Bernoulli Bibliography

G


Back to Index       Back to F       On to H


GADIA S.K.: see GANDHI J.M., GADIA S.K.

GAJDA W.: see BANASZAK G., GAJDA W.

GAMBIOLLI D.,
[1] Memoria bibliografica sull'ultimo theorema di Fermat, Periodico di Mat. (2), 3 (1901), 145-192.
J32.0045.02

[2] Appendice alla mia memoria bibliografica sull'ultimo theorema di Piotro Fermat, Periodico di Mat., 4 (1901), 48-50.
J32.0196.04

GAMELIN T.W..,
[1] Complex analysis. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2001. xviii+478 pp.
Z0978.30001; M2002h:30001

GANDHI J.M.,
[1] The coefficients of $cosh x/cos x$ and a note on Carlitz's coefficients of $sinh x/sin x$, Math. Mag., 31 (1958), no. 4, 185-191.
Z99.26406; M20#5301; R1959,2326

[2] Some integrals for Genocchi numbers, Math. Mag., 33 (1959), no. 1, 21-23.
Z92.05708; M21#5751; R1960,13047

[3] A new formula for Genocchi Numbers, Math. Student, 28 (1960), (1962), 83-85.
Z115.01002; M26-45; R1962,11A109

[4] Generalized Fermat's last theorem and regular primes, Proc. Japan Acad., 46 (1970), 626-629.
Z225.10016; M44#2701; R1971,9A94

[5] The coefficients of $sinh x/cos x$, Can. Math. Bull., 13 (1970), no. 3, 305-310.
Z207.02401; M42#7588; R1971,4A83

[6] A conjectured representation of Genocchi numbers, Amer. Math. Monthly, 77 (1970), no. 5, 505-506.
Z198.37003; R1971,1A100

[7] On generalized Fermat's last theorem. II. J. Reine Angew. Math., 256 (1972), 163-167.
Z248.10028; M47#8426; R1973,3A177

[8] Euler's numbers and the Diophantine equation $x^l + y^l = z^lc$, Acta Math. Acad. Sci. Hungar., 24 (1973), 21-26.
Z227.10009; M47#1736; R1973,11A134

[9] Congruences for Genocchi numbers, Duke Math. J., 31 (1964), 519-527.
M29#2210; R1965,6A127

GANDHI J.M., GADIA S.K.,
[1] A simple proof of the infinity of irregular primes. Proc. 7th Manitoba Conf. on Numer. Math. and Comp., Congress. Numer., XX, Utilitas Math., Winnipeg, 1978, pp. 379-382.
Z482.10012; M80h:10010

GANDHI J.M., KASUBE H., SURYANARAYANA D.,
[1] Congruences for Bernoulli numbers modulo $p^3$, Boll. Union. Mat. Ital., (1978), A 15, no. 3, 517-525.
Z391.10015; M80j:10017; R1979,7A134

[1] Fourth interval formulae for the coefficients of $cosh x/cos x$, Monatsh. Math., 70 (1966), no. 4, 327-329.
Z141.25903; M33#5504; R1967,4B6

GANDHI J.M., TANEJA V.S.,
[1] The coefficients of $cosh x/cos x$, Fibonacci Quart., 10 (1972), no. 4, 349-353.
Z248.10012; M46#7140; R1973,4V385

M.I. Ganzburg,
Polynomial interpolation and asymptotic representations for zeta functions,
Dissertationes Math. (Rozprawy Mat.) 496 (2013), 117 pp.
M3156294

GAO W.Y.: see FENG KE QIN, GAO W.Y.

GARABEDIAN H.L.,
[1] A new formula for the Bernoulli numbers, Bull. Amer. Math. Soc., 46 (1940), 531-533.
J66.0319.03; Z63.01508; M2-88e

Garaev, Moubariz Z.; Luca, Florian; Shparlinski, Igor E.,
[1] Distribution of harmonic sums and Bernoulli polynomials modulo a prime. Math. Z. 253 (2006), no. 4, 855--865.
M2007b:11121

GARDINER A.,
[1] Four problems in prime power divisibility, Amer. Math. Monthly, 95 (1988), 926-931.
Z663.10002; R1989,10A105

Garg, Mridula; Jain, Kumkum; Srivastava, H. M.,
[1] Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. 17 (2006), no. 11, 803--815.

