Back to Index       Back to newest additions
BANKS W.,
[1] Some unusual identities for special values of the Riemann zeta function.
Ramanujan J. 5 (2001), no. 2, 153-157.
BERG L.,
[1] On the solution of Jordan's system of difference equations. Rostock. Math.
Kolloq. No. 56 (2002), 25-28.
[2] On polynomials related with generalized Bernoulli numbers. Rostock. Math. Kolloq. No. 56 (2002), 55-61.
BRETTI G, RICCI P.E.,
[1] Euler polynomials and the related quadrature rule.
Georgian Math. J. 8 (2001), no. 3, 447-453.
GUO BAI-NI, QI FENG,
[1] Generalization of Bernoulli polynomials. Internat. J. Math. Ed. Sci.
Tech. 33 (2002), no. 3, 428-431.
LIU GUO DONG, LI RONG XIANG,
[1] Sums of products of Euler-Bernoulli-Genocchi numbers. (Chinese)
J. Math. Res. Exposition 22 (2002), no. 3, 469-475.
SÁNCHEZ-PEREGRINO R.,
[2] Closed formula for poly-Bernoulli numbers.
Fibonacci Quart. 40 (2002), no. 4, 362-364.
SLAVUTSKII I.SH.,
[35] On the generalized Glaisher-Hong's congruences.
Chinese Ann. Math. Ser. B 23 (2002), no. 1, 63-66.
SUN QI, HONG SHAO-FANG,
[1] The $p$-adic approach to Wolstenholme's theorem.
Northeast. Math. J. 17 (2001), no. 2, 226-230.
SUN ZHI-HONG,
[5] Invariant sequences under binomial transformation.
Fibonacci Quart. 39 (2001), no. 4, 324-333.
USTINOV A.V.,
[1] Diskretnyi analog formuly summirovaniya Ejlera [A discrete analogue of
Euler's summation formula], Mat. Zametki 71 (2002), no. 6, 931-936.
July 19, 2002:
AGOH T.,
[24] Congruences involving Bernoulli numbers and Fermat-Euler quotients.
J. Number Theory, 94 (2002), no. 1, 1-9.
BILU Yu. F., BRINDZA B., KIRSCHENHOFER P., Pintér Á., TICHY R. F.,
[1] Diophantine equations and Bernoulli polynomials. With an appendix by
A. Schinzel. Compositio Math. 131 (2002), no. 2, 173-188.
BOWMAN D., BRADLEY D. M.,
[1] Multiple polylogarithms: a brief survey. In: $q$-series with applications
to combinatorics, number theory, and physics (Urbana, IL, 2000), 71-92,
Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
[1] Swinnerton-Dyer type congruences for certain Eisenstein series. $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), 93-108, Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
BUNDSCHUH P., JI CHUN-GANG, SHAN ZUN,
[1] A remarkable class of congruences.
Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 493-500.
CHANG CHENG-HUNG, MAYER D.H.
[2] Eigenfunctions of the transfer operators and the period functions for
modular groups. Dynamical, spectral, and arithmetic zeta functions (San
Antonio, TX, 1999), 1-40, Contemp. Math., 290, Amer. Math. Soc.,
Providence, RI, 2001.
COOPER S.,
[1] On sums of an even number of squares, and an even number of triangular
numbers: an elementary approach based on Ramanujan's ${}\sb 1\psi\sb 1$
summation formula. In: $q$-series with applications to combinatorics, number
theory, and physics (Urbana, IL, 2000), 115-137, Contemp. Math., 291,
Amer. Math. Soc., Providence, RI, 2001.
EGAMI S.,
[1] Reciprocity laws of multiple zeta functions and generalized Dedekind sums.
In: Analytic number theory and related topics (Tokyo, 1991), 17-27,
World Sci. Publishing, River Edge, NJ, 1993.
