ABASON E.,
[1] Sur les "puissances périodiques" et les polynomes de Bernoulli,
Bulletin Timisoara, 2 (1929), 183-187.
J56.0990.01
ABE S., KARAMATSU Y.,
[1] On Fermat's last theorem and the first factor of
the class number of the cyclotomic field, TRU Math.,
4 (1968),
1-9.
Z186.36802; M42#4482; R1970,1A138
ABEL N.,
[1] Solution de quelques problèmes à l'aide
d'intégrales définis, Oeuvres compl., 2nd edition,
Vol.I, Grondahl, Christiania, 1881, 11-27.
J13.0020.01
ABOU-TAIR I.,
[1] On a certain class of Dirichlet series,
Kyungpook Math. J., 30 (1990), no.2, 215-228.
Z719.11055; M92b:11062
ABRAMOWITZ M., STEGUN I.A., (eds.)
[1] Handbook of mathematical functions,
National Bureau of Standards, Washington
(1964).
Z171.38503; M29#4914; R1965,5A40k
ABRAMSON M.,
[1] Permutations related to secant, tangent and Eulerian numbers,
Canad. Math. Bull., 22 (1979), no. 3, 281-291.
Z437.05002; M81c:05007; R1980,9V506
ADACHI N.,
[1] Generalization of Kummer's criterion for
divisibility of class numbers, J. Number Theory, 5
(1973), 253-263.
Z263.12005; M48#11041; R1974,3A267
[2] The Diophantine equation $x^2 \pm ly^2 = z^l$ connected with Fermat's
last theorem,
Tokyo J. Math., 11 (1988), no. 1, 85-94.
Z653.10016; M89g:11023; R1989,2A87
[3] An observation on the first case of Fermat's last theorem,
Tokyo J. Math., 11 (1988), no. 2, 317-321.
Z673.10015; M90a:11035; R1989,10A152
ADAMS J.C.,
[1] On some properties of Bernoulli's numbers, and, in
particular, on Clausen's Theorem respecting the fractional
parts of these numbers, Proc. Camb. Phil. Soc.,
2 (1872),
269-270.
J07.0132.03
[2] On the calculation of Bernoulli's numbers up
to $B_62$ by means of Staudt's theorem, Report Brit.
Ass. Advanc. Sci., 1877 (1878), 8-14.
J09.0189.01
[3] Table of the values of the first sixty-two numbers of
Bernoulli, J. Reine Angew. Math., 85 (1878), 269-272.
J10.0192.01
[4] On the calculation of the sums of the reciprocals
of the first thousand integers and on the value of Euler's
constant to 260 places of decimals, Report Brit. Ass.
Advanc. Sci., 1877 (1878), 14-15.
J09.0189.02
[5] Note on the value of Euler's constant,
likewise on the values of the Napierian logarithms of 2,
3, 5, 7 and 10, and of modulus of common logarithms, all
carried to 260 places of decimals, Proc. Roy. Soc. London,
27 (1878), 88-94.
J10.0191.03
ADAMS J.F.,
[1] On the groups $J(X)$, II, Topology,
3 (1965), 137-171.
Z137.16801; M33#6626; R1967,7A358
[2] On the group $J(X)$, IV, Topology,
5 (1966), no. 1, 21-71.
Z0145.19902; M33#6628; R1967,1A341
ADELBERG A.,
[1] Irreducible factors and p-adic poles of higher order Bernoulli polynomials,
C. R. Math. Rep. Acad. Sci. Canada, 14 (1992), no.4, 173-178.
Z771.11014; M93e:11029; R1993,4A267
[2] On the degrees of irreducible factors of higher order Bernoulli polynomials,
Acta Arith., 62 (1992), no.4, 329-342.
Z771.11013; M94a:11027; R1993,6A257
[3] A finite difference approach to degenerate Bernoulli and Stirling
polynomials,
Discrete Math., 140 (1995), 1-21.
