mathbb{R}$ given by $f(a) = |\alpha - a|$. Observe that f is continuous. Considering f on the compact subset of \mathbb{C} given by a with $|a| \leq 3|\alpha|$ we see that f achieves on absolute minimum at some element $b \in \mathbb{C}$. Put $\beta = \alpha - b$. Notice that $|\beta| > 0$ since $\alpha \notin \mathbb{C}$. Now pick a non-zero element $c \in \mathbb{C}$ with $0 < |c| < |\beta|$. Next let n be a positive integer. Then

$$\frac{\beta^n - c^n}{\beta - c} = \prod_{\substack{\zeta^n = 1\\\zeta \neq 1}} (\beta - \zeta c).$$

Observe $\beta - \zeta c \ge |\beta|$ hence

$$\left|\frac{\beta^n - c^n}{\beta - c}\right| \ge |\beta|^{n-1}.$$

Thus

$$\frac{\beta-c}{\beta} \leq \frac{|\beta^n-c^n|}{|\beta|^n} = \left|1 - \left(\frac{c}{\beta}\right)^n\right| \leq 1 + \left|\frac{c}{\beta}\right|^n \leq 1 + \left(\frac{|c|}{|\beta|}\right)^n.$$

Since $|c| < |\beta|$ we see on letting $n \to \infty$ that $|\beta - c| \le \beta$. Therefore $|\beta - c| = |\beta|$. We can repeat this argument now with $\beta - c$. In this way we find that for each $m \in \mathbb{Z}_+$, we have $|\beta - mc| = |\beta|$. Thus, now apply the triangle inequality on mc:

$$m|c| = |m||c| = |mc| \le |\beta| + |\beta - mc| \le 2|\beta|$$

for all $m \in \mathbb{Z}_+$. But |c| > 0 and this is a contradiction. Hence, we can't extend this valuation beyond \mathbb{C} .

7. October 9: Focus on Non-Archimedean valuation

Let $|\cdot|$ be a non-archimedean valuation on a field k. We denote by

$$\theta = \{ a \in k : |a| \le 1 \},\$$

and the ring of $|\cdot|$ -integers. The set

$$\mathfrak{p} = \{a \in k : |a| < 1\}$$

is a maximal ideal in θ , since if we add any element $a \in \theta \setminus \mathfrak{p}$ with |a| = 1 then $a^{-1} \in \mathfrak{p}$ so $1 \in \mathfrak{p}$.

Definition 45. We call θ/\mathfrak{p} the *residue class field*. The set of values $\{|a|, a \in k\}$ assumed by elements of a under the valuation is known as the valuation group.

Definition 46. We say that the valuation is *discrete* if the valuation group is a discrete subset of \mathbb{R}^+ under the usual topology on \mathbb{R} .

Remark 47. Note that the valuation group is a subgroup of \mathbb{R}^+ . Observe that the valuation group of k under $|\cdot|$ is the same as the valuation group of \overline{k} under $|\cdot|$ where $|\cdot|$ denotes the extension of $|\cdot|$ to \overline{k} since if |b| < |c| then |b+c| = |c|. This is discrete if there exists a $\delta > 0$ such that $1 - \delta < |a| < 1 + \delta$ implies |a| = 1.

Lemma 48. A non-archimedean valuation $|\cdot|$ is discrete if and only if the maximal ideal \mathfrak{p} is principal.

Proof. (\Leftarrow) Since \mathfrak{p} is principal there is an element $\pi \in k$ such that $\mathfrak{p} = (\pi)$. Suppose that $a \in k$ with |a| < 1. Then we have $a = \pi b$ for some $b \in \mathbb{Q}$. Therefore $|a| = |\pi b| = |\pi| \cdot |b| \le |\pi| < 1$. Similarly, if $a \in k$ with |a| > 1 then $|a^{-1}| < 1$ so $|a^{-1}| \le |\pi|$. Thus $|a| \ge |\pi|^{-1}$. Accordingly, if $a \in k$ with $|\pi| < |a| < |\pi|^{-1}$ then |a| = 1 as required.

(⇒) If the valuation $|\cdot|$ is discrete, then the set $\{|a|: a \in k, |a| < 1\}$ attains its maximum for some $\pi \in k$. Then if $a \in k$ with |a| < 1 we have $a = \pi b$ with $|b| \leq 1$ hence $\mathfrak{p} = (\pi)$. \Box

Definition 49. Let $|\cdot|$ be a discrete non-archimedean valuation on a field k. Then an element π for which $\mathfrak{p} = (\pi)$ is said to be a *prime element for the valuation*. Then for any element $b \in k$ with $b \neq 0$ we have that $|b| = |\pi^n| = |\pi|^n$ for some integer n. n is known as the order of b and denoted by $\operatorname{ord}_{\mathfrak{p}} b$.

Definition 50. Suppose that a_1, a_2, \ldots are in k. Then the infinite sum $\sum a_n$ converges to s with respect to the valuation $|\cdot|$ if

$$s = \lim_{N \to \infty} \sum_{n=1}^{N} a_n.$$

Since

$$\left|\sum_{n=1}^{N} a_n\right| \le \max_{1 \le n \le N} |a_n|$$

we have

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \max_{\pi} |a_n|.$$

Lemma 51. Suppose that k is complete. Then

$$\sum_{n=1}^{\infty} a_n \text{ converges} \Leftrightarrow \lim_{n \to \infty} |a_n| = 0.$$

Proof. (\Rightarrow) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_{n+1} - s_n = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0.$ (\Leftarrow) Suppose $|a_n| \to 0$. Let M > N. Then

$$|S_M - S_N| = |a_{N+1} + \dots + a_M| \le \max_{N+1 \le i \le M} |a_i|.$$

Given $\varepsilon > 0$ we can find $N_0(\varepsilon)$ such that for $M, N > N_0(\varepsilon)$, we have $|S_M - S_N| < \varepsilon$. Thus (s_n) is a Cauchy sequence in k. Since k is complete it converges to a element s in k.

Lemma 52. Let k be complete with respect to a discrete valuation $|\cdot|$ and let π be a prime. Let $A \subset \theta$ be a set of representatives for θ/\mathfrak{p} . Then every element a in θ has a unique representative in the form $a = \sum a_n \pi^n$ where $a_n \in A$ for $n = 0, 1, 2, \ldots$ Further, every infinite sum of this form converges to an element a with $a \in \theta$. *Proof.* The last assertion follows since $|a_n| \leq 1$ and $|\pi| < 1$. Thus $\lim_{n \to \infty} |a_n \pi^n| = 0$ and k is complete.

For our first claim, note that the valuation of she differences of two distinct elements of A is 1 hence for any $a \in \theta$ there is at most one element $a_0 \in A$ for which $|a - a_0| < 1$ by the strong triangle inequality. There is at least one such a_0 since A is a full set of representatives. Then $a - a_0 = \pi b_1$ for some $b_1 \in \theta$. Similarly, there is precisely one element $a_1 \in A$ such that $|b_1 - a_1| < 1$. So we have $b_1 = a_1 + \pi b_2$ for $b_2 \in \theta$. Thus for every positive integer N we have

$$a = a_0 + a_1\pi + a_2\pi^2 + \dots + a_N\pi^N + b_{N+1}\pi^{N+1}$$

with $b_{N+1} \in \theta$ and $a_i \in A$ for i = 0, 1, ..., N. Since $|b_{N+1}\pi^N| \to \infty$ as $N \to \infty$ the result follows.

Remark 53. The *p*-adic case is a special case of Lemma 52, with \mathbb{Z}_p with the valuation $|\cdot|_p$ and $\pi = p, A = \{0, 1, \dots, p-1\}$.

Remark 54. Also note that we can extend this result to k since every non-zero element $a \in k$ has $\pi^N a \in \theta$ for some $N \in \mathbb{Z}$.

Lemma 55. Let k be complete with respect to a discrete valuation. If the residue class field θ/\mathfrak{p} is finite then θ is compact.

Proof. Since $|\cdot|$ induces a metric on θ compactness is equivalent to sequential compactness. Thus it is enough to show that every sequence $(a^{(j)})$ has a convergent subsequence. For each j consider the representation

$$a^{(j)} = \sum_{n=0}^{\infty} a_{j,n} \pi^n \quad (a_{j,n} \in A).$$

Since A is finite then there exists an element $a_0 \in A$ for which $a_{j,0} = a_0$ for infinitely many positive integers j. We can then find infinitely many integers j for which $a_{j,0} = a_0$ and for which $a_{j,1} = a_1$ for some $a_1 \in A$. Continuing in this way we find an element $a = a_0 + a_1 \pi + \cdots$ in θ which is the limit of a convergent subsequence.

8. October 14

Lemma 56 (Hensel's Lemma). Let k be a field complete with respect to a discrete, nonarchimedean valuation $|\cdot|$, and let $f \in \theta[X]$. Let $a_0 \in \theta$ which satisfies

$$|f(a_0)| < |f'(a_0)|^2.$$
(7)

Then there exists an $a \in \theta$ for which f(a) = 0.

Example 57. In \mathbb{Z}_5 we showed that $f(X) = x^2 - 6$ has a root. By Lemma 56, it is enough to note that $\frac{1}{5} = |f(1)|_5 < |f'(1)|^2 = 1$.

Proof. Let $f_j(x)$ (j = 1, 2, ...) be defined by the identity

$$f(x+y) = f(x) + f_1(x)y + f_2(x)y^2 + \cdots$$
(8)

Observe that $f'(x) = f_1(x)$. Now by (7), $|f'(a_0)| > 0$ hence $f'(a_0) \neq 0$ and

$$\frac{|f(a_0)|}{|f'(a_0)|} < |f'(a_0)| \le 1.$$

Thus there exists $b_0 \in \theta$ such that

$$f(a_0) + b_0 f_1(a_0) = 0.$$

Therefore by (8),

$$|f(a_0 + b_0)| = |f_2(a_0)b^2 + f_3(a_0)b^3 + \dots| \le \max_{j\ge 2} |f_j(a_0)b^j|.$$

Since $f_j \in \theta[X], a_0 \in \theta$ then $|f_j(a_0)| \leq 1$. Therefore

$$|f(a_0 + b_0)| \le |b_0|^2 = \frac{|f(a_0)|^2}{|f'(a_0)|^2} \le \left(\frac{|f(a_0)|}{|f'(a_0)|^2}\right) \cdot |f(a_0)| < |f(a_0)|.$$

Also, we can expand $f_i(x+y)$ as we did for f to conclude that

$$|f_1(a_0 + b_0) - f_1(a_0)| \le |b_0| = \frac{|f(a_0)|}{|f'(a_0)|} < |f'(a_0)| = |f_1(a_0)|.$$

By the ultrametric inequality,

$$|f_1(a_0+b_0)| = |f_1(a_0)|.$$

We now put $a_1 = a_0 + b_0$ and repeat the process. Observe that

$$|f(a_1)| < |f(a_0)| < |f'(a_0)|^2 = |f'(a_1)|^2.$$

In this way we generate a sequence a_0, a_1, a_2, \ldots and b_0, b_1, b_2, \ldots of elements on θ . We have that $a_n = a_{n-1} + b_{n-1}$ for $n = 1, 2, \ldots$ and that

$$|f_1(a_n)| = |f_1(a_0)|$$

for n = 1, 2, ... Further, $|f(a_n)| < |f(a_{n-1})|$ for n = 1, 2, ... And since the valuation is discrete we see that

$$\lim_{n \to \infty} |f(a_n)| = 0$$

Furthermore,

$$|a_{n+1} - a_n| = |b_n| = \frac{|f(a_n)|}{|f_1(a_n)|} = \frac{|f(a_n)|}{|f_1(a_0)|}$$

tends to 0 a $n \to \infty$. Thus $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence and since k is complete it has a limit a in k. Since $|a_n| \leq 1$ for $n = 0, 1, 2, \ldots$ we see that $a \in \theta$. Finally,

$$\lim_{n \to \infty} |f(a_n)| = |f(a)| = 0,$$

so f(a) = 0.

Example 58. Let $p \neq 3$, and let $b \in \mathbb{Z}_p$ with $|b|_p = 1$ (i.e., b is a p-adic unit). If $b \equiv c^3 \pmod{p}$ for some integer c then $b = a^3$ for some a in \mathbb{Z}_p .

Proof. Let $f(x) = x^3 - b$ so $f'(x) = 3x^2$. Then $|f(c)|_p < |f'(c)|^2 = 1$. The result now follows by Hensel.

Lemma 59. Let k be complete with respect to a non-archimedean valuation $|\cdot|$. Let $b_{ij} \in k$ for $i, j \in \{0, 1, 2, ...\}$. Suppose that for each $\varepsilon > 0$, there exists a $\tau(\varepsilon)$ such that for $\max(i, j) > \tau(\varepsilon)$ we have $|b_{ij}| < \varepsilon$. Then the series

$$\sum_{i} \left(\sum_{j} b_{ij} \right) and \sum_{j} \left(\sum_{i} b_{ij} \right)$$

both converge and the sums are equal.