GAROUFALIDIS S., POMMERSHEIM J.E.,
[1] Values of zeta functions at negative integers, Dedekind sums and toric geometry. J. Amer. Math. Soc. 14 (2001), no. 1, 1-23.
M2002a:11127

GAWRILOWITSCH A.,
[1] Über die Bernoullischen und Eulerschen Zahlen, Veröffentl. Kgl. Serbischen Akad., Belgrad, 63 (1902), 113-142 (serb.).
J33.0291.04

GEGENBAUER L.,
[1] Arithmetische Note, Sitzungsber. Math.-Natur. Kl. Akad. Wiss., Wien, 96 (1887), 491-496.

[2] Notiz über die zu einer Fundamentaldiscriminante gehörigen Bernoullischen Zahlen, Sitzungsber. Math.-Natur. Kl. Akad. Wiss., Wien, 102 (1893), 1059-1069.
J25.0416.01

GEKELER E.-U.,
[1] Some new identities for Bernoulli-Carlitz numbers, J. Number Theory, 33 (1989), no. 2, 209-219.
Z697.12012; M90j:11128; R1990,5A284

[2] On regularity of small primes in function fields, J. Number Theory, 34 (1990), no. 1, 114-127.
Z695.12008; M91a:11060; R1990,5A284

[3] A series of new congruences for Bernoulli numbers and Eisenstein series. J. Number Theory 97 (2002), no. 1, 132-143.

GELFAND M.B.,
[1] A note on a certain relation among Bernoulli numbers. (Russian), Bashkir. Gos. Univ. Uchen. Zap., 31 (1968), Ser. Mat., no. 3, 215-216.
M43#7399; R1968,7V286

GELFOND A.O.,
[1] The calculus of finite differences. (Russian). Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, (1952), 479 pp.
Z264.39001; M14-759d; R1961,1B322K

[2] Residues and its applications. (Russian). Izdat. "Nauka", Moscow, (1966), 112 pp.
Z152.05904; M36#5310; R1968,5B158K

GENG JI,
[1] Bernoulli numbers and Euler numbers - a discussion on two properties of power series (Chinese), Math. Practice Theory 1991, no.3, 85-92.

GENOCCHI A.,
[1] Intorno all'espressione generale de'numeri Bernoulliani, Annali sci. mat. e fis., Roma, 3 (1852), 395-405.

[2] Sulla formula sommatoria di Eulero, e sulla teorica de' residui quadratici, Annali sci. mat. e fis., Roma, 3 (1852), 406-436.

[3] Sur la formule sommatoire de Maclaurin et les fonctions interpolaires, C.R. Acad. Sci., Paris, 86 (1878), 466-469.
J10.0178.02

[4] Sur les nombres de Bernoulli (extrait d'une lettre à M. Kronecker), J. Reine Angew. Math., 99 (1886), 315-316.
J18.0228.02

GERONIMUS J.,
[1] On a class of Appell polynomials, Commun. Soc. Math. Kharkoff et Inst. Sci. Math. et Mécan., Univ. Kharkoff (4), 8 (1934), 13-23.
J60.0292.04; Z10.26103

GERTSCH A.,
[1] Nombres harmoniques généralisés, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), no. 1, 7-10.
Z877.11010; M98a:11007; R1997,10A128

GESSEL I.,
[1] Congruences for Bell and tangent numbers, Fibonacci Quart., 19 (1981), no. 2, 137-143.
Z451.10008; M82f:10014; R1981,11V490

[2] Some congruences for generalized Euler numbers, Can. J. Math., 35 (1983), no. 4, 687-709.
Z493.10014; M85f:11013; R1984,10A69

[3] A Bernoulli recurrence (Solution to Problem E3237, proposed by J.G.F. Belinfante), Amer. Math. Monthly, 96 (1989), no. 4, 364-365.