Z841.11010; M96i:39001; R1996, 11B256
[4] Congruences of $p$-adic integer order Bernoulli numbers.
J. Number Theory, 59 (1996), no.2, 374-388. (Erratum:
J. Number Theory 65 (1997), no. 1, 179.)
Z866.11013; M97e:11028
[5] Higher order Bernoulli polynomials and Newton polygons.
Applications of Fibonacci Numbers, Vol. 7 (Proceedings, Graz, July 15-19,
1996, G.E. Bergum et al., Eds.), 1-8. Kluwer Academic Publishers,
Dordrecht, 1998.
Z990.11930
[6] 2-adic congruences of Nörlund numbers and of Bernoulli numbers of
the second kind,
J. Number Theory, 73 (1998), no. 1, 47-58.
Z926.11010; M99m:11018
[7] Arithmetic properties of the Nörlund polynomial $B_n^{(x)}$,
Discrete Math., 204 (1999), no. 1-3, 5-13.
Z940.11011; M2000d:11025
[8] Universal higher order Bernoulli numbers and Kummer and related
congruences. J. Number Theory 84 (2000), no. 1, 119-135.
Z981.11004; M2001g:11018
[9] Kummer congruences for universal Bernoulli numbers and related congruences
for poly-Bernoulli numbers.
Int. Math. J. 1 (2002), no. 1, 53-63.
M2002d:11023
[10] Universal Kummer congruences mod prime powers.
J. Number Theory 109 (2004), no. 2, 362-378.
M2005j:11018
ADELBERG A., FILASETA M.,
[1] On $m$th order Bernoulli polynomials of degree $m$ that are Eisenstein.
Colloq. Math. 93 (2002), no. 1, 21-26.
M2003f:11026
ADIGA C., BERNDT B.C., BHARGAVA S., WATSON G.N.,
[1] Chapter 16 of Ramanujan's second notebook;
Theta-functions and q-series, Mem. Amer. Math. Soc.,
53 (1985),
No. 315, 1-85.
Z565.33002; M86e:33004; R1985,12V38
ADIGA C., BHARGAVA S.,
[1] A simple proof for finite double series
representations for the Bernoulli, Euler and tangent numbers,
Internat. J. Math. Ed. Sci. Tech., 14 (1983),
652-654.
Z516.10006
ADIGA C.: A HREF="bernk.html#KIAD">see also KIM TAEKYUN, ADIGA C.
ADLEMAN L.M., HEATH-BROWN D.R.,
[1] The first case of Fermat's last theorem,
Invent. Math., 79 (1985), no. 2, 409-416.
Z557.10034; M86h:11022; R1985,8A144
ADLER A., WASHINGTON L.C.,
[1] $p$-adic $L$-functions and higher dimensional magic cubes,
J. Number Theory, 52 (1995), no.2, 179-197.
Z849.11093; M96j:11147
ADRIAN P.,
[1] Die Bezeichnungsweise der Bernoullischen
Zahlen, Mitt. Verein. Schweiz.
Versicherungsmath., 59 (1959), 199-206.
Z89.28003; M22#5604; R1960,11A802
AGARWAL G.G.,
[1] Bernoulli monosplines and best quadrature formulas,
Ganita, 35 (1984), no. 1-2, 70-80 (1987).
Z638.41010
AGOH T.,
[1] On the Diophantine equation concerning
Fermat's last theorem, TRU Math., 13
(1977), no. 1, 1-8.
Z366.10018; M56#11893; R1978,6A170
[2] On the first case of Fermat's last theorem,
J. Reine Angew. Math., 314 (1980), 21-28.
Z417.10011; M81b:10008; R1980,8A114
[3] On Fermat's last theorem and the Bernoulli numbers,
J. Number Theory, 15 (1982), no. 3,
414-422.
Z504.10008; M84i:10018; R1983,8A115
[4] A note on the Bernoulli numbers and the class number of
real quadratic fields, C.R. Math. Rep. Acad. Sci. Canada,
5 (1983), no. 4, 153-158.