Proof. For each *i* with $1 \le i \le \tau(\varepsilon)$, $\sum_{j} b_{ij}$ converges since $|b_{ij} \to 0$ as $j \to \infty$. Further, for $i > \tau(\varepsilon)$,

$$\left|\sum_{j} b_{ij}\right| \max_{j} |b_{ij}| < \varepsilon.$$

Thus $\sum_{i} (\sum_{j} b_{ij})$ converges, and one can use the similar argument to prove that $\sum_{j} (\sum_{i} b_{ij})$ converges. Finally,

$$\left| \sum_{i=0}^{\tau(\varepsilon)} \sum_{j=0}^{\tau(\varepsilon)} b_{ij} - \sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} b_{ij} \right) \right| < \varepsilon$$
$$\left| \sum_{j=0}^{\tau(\varepsilon)} \sum_{i=0}^{\tau(\varepsilon)} b_{ij} - \sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} b_{ij} \right) \right| < \varepsilon.$$

Hence

and

$$\left|\sum_{i=0}^{\infty} \left(\sum_{j=0}^{\infty} b_{ij}\right) - \sum_{j=0}^{\infty} \left(\sum_{i=0}^{\infty} b_{ij}\right)\right| < \varepsilon_{j}$$

as required (since the inequality holds for any arbitrary ε).

Let $a_i \in k$ for i = 0, 1, 2, ..., and define the power series f by

$$f(x) := a_0 + a_1 x + a_2 x^2 + \cdots$$

Write

$$R^{-1} = \limsup_{n} |a_n|^{1/n},$$

so $0 \le R \le \infty$. For $b \in k$, the series $\sum_{n=0}^{\infty} a_n b^n$ converges if and only if $|a_n b^n| \to 0$ as $n \to \infty$. Let D be the domain of convergence of the series $\sum a_n x^n$. Then:

- if R = 0 then $D = \{0\}$.
- if $R = \infty$ then D = k.
- if $0 < R < \infty$ and $|a_n| \mathbb{R}^n \to 0$ then $D = \{b \in k : |b| \le R\}$
- if $0 < R < \infty$ and $|a_n| R^n \not\to 0$ then $D = \{b \in k : |b| < R\}.$

Lemma 60. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with coefficients in k, a field which is complete with respect to a non-archimedean valuation $|\cdot|$. Let D be the domain of convergence of f. Let $c \in D$. For m = 0, 1, 2, ..., put

$$g_m = \sum_{n \ge m} \binom{n}{m} a_n c^{n-m}.$$

Then the series

$$g(x) = \sum_{m=0}^{\infty} g_m x^m$$

has domain of convergence D and f(b+c) = g(b) for all $b \in D$.

Proof. Observe that the series defining g_m converges since $|\binom{n}{m}| \leq 1$ and $c \in D$. Now let $b \in D$. Then

$$f(b+c) = \sum_{n} a_n (b+c)^n = \sum_{n} \sum_{m \le n} \binom{n}{m} a_n c^{n-m} b^m.$$

This sum converges and by Lemma 59 we can rearrange so that

$$f(b+c) = \sum_{m=0}^{\infty} \left(\sum_{n \ge m} \binom{n}{m} a_n c^{n-m} \right) b^m = \sum_{m=0}^{\infty} g_m b^m = g(b).$$

Thus the domain of convergence of g includes D.

Reversing this argument we see that if b is in the domain of convergence of g and $c \in D$, then b + c is in D. Thus $b \in D$ and the domain of convergence of g equals that of f. \Box

Corollary 61. A function f defined by a power series is continuous in its domain of convergence.

Proof. We have f(b+c) = g(b) and g is continuous at 0. The result follows.

9. October 16

Theorem 62 (Strassman's theorem). Let k be complete with respect to a non-archimedean valuation $|\cdot|$, and let

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Suppose that $|a_n| \to 0$ as $n \to \infty$ with not all a_n 's zero. Then there is at most a finite number of $b \in \theta$ such that f(b) = 0. In fact, there are at most N such b where N satisfies

$$|a_N| = \max_n |a_n| \text{ and } |a_n| < |a_N| \text{ for } n > N.$$

Proof. We prove by induction on N. Suppose first that N = 0. Then notices that $b \in \theta$ with f(b) = 0. We have $0 = \sum_{n=0}^{\infty} a_n b^n,$

hence

$$a_0 = -\sum_{n=1}^{\infty} a_n b^n.$$
(9)

Observe that

$$-\sum_{n=1}^{\infty} a_n b^n \bigg| \le \max_{n\ge 1} |a_n b^n| \le \max_{n\ge 1} |a_n| < |a_0|$$

which contradicts (9).

Suppose then that N > 0 and f(b) = 0 with $b \in \theta$. Let $c \in \theta$. Then

$$f(c) = f(c) - f(b) = \sum_{n=0}^{\infty} a_n (c^n - b^n)$$
$$= (c - b) \sum_{n \ge 1} \sum_{j < n} a_n c^j b^{n-1-j}.$$

By Lemma 59, we can sum over powers of c, hence f(c) = (c-b)g(c), where $g(x) = \sum_{j=0}^{\infty} g_j x^j$ and $g_j = \sum_{r>0} a_{j+1+r} b^r$. Now we observe that

$$|g_j| \le \max_{n} |a_{j+1+r}| \le |a_N|.$$

Further, $|g_{N-1}| = |a_N|$ and $|g_n| < |a_N|$ for n > N - 1. Thus by our inductive hypothesis, g has at most N - 1 zeroes in θ and thus f has at most N zeroes in θ . The result follows. \Box

Corollary 63. Suppose f and g are power series over k which both converge in θ , and that g(b) = f(b) for infinitely many $b \in \theta$. Then $f \equiv g$.

Proof. f(x) - g(x) has infinitely many zeroes in θ . If not $f \neq g$, then f - g can only have finitely many zeroes in θ , a contradiction, by Starssman's theorem. The result follows. \Box

Corollary 64. Suppose that k has characteristic zero. Let f(x) be a power series over k which converges in θ . If f(x) = f(x+d) foursome $d \in \theta$, then f is constant.

Proof. Apply Strassman's theorem upon recognizing $f(x) = f(x+d) = f(x+2d) = \cdots$. For any $n \in \mathbb{Z}_+$ and any prime p, we have $|n!|_p = p^{-N}$, where

$$N = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \cdots .$$

Thus since

$$\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots < \frac{n}{p} + \dots = \frac{n}{p-1}$$

So we have

$$|n!|_p > p^{-\frac{n}{p-1}}.$$

Lemma 65. Let p be a prime. Let $b \in \mathbb{Q}_p$ with $|b|_p \leq p-1$ for $p \neq 2$ and with $|b|_w \leq 2^{-2}$. Then there is a power series

$$\Phi_b(x) = \sum_{n=0}^{\infty} \gamma_n x^n$$

with $\gamma_n \in \mathbb{Q}_p$ for which $|\gamma_n|_p \to 0$ as $n \to \infty$ and such that

$$(1+b)^r = \Phi_b(r)$$

for all $r \in \mathbb{Z}$.

Proof. We will first consider the case when $r \ge 0$. Then

$$(1+b)^r = \sum_{s=0}^r \binom{r}{s} b^s = \sum_{s=0}^\infty r(r-1)(r-2)\cdots(r-s+1)\frac{b^s}{s!}.$$

Observe that

$$\left|\frac{b^{s}}{s!}\right|_{p} \leq \frac{|b|_{p}^{s}}{p^{-\frac{s}{p-1}}} = |b|_{p}^{s} p^{\frac{s}{p-1}} \to 0 \text{ as } s \to \infty.$$

Thus the power series converges and we may express it as

$$\sum_{s=0}^{\infty} \left(\sum_{\substack{j=1\\19}}^{s} \theta_j r^j \right) \frac{b^s}{s!},$$

and so by Lemma 59 we may rearrange it to get

$$(1+b)^r = s \sum_{s=0}^{\infty} r(r-1) \cdots (r-s+1) \frac{b^s}{s!} = 1 + \left(\theta_1^{(s)} \sum_{s=1}^{\infty} \frac{b^s}{s!}\right) r + \left(\theta_2^{(s)} \sum_{s=2}^{\infty} \frac{b^s}{s!}\right) r^2 + \cdots$$

Put $\gamma_0 = 1$ and $\gamma_j = \theta_j \sum_{s=j}^{\infty} \frac{b^s}{s!}$ for j = 1, 2, ..., and then

$$(1+b)^r = \sum_{j=0}^{\infty} \gamma_j r^j$$

where $\gamma_j \in \mathbb{Q}_p$ and $|\gamma_j|_p \to 0$ as $j \to \infty$. Suppose that $r \in \mathbb{Z}_-$. Observe that for some positive integer m, we have $r + p^m > 0$. Furthermore, since $(a + b) = \sum_{j=0}^{\infty} \gamma_j r^j$ we see that for $m \in \mathbb{Z}_+$,

$$\lim_{m \to \infty} (1+b)^{p^m} = 1.$$

Note that since $r + p^m > 0$ we have

$$(1+b)^{r+p^m} = \sum_{j=0}^{\infty} \gamma_j (r+p^m)^j.$$

Letting $m \to \infty$ we see that

$$(1+b)^{r+p^m} \to (1+b)^r,$$

and

$$\sum_{j=0}^{\infty} \gamma_j (r+p^m)^j \to \sum_{j=0}^{\infty} \gamma_j r^j$$

because $\sum \gamma_j r^j$ is continuous in its domain of convergence, and $|p^m|_p \to 0$ as $m \to \infty$. \Box

Let r and s be integers and u_0 and u_1 be integers. Suppose $u_n = ru_{n-1} + su_{n-2}$ for $n = 2, 3, \ldots$. The sequence $(u_n)_{n=0}^{\infty}$ is a binary recurrence sequence with initial terms u_0, u_1 . Suppose $s \neq 0$ and $r^2 + 4s \neq 0$. Also suppose that u_0, u_1 not both 0. Let α, β be the roots of the associated polynomial $x^2 - rx - s$. By induction one can show that $u_n = a\alpha^n + b\beta^n$ for all $n \geq 0$, where

$$a = \frac{u_0\beta - u_1}{\beta - \alpha}, b = \frac{u_1 - u_0\alpha}{\beta - \alpha},$$

Observe that if $|\alpha| > |\beta$ then $|u_n| \to \infty$ as $n \to \infty$. If $|\alpha| = |\beta|$ and α/β is not a root of unity then again $|u_n| \to \infty$ as $n \to \infty$ but this is not as obvious.

Consider the sequence $(u_n)_n$, where $u_n = u_{n-1} - 2u_{n-2}$ for $n = 2, 3, \ldots$, and $u_0 = 0, u_1 = 1$. Then

$$(u_n)_{n=0}^{\infty} = (0, 1, 1, -1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, \dots).$$

Write

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
, where $\alpha = \frac{1 + \sqrt{-7}}{2}, \beta = \frac{1 - \sqrt{-7}}{2}$.

10. October 21

Let $\alpha = \frac{1+\sqrt{-7}}{2}$, $\beta = \frac{1-\sqrt{-7}}{2}$. Put $u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ for $n = 1, 2, \ldots$ Then the characteristic polynomial of the binary recurrence sequence $(u_n)_n$ is $x^2 - x + 2$.

Theorem 66 (Nagell). Let (u_n) be as above. Then $u_n = \pm 1$ only for n = 1, 2, 3, 5, 13.

Proof. Put $f(x) = x^2 - x + 2$. Observe that

$$11^{-1} = |22|_{11} = |f(5)|_{11} < |f'(5)|_{11} = |9|_{11} = 1$$

$$11^{-1} = |44|_{11} = |f(7)|_{11} < |f'(7)|_{11} = 1.$$

By Hensel's lemma, there exist α and β in \mathbb{Q}_{11} which are roots of f(x) with

$$\alpha \equiv 5 \pmod{11}, \beta \equiv 7 \pmod{11}.$$

Further by the proof of Hensel's Lemma we have $f(5) + b_0 9 = 0$, so $22 + b_0 9 = 0$, so $b_0 \equiv 11 \pmod{11^2}$. Thus $\alpha \equiv a_0 + b_0 \equiv 16 \pmod{11^2}$. Also, $f(7) + b_0 \cdot 13 = 0$ hence $\beta = 7 + 99 \pmod{11^2}$. We wish to apply Lemma 65. Accordingly by Fermat's little theorem, we have $\alpha^{10} \equiv 1 \pmod{11}$ and $\beta^{10} \equiv 1 \pmod{11}$.