[4] Generating functions and generalized Dedekind sums, Electron. J. Combin. 4 (1997), no. 2, Research Paper 11, approx. 17 pp. (electronic).
M98f:11032

[5] Applications of the classical umbral calculus. Dedicated to the memory of Gian-Carlo Rota. Algebra Universalis 49 (2003), no. 4, 397-434.
M2004k:05029

[6] On Miki's identity for Bernoulli numbers. J. Number Theory 110 (2005), no. 1, 75-82.
M2005j:11019

GESSEL I., MATTICS L.E.,
[1] Numerators and denominators of Bernoulli numbers (solution to problem), Amer. Math. Monthly, 90 (1983), no. 8, 568-569.

GESSEL I.: see also ANDREWS G., GESSEL I.

GILBERT Ph.,
[1] Observations sur deux notes de M. Genocchi, relatives au développement de la fonction $\log{\Gamma (x)$, Bull. Acad. Sci. Bruxelles, 36 (1873), 541-545.
J05.0167.05

GILLARD R.,
[1] $ Z_l$-extensions, fonctions L $l$-adiques et unités cyclotomiques. Séminaire de Théorie des Nombres (1976-77), Exp. No. 24, 19 pp., CNRS, Talence, 1977.
Z392.12006; M80k:12016

GILLARD R.: see also CHARKANI EL HASSANI M., GILLARD R.

GILLESPIE F.S.,
[1] A generalization of Kummer's congruences and related results, Fibonacci Quart., 30 (1992), no. 4, 349-367.
Z762.11004; M93i:11026

GIRGENSOHN R.: see BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.

GIRGENSOHN R.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.

GIRSTMAIR K.,
[1] Ein v. Staudt-Clausenscher Satz für periodische Bernoulli-Zahlen, Monatsh. Math., 104 (1987), no. 2, 109-118.
Z626.12001; M89a:11026; R1988,4A79

[2] Character coordinates and annihilators of cyclotomic numbers, Manuscr. Math., 59 (1987), no. 3, 375-389.
Z624.12006; M89a:11071; R1988,3A418

[3] An index formula for the relative class number of an abelian number field, J. Number Theory, 32 (1989), no. 1, 100-110.
Z675.12002; M91d:11132; R1990,2A333

[4] A theorem on the numerators of the Bernoulli numbers, Amer. Math. Monthly, 97 (1990), no. 2, 136-138.
Z738.11023; M91a:11015; R1990,11A83

[5] Dirichlet convolution of cotangent numbers and relative class number formulas, Monatsh. Math., 110 (1990), no. 3/4, 231-256.
Z717.11048; M92b:11076; R1991,7A291

[6] Eine Verbindung zwischen den arithmetischen Eigenschaften verallgemeinerter Bernoullizahlen, Expos. Math., 11 (1993), 47-63.
Z773.11013; M94f:11011

[7] On the factorization of the relative class number in terms of Frobenius divisions. Monatsh. Math., 116 (1993), no. 3-4, 231-236.
Z802.11044; M95b:11105

[8] The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8 and 10. Math. Comp., 61 (1993), no. 204, 881-887.
Z787.11046; M94a:11170

[9] Class number factors and distribution of residues, Abh. Math. Sem. Univ. Hamburg, 67 (1997), 65-104.
Z889.11032; M99e:11141

[10] Cyclotomic matrices and a limit formula for $h\sp -\sb p$. Acta Arith. 97 (2001), no. 2, 129-155.

Z0973.11094; M2002f:11146

GLAISHER J.W.L.,
[1] On the constants that occur in certain summations by Bernoulli's series, Proc. Lond. Math. Soc., 4 (1872), 48-56.
J04.0109.03

[2] On a deduction from Von Staudt's property of Bernoulli's numbers, Proc. Lond. Math Soc., 4 (1872), 212-214.
J04.0109.02

[3] On the function which stands in the same relation to Bernoulli's numbers that the gamma function does to factorials, Report Brit. Assoc., 42 (1872), 17-19.
J04.0142.02