Z517.12002; M85j:11143; R1984,2A94
[5] A note on the first case of Fermat's last theorem,
C.R. Math. Rep. Acad. Sci. Canada, 6 (1984), no. 6,
337-342.
Z563.10015; M86i:11011; R1985,8A145
[6] On the congruences of Voronoi and Kummer for
the Bernoulli numbers, C.R. Math. Rep. Acad. Sci. Canada,
7 (1985), no. 1, 15-20.
Z567.10006; M86f:11019; R1986,1A143
[7] On the criteria of Wieferich and Mirimanoff, C.R.
Math. Rep. Acad. Sci. Canada, 8 (1986), no. 1,
49-52.
Z585.10009; M87c:11025; R1986,8A100
[8] On the Euler numbers and the distribution of E-irregular primes, preprint, Science University of Tokyo (1984).
[9] On the first case of Fermat's last theorem,
II, Manuscripta Math., 56 (1986),no. 4, 465-474.
Z591.10012; M87k:11032; R1987,4A93
[10] On Bernoulli Numbers, I,
C.R. Math. Rep. Acad. Sci. Canada, 10 (1988), 7-12.
Z645.10014; M89c:11034; R1988,10A108
[11] On Bernoulli and Euler numbers,
Manuscr. Math., 61 (1988), 1-10.
Z648.10007; M89i:11030; R1988,10A109
[12] A note on unit and class number of real quadratic fields,
Acta Math. Sinica (N.S.), 5 (1989), no. 3, 281-288.
Z701.11045; M90i:11124; R1990,9A265
[13] On Bernoulli numbers, II,
Sichuan Daxue Xuebao, 26 (1989), Special Issue, 60-65.
Z707.11018; M91g:11018
[14] On Fermat's last theorem,
C.R. Math. Rep. Acad. Sci. Canada, 12 (1990), no. 1, 11-15.
Z703.11015; M91f:11017; R1990.10A91
[15] On the Kummer-Mirimanoff congruences,
Acta Arith., 55 (1990), no. 2, 141-156.
Z648.10013; M91d:11020; R1991,2A102
[16] Some variations and consequences of the Kummer-Mirimanoff
congruences,
Acta Arith. 62 (1992), no.1, 73-96.
Z738.11031; M93i:11035; R1993,4A130
[17] On the Kummer system of congruences and the Fermat quotients,
Exposition. Math., 12 (1994), no. 3, 243-253.
Z813.11009; M95g:11020
[18] On Giuga's conjecture,
Manuscripta Math., 87 (1995), no. 4, 501-510.
Z845.11004; M96f:11005
[19] On Fermat and Wilson quotients,
Exposition. Math., 14 (1996), no. 2, 145-170.
Z857.11001; M97e:11008
[20] Stickelberger subideals for a prime modulus related to Kummer-type
congruences, J. Number Theory, 67 (1997), no. 2, 203-214.
Z898.11042; M98k:11171
[21] Stickelberger subideals related to Kummer-type congruences,
Math. Slovaca 48 (1998), no. 4, 347-364.
Z956.11009; M2000c:11180
[22] Recurrences for Bernoulli and Euler polynomials and numbers,
Exposition. Math. 18 (2000), no. 3, 197-214.
M2001d:11021
[23] Generalization of Lehmer's congruences for Bernoulli numbers,
C. R. Math. Rep. Acad. Sci. Canada 22 (2000), no. 2, 61-65.
Z0959.11013; M2002e:11017
[24] Congruences involving Bernoulli numbers and Fermat-Euler quotients.
J. Number Theory, 94 (2002), no. 1, 1-9.
M2003h:11023
AGOH T., DILCHER K., SKULA L.,
[1] Fermat quotients for composite moduli,
J. Number Theory 66 (1997), no. 1, 29-50.
Z884.11003; M98h:11002
[2] Wilson quotients for composite moduli,
Math. Comp. 67 (1998), no. 222, 843-861.
