Bernoulli Bibliography

I


Back to Index       Back to H       On to J


IBRAHIMOGLU I.,
[1] A proof of Stickelberger's theorem (Stickelberger teoremi'nin bir ispat{\=i),Hecettepe Bull. Natur. Sci. and Eng. 12 (1983), 279-287.
Z565.12004; R1984,5A124

[2] The value of the Dirichlet L-functions at negative integral points, Hacettepe Bull. Natur. Sci. and Eng., 13 (1984), 63-67.
Z565.10035; R1985,3A124

[3] (C,k)-summability of the Dirichlet L-functions, Hacettepe Bull. Natur. Sci. and Eng., 13 (1984), 59-62.
Z565.10034; R1985,3B86

IBUKIYAMA T.,
[1] On some elementary character sums, Comment. Math. Univ. St. Paul. 47 (1998), no. 1, 7-13.
Z921.11046; M99h:11094

IBUKIYAMA T., SAITO H.,
[1] On $L$-functions of ternary zero forms and exponential sums of Lee and Weintraub. J. Number Theory, 48 (1994), no. 2, 252-257.
Z824.11033; M95i:11032

[2] On zeta functions associated to symmetric matrices, I: An explicit form of zeta functions, Amer. J. Math., 117 (1995), no. 5, 1097-1155.
Z846.11028; M96j:11120

IBUKIYAMA T.: see also ARAKAWA T., IBUKIYAMA T., KANEKO M.

ICHIMURA H.: see HACHIMORI Y., ICHIMURA H.

IKEDA M.,
[1] Some inequalities for Bernoulli's polynomials and related functions, Monatsh. Math., 68 (1964), 224-234.
Z129.28402; M31#2435; R1965,3B71

IMAI H.,
[1] Values of $p$-adic $L$-functions at positive integers and $p$-adic log multiple gamma functions. Tôhoku Math. J., 45 (1993), no. 4, 505-510.
Z809.11067; M95c:11139; R1994,8A371

IMAMOGLU Ö.: see DUKE W., IMAMOGLU Ö.

IMAOKA M.,
[1] Generalized Bernoulli numbers on the $K{\rm O}$-theory. Hiroshima Math. J. 26 (1996), no. 1, 181-188.
Z865.55003; M97c:55016

IMSHENETSKII V.G.,
[1] O funktsiyakh Yakova Bernulli i vyrazhenii raznosti mezhdu odnopredel'nymi summoyu i integralom [On functions of Jacob Bernoulli and an expression for the difference between sum and integral with the same limits]. Uch. zap. Kazansk. Univ. 6 (1870), 244-265.
J02.0124.03

[2] Ob odnom obobshchenii funktsii Yakova Bernulli [On a generalization of the function of Jacob Bernoulli]. Zap. Peterb. Akad. Nauk, (7), 31 (1883), no.11, 1-58.
J15.0370.03

[3] O nekotorykh prilozheniyakh obshchikh funktsii Bernulli, Prilozhenie No. 2 [On some applications of general functions of Bernoulli]. Prilozhenie No. 2 k zap. Peterb. Akad. Nauk 52 (1886), 1-62.
J18.0373.02

INKERI K.,
[1] On the second case of Fermat's last theorem, Ann. Acad. Sci. Fenn., Ser. AI, Math.-Phys. Kl., (1949), no. 60, 1-32.
Z33.35105; M11-500d

[2] Über die Klassenzahl des Kreiskörpers der $l$-ten Einheitswurzeln, Ann. Acad. Sci. Fenn., Ser. AI, (1955), no. 199, 1-12.
Z65.26903; M18-20d; R1956,7084

[3] The real roots of Bernoulli polynomials, Turun Yliopiston Julkais., (Annales Universitatis Turkuensis), 1959, Ser. AI, no. 37, 1-20.
Z104.01502; M22#1703; R1961,5B376

INVERNIZZI S.,
[1] On the periodic BVP for the forced Duffing equation, Rend. Ist. Mat. Univ. Trieste, 19 (1987), no. 1, 64-75.
Z651.34066; M89f:34026; R1988,10B1160

IRELAND K., ROSEN M.,
[1] A classical introduction to modern number theory, Springer-Verlag, New York, 1982.
Z482.10001; M83g:12001; R1983,1A63K

IRELAND K., SMALL, D.,
[1] A note on Bernoulli-Goss polynomials, Can. Math. Bull., 27 (1984), no. 2, 179-184.
Z531.12012; M85f:11093; R1985,1A212