Put $A = \alpha^{10}$ and $B = \beta^{10}$. We write n = r + 10s with $0 \le r \le 9$. So

$$u_{r+10s} = \frac{\alpha^r A^s - \beta^r B^s}{\alpha - \beta}.$$

First note that $u_{r+10s} \equiv u_r \pmod{11}$ for $s = 1, 2, \ldots$. By considering the first 10 values of our sequence we se that we can restrict our attention to r = 1, 2, 3, 5. Put $\alpha^{10} = A = 1 + a$ and $\beta^{10} = B = 1 + b$ so that $a \equiv 99 \pmod{11^2}$ and $b \equiv 77 \pmod{11^2}$. In fact, we have

r	$\alpha^r \pmod{11^2}$	$\beta^r \pmod{11^2}$
1	16	106
2	14	104
3	103	13
5	111	21
10	100	78

We now use Lemma 65 to develop

$$(\alpha - \beta)(u_{r+10s} \mp 1) = \alpha^r (1+a)^s - \beta^r (1+b)^s \mp \alpha - \beta \tag{10}$$

as a power series in s. Say $c_0 + c_1 s + c_2 s^2 + \cdots$, where \mp in (10) indicates that we take -1 for r = 1, 2 and +1 for r = 3, 5. Notice that for 1, 2, 3, 5, we have $c_0^{(r)} = 0$. We shall now suppress the index r and write $c_n^{(r)}$ as c_n for $n = 0, 1, 2, \ldots$. We now recall from the proof of Lemma 65 that

$$(1+b)^r = \sum_{n=0}^{\infty} \gamma_n r^n$$

with $\gamma_n = \sum_{s=n}^{\infty} \theta_s \frac{b^s}{s!}$ where $\theta_s \in \theta$. Thus if $|b|_{11} \leq 11^{-1}$ then

$$|\gamma_n|_{11} \le 11^{-2} \text{ for } n \ge 2$$

 $|\gamma_n|_{11} \le 11^{-3} \text{ for } n \ge 3.$

Thus $|c_n|_{11} \leq 11^{-2}$ for $n \geq 2$, and $|c_n|_{11} \leq 11^{-3}$ for $n \geq 3$. Thus it remains to estimate c_1 and c_2 .

We have

$$c_1 = \alpha^r \left(\sum_{s=1}^{\infty} (-1)^{s-1} \frac{a^s}{s!} \right) - \beta^r \left(\sum_{s=1}^{\infty} (-1)^{s-1} \frac{b^s}{s!} \right)$$
$$\equiv \alpha^r a - \beta^r b \pmod{11^2}.$$

For r = 1 we have

$$c_1 \equiv \alpha a - \beta b \pmod{11^2} \equiv 16 \cdot 99 - 106 \cdot 77 \pmod{11^2} \equiv 11(16 \cdot 9 - 106 \cdot 7) \pmod{11^2},$$

but $16 \cdot 9 - 106 \cdot 7 \equiv 7 \pmod{11}$, so $|c_1|_{11} = 11^{-1}$. Thus by Strassman, the function defined by power series expansion (10) has at most one zero in \mathbb{Q}_{11} . In fact, it has *exactly* one zero for r = 1 given by s = 0.

For r = 2, note that

$$c_1^{(2)} = c_1 \equiv \alpha^2 a - \beta^2 b \pmod{11^2}$$

 $\equiv 14 \cdot 99 - 104 \cdot 77 \pmod{11^2},$

so $|c_1|_{11} = 11^{-1}$. By Strassman, this is exactly one zero given by s = 0.

For r = 5, we have

$$c_1 = \alpha^5 a - \beta^5 b \equiv 111 \cdot 99 - 21 \cdot 77 \pmod{11^2}$$

so $|c_1|_{11} = 11^{-1}$. Again by Strassman, there is exactly one zero of the power series in \mathbb{Q}_{11} given by s = 0. Finally if r = 3 we have $c_1 \equiv \alpha^3 a - \beta^3 b \equiv 0 \pmod{11^2}$, so we need to look into c_2 as well. We have

$$\gamma_2 = \sum_{s \ge 2} \left(\sum_{i=1}^{s-1} \frac{(-1)^s (s-1)!}{i} \right) \frac{b^s}{s!}$$

in the notation of Lemma 65. Thus $\gamma_2 \equiv \frac{b^2}{2} \pmod{11^3}$ hence $c_2 \equiv \alpha^3 \frac{a^2}{2} - \beta^3 \frac{b^2}{2} \pmod{11^3}$. Computation of α and β by Hensel's lemma yields $\alpha \equiv 137 \pmod{11^3}$ and $\beta \equiv 1195 \pmod{11^3}$. Once we have computed α we can determine $\beta \mod 11^3$ immediately since $\alpha + \beta = 1$.

Next observe that $\alpha^{10} \equiv (137)^{10} \equiv 1189 \pmod{11^3}$. So $a \equiv 1188 \pmod{11^3}$. Further $\beta^{10} \equiv 199 \pmod{11^3}$, so $b \equiv 198 \pmod{11^3}$. Now since $2c_2 \equiv \alpha^3 a^2 - \beta^4 b^2 \pmod{11^3} \not\equiv 0 \pmod{11^3}$. Thus $|c_2|_{11} = 11^{-2}$. Therefore by Strassman's theorem, the power series at most has two zeroes. In fact it has actually 2 zeroes given by s = 0, 1. These zeroes correspond to $u_3 = -1$ and $u_{13} = -1$. Now that we dealt with all the possible arithmetic progressions, the proof is complete.

11. October 23 & October 28

Theorem 67. The only solutions to

$$x^2 + 7 = 2^m \tag{11}$$

for integers x and m are those with m = 3, 4, 5, 7, 15. The equation (11) is known as the Ramanujan-Nagell equation.

Proof. Plainly, for any solution of (11), x is an odd integer. Put x = 2y - 1. Then (11) becomes $y^2 - y + 2 = 2^{m-2}$. Let $\alpha = \frac{1+\sqrt{-7}}{2}$ and $\beta = \frac{1-\sqrt{-7}}{2}$ so

$$y^{2} - y + 2 = (y - \alpha)(y - \beta).$$
(12)

Let $K = \mathbb{Q}(\alpha)$. Then \mathcal{O}_K (the ring of integers of K) is a Euclidean domain with respect to the norm map. Thus \mathcal{O}_K is a UFD. The only units in \mathcal{O}_K are ± 1 . From (12), if we have a solution then

$$(y - \alpha)(y - \beta) = (\alpha\beta)^{m-2}.$$

Then since $\alpha + \beta = 1$ we see the α and β are coprime in \mathcal{O}_K . Thus either $y - \alpha = \pm \alpha^{m-2}$ or $y - \alpha = \pm \beta^{m-2}$. Consider the first situation. Then we have $y - \beta = \pm \beta^{m-2}$ and so $-(\alpha - \beta) = (y - \alpha) - (y - \beta) = \pm \alpha^{m-2} - (\pm \beta^{m-2})$ hence

$$\frac{\alpha^{m-2} - \beta^{m-2}}{\alpha - \beta} = \pm 1. \tag{13}$$

But by our previous result, we only have m - 2 = 1, 2, 3, 5, 13. Then similarly, in the second situation, we again recover (13). This completes the proof.

11.1. Quick historical detour. Ramanujan in 1913 asked if m = 3, 4, 5, 7, 15 give the complete set of solutions of the Ramanujan-Nagell equation. The first proof was given by Nagell in 1948. Later, Beukers proved using the hypergeometric method that if D is a positive odd integer, then the equation

$$x^2 + D = 2^m$$

has two or more solutions in positive integers x and n if and only if D = 7, 23, or $2^{k} - 1$ for $k \ge 4$. For D = 23, (x, n) = (3, 5), (45, 11). For $D = 2^{k} - 1$ $(k \ge 4)$, we have (x, n) = (1, k) or $(2^{k-1}, 2k - 2)$.

11.2. Back to our main aim. Our aim is to construct $\overline{\mathbb{Q}_p}$ – but note that we can already define many familiar functions over \mathbb{Q}_p . First, let us define the analogues of the exponential and logarithm functions over \mathbb{R} , but now over \mathbb{Q}_p . We have

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for $x \in \mathbb{R}$

and

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \text{ for } |x| < 1.$$

We will define $\exp_p(x)$ and $\log_p(1+x)$ over \mathbb{Q}_p by means of these power series. For what regions in \mathbb{Q}_p do they converge? Recall that

$$\left\|\frac{1}{n!}\right\|_{p} = p^{\left\lfloor\frac{n}{p}\right\rfloor + \left\lfloor\frac{n}{p^{2}}\right\rfloor + \dots} < p^{\frac{n}{p-1}}$$

Thus $\exp_p(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for x in \mathbb{Q}_p with $|x|_p < p^{-\frac{1}{p-1}}$. Further, $\log_p(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ converges for $|x|_p < 1$. Notice that we have

 $\log(1+x) + \log(1+y) = \log((1+x)(1+y)) = \log(1+x+y+xy)$

as an equality of (formal) power series and so

$$\log_p(1+x) + \log_p(1+y) = \log_p(1+x+y+xy)$$

for $|x|_p < 1$ and $|y|_p < 1$. Also, as an equality of formal power series,

$$\exp(x)\exp(y) = \exp(x+y)$$

and

$$\exp(\log(1+x)) = 1+x, \quad \log(1+(\exp(x)-1)) = x.$$

Thus:

•
$$\exp_p(x+y) = \exp_p(x) \exp_p(y)$$
 for $|x|_p, |y|_p < p^{-\frac{1}{p-1}}$
• $\exp_p(\log_p(1+x)) = 1 + x$ for $|x|_p < p^{-\frac{1}{p-1}}$

•
$$\log_p(1 + (\exp_p(x) - 1)) = x$$
 for $|x|_p < p^{-\frac{1}{p-1}}$.

Similarly, we can define

$$\sin_p x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
$$\cos_p x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

for $|x|_p < p^{-\frac{1}{p-1}}$.

Remark 68. Notice that $|-2|_2 < 1$. This tells us that if we look at

$$\log_2(1-2) + \log_2(1+2) = \log_2(1) = 0.$$

Thus $2\log_2(-1) = 0$ so $\log_2(-1) = 0$. But

$$\log_2(-1) = \log_2(1-2) = \sum_{n=1}^{\infty} -\frac{2^n}{n}.$$

Thus if $S_N = \sum_{1 \le n \le N} \frac{2^n}{n} = \frac{p_N}{q_N}$ with $(p_N, q_N) = 1$. Then $2^{K_N} \mid p_N$ for some K_N , where $k_N \to \infty$ as $N \to \infty$.

Lemma 69. Let $F := \mathbb{F}_q$, and let $f := [F : \mathbb{F}_p]$. Let K be an algebraic closure of \mathbb{F}_p which contains F. Then $q = p^f$, and F is the only field of q elements contained in K. And F is the set of roots of $x^q - x = 0$. Conversely, for any power of $q = p^f$ of p, the roots of $x^q - x$ in K form a field of q elements.

Proof. (\Rightarrow) Since F is an f-dimensional vector space over \mathbb{F}_p , we see that $q = p^f$. Next, any field of q elements has q-1 non-zero elements. The non-zero elements form a multiplicative group of order q-1. Thus for any x in the group, the order of x divides the order of the group, so $x^{q-1} = 1$ hence $x^q = x$ for all $x \in F$. But there can be at most q solutions of $x^q - x = 0$ in F so we are done. In particular, F is the set of roots of $x^q - x$ in K.

(\Leftarrow) Conversely, given any $q = p^f$, the set of elements in K such that $x^q - x = 0$ is a subfield S of K for it is closed under addition since if $a, b \in S$ then $a + b \in S$ because $(a+b)^q = a^q + b^q$. Similarly, S is closed under multiplication, i.e., $a, b \in S \Rightarrow ab \in S$. Hence S is a field and it remains to show that S has q elements. All the roots of $x^q - x$ are distinct in K since the formal derivative of $qx^{q-1} - 1 = -1$ is coprime with $x^q - x$. Since any two algebraic closures of \mathbb{F}_p are isomorphic, any two fields of $q = p^f$ elements are isomorphic. We let \mathbb{F}_q denote one of these fields. Note that \mathbb{F}_q^{\times} , the subgroup of non-zero elements of \mathbb{F}_q , has q-1 elements. In fact, it is a cyclic group of order q-1. To see this, observe that if $x \in \mathbb{F}_q^{\times}$ then the order of x, say d, divides q-1. Thus $x^d-1=0$. The polynomial x^d-1 has at most d roots in \mathbb{F}_q and they are given by $x, x^2, \ldots, x^d = 1$. Of these roots, $\varphi(d)$ of them have order d. But $\sum_{d|q-1} \varphi(d) = q-1$. Since \mathbb{F}_q^{\times} has exactly q-1 elements there are precisely

 $\varphi(d)$ elements of order d in \mathbb{F}_q^{\times} hence $\varphi(q-1)$ elements of order q-1. Since $\varphi(q-1) \geq 1$ we see there is one elements of order \mathbb{F}_q^{\times} of order q-1. Thus \mathbb{F}_q^{\times} is cyclic.

Definition 70. Recall that if X is a metric space then we say that X is *locally compact* if every point $x \in X$ has a neighbourhood which is compact.

Example 71. \mathbb{R} is locally compact but not compact. Similarly, \mathbb{Q}_p with the metric given by $|\cdot|_p$ is also locally compact but not compact. Too see this, note that $\{y : |y-x|_p \leq 1\} = x + \mathbb{Z}_p$ is compact since \mathbb{Z}_p is compact.

Let F be a field with a non-archimedean valuation $|\cdot|$. Assume that F is locally compact, with respect to the metric induced by the valuation. Let V be a finite-dimensional vector space over F. By a valuation $|\cdot|$ on V which extends $|\cdot|$ on F we mean a map $|\cdot|: V \to \mathbb{R}^{\geq 0}$ such that:

(1) $|x| = 0 \Leftrightarrow x = 0$

- (2) |ax| = |a||x| for all $a \in F$ and for all $x \in V$
- (3) $|x+y| \leq |x|+|y|$ for all $x, y \in V$.