Z980.13202; M98h:11003
AGOH T., MORI K.,
[1] Kummer type systems of congruences and bases of Stickelberger subideals,
Arch. Math. (Brno), 32 (1996), no. 3, 211-232.
Z903.11007; M98h:11132; R1998,4A230
AGOH T., SHOJI T.,
[1] Quadratic equations over finite fields and class numbers of real
quadratic fields, Monatsh. Math. 125 (1998), no. 4, 279-292.
Z898.11043; M99b:11120
AGOH T., SKULA L.,
[1] Kummer type congruences and Stickelberger subideals,
Acta Arith., 75 (1996), no. 3, 235-250.
Z841.11012; M97j:11052; R1997,8A241
AGRAWAL B.D., PRASAD J.,
[1] Extension of the Bernoulli numbers and
polynomials, Bull. Math. Soc. Sci. Math. R.S. Roumaine
(N.S.) (1982), 26 (74), no. 3, 211-215.
Z499.33010; M83k:33026; R1983,3V465
AINSWORTH O.R.,
[1] On generating functions,
Fibonacci Quart., 15 (1977), no. 2, 161-163.
Z362.40003; M56#2840; R1978,3B37
AINSWORTH O.R., NEGGERS J.,
[1] A family of polynomials and powers of the secant,
Fibonacci Quart. 21 (1983), no. 2, 132-138.
Z541.10011; M84k:33001
AKHIEZER N.I.: see STIEIRMAN I.JA., AKHIEZER N.I.
AKIYAMA S., EGAMI S., TANIGAWA Y.,
[1] Analytic continuation of multiple zeta-functions and their values at
non-positive integers.
Acta Arith. 98 (2001), no. 2, 107-116.
AKIYAMA S., TANIGAWA Y.,
[1] Multiple zeta values at non-positive integers.
Ramanujan J. 5 (2001), no. 4, 327-351 (2002).
Z1002.11069; M2003d:11136
Z0972.11085; M2002c:11113; R01.11-13A.94
ALBADA P.J. van,
[1] The Bernoulli numerators, EUT Report-WSK,
Eindhoven 84-WSK-03, (1984), 1-5.
Z557.10012; R1985,4V489
ALLENBY R.B.J.T., REDFERN E.J.,
[1] Introduction to number theory with computing,
Edward Arnold, London-Melbourne-
Auckland, 1989. x + 310 pp.
Z681.10001; M90k:11001
ALLISON D.
[1] Classroom Notes: A Note on Sums of Powers of Integers. Amer. Math. Monthly
68 (1961), no. 3, 272.
MMR1531154
d'ALMEIDA AREZ, J. B.,
[1] Duas classes de numeros.
Jornal de Scienzias Mathematicas e Astronomicas 15 (1901), 3-24.
J32.0283.02
ALMKVIST G.,
[1] Wilf's conjecture and a generalization,
In: The Rademacher legacy to mathematics (University Park, PA, 1992),
211-233,
Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
Z809.11026; M95g:11032
ALMKVIST G., GRANVILLE A.,
[1] Borwein and Bradley's Apéry-like formulae for $\zeta(4n+3)$,
Experiment. Math. 8 (1999), no. 2, 197-203.
M2000h:11126
ALMKVIST G., MEURMAN A.,
[1] Values of Bernoulli polynomials and Hurwitz's zeta function
at rational points,
C. R. Math. Rep. Acad. Sci. Canada, 13 (1991), no. 2-3, 104-
108.
Z731.11014; M92g:11023; R1992,4A62
ALONSO J.,
[1] Arithmetic sequences of higher order, Fibonacci
Quart., 14 (1976), no. 2, 147-152.
Z361.10014; M53#5455
AL-SALAM W.A., CARLITZ L.,
[1] Bessel polynomials and Bernoulli numbers, Arch.
Math., 9 (1958), 412-415.
Z82.28603; M21#3597; R1960,3182
[2] Bernoulli numbers and Bessel polynomials,
Duke Math. J., 26 (1959), no. 3, 437-445.