HOLDEN J.,
[2] Comparison of algorithms to calculate quadratic irregularity of prime
numbers. Math. Comp. 71 (2002), no. 238, 863-871.
SHIRATANI K.,
[10] On generalized periods of cusp forms.
In: Investigations in number theory, 479-492, Adv. Stud. Pure Math., 13,
Academic Press, Boston, MA, 1988.
STOLL M.,
[1] On the arithmetic of the curves $y\sp 2=x\sp l+A$. II.
J. Number Theory 93 (2002), no. 2, 183-206.
[4] Special $p$-adic analytic functions and Fourier transforms. J. Number Theory 60 (1996), no. 2, 393-408.
ZHANG WENPENG,
[4] On the general Dedekind sums and one kind identities of Dirichlet
$L$-functions. (Chinese. English, Chinese summary)
Acta Math. Sinica 44 (2001), no. 2, 269-272.
June 10, 2002:
KIM MIN-SOO, SON JIN-WOO
[2] On a multidimensional Volkenborn integral and higher order Bernoulli
numbers. Bull. Austral. Math. Soc. 65 (2002), no. 1, 59-71.
[3] Some remarks on a $q$-analogue of Bernoulli numbers. J. Korean Math. Soc. 39 (2002), no. 2, 221-236.
OTA K.,
[1] On Kummer-type congruences for derivatives of Barnes' multiple Bernoulli
polynomials. J. Number Theory 92 (2002), no. 1, 1-36.
COSTABILE F.A., DELL'ACCIO F.,
[2] Expansions over a simplex of real functions by means of Bernoulli
polynomials. In memory of W. Gross.
Numer. Algorithms 28 (2001), no. 1-4, 63-86.
DILCHER K., MALLOCH L.,
[1] Arithmetic properties of Bernoulli-Padé numbers and polynomials.
J. Number Theory 92 (2002), no. 2, 330-347.
ISMAIL M.E.H., RAHMAN, M.,
[1] Inverse operators, $q$-fractional integrals, and $q$-Bernoulli polynomials.
J. Approx. Theory 114 (2002), no. 2, 269-307.
PANJA G.K., DUBE P.P.,
[1] On generalized Bernoulli polynomials.
Rev. Bull. Calcutta Math. Soc. 8 (2000), no. 1-2, 43-48.
CHANG CHING-HUA, HA CHUNG-WEI,
[2] On recurrence relations for Bernoulli and Euler numbers.
Bull. Austral. Math. Soc. 64 (2001), no. 3, 469-474.
KIM TAEKYUN, RIM SEOG-HOON,
[4] Some $q$-Bernoulli numbers of higher order associated with the $p$-adic
$q$-integrals. Indian J. Pure Appl. Math. 32 (2001), no. 10, 1565-1570.
PRODINGER H.,
[2] Combinatorics of geometrically distributed random variables:
new $q$-tangent and $q$-secant numbers.
Int. J. Math. Math. Sci. 24 (2000), no. 12, 825-838.
February 25, 2002:
BORWEIN J.M., BROADHURST D.J., KAMNITZER J.,
[1] Central binomial sums, multiple Clausen values, and zeta values.
Experiment. Math. 10 (2001), no. 1, 25-34.
CHOWLA S.D.,
[3] Some properties of Eulerian numbers.
Tohoku Math. J. 30 (1929), 324-327
GRAF J. H.,
[1] Einleitung in die Theorie der Gammafunction und der Euler'schen Integrale.
K.J. Wyss, Bern, 1894.
LIU MAI XUE, ZHANG ZHI ZHENG,
[1] A class of computational formulas involving the multiple sum on Genocchi
numbers and the Riemann zeta function. (Chinese)
J. Math. Res. Exposition 21 (2001), no. 3, 455-458.
KLUYVER J.C.,
[6] Over eenige getallenreeksen van Euler.
Versl. Meed. Kon. Ak. Weten., Amsterdam 24 (1916), 1816-1822.