[4] On semi-convergent series, Quart. J. Math., 12 (1872), 52-58.
J04.0102.02

[5] Tables of the first 250 Bernoulli's numbers (to nine figures) and their logarithms (to ten figures), Trans. Camb. Phil. Soc., 12 (1873), 384-391.
J05.0144.02

[6] Simple proof of a known property of Bernoulli's numbers, Messeng. Math. (2), 2 (1873), 190-191.
J05.0144.01

[7] Arithmetical proof of Clausen's Identity, Messeng. Math. (2), 6 (1875), 83.
J07.0132.04

[8] Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers, etc., as determinants, Mess. Math., 6 (1877), 49-63; 7 (1878), 160-165; 8 (1879), 158-167.
J08.0306.01

[9] On the numerical value of a certain series, Proc. London Math. Soc., 8 (1877), 200-204.
J09.0181.02

[10] Theorem relating to sums of even powers of the natural numbers, Messeng. Math., 20 (1890), 120-128.
J22.0269.01

[11] Note on series whose coefficients involve powers of the Bernoullian numbers, Messeng. Math., 19 (1890), 138-146.
J22.0269.02

[12] Recurring relations involving sums of powers of divisors, Messeng. Math., 20 (1891), 129-135; 177--181; 21, 49-64.
J23.0177.02

[13] Note on the sums of even and uneven numbers, Messeng. Math., 20 (1891), 172-176.
J23.0274.03

[14] On the sums of inverse powers of the prime numbers, Quart. J. Math., 25 (1891), 347-362.
J23.0275.02

[15] Calculation of the hyperbolic logarithm of $\pi$ to thirty decimal places, Quart. J. Math., 25 (1891), 362-368, 384.
J23.0277.01

[16] On the series $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+ \frac{1}{11}+$ etc., Quart. J. Math., 25 (1891), 369-383.

J23.0277.02

[17] Relations between the divisors of the first $n$ numbers, Proc. London Math. Soc., 22 (1891), 359-410.
J23.0177.01

[18] On the definite integrals connected with the Bernoullian function, Mess. Math., 26 (1897), 152-182; 27 (1898), 20-98.
J28.0377.01

[19] On the Bernoullian function, Quart. J. Pure Appl. Math., 29 (1898), 1-168.
J28.0375.03

[20] General summation-formulae in finite differences. Quart. J. Pure Appl. Math., 29 (1898), 303-328.
J29.0214.05

[21] Note on a theorem relating to sums of even powers of the natural numbers, Messeng. Math. (2), 28 (1899), 29-32.
J29.0220.02

[22] Classes of recurring formulae involving Bernoullian numbers, Messeng. Math., 28 (1899), 36-79.
J29.0220.03

[23] On the values of the series $x^n + (x-q)^n+(x-2q)^n+...+r^n$ and $x^n-(x-q)^n+(x-2q)^n -...\pmr^n$, Quart. J. Math., 31 (1899), 193-227.
J30.0254.02

[24] On $1^n(x-1)^n+2^n(x-2)^n+...+(x-1)^n1^n$ and other similar series, Quart. J. Math., 31 (1899), 241-247.
J30.0254.01

[25] On a set of coefficients analogous to the Eulerian numbers. Proc. London Math. Soc., 31 (1899), 216-235.
J30.0181.02

[26] On the residues of the sums of the inverse powers of numbers in arithmetical progression, Quarterly J. Math., 32 (1900), 271-288.
J31.0186.03

[27] Fundamental theorem relating to the Bernoullian numbers, Messeng. Math., 29 (1900), 49-63; 129-142.
J30.0182.01; J31.0287.01

[28] On the residues of the sums of products of the first $p-1$ numbers and their powers, to modulus $p^2$ or $p^3$, Quart. J. Math., 31 (1900), 321-353.
J31.0185.01

[29] A congruence theorem relating to the Bernoullian numbers, Quart. J. Math., 31 (1900), 253-263.
J30.0180.03

[30] Note on the residues of the ratios of certain series of inverse powers of numbers in arithmetical progression, Mess. Math., 30 (1901), 154-162.
J32.0200.01

[31] On the residue to modulus p, of $1+1/3^{2n}+1/5^{2n}+...+1/(p-2)^{2n}$, Mess. Math., 30 (1901), 26-31.
J31.0187.01