Z92.29201; M21#4256; R1960,9112
[3] Some determinants of Bernoulli, Euler and
related numbers, Portugal. Math., 18 (1959),
91-99.
Z93.01504; M23#A848; R1961,1B348
ALVARADO R., PEDRO,
[1] Sums of powers and Bernoulli numbers (Spanish),
Rev. Mat. Dominicana, No. 1-2 (1986), 29-36.
M93f:11018
ALZER H.,
[1] Ein Duplikationstheorem für die Bernoullischen Polynome,
Mitteilungen Math. Ges. Hamburg, 11 (1987), no. 4, 469-471.
Z632.10008; M88m:11009; R1988,7B20
[2] Inequalities for non-decreasing sequences,
Proc. Royal Soc. Edinburgh, Sect. A, 123 (1993), no. 6, 1017-
1020.
Z799.26018; M95b:26021
[3] On some inequalities for the Gamma and psi functions,
Math. Comp. 66 (1997), no. 217, 373-389.
Z854.33001; M97e:33004; R1997,4B94
[4] Sharp bounds for the Bernoulli numbers,
Arch. Math. (Basel) 74 (2000), no. 3, 207-211.
Z960.11016
AMICE Y.,
[1] Sur une conjecture de Leopoldt, Colloq.
Algèbre, Ecole norm. supér. jeunes filles (1967),
Paris (1968) 9/01-9/08.
R1969,7A294
[2] Une démonstration analytique p-adique du
théorème de Ferrero-Washington, d'après Daniel
Barsky, Séminaire de théorie des nombres, Paris
(1982/83), Birkhäuser Boston, Boston, Mass., 1984, 1-20.
Z546.12010; M87b:11108; R1985,8A203
AMICE Y., FRESNEL J.,
[1] Fonctions zeta p-adiques des corps de
nombres abeliens réels, Acta Arith.,
20 (1972), 353-384.
Z217.04303; M49#2667; R1973,2A328
AMSLER R.,
[1] Sur les polynomes de Bernoulli,
Bull. Soc. Math. France, 56 (1928), II, 36-41.
J54.0485.02
AN CHUN XIANG: see LUO QIU-MING, QI FENG
ANASTASSIADIS J.,
[1] Définition fonctionnelle des polynômes de
Bernoulli et d'Euler, C.R. Acad. Sci. Paris, 258 (1964),
1971-1973.
Z124.03401; M28#4162; R1964,11B48
ANDO TETSUYA,
[1] The Riemann-Roch theorem and Bernoulli polynomials,
Proc. Japan. Acad., A 61 (1985), no. 6, 161-163.
Z607.14008; M87a:14017; R1985,12A416
ANDRÉ D.,
[1] Développements de $\sec x$ et de $\tan x$,
C.R. Acad. Sci. Paris, 88 (1879), 965-967.
ANDREWS G., FOATA D.,
[1] Congruences for the $q$-secant numbers,
European J. Combin., 1 (1980), no. 4, 283-287.
Z455.10006; M82d:05018
ANDREWS G., GESSEL I.,
[1] Divisibility properties of the q-tangent numbers,
Proc. Amer. Math. Soc., 68 (1978), no. 3, 380-384.
Z401.10020; M57#2925; R1978,12A131
ANGLÈS B.,
[1] On the orthogonal of cyclotomic units in positive characteristic.
J. Number Theory 79 (1999), no. 2, 258-283.
M2000i:11178
[2] Units and norm residue symbol.
Acta Arith. 98 (2001), no. 1, 33-51.
M2002c:11141; R02.03-13A.314
Arias de Reyna, J.,
[1] Dynamical zeta functions and Kummer congruences.
Acta Arith. 119 (2005), no. 1, 39-52.
M2006d:11020
ANKENY N.C.,
ARTIN E., CHOWLA S.,
[1] The class-numbers of real quadratic fields,
Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 524-525.