Remark 72. If V is a field K which is a finite-dimensional extension of F and $|\cdot|$ is a valuation on K which extends $|\cdot|$ on F, then certainly $|\cdot|$ is a valuation on K as a vector space over F. The converse, however, is not true. To see this, consider the example given by $K = \mathbb{Q}_p(\sqrt{p})$. Then $\{1, \sqrt{p}\}$ forms a basis for K over \mathbb{Q}_p . If we define $|x|_p = |a + b\sqrt{p}|_p = \sup\{|a|_p, |b|_p\}$ then we can check that this is a vector space valuation but it is not a field valuation since $|\sqrt{p}|_p \cdot |\sqrt{p}|_p \neq p^{-1} = |p|_p$.

We say that the two valuations $|\cdot|_1$ and $|\cdot|_2$ on a vector space V are equivalent if a sequence of vectors from V is Cauchy with respect to $|\cdot|_1$ if and only if it is Cauchy with

respect to $|\cdot|_2$. This is true if and only if there exist positive real numbers c_1 and c_2 such that for all $x \in V$, we have $c_1|x|_1 \leq |x|_2 \leq c_2|x|_1$.

Theorem 73. If V is a finite-dimensional vector space over a locally compact field F with valuation $|\cdot|$ then all valuations on V extending $|\cdot|$ on F are equivalent.

Proof. Let $\{v_1, \ldots, v_n\}$ be a basis for V over F. Define the sup valuation $|\cdot|_{sup}$ on V by

$$|x|_{\sup} = |a_1v_1 + \dots + a_nv_n|_{\sup} := \max\{|a_1|, \dots, |a_n|\}.$$

One can check that $|\cdot|_{\sup}$ is a vector space valuation on V which extends $|\cdot|$ on F. We now show that if $|\cdot|$ is another valuation on V which extends $|\cdot|$ on F then there exist positive real numbers c_1 and c_2 such that

$$c_1|x| \le |x|_{\sup} \le c_2|x|$$

for all $x \in V$. Thus any valuation is equivalent to the sup valuation and so any two valuations are equivalent. Notice that for $v \in V$,

$$|v| = |a_1v_1 + \dots + a_nv_n| \le |a_1v_1| + |a_2v_2| + \dots + |a_nv_n|$$
$$\le \sum_{i=1}^n |a_i||v_i| \le n \left(\max_i |a_i|\right) \cdot \max_i |v_i|$$
$$= n \max_i |v_i| \cdot |v|_{\text{sup.}}.$$

Now take $c_1 = \left(n \max_i |v_i|\right)^{-1}$ and we see that $|v|_{\sup} \ge c_1 |v|$ for all $v \in V$. To prove that $|\cdot|_{\sup} \le c_2 |v|$ for some $c_2 > 0$, we first let

$$U := \{ x \in V : |x|_{\sup} = 1 \}.$$

We claim that U is compact with respect to the metric induced by $|\cdot|_{\sup}$, since V is finitedimensional over a locally compact space. It suffices to remark that every sequence of elements in U has a convergent subsequence in U. The idea is to find a coordinate which has infinitely many tuples such that $|\cdot| = 1$. Next, assume that there is no $\tilde{c}_2 > 0$ such that $\tilde{c}_2 < |x|$ for all x in U. Then we can find a sequence $(x_i)_i$ with $x_i \in U$ such that $|x_i| \to 0$. Since U is compact, we can find a subsequence x_{i_j} which converges in the sup valuation to some $x \in U$. For every j we have $|x| \leq |x - x_{i_j}| + |x_{i_j}| \leq c_1^{-1} |x - x_{i_j}|_{\sup} + |x_{i_j}|$. But $x_{i_j} \to x$ in the sup valuation and $x_{i_j} \to 0$ with respect to $|\cdot|$ as $j \to \infty$. Thus $|x| \leq 0$ so |x| = 0hence x = 0. But $x \in U$ hence $x \neq 0$. Thus these exists $\tilde{c}_2 > 0$ such that $|x| > \tilde{c}_2$ for all $x \in U$. Let $v \in V$. Then $v = a_1v_1 + \cdots + a_nv_n$. Note that $|v|_{\sup} = |a_i|$ for some i with $1 \leq i \leq n$. Then $|\frac{v}{a_i}|_{\sup} = 1$, so $|\frac{v}{a_i}| > \tilde{c}_2$ so $|v| > \tilde{c}_2|a_i| = \tilde{c}_2|v|_{\sup}$, hence $\tilde{c}_2^{-1}|v| > |v|_{\sup}$. Take $c_2 = \tilde{c}_2^{-1}$ and the result follows.

Corollary 74. Let V = K be a field. Then there is at most one field valuation $|\cdot|$ on K which extends $|\cdot|$ on F.

Proof. By Theorem 73, any two field valuations on K ar equivalent. Suppose that we have two such valuations $|\cdot|_1$ and $|\cdot|_2$ on K. If they are distinct then there exists an $x \in K$ with $|x|_1 \neq |x|_2$. We may suppose that $|x|_1 < |x|_2$. Then since the valuations are equivalent there is a positive number c_1 such that $|y|_1 > c_1|y|_2$, for all $y \in K$. But notice that for $N \in \mathbb{Z}_+$ sufficiently large, we have $|x^N|_1 = |x|_1^N < c_1|x|_2^N = c_1|x^N|_2$, which is a contradiction. Thus $|x|_1 = |x|_2$ for all $x \in K$.

12. October 30

Suppose that K is a finite extension of a locally compact field F with a valuation $|\cdot|$ on F. We have already seen that there is at most one (field) valuation on K which extends $|\cdot|$ on F. Suppose also that $K = F(\alpha)$ and that the minimal polynomial of α over K is $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ with $a_i \in F$. We may suppose that the characteristic polynomial of F is zero and so the roots of f are distinct (say $\alpha = \alpha_1, \ldots, \alpha_n$). So $f(x) = \prod_{i=1}^n (x - \alpha_i)$. We define the norm from K to F of α , denoted $N_{K/F}(\alpha)$, by

$$N_{K/F}(\alpha) := \prod_{i=1}^{n} \alpha_i = (-1)^n a_0.$$

Observe that K is an n-dimensional vector space over F and multiplication by α is a F-linear map from K to K. Consider the basis $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$. We can represent multiplication by α with respect to this basis by the matrix A_{α}

$$A_{\alpha} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

Notice that, by expanding by the first row,

$$\det(A_{\alpha}) = (-1)^{n+2} a_0 = (-1)^n a_0 = N_{K/F}(\alpha).$$

The determinant is unchanged if we pick a different basis. Suppose next that $\beta \in K$ but $F(\beta) \subsetneq K$. We wish to define $N_{K/F}(\beta)$. Define

$$N_{K/F}(\beta) := \left(N_{F(\beta)/F}(\beta) \right)^{[K:F(\beta)]}$$

We claim that with this definition that the determinant of the matrix A_{β} which represents the map from K to K given by multiplication by β is $N_{K/F}(\beta)$. To see this first, let B_{β} be the matrix associated with the multiplication by β map on $F(\beta)$ with respect to the basis $\{1, \beta, \beta^2, \ldots, \beta^{d_1}\}$ where $d_1 = [F(\beta) : F]$. Next put $d_2 = [K : F(\beta)]$. Let γ be a primitive element for K over $F(\beta)$, so $K = F(\beta)(\gamma)$. Then

$$1, \beta, \beta^2, \dots, \beta^{d_1-1}, \gamma, \gamma\beta, \dots, \gamma\beta^{d_1-1}, \dots, \gamma^{d_2-1}, \gamma^{d_2-1}\beta, \dots, \gamma^{d_2-1}\beta^{d_1-1}$$

forms a basis for K over F. The matrix A_{β} given by multiplication by β with respect to the above basis is

$$A_{\beta} = \begin{bmatrix} B_{\beta} & & \\ & B_{\beta} & \\ & & \ddots & \\ & & & B_{\beta} \end{bmatrix}.$$

Thus $\det(A_{\beta}) = (\det B_{\beta})^{d_2} = N_{K/F}(\beta)$. We now observe that $N_{K/F}(\beta)$ is a multiplicative map on K since, for any α, β in K,

$$N_{K/F}(\alpha\beta) = \det A_{\alpha\beta} = \det(A_{\alpha}A_{\beta}) = \det(A_{\alpha})\det(A_{\beta}) = N_{K/F}(\alpha)N_{K/F}(\beta).$$

Our problem is to figure out how to extend $|\cdot|_p$ on \mathbb{Q}_p to a valuation on $\overline{\mathbb{Q}_p}$, the algebraic closure of \mathbb{Q}_p . Let α be algebraic over \mathbb{Q}_p and suppose that $K = \mathbb{Q}_p(\alpha)$ is a finite Galois extension of \mathbb{Q}_p and let $\alpha \in K$. What should $|\alpha|_p$ be? If $\|\cdot\|$ is a valuation extending $|\cdot|_p$ on K and σ is an automorphism of K which fixes \mathbb{Q}_p then we can define another valuation $\|\cdot\|'$ on K which extends $|\cdot|_p$ on \mathbb{Q}_p by defining for x in K,

$$||x||' = ||\sigma(x)||.$$

It is a valuation since for all $x, y \in K$ we have:

(1)
$$\sigma(xy) = \sigma(x)\sigma(y)$$

(2)
$$\sigma(x) = 0 \Leftrightarrow x = 0$$

(3) $\sigma(x+y) = \sigma(x) + \sigma(y)$.

But since there is at most one possible extension of $|\cdot|_p$ to K we see that $||\cdot||$ is the same as $||\cdot||'$. Thus

$$|N_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}(\alpha)|_p = ||N_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}(\alpha)|| = \prod_{\sigma \in \operatorname{Aut}(K/\mathbb{Q}_p)} ||\sigma(\alpha)|| = ||\alpha||^n$$
$$||\alpha|| = |N_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}(\alpha)|_p^{1/n} = |N_{\mathbb{Q}_p(\alpha)/\mathbb{Q}_p}(\alpha)|^{[\mathbb{Q}_p(\alpha):\mathbb{Q}_p]^{-1}}$$

More generally, if K is a finite extension of $\mathbb{Q}_p(\alpha)$ then

$$\|\alpha\| = |N_{K/\mathbb{Q}_p(\alpha)}|_p^{[K:\mathbb{Q}_p]^{-1}}$$

Theorem 75 (Hensel's Lemma II). Suppose $f \in \mathbb{Z}_p[x]$, and let \overline{f} be the reduction of f mod p to an elements of $\mathbb{Z}_p/p\mathbb{Z}_p[x]$. Suppose also that \overline{f} is not identically zero. If $g_0, h_0 \in \mathbb{Z}_p[x]$ with $\overline{g_0}, \overline{h_0}$ relatively prime in $\mathbb{Z}_p/p\mathbb{Z}_p[x]$ such that

$$f(x) \equiv g_0(x)h_0(x) \pmod{p},$$

then there exist polynomials $g(x), h(x) \in \mathbb{Z}_p[x]$ such that f(x) = g(x)h(x) with $g(x) \equiv g_0(x) \pmod{p}, h(x) \equiv h_0(x) \pmod{p}$ and $\deg(g) = \deg(g_0).$

Proof. We may assume that $\overline{g_0}$ is a monic polynomial of degree r since if

 $\overline{g_0}(x) = ax^r + \cdots$ with $a \neq 0$,

we can replace $\overline{g_0}$ by $a^{-1}\overline{g_0}$ and $\overline{h_0}$ by $a\overline{h_0}$. Further, without loss of generality, we may suppose that $\deg(g_0) = \deg(\overline{g_0})$. We now construct two sequences of polynomials (g_i) and (h_i) in $\mathbb{Z}_p[x]$ with the g_i 's of degree r and such that

$$f \equiv g_t h_t \pmod{p^{t+1}},\tag{14}$$

and

$$g_t \equiv g_{t-1} \pmod{p^t}$$
 and $h_t \equiv h_{t-1} \pmod{p^t}$.

If we make this construction, then we can take $g = \lim_{t \to \infty} g_t$ and $h = \lim_{t \to \infty} h_t$. Further,

$$g \equiv g_0 \pmod{p}$$
 and $h \equiv h_0 \pmod{p}$.

Having constructed g_t and h_t , how do we product g_{t+1} and h_{t+1} ? Put

$$g_{t+1} = g_t + p^{t+1}u$$

$$h_{t+1} = h_t + p^{t+1}v,$$
(15)

where $u, v \in \mathbb{Z}_p[x]$ are to be chosen. Now by (14), $f - g_t h_t = p^{t+1}z$ with $z \in \mathbb{Z}_p[x]$. By (15),

$$g_{t+1}h_{t+1} - f = (g_th_t - f) + p^{t+1}(h_tu + g_tv) + p^{2t+2}uv$$

Thus we need to choose u and v so that

$$h_0 u + g_0 v \equiv z \pmod{p}.$$
 (16)

Hence so that $-z + h_t u + g_t v \equiv 0 \pmod{p}$. Since $h_t \equiv h_0 \pmod{p}$ and $g_t \equiv g_0 \pmod{p}$, it suffices to choose u and v so that $h_0 u + g_0 v \equiv z \pmod{p}$. Since $\overline{h_0}$ and $\overline{g_0}$ are coprime in $\mathbb{Z}_p/p\mathbb{Z}_p[x]$, there exist l and m in $\mathbb{Z}_p[x]$ for which $lh_0 + mg_0 \equiv 1 \pmod{p}$ hence $lh_0 z + mg_0 z \equiv z \pmod{p}$. Write $\overline{l_z} = \overline{kg_0} + u^*$ where $\deg u^* < \deg \overline{g_0} = r$. Let u be a polynomial in $\mathbb{Z}_p[x]$ such that $\overline{u} = u^*$ and such that $\deg u = \deg u^*$. Further,

$$h_0 u + (h_0 k + mz)g_0 \equiv z \pmod{p}$$

and we see that if $v = h_0 k + mz$, then (16) holds and the result follows.