[32] A general congruence theorem relating to the Bernoullian function, Proc. London Math. Soc., 33 (1901), 27-56.
J32.0199.01

[33] On the residues of Bernoullian functions for a prime modulus, including as special cases the residues of Bernoullian, Eulerian and J-Numbers, Proc. London Math. Soc., 33 (1901), 56-87.
J32.0199.02

[34] On a class of relations connecting any n consecutive Bernoullian functions, Part III. Quart. J. Pure Appl. Math., 42 (1911), 86-157.
J41.0495.03

[35] On $1^n(x-1)^m+...+(x-1)^n1^m$ and other similar series, Quart. Journ. Math., 43 (1912), 101-122.
J43.0340.03

[36] A congruence theorem relating to Eulerian numbers and other coefficients, Proc. London Math. Soc., 32 (1901), 171-198.

J31.0186.04

[37] Expansion of $(e^x-a)^{-1}$ and derived formulae; also values of $(d/d\theta)^n\tan \theta$, Mess. Math. (2), 39 (1910), 154-173.
J41.0497.03

[38] Bernoullian numbers and other coefficients expressed in terms of numbers of the form $\Delta^n 0^n$, Quart. J. Pure Appl. Math., 41 (1910), 265-301.
J41.0495.04

[39] On the last two figures in certain coefficients analogous to the Eulerian numbers, Quart. J. Pure Appl. Math., 44 (1913), 105-112.
J44.0320.01

[40] On Eulerian numbers (formulae, residues, endfigures) with the values of the first twenty-seven, Quart. J. Pure Appl. Math., 45 (1913), 1-51.
J44.0320.03

[41] Numerical values of the series $1-\frac{1}{3^n}+\frac{1}{5^n}- \frac{1}{7^n}+\frac{1}{9^n}-$ \&c., Mess. Math. (2), 42 (1913), 35-58.
J43.0341.02; J43.0341.03

[42] On the series $\frac 1 3 - \frac 1 5 + \frac 1 7 + \frac 1 {11} - \frac 1 {13} - \cdots$. Quart. J. Math. 25 (1891), 375-383
J23.0278.01

GOHIERRE DE LONGCHAMPS: see LONGCHAMPS G.

GOLD R.: see CHILDRESS N., GOLD R.

GOLDSTEIN L.J., RAZAR M.J.,
[1] Ramanujan type formulae for $\zeta (2k-1)$, J. Pure Appl. Algebra, 13 (1978), no. 1, 13-17.
Z391.10023; M80f:10048; R1979,3A100

[2] The theory of zeta functions of several complex variables, I, J. Number Theory, 19 (1984), no. 2, 148-175.
Z549.12007; M86b:11078; R1985,6A94

GOLOVINSKII I.A.
[1] The Euler-Boole summation formula. (Russian), Istor.-Mat. Issled., no. 26, (1982), 52-91.
Z518.01004; M84k:01029; R1985,7A10

GOMES TEIXEIRA F.: see TEIXEIRA F.G.

GÖPEL A.,
[1] Einige Bermerkungen zu der Abhandlung Nr. IV in diesem Hefte über Recursionsformeln für die Bernoullischen Zahlen, Archiv d. Math. u. Physik, 3 (1843), 64-67.

GOSPER R.W., ISMAIL M.E.H., ZHANG R.,
[1] On some strange summation formulas. Illinois J. Math., 37 (1993), no. 2, 240-277.
Z793.33016; M95g:33025

GOSS D.,
[1] Von Staudt for $F_q(T)$, Duke Math. J., 45 (1978), no. 4, 887-910.
Z404.12013; M80a:12019; R1979,9A338

[2] The $\Gamma$-ideal and special zeta-values, Duke Math. J., 47 (1980), no. 2, 345-364.
Z441.12002; M81k:12015; R1981,3A338

[3] A simple approach to the analytic continuation and values at negative integers for Riemann's zeta function, Proc. Amer. Math. Soc., 81 (1981), no. 4, 513-517.
Z427.30005; M82e:10069; R1982,1B51