Z43.04001; M13-212c
[2] The class-numbers of real quadratic number
fields, Ann. of Math., 56 (1952), 479-493.
Z49.30605; M14-251h
ANKENY N.C., CHOWLA S.,
[1] Note on the class-number of real quadratic
fields, Acta Arith., 6 (1960), 145-147.
Z93.04304; M22#6780; R1961,7A125
[2] A further note on the class-number of real
quadratic fields, Acta Arith., 7 (1962),
271-272.
Z214.30802; M25#1147; R1963,1A137
AOKI N.,
[1] On the Stickelberger ideal of a composite field of some quadratic fields,
Max-Planck-Institut für Math. Bonn, MPI/90-16, 24 pp., 1990.
[2] On the Stickelberger ideal of a composite field of quadratic fields,
Comm. Math. Univ. St. Paul., 39 (1990), no. 2, 195-209.
Z728.11055; M91m:11091
APOSTOL T.M.,
[1] Generalized Dedekind sums and transformation
formulae of certain Lambert series, Duke Math. J., 17
(1950), no. 2, 147-157.
Z39.03801; M11-641g
[2] On the Lerch zeta function,
Pacific J. Math., 1 (1951), 161-167.
Z43.07103; M13-328b
[3] Theorems on generalized Dedekind sums, Pacific J.
Math., 2 (1952), no. 1, 1-19.
Z47.04502; M13-725c
[4] Quadratic residues and Bernoulli numbers,
Delta (Waukesha), 1 (1968/1970), no. 4, 21-31.
Z249.10006; M42#188
[5] Dirichlet $L$-functions and character power sums,
J. Number Theory 2 (1970), 223-234.
Z198.37502; M41#3412; R1970,12A85
[6] Another elementary proof of Euler's formula for $\zeta(2n)$,
Amer. Math. Monthly, 80 (1973), 425-431.
Z267.10050; M47#3330
[7] Introduction to analytic number theory,
Springer-Verlag, New York, 1976. xii + 338 pp.
Z335.10001; M55#7892; R1977,1A98K
[8] Modular functions and Dirichlet series in number theory,
Springer-Verlag, New York, 1976. x + 198 pp.
Z332.10017; M54#10149; R1977,5A73K
[9] An elementary view of Euler's summation formula, Amer. Math. Monthly, 106 (1999), no. 5, 409-418.
APOSTOL T.M., VU THIENNU H.,
[1] Dirichlet series related to the Riemann zeta
function, J. Number Theory, 19 (1984), no.
1, 85-102.
Z539.10032; M85j:11106; R1985,1A165
APPELL P.,
[1] Sur les fonctions de Bernoulli à deux
variables, Arch. Math. und Phys. (3), 4 (1902),
292-293.
J34.0484.01
[2] Sur les polynômes qui expriment la somme des puissances $p^ièmes$ des $n$ premiers nombres entiers, Nouvelles Ann. Math. (3), 6 (1887), 312-321.
[3] Sur les valeurs approchées des polynômes de Bernoulli,
Nouv. Ann. Math. (3), 6 (1887), 547-554.
J19.0240.01
ARAKAWA T.,
[1] Dirichlet series $\sum_{n=1^\infty cot(\pi n \alpha)/n^j$,
Dedekind sums, and Hecke L-functions for quadratic fields,
Comm. Math. Univ. St. Paul., 37 (1988), 209-235.
Z667.12006; M89i:11124
[2] Special values of L-functions associated with the space of quadratic
forms and the representations of $S_p(2n, F_p)$ in the space of Siegel cusp
forms. In: Automorphic forms and geometry of arithmetic varieties, 99-169,
Adv. Stud. Pure Math., 15 , Academic Press, Boston, MA, 1989.
Z701.11018; M91f:11037
[3] Minkowski-Siegel's formula for certain orthogonal groups of odd degree
and unimodular lattices,
Comment. Math. Univ. St. Paul. 45 (1996), no. 2, 213-227.