13. November 4

Corollary 76. If $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Q}_p[x]$ with $a_n \neq 0$ and f is irreducible, then

$$\max(|a_i|_p) \le \max(|a_0|_p, |a_n|_p).$$

Proof. Suppose $\max_i(|a_i|_p) = |a_j|_p$ where $0 \le j \le n$ and j is chosen to be maximal. Then $|a_j|_p = p^{-N}$. Put $t(x) := p^{-N}f(x)$, so that $t(x) = b_0 + b_1x + \cdots + b_nx^n$. Notice that $b_j \ne 0 \pmod{p}$. Then put

$$g_0(x) = b_0 + b_1 x + \dots + b_j x^j,$$

and $h_0(x) = 1$. Notice that \bar{g}_0 and \bar{h}_0 are coprime in $\mathbb{Z}_p/p\mathbb{Z}_p[x]$. By Hensel's Lemma II, there exist $g(x), h(x) \in \mathbb{Q}_p[x]$ with t(x) = g(x)h(x) so $f(x) = p^N g(x)h(x)$. Since f is irreducible we see that j = 0 or j = n. Thus the claim follows, as desired.

Theorem 77. Let K be a finite extension over \mathbb{Q}_p . The map $|\cdot|_p : K \to \mathbb{R}_{\geq 0}$ given by $|\alpha|_p = |\mathcal{N}_{K/\mathbb{Q}_p}(\alpha)|_p^{1/n}$ where $n = [K : \mathbb{Q}_p]$ is the unique valuation which extends $|\cdot|_p$ on \mathbb{Q}_p .

Proof. Certainly $|\cdot|_p$ extends the valuation on \mathbb{Q}_p . Further, it suffices to show that $|\cdot|_p$ is a valuation on K since we have already proved that there can be at most one such valuation on K. Plainly, $\alpha_p = 0 \Leftrightarrow \alpha = 0$. Furthermore $|\cdot|_p$ is multiplicative on K since $N_{K/\mathbb{Q}}$ is multiplicative. Thus it remains to check that for all $\alpha, \beta \in K$, we have $|\alpha + \beta|_p \leq \max\{|\alpha|_p, |\beta|_p\}$.

We may assume α and β are non-zero. On dividing through by β we see that it suffices to prove that if $\gamma \in K$ then

$$|\gamma + 1|_p \le \max(|\gamma|_p, 1).$$

Let $x^m + a_{m-1}x^{m-1} + \cdots + a_0$ be the minimal polynomial for γ over \mathbb{Q}_p . Then $|\gamma|_p = |a_0|_p^{1/m}$. Further, the irreducible polynomial of $\gamma + 1$ over \mathbb{Q}_p is

$$(x-1)^m + a_{m-1}(x-1)^{m-1} + \dots + a_0,$$

and so

$$|\gamma + 1|_p = |(-1)^m + a_{m-1}(-1)^{m-1} + \dots + a_0|_p^{1/m}$$

29

By Corollary 76, we have

$$|\gamma + 1|_p \le \max(1, |a_0|_p)^{1/m} \le \max(1, |a_0|_p^{1/m}) = \max(1, |\gamma|_p).$$

Therefore, $|\cdot|_p$ is indeed a valuation on K, as required.

Recall that the algebraic closure $\overline{\mathbb{Q}_p}$ over \mathbb{Q}_p is a union of the finite extensions of \mathbb{Q}_p . Also, if α is algebraic over \mathbb{Q}_p we have that $|\alpha|_p$ does not change when we pass to field extensions of $\mathbb{Q}_p(\alpha)$. By virtue of these two facts, we see that $|\cdot|_p$ extends to a valuation on $\overline{\mathbb{Q}_p}$. Hence if $\alpha \in \overline{\mathbb{Q}_p}$ with minimal polynomial $x^m + a_{m-1}x^{m-1} + \cdots + a_0$ then

$$|\alpha|_p = |a_0|_p^{1/m}.$$

Let K be a finite extension of \mathbb{Q}_p with $[K : \mathbb{Q}_p] = n$. For αinK we define $\operatorname{ord}_p \alpha$ by

$$\operatorname{ord}_p \alpha := -\frac{\log |\alpha|_p}{\log p} = -\frac{\log |\mathcal{N}_{K/\mathbb{Q}_p}(\alpha)|^{1/n}}{\log p} = -\frac{1}{n} \cdot \frac{\log |\mathcal{N}_{K/\mathbb{Q}_p}(\alpha)|_p}{\log p}$$

The image of K under the map ord_p is a subset of $\frac{1}{n}\mathbb{Z}$. Even better, this is not just a subset, but is a *subgroup*. For any $\alpha, \beta \in K$ we have $\operatorname{ord}_p \alpha\beta = \operatorname{ord}_p \alpha + \operatorname{ord}_p \beta$, so the image is a subgroup of $\frac{1}{n}\mathbb{Z}$ and has the form $\frac{1}{e}\mathbb{Z}$ for the smallest positive integer e.

Definition 78. The integer e as defined above is called the *index of ramification of* K over \mathbb{Q}_p . if e = 1 we say that K is *unramified over* \mathbb{Q}_p . If e = n then we say that K is *totally ramified over* \mathbb{Q}_p .

Remark 79. If $\pi \in K$ with $\operatorname{ord}_p \pi = \frac{1}{e}$ then any $x \in K$ with $x \neq 0$ we can write it uniquely in the form $\pi^m u$ with $m \in \mathbb{Z}$ and u such that $|u|_p = 1$. Then $e \cdot \operatorname{ord}_p x = m$.

Definition 80. Let

$$f(x) = x^{e} + a_{e-1}x^{e-1} + \dots + a_0, \tag{17}$$

with $a_i \in \mathbb{Z}_p$ and $a_i \neq 0 \pmod{p}$ for $i = 0, 1, \dots, e-1$ and $a_0 \neq 0 \pmod{p^2}$. Then f is an *Eisenstein polynomial* and by Eisenstein's criterion f is irreducible.

Lemma 81. If K is a totally ramified finite extension of \mathbb{Q}_p and $\pi \in K$ with $\operatorname{ord}_p \pi = \frac{1}{e}$ then π satisfies an Eisenstein equation. Conversely, if α is a root of an Eisenstein polynomial as in (17) over \mathbb{Q}_p then $\mathbb{Q}_p(\alpha)$ is a totally ramified extension of \mathbb{Q}_p .

Proof. Since the coefficients a_i of the minimal polynomial of π over \mathbb{Q}_p are elementary symmetric polynomials in the conjugates of π , we see that $|a_i|_p < 1$ for $i = 0, 1, \ldots, e - 1$. Further, since $\operatorname{ord}_p \pi = \frac{1}{e}$, we see that $|a_0|_p = p^{-1}$.

Now conversely, suppose that α is a root of an Eisenstein polynomial as in (17). Then α is of degree e over \mathbb{Q}_p since f is irreducible over \mathbb{Q}_p . Further, $|\pi|_p^e = |a_0|_p = p^{-1}$. Thus, $|\alpha|_p = p^{-1/e}$ and so $\mathbb{Q}_p(\alpha)$ is totally ramified.

Definition 82. We say a totally ramified extension of \mathbb{Q}_p is *tame* if $p \nmid e$ and *wild* if $p \mid e$.

14. November 6

Lemma 83. Let K be a finite extension of \mathbb{Q}_p . K is complete with respect to $|\cdot|_p$.

Proof. Let w_1, w_2, \ldots, w_n be a basis for K over \mathbb{Q}_p . Let $(\gamma_i)_{i=1}^{\infty}$ be a Cauchy sequence of elements of K. Then we have $\gamma_i = a_{1i}w_1 + \cdots + a_{ni}w_n$ with $a_{1i}, \ldots, a_{ni} \in \mathbb{Q}_p$. Since $|\gamma_i - \gamma_j|_p \to 0$ as $\min(i, j) \to \infty$ and since all finite-dimensional vector space valuations over \mathbb{Q}_p are equivalent, we see by the sup vector space valuation on K that $(a_{ji})_{i=1}^{\infty}$ is a Cauchy sequence in \mathbb{Q}_p for $j = 1, 2, \ldots, n$. Since \mathbb{Q}_p is complete, there exists $A_j \in \mathbb{Q}_p$ such that $A_j = \lim_{i \to \infty} a_{ij}$ for $j = 1, 2, \ldots, n$. Therefore $(\gamma_i)_{i=1}^{\infty}$ converges to $A_1w_1 + \cdots + A_nw_n$ which is in K.

Notation. Let K be a finite extension of \mathbb{Q}_p . Define $A := \{x \in K : |x|_p \leq 1\}$ and $M := \{x \in K : |x|_p < 1\}.$

Remark 84. Consider the quotient A/M consisting of elements a + M with $a \in A$. There is a natural inclusion of $\mathbb{Z}_p/p\mathbb{Z}_p$ into A/M given by $\varphi(a + p\mathbb{Z}_p) = a + M$. We will now show that A/M is of finite degree over \mathbb{F}_p . If $n = [K : \mathbb{Q}]$ then in fact $[A/M : \mathbb{F}_p] \leq n$. For any element $a \in A$, let \overline{A} be the element a + M in A/M. To see why $[A/M : \mathbb{F}_p] \leq n$, we will show that if $\overline{a_1}, \ldots, \overline{a_{n+1}} \in A/M$ then they are linearly dependent over \mathbb{F}_p .

Then for any $a_1, a_2, \ldots, a_{n+1} \in K$, for which the reductions are $\overline{a_1}, \ldots, \overline{a_{n+1}} \in A/M$, respectively, we have since $[K : \mathbb{Q}_p] = n$ that there exist $b_1, b_2, \ldots, b_{n+1} \in \mathbb{Q}_p$ such that $a_1b_1 + \cdots + a_{n+1}b_{n+1} = 0$. By multiplying through by p^N for an appropriate integer N we can suppose that b_i 's are in \mathbb{Z}_p and at least one has p-adic order zero. Then we have

$$\overline{a_1}\overline{b_1} + \dots + \overline{a_{n+1}}\overline{b_{n+1}} = 0.$$

Since not all of the $\overline{b_i}$'s are zero, we see that $\overline{a_1}, \ldots, \overline{a_{n+1}}$ are linearly dependent over \mathbb{F}_p . Thus $[A/M : \mathbb{F}_p] \leq n$.

Definition 85. The degree of $[A/M : \mathbb{F}_p]$ is called the *residue field degree* and is denoted by f.

Lemma 86. Let K be a finite extension of \mathbb{Q}_p with ramification index e and residue field degree f. Let A and M be as defined in Notation 14. Let $(\pi_i)_{i=-\infty}^{\infty}$ be a sequence of elements in K with $\operatorname{ord}_p \pi_i = \frac{i}{e}$ for $i \in \mathbb{Z}$. Let $0, c_1, \ldots, c_{p^f-1}$ be elements of A such that $0 + M, c_1 + M, \ldots, c_{p^f-1} + M$ are distinct in A/M. Let $\alpha \in K$ with $\operatorname{ord}_p \alpha = \frac{n}{e}$. Then there exists a unique representation α of the form

$$\sum_{t=n}^{\infty} c_{i_t} \pi_t,$$

where c_{i_t} is chosen from $\{0, c_1, c_2, ..., c_{p^f-1}\}$.

Proof. We will first show that α has such representation. Note that $\left|\frac{\alpha}{\pi^n}\right|_p = 1$. Thus

$$\frac{\alpha}{\pi^n} \equiv c_{i_n} \pmod{M}.$$

Further, we have $M = \pi A$, and we have

$$\left|\frac{\alpha}{\pi^n} - c_{i_n}\right|_p < 1.$$

Put $\alpha_1 = \frac{\alpha}{\pi^n} - c_{i_n}$. If $\alpha_1 = 0$ we are done. Otherwise, let $\operatorname{ord}_p \alpha_1 = \frac{b_1}{e}$ for some positive integer b_1 . Thus

$$\alpha = c_{in}\pi_n + \alpha_1\pi_n.$$

Then $\operatorname{ord}_p \alpha_1 \pi_n = \frac{n+b_1}{e}$. We have

$$\left|\frac{\alpha_1 \pi_n}{\pi_{n+b_1}}\right|_p = 1$$

so there exists a representative $c_{i_{n+b_1}}$ such that

$$\left|\frac{\alpha_1 \pi_n}{\pi_{n+b_1}} - c_{i_{n+b_1}}\right| < 1.$$

We now put $\alpha_2 = \frac{\alpha_1 \pi_n}{\pi_{n+b_1}} - c_{i_{n+b_1}} \in M$. We have

$$\alpha_1 \pi_n = \alpha_2 \pi_{n+b_1} + c_{i_{n+b_1}} \pi_{n+b_1}$$

with $\operatorname{ord}_p \alpha_2 \pi_{n+b_1} > \frac{n+b_1}{e}$. Thus

$$\alpha = c_{i_n} \pi n + c_{i_{n+b_1}} \pi_{n+b_1} + \alpha_2 \pi_{n+b_1}.$$

Containing in this way we obtain a Cauchy sequence of partial sums which converges to α , and this gives us the representation. It is immediate to check that this representation is unique.