NAGEL T.,
[1] Note sur l'application d'une formule d'inversion de la théorie des
nombres. Norsk Matem. Tidsskr. 1 (1919), 40-44.
SCHLÖMILCH O.,
[9] Übungsaufgaben für Schüler. III. Arithmetisches Theorem.
Arch. für Math. und Phys., 14 (1850), 108-109.
February 20, 2002:
BALANZARIO E.P.,
[1] Evaluation of Dirichlet Series.
Amer. Math. Monthly 108 (2001), no. 10, 9699-971
BERNDT B.C.,
[14] The evaluation of certain classes of nonabsolutely convergent double
series. SIAM J. Math. Anal. 6 (1975), no. 6, 966-977.
BROOKE M.,
[1] Fibonacci formulas.
Fibonacci Quart. 1 (1963), 60.
FAIRLIE D.B., VESELOV A.P.,
[1] Faulhaber and Bernoulli polynomials and solitons. Advances in nonlinear
mathematics and science.
Phys. D 152/153 (2001), 47-50.
HOLDEN J.,
[1] Irregularity of prime numbers over real quadratic fields.
Algorithmic number theory (Portland, OR, 1998), 454-462, Lecture Notes in
Comput. Sci., 1423, Springer, Berlin, 1998.
JANG LEE-CHAE, KIM TAEKYUN, RIM SEOGHOON, SON JIN-WOO,
[1] On the values of $q$-analogue of zeta and $L$-functions.
Proceedings of the Jangjeon Mathematical Society, 11-18,
Proc. Jangjeon Math. Soc., 1, Jangjeon Math. Soc., Hapcheon, 2000.
KIM TAEKYUN, JANG LEE-CHAE, PAK HONG KYUNG,
[1] A note on $q$-Euler and Genocchi numbers.
Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141.
KNOLL, F.,
[1] Die zyklischen Funktionen und die damit zusammenhängenden linearen
Operationen. Verallgemeinerte Bernoullische Polynome.
Deutsche Math. 1 (1936), 156-162.
KNOPFMACHER A., ROBBINS N.,
[1] Some arithmetic properties of Eulerian numbers.
J. Combin. Math. Combin. Comput. 36 (2001), 31-42.
LIU GUO DONG,
[6] Identities and congruences involving higher-order Euler-Bernoulli numbers
and polynomials. Fibonacci Quart. 39 (2001), no. 3, 279-284.
[7] Computational formulas for Euler-Bernoulli polynomials of $n$ variables. (Chinese. English summary) J. Wuhan Univ., Nat. Sci. Ed. 44 (1998), no.5, 554-556.
MURTY M. RAM, REECE M.,
[1] A simple derivation of $\zeta(1-K)=-B\sb K/K$.
Funct. Approx. Comment. Math. 28 (2000), 141-154.
RAMARÉ, O.,
[1] Approximate formulae for $L(1,\chi)$.
Acta Arith. 100 (2001), no. 3, 245-266.
RZUDKOWSKI G.,
[1] Euler-Maclaurin summation and the generalized factorial.
Math. Gazette 85 (2001), no. 504, 507-512.
SATOH J.,
[7] Another look at the $q$-analogue from the viewpoint of formal groups.
Proceedings of the Jangjeon Mathematical Society, 145-159,
Proc. Jangjeon Math. Soc., 1, Jangjeon Math. Soc., Hapcheon, 2000.
SCHNEIDER I.,
[1] Potenzsummenformeln im 17. Jahrhundert.
Historia Math. 10 (1983), no. 3, 286-296.
TUENTER H.J.H.,
[1] On the sums $\sum_{i=1}^n\Lceil i/p \Rceil^m$ and
$\sum_{i=1}^n \Lfloor i/p \Rfloor^m$},
Pi Mu Epsilon Journal 11 (2000), no. 2, 97-99.
WALSTRA, K.W.,
[1] Sur les fonctions de Lubbock.