Z873.11030; M97i:11075
ARAKAWA T., IBUKIYAMA T., KANEKO M.,
[1] Bernoulli numbers and zeta functions (in Japanese).
Makino Shoten Ltd., 2001. ix + 244 pp.
ARAKAWA T., KANEKO M.,
[1] Multiple zeta values, poly-Bernoulli numbers, and related zeta functions,
Nagoya Math. J. 153 (1999), 189-209.
Z932.11055; M2000e:11113
[2] On poly-Bernoulli numbers,
Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 159-167.
M2000f:11020
ARAMBURU J.M. ORTEGA: see ORTEGA ARAMBURU J.M.
ARFWEDSON G.,
[1] Om Bernoullis tal och teorem,
Elementa matem. fysik kemi, 71 (1988), 83-88.
R1988.12A84
ARKIN J., HOGGATT V.E.,
[1] The generalized Fibonacci numbers and its relation
to Wilson's theorem, Fibonacci Quart., 13 (1975), no. 2,
107-110.
Z303.10011; M50#12900; R1975,10V247
ARLETTAZ D.,
[1] Die Bernoulli-Zahlen: eine Beziehung zwischen Topologie und Gruppentheorie.
(German) [The Bernoulli numbers: a relation between topology and group theory],
Math. Semesterber. 45 (1998), no. 1, 61-75.
Z892.55001; M99e:55012
ARNDT F.,
[1] Über bestimmte Integrale, Arch. Math. und Phys.
(1), 6 (1845), 434-439.
[2] Entwicklung der Summen der n-ten Potenzen der natürlichen Zahlen nach den Potenzen des Index mittels des Taylor'schen Lehrsatzes, J. Reine Angew. Math., 31 (1846), 249-252.
[3] Über die Summirung der beiden Reihen (a) $\gamma_0 - n_1 \gamma_1 + n_2 \gamma_2 -$ etc. $ + (-1)^n \gamma_n$, (b) $\gamma_0 + n_1 \gamma_1 + n_2 \gamma_2 +$ etc. $ + \gamma_n$, in welchen die Grössen $\gamma$ willkührlich und die Coefficienten Binomialcoefficienten des ganzen Exponenten $n$ sind, mittels höherer Differenzen und Summen, J. Reine Angew. Math., 31 (1846), 235-245.
[4] Über die Bernoulli'sche Methode, summirbare Reihen zu finden, J. Reine Angew. Math., 31 (1846), 253-258.
ARNOL'D V.I.,
[1] Bernoulli-Euler updown numbers associated with function
singularities, their combinatorics and arithmetic,
Duke Math. J., 63 (1991), no. 2, 537-555.
Z755.58015; M93b:58020
[2] Congruences for Euler, Bernoulli and Springer numbers of Coxeter groups.
(Russian), Izv. Ross. Akad. Nauk Ser. Mat., 56 (1992), no. 5, 1129-1133.
Engl. Transl. in: Russian Acad. Sci. Izv. Math., 41 (1993), no.2,
389-393.
Z801.11012; M94a:11024; R1993,5A167
[3] Snake calculus and the combinatorics of the Bernoulli, Euler
and Springer numbers of Coxeter groups. (Russian), Uspekhi Mat. Nauk,
47 (1992), no. 1(283), 3-45. Translation in Russian Math. Surveys
47 (1992), no. 1, 1-51.
Z791.05001; M93h:20042
ARTIN E.: see ANKENY N.C., ARTIN E., CHOWLA S.
ATKINSON M.D.,
[1] How to compute the series expansions of $\sec x$ and $\tan x$,
Amer. Math. Monthly 93 (1986), 387-389
Z603.65013; R1988,1G67
AUCOIN A.A.,
[1] On harmonic series and Bernoulli numbers, Tex. J.
Sci., 27 (1976), no. 4, 411-414.
R1977,12V596
AYOUB R.,
[1] Euler and the zeta function,
Amer. Math. Monthly, 81 (1974), 1067-1086.
Z293.10001; M50#12566; R1975,8A17