Lemma 87. Let $[K : \mathbb{Q}_p] = n$. Suppose that the index of ramification of K is e and the residue field degree is f. Then n = ef.

Proof. Let π be an element of K with $\operatorname{ord}_p \pi = \frac{1}{e}$. Let w_1, \ldots, w_f be elements of A such that $w_1 + M, \ldots, w_f + M$ form a basis for A/M over \mathbb{F}_p . Then $\{u_1w_1 + \cdots + u_fw_f + M : 0 \le u_i < p$ for $i = 1, 2, \ldots, f\}$ is just A/M. Let the c_i 's in the previous proposition be the elements $u_1w_1 + \cdots + u_fw_f$. Then for any $\alpha \in K$ we have a unique representative of the form

$$\alpha = \sum_{t=m}^{\infty} c_{it} \pi_t,$$

where $\pi_t = p^{\lfloor \frac{t}{e} \rfloor} \pi^{t-e \lfloor \frac{t}{e} \rfloor}$. Put $r_t = t - e \lfloor \frac{t}{e} \rfloor$ so that $0 \le r_t \le e - 1$. Then

$$\alpha = \sum_{t=m}^{\infty} (u_{1_t} w_1 + \dots + u_{f_t} w_f) \pi^{r_t} p^{\left\lfloor \frac{t}{e} \right\rfloor}.$$

Therefore (note that we can rearrange the terms since the sum is convergent)

$$\alpha = \sum_{j=1}^{f} \sum_{s=0}^{e-1} \left(\sum_{l=\lfloor \frac{m}{e} \rfloor}^{\infty} i_{j,s,l} p^l \right) w_j \pi^s,$$

for $i_{j,s,l}$ chosen appropriately. Thus $\{w_j \pi^s : j = 1, 2, ..., f, s = 0, 1, ..., e-1\}$ spans K over \mathbb{Q}_p . In particular, we see that $n \leq ef$. Note, however, that if we have

$$\sum_{j,s} a_{j,s} w_j \pi^s = 0,$$

with $a_{j,s} \in \mathbb{Q}_p$ not all zero, then we can first suppose that the terms $a_{j,s}$ are in \mathbb{Z}_p by multiplying by an appropriate power of p with some $|a_{j,s}|_p = 1$. Since $w_1 + M, \ldots, w_f + M$ are linearly independent over \mathbb{F}_p , we see that

$$\left|\sum_{a_{j,s}} \pi^s\right|_p \le p^{-1}$$

for $j = 1, 2, \ldots, f$. But for some pair j, s we have $|a_{j,s}|_p = 1$ and so

$$|a_{j,s}\pi^{s}|_{p} = p^{-\frac{s}{e}} \ge p^{-\frac{e-1}{e}}$$

since $0 \le s \le e - 1$. But then

$$\sum a_{j_s} \pi^s \Big|_p = p^{-\frac{e-1}{e}},$$

but this is a contradiction.

15. November 11

Proposition 88. Let K be a finite-degree extension of \mathbb{Q}_p with residue field degree f. Then K contains all of the $p^f - 1$ roots of unity. In particularly, K contains a primitive $p^f - 1$ -th root of unity.

Proof. As usual, put $A = \{x \in K : |x|_p \leq 1\}$ and $M = \{x \in K : |x|_p < 1\}$. Since the residue field degree is f, we have $A/M \cong \mathbb{F}_{p^f}$. Recall that $\mathbb{F}_{p^f}^{\times}$ is a cyclic group. Then there exists $a_0 \in A$ such that $\overline{a_0}$ generates A/M. Thus $\overline{\alpha_0}, \overline{\alpha_0}^2, \ldots, \overline{\alpha_0}^{p^f-1}$ are all distinct in A/M. Let $\pi \in K$ with $\operatorname{ord}_p \pi = e^{-1}$ where e is the index of ramification of K. Then $M = \pi A$. We claim that there exists $\alpha \in K$ with $\alpha \equiv \alpha_0 \pmod{\pi}$ for which $\alpha^{p^f-1} = 1$. Since $\overline{\alpha_0}, \overline{\alpha_1}, \ldots, \overline{\alpha_0}^{p^f-1}$ are all distinct in A/M we see that α is a primitive $p^f - 1$ -th root of unity.

We now will construct inductively as in the proof of Hansel's lemma (Theorem 75). Note that we have $\alpha_0^{p^f-1} \equiv 1 \pmod{\pi}$. Consider $\alpha_0 + \alpha_1 \pi$. We have

$$(\alpha_0 + \alpha_1 \pi)^{p^f - 1} \equiv (\alpha_0^{p^f - 1} - 1) + \binom{p^f - 1}{1} \alpha^{p^f - 2} \alpha_1 \pi \pmod{\pi^2}$$

Since $\alpha_0^{p^f-1} \equiv 1 \pmod{\pi}$ there exists a β_0 such that $\alpha^{p^f-1} - 1 \equiv \beta_0 \pi \pmod{\pi^2}$. Thus

$$(\alpha_0 + \alpha_1 \pi)^{p^f - 1} - 1 \equiv \beta_0 \pi + (p^f - 1) \alpha_0^{p^f - 2} \alpha_1 \pi \pmod{\pi^2} \equiv \beta_0 \pi - \alpha_0^{p^f - 2} \alpha_1 \pi \pmod{\pi^2}.$$

We now choose α_1 so that

$$\beta_0 - \alpha_0^{p^f - 2} \alpha_1 \equiv 0 \pmod{\pi}.$$

That is, take α_1 so that

$$\alpha_1 \equiv \frac{\beta_0}{\alpha_0^{p^f - 2}} \pmod{\pi}.$$

Therefore, $(\alpha_0 + \alpha_1 \pi)^{p^f - 1} \equiv 1 \pmod{\pi^2}$. Next, we need to choose α_2 appropriately so that

$$(\alpha_0 + \alpha_1 \pi + \alpha_2 \pi^2)^{p^f - 1} \equiv 1 \pmod{\pi^3}.$$

Continuing in this way, we find a sequence $\alpha_1, \alpha_2, \dots \in A$ such that the sequence $\alpha_0, \alpha_0 + \alpha_1 \pi, \alpha_0 + \alpha_1 \pi + \alpha_2 \pi^2 + \dots$ is a Cauchy sequence which converges to an element $\alpha \in K$ with the property that

$$\alpha^{p^J-1} \equiv 1 \pmod{\pi}$$
 and $\alpha \equiv \alpha_0 \pmod{\pi}$.

We can preform the same construction for $\overline{\alpha_0}, \ldots, \overline{\alpha_0}^{p^f-1}$ to get all the $p^f - 1$ -th roots of unity.

Proposition 89. For each positive integer f there is exactly one unramified extension of \mathbb{Q}_p of residue field degree f. It can be obtained by adjoining a primitive $p^f - 1$ -th root of unity to \mathbb{Q}_p .

Proof. Let $\overline{\alpha_0}$ be a generator of \mathbb{F}_{p^f} over \mathbb{F}_p with minimal polynomial $\overline{g}(x) = x^f + \overline{\alpha_{f-1}}x^{f-1} + \cdots + \overline{\alpha_0}$ where we may suppose that $\overline{\alpha_{f-1}}, \ldots, \overline{\alpha_0}$ are such that a_{f-1}, \ldots, a_0 are elements of \mathbb{Z}_p . Put $g(x) = x^f + a_{f-1}x^{f-1} + \cdots + a_0$. Notice that $g(x) \in \mathbb{Z}_p[x]$ is irreducible over \mathbb{Q}_p since \overline{g} is irreducible. Let α be a root of g(x) and put $K = \mathbb{Q}_p(\alpha)$. Note that $[K : \mathbb{Q}_p] = f$. Then the residue field of K contains a root of \overline{g} and so $[A/M : \mathbb{F}_p] \ge f$. But then $[A/M : \mathbb{F}_p] \le [K : \mathbb{Q}_p]$ hence $f = [K : \mathbb{Q}_p] = [A/M : \mathbb{F}_p]$. In particular, we see that $K = \mathbb{Q}_p(\alpha)$ is unramified over \mathbb{Q}_p . By Proposition 88 every unramified extension K of \mathbb{Q}_p of degree f contains a primitive $p^f - 1$ -th root of unity (say β). Then $\mathbb{Q}_p(\beta) \subseteq K$. But $[\mathbb{Q}_p(\beta) : \mathbb{Q}_p] = f$ and so $K = \mathbb{Q}_p(\beta)$ since the powers of β are distinct mod p. Thus the uniqueness follows.

Notation. For any positive integer f, let K_f^{unram} denote the field $\mathbb{Q}_p(\beta)$ where β is a primitive $p^f - 1$ -th root of unity.

Proposition 90. Let K be a degree n extension of \mathbb{Q}_p with index of ramification e and residue field degree f. Then $K = K_f^{\text{unram}}(\pi)$ where π is the root of an Eisenstein polynomial with coefficients in K_f^{unram} .

Proof. We have $[K : \mathbb{Q}_p] = n = ef$. Let π be an element of K with $\operatorname{ord}_p \pi = e^{-1}$. Plainly K contains $K_f^{\operatorname{unram}}$ since the residue field degree is f. Let g(x) be the minimal polynomial of π over $K_f^{\operatorname{unram}}$. Then

$$g(x) = \prod_{i=1}^{t} (x - \pi_i),$$

where $\pi = \pi_1$. But we know that $|\pi_i|_p = |\pi|_p$ for i = 1, 2, ..., t. Then

$$g(x) = x^{t} + a_{t-1}x^{t-1} + \dots + a_0$$

with a_0, \ldots, a_{t-1} in K_f^{unram} . Note that $a_0 = \pi_1 \ldots \pi_t$, and so $\operatorname{ord}_p a_0 = e^{-1} + \cdots + e^{-1} = te^{-1}$. But $a_0 \in K_f^{\text{unram}}$ so te^{-1} is an integer hence t is a positive multiple of e. Since $[K : \mathbb{Q}_p] = ef$ and $[K : \mathbb{Q}_p] = [K : K_f^{\text{unram}}] \cdot [K_f^{\text{unram}} : \mathbb{Q}_p] = [K : K_f^{\text{unram}}] \cdot f$, it follows that t = e. Furthermore, $|a_0|_p = p^{-1}$ and $|a_i|_p < 1$ for $i = 0, 1, \ldots, p-1$ since the a_i 's are elementary symmetric functions in the π_i 's. Thus g is an Eisenstein polynomial.

Corollary 91. Let $[K : \mathbb{Q}_p] = n = ef$, and let $\pi \in K$ with $\operatorname{ord}_p \pi = e^{-1}$. Then every non-zero $\alpha \in K$ has a unique representation of the form

$$\alpha = \sum_{\substack{i=m\\34}}^{\infty} a_i \pi^i,\tag{18}$$

where $m = e \cdot \operatorname{ord}_p \alpha$, and the set of a_i 's is the set of roots of $x^{p^f} - x$ in K.

Proof. This follows from the fact that there are $p^f a_i$'s and they are representatives of distinct cosets mod M.

Definition 92. The a_i 's in (18) is known as the *Teichmüller digits*.

Remark 93. $\mathbb{Q}_p^{\text{unram}}$ is the union of all unramified extensions of \mathbb{Q}_p . Then $\mathbb{Z}_p^{\text{unram}}$ is the integral closure of \mathbb{Z}_p in $\mathbb{Q}_p^{\text{unram}}$.

16. November 13

Lemma 94 (Krasner's lemma). Let $a, b \in \overline{\mathbb{Q}_p}$ and let $a = a_1, a_2, \ldots, a_n$ be the conjugates of a over \mathbb{Q}_p . If

$$|a-b|_p < |a-a_i|_p$$

for $i = 2, 3, \ldots, n$, then $\mathbb{Q}_p(a) \subseteq \mathbb{Q}_p(b)$.

Proof. Assume that $a \notin \mathbb{Q}_p(b)$. Let σ be a non-trivial isomorphism of $\mathbb{Q}_p(a, b)$ into $\overline{\mathbb{Q}_p}$ which fixes $\mathbb{Q}_p(b)$. Suppose, without loss of generality, that $\sigma(a) = a_2$. Then for all $x \in \mathbb{Q}_p(a, b)$, we have $|x|_p = |\sigma(x)|_p$. Therefore

$$|b - a|_p = |\sigma(b - a)|_p = |\sigma(b) - \sigma(a)|_p$$

= $|\sigma(b) - a_2|_p = |b - a_2|_p$.