[4] Kummer and Herbrand criteria in the theory of function fields, Duke Math. J., 49 (1982), no. 2, 377-384.
Z473.12013; M83k:12012; R1983,2A275

[5] Units and class-groups in the arithmetic theory of function fields, Bull. Amer. Math. Soc. (N.S.), 13 (1985), no. 2, 131-132.
Z573.12003; M86j:11120; R1986,6A502

GOSSET Th.,
[1] Sylvester's theorem relating to Bernoullian numbers, Messeng. Math. (2), 40 (1911), 145-149.
J2.0208.01

GOTO K.,
[1] A twisted adjoint $L$-value of an elliptic modular form, J. Number Theory 73 (1998), no. 1, 34-46.
Z924.11036; M99j:11052

GOULD H.W.,
[1] Stirling number representation problems. Proc. Amer. Math. Soc. 11 (1960), no. 3, 447-451.
Z100.01704; M22 #5586; R1961,5A158

[2] The Lagrange interpolation formula and Stirling numbers. Proc. Amer. Math. Soc. 11 (1960), no. 3, 421-425.
Z102.04904; M22 #5588; R1962,7B46

[3] The $q$-Stirling numbers of first and second kinds. Duke Math. J. 28 (1961), no. 2, 281-289.
Z201.33601; M23 #A99; R1962,2A144

[4] Note on a paper of Klamkin concerning Stirling numbers. Amer. Math. Monthly 68 (1961), no. 5, 477-479.
Z146.05007; M23 #A1548; R1962,5A163

[5] Generating functions for products of powers of Fibonacci numbers, Fibonacci Quart. 1 (1963), no. 2, 1-16.
Z147.02106; M33 #93

[6] Note on recurrence relations for Stirling numbers, Publ. Inst. Math. (Beograd) (N.S.), 6 (20) (1966), 115-119.
Z145.01403; M34#4190; R1967,4V194

[7] Bibliography of aritcles on the special number sequences of Bernoulli, Stirling, Euler, Worpitzky, etc., unpublished cardfile, 1971.

[8] Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79 (1972), 44-51.
Z227.10010; M46#5229; R1972,7V249

[9] Comment on Problem 67-5, "up-down" permutations, SIAM Review, 10 (1968), 225-226.

[10] Evaluation of sums of convolved powers using Stirling and Eulerian numbers. Fibonacci Quart. 16 (1978), no. 6, 488-497, 560-561.
Z392.05004; M80b:05007

GOULD H.W., SQUIRE W.,
[1] Maclaurin's second formula and its generalization, Amer. Math. Monthly, 70 (1963), no. 1, 44-52.
Z116.09203; M26#4073; R1963,12B27

GRAF J. H.,
[1] Einleitung in die Theorie der Gammafunction und der Euler'schen Integrale. K.J. Wyss, Bern, 1894. iv + 64 pp.
J 25.0746.02

[2] Praktische Integration von L. Schläfli, Mitt. der Naturforschenden Gesellschaft Bern, 1900.

GRAHAM R.L., KNUTH D.E., PATASHNIK O.,
[1] Concrete Mathematics. Addison-Wesley Publ. Co., Reading, MA, 1989. xiv + 625 pp.
Z668.00003; M91f:00001

GRANVILLE A.,
[1] On Krasner's criteria for the first case of Fermat's Last Theorem, Manuscr. Math., 56 (1986), no. 1, 67-70.
Z599.12013; M87i:11037; R1986,12A160

[2] The Kummer-Wieferich-Skula approach to the first case of Fermat's Last Theorem, In: F. Q. Gouv&ecirca and N. Yui (Eds.), Advances in Number Theory (Proc., Third Conference of the Canadian Number Theory Assoc., Aug. 18-24, 1991, Queen's University at Kingston), 479-497 . Clarendon Press, Oxford, 1993.
Z790.11020; M96m:11020

[3] Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics (Burnaby, BC, 1995), 253--276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
Z980.06321; M99h:11016; R02.03-13A.123

GRANVILLE A., MONAGAN M.B.,
[1] The first case of Fermat's last theorem is true for all prime exponents up to 714,591,416,091,389, Trans. Amer. Math. Soc., 306 (1988), no. 1, 329-359.
Z645.10018; M89g:11025; R1988,12A119

[2] The status of Fermat's last theorem - mid 1994. Maple Tech. Newsletter, special Issue, 1994, 2-9.