ISEKI S.,
[1] The transformation formula for the Dedekind modular function and related functional equation, Duke Math. J., 24 (1957), 653-662.
Z93.25903; M19-943a; R1959,1222

ISHIBASHI M.,
[1] On a proof of the Artin-Hasse formula for the norm residue symbol, Mem. Fac. Sci. Kyushu Univ. Ser. A, 39 (1985), no. 1, 95-103.
Z547.12004; M86g:11069; R1985,12A332

[2] An elementary proof of the generalized Eisenstein formula, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 197 (1988), no. 8-10, 443-447.
Z684.10014; M91k:11075

[3] The value of the Estermann zeta functions at $s=0$. Acta Arith. 73 (1995), no. 4, 357-361.
Z845.11034; M96k:11109; R1997,10A143

[4] $\bold Q$-linear relations of special values of the Estermann zeta function, Acta Arith. 86 (1998), no. 3, 239-244.
Z933.11050; M99j:11101; R1999,7A143

ISHIBASHI M., KANEMITSU S.,
[1] Fractional part sums and divisor functions, I. In: Number Theory and Combinatorics, Japan 1984. World Sci Publ., Philadelphia, 1985, viii + 446 pp.
Z601.10032; M87e:11093

ISHIBASHI M., SHIRATANI K.,
[1] On explicit formulas for the norm residue symbol in prime cyclotomic fields, Mem. Fac. Sci., Kyushu Univ., Ser. A, 38 (1984), no. 2, 201-231.
Z595.12008; M85j:11169; R1985,6A297

ISMAIL M.E.H., RAHMAN, M.,
[1] Inverse operators, $q$-fractional integrals, and $q$-Bernoulli polynomials. J. Approx. Theory 114 (2002), no. 2, 269-307.
Z0997.33008; M2003h:05023

ISMAIL M.E.H., STEWART D.,
[1] On Dumont's polynomials, Discrete Math. 41 (1982), no. 2, 155-160.
Z492.05004; M83m:10010; R1983,2V458

ISMAIL M.E.H.: see also GOSPER R.W., ISMAIL M.E.H., ZHANG R.

ISRAILOV M.I.,
[1] The reconstruction of functions given by their moments, by means of Bernoulli polynomials. Dokl. Akad. Nauk USSR, 1967, no. 10, 7-10.
Z202.12402; M46#5923; R1968,9B4

[2] On the Laurent expansion of the Riemann zeta function. (Russian), Trudy Mat. Inst. Steklov., 158 (1981), 98-104. Engl. transl.: Proc. Steklov Inst. Math. 1983, no. 4, 105-112.
Z477.10031; M83m:10069; R1982,5B39

ITZYKSON C.: see WALDSCHMIDT M. et al.

IVIC A.,
[1] Topics in recent zeta function theory, Publ. Math. D'Orsay, (1983).
Z524.10032; M86b:11055

[2] The Riemann zeta-function: The theory of the Riemann zeta-function with applications. John Wiley & Sons, New York etc., 1985, xvi + 517 pp.
Z556.10026; M87d:11062; R1985,11A132K

IVIC A., TE RIELE H.J.J.,
[1] On the zeros of the error term for the mean square of $|\zeta({1\over 2}+it)|$. Math. Comp., 56 (1991), no.193, 303-328.
Z714.11051; M91e:11095

IWANIEC H.,
[1] Topics in classical automorphic forms. Graduate Studies in Mathematics, 17. American Mathematical Society, Providence, RI, 1997. xii+259 pp. ISBN 0-8218-0777-3.
Z905.11023; M98e:11051

IWASAWA K.,
[1] On some invariants of cyclotomic fields, Amer. J. Math., 80 (1958), no. 3, 773-783; erratum, 81 (1959), no. 1, 280.
Z84.04101; M23#A1631; R1961,5A247

[2] On p-adic L-functions, Ann. Math., 89 (1969), 198-205.
M42#4522; R1971,2A300

[3] Lectures on p-adic L-functions, Ann. of Math. Studies, Princeton, 1972, No. 74.
Z236.12001; M50#12974; R1973,2A327

IWATA G.,
[1] A generalization of the Euler-Maclaurin sum formula, Natur. Sci. Rep. Ochanomizu Univ., 27 (1976), no. 1, 27-31.
Z351.33009; M54#14305; R1977,1B26


Back to Index       Back to H       On to J