Then

$$|a_2 - a|_p = |(a_2 - b) + (b - a)|_p \le \max(|a_2 - b|_p, |b - a|_p) = |b - a|_p.$$

This is a contradiction, so the claim follows.

Theorem 95. $\overline{\mathbb{Q}_p}$ is not complete with respect to $|\cdot|_p$.

Proof. We will give a Cauchy sequence of elements of $\overline{\mathbb{Q}_p}$ which does not converge to an element of $\overline{\mathbb{Q}_p}$. Since any finite extension K of \mathbb{Q}_p is complete with respect to $|\cdot|_p$, our sequence will have to run through elements of arbitrarily large degree. First, we remark that if i and j are positive integers with j < i then $p^{2^j-1} | p^{2^i}-1$. This follows, since $y-1 | y^{2^{i-j}}-1$ on taking $y = 2^j$. Let b_i be a primitive $p^{2^i} - 1$ -th root of unity for $i = 0, 1, 2, \ldots$. Observe that if j < i then $b_j^{p^{2^i}-1} = 1$, since $p^{2^j} - 1 | p^{2^i} - 1$. Put $N_0 = 0$ and $a_0 = b_0 p^{N_0}$. We define N_i and a_i inductively by the following rule. Assume that N_i and

$$a_i = \sum_{j=0}^i b_j p^{N_j}$$

have been determined. Then we choose N_{i+1} so that a_i does not satisfy any congruence of the form

$$\alpha_n a_i^n + \dots + \alpha_0 \equiv 0 \pmod{p^{N_{i+1}}},$$

with $\alpha_i \in \mathbb{Z}_p$ for i = 0, 1, ..., n and such that not all $\alpha_i \equiv 0 \pmod{p}$ for any non-negative integer n with $n < 2^i$. Such an integer N_{i+1} exists since otherwise a_i would be a root of a polynomial of degree less than 2^i over \mathbb{Q}_p . To see this, note that if there is no such N_{i+1} then for each integer j with $j > N_i$, then a_i satisfies a congruence

$$\alpha_{n,j}a_i^n + \dots + \alpha_{0,j} \equiv 0 \pmod{p^j}$$

with $\alpha_{k,j} \in \mathbb{Z}_p$ for $k = 0, \ldots, n$ not all $\alpha_{k,j} \equiv 0 \pmod{p}$. Then there exists an infinite subsequence with

$$(\alpha_{n,j_t},\ldots,\alpha_{0,j_t})$$

a fixed vector mod p^{j} . Within this subsequence we can find a further infinite (sub)subsequence with a fixed vector mod p^{j+1} . In the limit, this gives us a polynomial of degree less than 2^{i} which has a_{i} as a root. This cannot be the case, however, since the degree of a_{i} over \mathbb{Q}_{p} is 2^{i} . To see this, we argue as follows.

First, observe that $\mathbb{Q}_p(a_i) \subseteq \mathbb{Q}_p(b_i)$ since $b_j \in \mathbb{Q}_p(b_i)$ for $j = 0, 1, \ldots, i$. Secondly, we note that $\mathbb{Q}_p(a_i) = \mathbb{Q}_p(b_i)$: otherwise, there exists a non-trivial embedding σ of $\mathbb{Q}_p(b_i)$ into $\overline{\mathbb{Q}_p}$ which fixes $\mathbb{Q}_p(a_i)$. Thus

$$\sum_{j=0}^{i} b_j p^{N_j} = a_i = \sigma(a_i) = \sum_{j=0}^{i} \sigma(b_j) p^{N_j}.$$

Notes that $\operatorname{ord}_p p = 1 = e^{-1}$ with can apply Corollary 91 with $\pi = p$ to see that our representation of a_i is unique. In particular, $b_j = \sigma(b_j)$ for $j = 1, 2, \ldots, i$. Hence $b_i = \sigma(b_i)$. But σ is non-trivial, so $\sigma(b_i) \neq b_i$. Thus $\mathbb{Q}_p(a_i) = \mathbb{Q}_p(b_i)$, so the degree of a_i over \mathbb{Q}_p is 2^i . We then have

$$a_{i+1} = \sum_{j=0}^{i+1} b_j p^{N_j}$$

The sequence $(a_j)_j$ is a Cauchy sequence since $|b_j|_p \leq 1$ for j = 1, 2, ... Thus it converges to $a \in \overline{\mathbb{Q}_p}$. Then a is the root of a polynomial of degree t over \mathbb{Q}_p . Thus $\alpha_t a^t + \cdots + \alpha_0 = 0$, with α_j 's in \mathbb{Z}_p not all $\alpha_j \equiv 0 \pmod{p}$. Take $2^i > t$. Ceratinly, $a \equiv a_i \pmod{p^{N_{i+1}}}$. Thus

$$\alpha_t a_i^t + \dots + \alpha_0 \equiv 0 \pmod{p^{N_{i+1}}},$$

which contradicts our choice of N_{i+1} . The claim follows.

17. November 18

Second proof of Theorem 95. We define b_i as a primitive $p^{2^{i^2}} - 1$ -th root of unity and put

$$c_i = \sum_{j=0}^i b_j p^j.$$

The sequence (c_i) is clearly a Cauchy sequence of elements of $\overline{\mathbb{Q}_p}$. Suppose that the sequence converges to an element $c \in \overline{\mathbb{Q}_p}$. Let d be the degree of c over \mathbb{Q}_p , i.e., $d = [\mathbb{Q}_p(c) : \mathbb{Q}_p]$. Recall that $[\mathbb{Q}_p(b_i) : \mathbb{Q}_p] = 2^{i^2}$, and that $\mathbb{Q}_p(b_j) \in \mathbb{Q}_p(b_{j+1})$ for $j = 0, 1, 2, \ldots$ Thus $[\mathbb{Q}_p(b_{j+1}) : \mathbb{Q}_p(b_j)] = \frac{2^{(j+1)^2}}{2^{j^2}} = 2^{2j+1}$. Consider

$$c_{d+1} = \sum_{j=0}^{d+1} b_j p^j.$$

Since

$$c - c_{d+1} = \sum_{\substack{j \ge d+2\\36}} b_j p^j,$$

and further $|b_j|_p = 1$ for all j, it follows that $|c - c_{d+1}|_p = p^{-(d+2)}$. Let σ be an automorphism of $\overline{\mathbb{Q}_p}$ which fixes \mathbb{Q}_p . Then

$$|c - c_{d+1}|_p = |\sigma(c - c_{d+1})|_p = |\sigma(c) - \sigma(c_{d+1})|_p = p^{-(d+2)}.$$

Note that $2^{2d+1} \ge d+1$. Since the degree of $\mathbb{Q}_p(b_{d+1})$ over $\mathbb{Q}_p(b_d)$ is 2^{2d+1} we can find d+1 automorphisms $\sigma_1, \ldots, \sigma_{d+1}$ of $\overline{\mathbb{Q}_p}$ which fixes $\mathbb{Q}_p(b_d)$ and for which $\sigma_1(b_{d+1}), \ldots, \sigma_{d+1}(b_{d+1})$ are distinct. Then if $i \le l$ we have $\sigma_i(c_{d+1}) - \sigma_l(c_{d+1}) = (\sigma_i(b_{d+1}) - \sigma_l(b_{d+1}))p^{d+1}$. Since $\sigma_i(b_{d+1})$ and $\sigma_l(b_{d+1})$ are distinct $p^{2^{(d+1)^2}-1}$ -th roots of unity, we have $|\sigma_i(b_{d+1}) - \sigma_l(b_{d+1})|_p = 1$ hence

$$|\sigma_i(c_{d+1}) - \sigma_l(c_{d+1})|_p = p^{-(d+1)}$$

Therefore,

$$\begin{aligned} |\sigma_i(c) - \sigma_l(c)|_p &= |(\sigma_i(c_{d+1}) - \sigma_l(c_{d+1})) - (\sigma_i(c_{d+1}) - \sigma_i(c)) + (\sigma_l(c_{d+1}) - \sigma_l(c))|_p \\ &= p^{-(d+1)}. \end{aligned}$$

Thus we see that $\sigma_i(c) \neq \sigma_l(c)$ whenever $l \neq i$. In particular, c has at least d+1 conjugates contradicting the fact that the degree of c over \mathbb{Q}_p is d.

Note that c is transcendental over \mathbb{Q}_p . The construction can be modified to give uncountably many such c. For example, for each sequence $(\varepsilon_1, \varepsilon_2, ...)$ with $\varepsilon_i \in \{0, 1\}$ we can associate to $c_{(\varepsilon)} = c_{(\varepsilon_1, \varepsilon_2, ...)}$, where we put

$$c_{(\varepsilon)} = \sum_{i=0}^{\infty} \widehat{b_i} p^i,$$

where

$$\widehat{b_i} = \begin{cases} b_i & (i \equiv 0 \pmod{2}) \\ \varepsilon_{\frac{i+1}{2}} b_i & (i \equiv 1 \pmod{2}). \end{cases}$$

We see that $c_{(\varepsilon)}$ is transcendental over \mathbb{Q}_p .

We now define Ω_p to be the completion of $\overline{\mathbb{Q}_p}$ with respect to $|\cdot|_p$. Ω_p is the set of equivalence classes of Cauchy sequences of elements of $\overline{\mathbb{Q}_p}$. Two sequences (a_i) and (b_i) are said to be equivalent if and only if $\lim |a_i - b_i|_p = 0$. Ω_p is in fact a field under the usual definition of + and \cdot . Further we can extend $|\cdot|_p$ by putting $|[(a_i)]|_p = \lim |a_i|_p$. Note that the limit exists since the sequence is Cauchy, and $a = [(a_i)]$ does not depend on the choice of representative. Further, we define ord_p on Ω_p by

$$\operatorname{ord}_p a := -\frac{\log |a|_p}{\log p}.$$

Theorem 96. Ω_p is algebraically closed.

Proof. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ with $a_i \in \Omega_p$. It suffices to show that f has a root in Ω_p . For $i = 0, 1, \ldots, n-1$, let $(a_{i,j})_j$ be a Cauchy sequence of elements of $\overline{\mathbb{Q}_p}$ which converges to a_i or equivalently which represents a_i . Put

$$g_j(x) = x^n + a_{n-1,j}x^{n-1} + \dots + a_{0,j}$$
37

for j = 1, 2, ... Let $(r_{i,j})_{i=1}^n$ be the roots of g_j for j = 1, 2, ... We will prove that for each j we can find an integer i_j with $1 \le i_j \le n$ so that $(r_{i_j,j})_{j=1}^n$ is a Cauchy sequence. Let $r = [(r_{i_j,j})_{j=1}^\infty]$. Then

$$f(r) = \lim_{j \to \infty} f(r_{i_j,j}) = \lim_{j \to \infty} g_j(r_{i_j,j}) = 0,$$

as required. Now it remains to show that we can actually find a Cauchy sequence that works. Note that if $\theta \in \overline{\mathbb{Q}_p}$ and satisfies some equation, say,

$$\theta^n + b_{n-1}\theta^{n-1} + \dots + b_0 = 0$$

with $b_i \in \mathbb{Q}_p$. Then $|\theta^n|_p = |-(b_{n-1}\theta^{n-1} + \cdots + b_0)|_p$, and since $|\cdot|_p$ is non-archimedean we have

$$|\theta|_p^n \le \max_{0 \le j \le n-1} (|b_j|_p |\theta|_p^j).$$

Therefore, we have

$$|\theta|_p \le \max_{0 \le j \le n-1} (1, |b_j|_p),$$

from which it follows

$$|\theta^n|_p \le \max_{0\le j\le n-1} (1, |b_j|_p^n).$$

Thus if $g \in \mathbb{Q}_p[x]$ and $g(\theta) = 0$ then $|\theta^n|_p \leq C(g)$, where C(g) is a positive number which depends on g only. We now show that we can choose the i_j 's so that $(r_{i_j,j})_{j=1}^{\infty}$ is Cauchy. Suppose that the first j terms r_{i_j} have been chosen. Consider

$$|g_{j+1}(r_{i_j,j}) - g_j(r_{i_j,j})|_p = |g_{j+1}(r_{i_j,j})|_p = \prod_{i=1}^n |(r_{i,j+1} - r_{i_j,j})|_p,$$

and

$$|g_{j+1}(r_{i_{j},j}) - g_{j}(r_{i_{j},j})|_{p} \le \delta_{j} \max(1, |r_{i_{j},j}|_{p})^{n} \le \delta_{j} C(g_{j}) \le \delta_{j} C,$$

for some fixed positive number C and $\delta_j = \max_{0 \le i \le n-1} |a_{i,j+1} - a_{i,j}|_p$. But $\delta_j \to 0$ as $j \to \infty$. At each stage choose $r_{i,j+1}$ to be the closest p-adically to $r_{i_j,j}$. Since $\delta_j \to 0$ as $j \to \infty$ the resulting sequence is indeed Cauchy, as required.

Definition 97. Ω_p is sometimes denoted by \mathbb{C}_p .