Nieuw Arch. Wisk. (2) 12 (1917), 161-168
ZHANG SHANJIE, JIN JIANMING,
[1] Computation of special functions.
John Wiley & Sons, Inc., New York, 1996. xxvi+717 pp. ISBN 0-471-11963-6
February 15, 2002:
CHEN KWANG-WU,
[1] Algorithms for Bernoulli numbers and Euler numbers.
J. Integer Seq. 4 (2001), no. 1, Article 01.1.6, 7 pp. (electronic).
CHEN KWANG-WU, EIE MINKING,
[1] A note on generalized Bernoulli numbers.
Pacific J. Math. 199 (2001), no. 1, 41-59.
COSTABILE F.A., DELL'ACCIO F.,
[1] Expansion over a rectangle of real functions in Bernoulli polynomials
and applications.
BIT 41 (2001), no. 3, 451-464.
JANG YOUNGHO, KIM HOIL,
[1] A series whose terms are products of two $q$-Bernoulli numbers in the
$p$-adic case.
Houston J. Math. 27 (2001), no. 3, 495-510.
LIU GUO DONG,
[5] The generalized central factorial numbers and higher order Nörlund
Euler-Bernoulli polynomials. (Chinese).
Acta Math. Sinica 44 (2001), no. 5, 933-946.
PAK HONG-KYUNG, RIM SEOGH-HOON,
[1] $q$-Bernoulli numbers and polynomials.
Proceedings of the Jangjeon Mathematical Society, 31-36, Proc. Jangjeon Math.
Soc., 3, Hapcheon, 2001.
January 28, 2002:
FUCHS P.,
[1] Bernoulli numbers and binary trees.
Tatra Mt. Math. Publ. 20 (2000), 111-117.
JAKUBEC S.,
[12] Remark on certain sums concerning class number.
Abh. Math. Sem. Univ. Hamburg, 71 (2001), 69-76.
NARKIEWICZ W.,
[3] The development of prime number theory. From Euclid to Hardy and Littlewood.
Springer-Verlag, Berlin, 2000. xii+448 pp.
SÁNDOR J.,
[2] On the open problems OQ.487 and OQ.507,
Octogon Math. Mag. 9 (2001), no.1, 550-551; 558-559.
SCHUSTER W.,
[1] Improving Stirling's formula.
Arch. Math. (Basel) 77 (2001), no. 2, 170-176.
SRIVASTAVA H.M., TSUMURA H.,
[1] A certain class of rapidly convergent series representations for
$\zeta(2n+1)$.
J. Comput. Appl. Math. 118 (2000), no. 1-2, 323-335.
[2] Certain classes of rapidly convergent series representations for
$L(2n,\chi)$ and $L(2n+1,\chi)$. Acta Arith. 100 (2001), no. 2, 195-201.
YOUNG P.T.,
[2] Kummer congruences for values of Bernoulli and Euler polynomials.
Acta Arith. 99 (2001), no. 3, 277-288.
January 10, 2002:
CHANG CHENG-HUNG, MAYER D.H.,
[1] The transfer operator approach to Selberg's zeta function and modular and
Maass wave forms for ${\rm PSL}(2,Z)$. In: Emerging applications of number
theory (Minneapolis, MN, 1996), 73-141, IMA Vol. Math. Appl., 109,
Springer, New York, 1999.
KANEMITSU S., KUZUMAKI T.,
[2] On a generalization of the Maillet determinant. II.
Acta Arith. 99 (2001), no. 4, 343-361.
KIM TAEKYUN,
[6] Remark on $p$-adic $q$-$L$-functions and sums of powers.
Proc. Jangjeon Math. Soc. 1 (2000), 161-169.
KUCERA R.,
[1] Formulae for the relative class number of an imaginary abelian field in
the form of a determinant. Nagoya Math. J. 163 (2001), 167-191.
Back to Index       New in 2001       New in 2000       New in 1999