18. November 20

Consider extending $|\cdot|_p$ on \mathbb{Q} to a finite extension K of \mathbb{Q} . Suppose $[K : \mathbb{Q}] = n$ and that $\alpha \in \mathbb{C}$ for which $K = \mathbb{Q}(\alpha)$. Let f be the minimal polynomial for α over \mathbb{Q} . Suppose that

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i),$$

where we may take $\alpha \in \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. We may order the roots α_i of f so that $\alpha_1, \ldots, \alpha_r$ are real and so that $\alpha_{r+1}, \ldots, \alpha_{r+2s}$ are not real with $\alpha_{r+i} = \overline{\alpha_{r+s+i}}$ for all $i = 1, 2, \ldots, s$. There are n embeddings of K in \mathbb{C} which fix \mathbb{Q} (say $\sigma_1, \sigma_2, \ldots, \sigma_n$) where $\sigma_i(\alpha) = \alpha_i$ for all $1 \leq i \leq n$. We define r + s archimedean valuations on K given by

$$|\gamma|_i = |\sigma_i(\gamma)|$$
38

for all $\gamma \in K$ where $|\cdot|$ refers to the ordinary absolute value on \mathbb{C} . This gives the complete list of archimedean valuations of K up to equivalence. Note that these r + s valuations on K extend $|\cdot|$ on \mathbb{Q} .

As for non-archimedean valuations, there is the trivial valuation. Also we can consider the extensions of $|\cdot|_p$. Let \mathcal{O}_K be the ring of algebraic integers of K. There is unique factorization (up to ordering) of ideals of \mathcal{O}_K into prime ideals. Each prime ideals of \mathcal{O}_K divides (p), the principal ideal generated by a prime element p. We have

$$(p) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t},$$

where $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ are distinct prime ideals and e_1, \ldots, e_t are positive integers. For any prime ideal \mathfrak{p} of \mathcal{O}_K , we define the $\operatorname{ord}_{\mathfrak{p}}$ function for $\gamma \in \mathcal{O}_K \setminus \{0\}$ to be the exponent of \mathfrak{p} in the prime ideal factorization of the principal ideal generated by γ in \mathcal{O}_K . We can then extend $\operatorname{ord}_{\mathfrak{p}}$ to $K \setminus \{0\}$ by writing an element $\theta \in K \setminus \{0\}$ as $\gamma_1 \gamma_2^{-1}$ where $\gamma_1, \gamma_2 \in \mathcal{O}_K \setminus \{0\}$ and putting $\operatorname{ord}_{\mathfrak{p}} \theta = \operatorname{ord}_{\mathfrak{p}} \gamma_1 - \operatorname{ord}_{\mathfrak{p}} \gamma_2$. On scan check that ord_p is well-defined since the definition does not depend on the choice of γ_1 and γ_2 .

For any prime \mathfrak{p} of \mathcal{O}_K , we define the norm of \mathfrak{p} , say $N\mathfrak{p}$, to be the cardinality of $\mathcal{O}_K/\mathfrak{p}$. Then $N\mathfrak{p} = p^{f_\mathfrak{p}}$ for some positive integer $f_\mathfrak{p}$. Further we have the norm is multiplicative so

$$N(p) = (N\mathfrak{p}_1)^{e_1} \cdots (N\mathfrak{p}_t)^{e_t},$$

 \mathbf{SO}

$$p^n = p^{e_1 f_1 + \dots + e_t f_t},$$

hence $n = e_1 f_1 + \cdots + e_t f_t$. We define $|\cdot|_{\mathfrak{p}}$ for each prime ideal in \mathcal{O}_K by

$$|\gamma|_{\mathfrak{p}} = N\mathfrak{p}^{-\frac{\mathrm{ord}_{\mathfrak{p}}(\gamma)}{e_{\mathfrak{p}}f_{\mathfrak{p}}}} = p^{-\frac{\mathrm{ord}_{\mathfrak{p}}(\gamma)}{e_{\mathfrak{p}}}}.$$

This defines a valuation on K. To gather with the trivial valuation, this gives us the complete collection of non-archimedean valuations of K, up to equivalence. Notice that $|\cdot|_{\mathfrak{p}_i}$ extends $|\cdot|_{\mathfrak{p}}$ on \mathbb{Q} , for $i = 1, 2, \ldots, t$. Recall that for $x \in \mathbb{Q} \setminus \{0\}$ we have

$$|x|\prod_{p}|x|_{p} = 1$$

This is the product formula for \mathbb{Q} . But this doesn't work for K! To recover the product formula for K, we need a different way of normalization. We now put, for $x \in K \setminus \{0\}$,

$$||x||_i = |x|_i^{g(i)}$$

for i = 1, 2, ..., r + s where

$$g(i) = \begin{cases} 1 & (i = 1, 2, \dots, r) \\ 2 & (i = r + 1, \dots, r + s) \end{cases}$$

further we put, for $x \in K \setminus \{0\}$,

$$\|x\|_{\mathfrak{p}_i} = \|x\|_{\mathfrak{p}_i}^{e_{\mathfrak{p}_i}f_{\mathfrak{p}_i}}$$

for $i = 1, 2, \ldots, t$. Then for all $x \in K \setminus \{0\}$,

$$\prod_{i=1}^{r+s} \|x\|_i \cdot \prod_{\mathfrak{p} \in \mathcal{O}_K} \|x\|_{\mathfrak{p}} = 1.$$
(19)

Definition 98. The formula (19) is known as the product formula for K. The r+s valuations $\|\cdot\|_i$ for $i = 1, 2, \ldots, r+s$ are said to be valuations with the prime at infinity. Note that

$$\prod_{i=1}^{r+s} \|x\|_i = |N_{K/\mathbb{Q}}(x)|.$$

18.1. A setting where *p*-adic analysis arises.

Definition 99. A quadratic form in n variables x_1, \ldots, x_n is a homogeneous polynomial in x_1, x_2, \ldots, x_n of degree 2.

There is a vast literature surrounding quadratic forms. First, consider forms over \mathbb{Z} . One might ask if the form represents every positive integer. This is not the case for $x_1^2 + x_2^2$ or $x_1^2 + x_2^2 + x_3^2$. But this can be done in four squares, as Lagrange showed in 1770.

Theorem 100 (Lagrange's four-square theorem). Every positive integer is represented by $x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Ramanujan considered the question for forms $ax_1^2 + bx_2^2 + cx_3^2 + dx_4^2$ with a, b, c, d positive integer. He found 54 triples (a, b, c, d) for which $ax_1^2 + bx_2^2 + cx_3^2 + dx_4^2$ represents all positive integers. For instance, (a, b, c, d) = (1, 2, 5, 6) works. Recently, Bhargava and Hanke proved a conjecture of Conway:

Theorem 101 (Bhargava, Hanke). A positive-definite integral quadratic form represents all positive integers, provided that it represents all the integers up to 290, and 290 cannot be replaced by a smaller number.

19. November 25 – the final lecture

MInkowski proved that if $q(x_1, x_2, ..., x_n)$ is a quadratic form with rational coefficients and q represents 0 with $x_1, x_2, ..., x_n \in \mathbb{R}$ and q represents 0 with $x_1, x_2, ..., x_n$ in \mathbb{Q}_p for each prime p then q represents 0 with $x_1, x_2, ..., x_n \in \mathbb{Q}$. Therefore, "local" solutions imply "global" solutions. Hasse extended this result to finite extensions of \mathbb{Q} .

In general, the idea that one can pass from local to global solutions is known as the *Hasse* principle. However, it does not always apply.

Theorem 102 (Selmer). $3x^3 + 4y^3 + 5z^3 = 0$ has a solution in \mathbb{R} and in \mathbb{Q}_p for each prime p but does not have a solution in \mathbb{Q} .

Proof. (x, y, z) = (0, 0, 0) is a solution, so a solution is indeed in \mathbb{R} . But the \mathbb{Q}_p case is less trivial. For p = 3, take (x, z) = (0, -1). Then it suffices to show that $4y^3 - 5 = 0$ has a solution in \mathbb{Q}_3 . Put $f(y) = 4y^3 - 5$. Then $|f(2)|_3 = 3^{-3}$ and $|f'(2)|_3 = 3^{-1}$. Thus by Hensel's lemma there is a solution in \mathbb{Q}_3 . For p = 5, take x = 1 and z = 0 and then we look for a solution too $g(y) = 4y^3 + 3$ in \mathbb{Q}_5 . Then $|g(2)|_5 = 5^{-1}$ and $|g'(2)|_5 = 1$, so the result follows by Hensel. Suppose now that $p \neq 3, 5$. If 3 is a cubic residue in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ then take $(x, y, z) = (\theta, 1, -1)$ where θ is a root of $3x^3 \equiv 1 \pmod{\mathbb{Q}_p}$, and apply Hensel's lemma. If 3 is not a cube in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ ten there are three possibilities. Either 5 is a cube in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ in which case there is a cube root of 5 in \mathbb{Q}_p and we take $(x, y, z) = (\theta, -\theta, 1)$. If not, then we have $5 \equiv 3t^3 \pmod{p}$ or $5 \equiv 3^2t^3 \pmod{p}$ for some integer t. In the first case we can use Hensel to lift to a valuation θ of $(\frac{5}{3})^{1/3}$ in \mathbb{Q}_p and then $(x, y, z) = (\theta, 0, -1)$ is a solution. In the second case, we use Hensel to show that there is an element $\theta_1 = \left(\frac{5}{9}\right)^{1/3}$ in \mathbb{Q}_p and then $(\theta_1, 0, -1)$ is a solution. This shows that there are local solutions always.

To show that there are no solutions over \mathbb{Q} , Selmer showed that the given cubic form defines an elliptic curve of rank 0 over \mathbb{Q} and there are no rational points.

Let us return to our construction of Ω_p . Instead of completing \mathbb{Q} to \mathbb{Q}_p and then taking the algebraic closure extending $|\cdot|_p$ to $|\cdot|_p$ on $\overline{\mathbb{Q}_p}$ what if we first extend $|\cdot|_p$ to \overline{Q} then complete? We consider a finite extension K of \mathbb{Q} ? Let f be the monic irreducible polynomial defining K over \mathbb{Q} . Consider $f \in \mathbb{Q}_p[x]$ and let

$$f(x) = f_1(x)f_2(x)\cdots f_r(x),$$

where f_1, f_2, \ldots, f_r are irreducibles in $\mathbb{Q}_p[\underline{x}]$ of degree e_i for $i = 1, 2, \ldots, r$. Then the f_i 's are distinct since f has no repeated roots in $\overline{\mathbb{Q}}_p$. To see this, note that f and f' are in $\mathbb{Q}[x]$ and \mathbb{Q} is of characteristic zero and f is irreducible, so f is separable.

Let $\alpha_1, \ldots, \alpha_n$ be the roots of f in $\overline{\mathbb{Q}_p}$. Then there is an embedding σ_i of K in $\overline{\mathbb{Q}_p}$ for $i = 1, 2, \ldots, n$ given by $\sigma_i : K = \mathbb{Q}[x]/f \to \overline{\mathbb{Q}_p}$ where σ_i fixes \mathbb{Q} and sends $x + (f) \mapsto \alpha_i$. Suppose that we have an embedding σ of K into $\overline{\mathbb{Q}_p}$ and $\sigma(K) = \mathbb{Q}(\alpha)$. If $\|.\|$ is a valuation on K, which extends $|\cdot|_p$ on \mathbb{Q} , then under σ , $\|.\|$ is a valuation on $\mathbb{Q}(\alpha)$ which extends $|\cdot|_p$ on \mathbb{Q} , then under σ , $\|.\|$ is a valuation on $\mathbb{Q}(\alpha)$ which extends $|\cdot|_p$ on \mathbb{Q} . Then we may complete $\mathbb{Q}(\alpha)$ with respect to $|\cdot|$ to a field K' and extend this valuation to K'. Notice that K' contains α_p with the valuation $\|.\|$ on \mathbb{Q}_p the same as the valuation $|\cdot|_p$ on \mathbb{Q}_p . Also it contains α . But there is a unique way of extending $|\cdot|_p$ from \mathbb{Q}_p to $\mathbb{Q}_p(\alpha)$ (actually, to $\overline{\mathbb{Q}_p}$) and $\mathbb{Q}_p(\alpha)$ is complete under $|\cdot|_p$. Therefore $K' = \mathbb{Q}_p(\alpha)$ and $\|.\|$ is $|\cdot|_p$ on $\mathbb{Q}_p(\alpha)$.

But α is a root of f(x) and the possible valuations are determined by the irreducible polynomials $f_1, f_2, \ldots, f_r \in \mathbb{Q}_p[x]$. Therefore there are at most r distinct valuations on Kwhich extend $|\cdot|_p$ on \mathbb{Q} . To see that we get r distinct valuations, let α be a root of f_i in $\overline{\mathbb{Q}_p}$ for $i = 1, 2, \ldots, r$. Then we have

The above diagram determines a valuation on $\mathbb{Q}(\alpha_i)$ which extends $|\cdot|_p$ on \mathbb{Q} . But there are r distinct valuations on K given by the prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ which divide (p) in \mathcal{O}_K . This gives them all the valuations. Therefore, we arrive at $\overline{\mathbb{Q}_p}$ or a field isomorphic to it, with valuation $|\cdot|_p$ whether we first complete and then take the algebraic closure or vice versa.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, 200 UNIVERSITY AVENUE WEST, WATERLOO, ON, CANADA N2L 3G1

E-mail address: hsyang@uwaterloo.ca