GRANVILLE A., SHANK H.S.,
[1] Defining Bernoulli polynomials in Z/pZ (a generic regularity condition), Proc. Amer. Math. Soc., 108 (1990), no. 3, 637-640.
Z645.10018; M90f:11015; R1990,12A92

GRANVILLE A., SUN ZHI-WEI,
[1] Values of Bernoulli polynomials. Pacific J. Math. 172 (1996), no. 1, 117-137.
Z856.11008; M98b:11018; R1997,11A142

GRANVILLE A.: see also ALMKVIST G., GRANVILLE A.

GRANVILLE A.: see also CAI TIAN XIN, GRANVILLE A.

GRANVILLE A.: see also FUNG G., GRANVILLE A., WILLIAMS H.C.

GRAS G.,
[1] Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier, 27 (1977), no. 1, 1-68.
Z336.12004; M56#8534; R1978,1A328

[2] Canonical divisibilities of values of p-adic L-functions, London Math. Soc., Lecture Notes Series, No. 56, (1982), 291-299.
Z494.12006; R1983,2A271

[3] Pseudo-mesures p-adiques associées aux fonctions L de Q, Manuscr. Math., 57 (1987), no. 4, 373-415.
Z599.12016; M89d:11109; R1987,9A373

[4] Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith., 52 (1989), no. 2, 147-162.
Z618.12004; M90i:11127; R1990,1A332

[5] Sur la structure des groupes de classes relatives. Avex un appendice d'exemples numériques (par T. Berthier). Ann. Inst. Fourier, 43 (1993), no. 1, 1-20.
Z786.11065; M94i:11091

[6] Étude d'invariants relatifs aux groupes des classes des corps abéliens, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976), pp. 35-53. Asterisque No. 41-42, Soc. Math. France, Paris, 1977.
Z445.12002; M56 #5489

GRAS G., JAULENT J.-F.,
[1] Sur le corps de nombres réguliers, Math. Z., 202 (1989), no. 3, 343-365.
Z704.11040; M90i:11128

GRASSL R. M.,
[1] Euler numbers and skew-hooks, Math. Mag., 66 (1993), no. 3, 181-188.
Z801.05008; M94e:11016; R1996,6A76

GRAVE D.A.
[1] Elementarnyi kurs teorii chisel [Elementary handbook on number theory], 2nd edition. Kiev, (1913).
J44.0207.02

GREENBERG R.,
[1] A generalization of Kummer's criterion, Invent. Math., 21 (1973), 247-254.
Z269.12005; M48#11056; R1974,3A268

[2] On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77.
Z315.12008; M50#12984; R1975,9A297

[3] On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1980/81), no. 3, 345-359.
Z475.14026; M82j:14036

GREENBERG R.: see also FERRERO B., GREENBERG R.

GREENE J.,
[1] The Burgstahler coincidence. Fibonacci Quart. 40 (2002), no. 3, 194-202.
M2003j:11018

GREITHER C.,
[1] Class group of abelian fields, and the main conjecture, Ann. Inst. Fourier, 42 (1992), no. 3, 449-499.
Z729.11053; M93j:11071; R1993,5A335

GRENSING D., GRENSING G.,
[1] Generalized Campbell-Baker-Hausdorff formula, path-ordering and Bernoulli numbers. Z. Phys. C, 33 (1986), no. 2, 307-317.
M88c:22008; R1987,8B842

GRIGOREV E.I.,
[1] Bernullievy chisla vysshikh poryadkov [Bernoullian numbers of higher orders]. Izv. fiz.-mat. obshch. Kazansk. Univ. (2) 7(1898), 146-202.
J29.0221.02

GROSJEAN C.C.,
[1] Approximations for the sum function of the Fourier series $\sum_{n=1}^\infty sin(nx)/n^2$, Simon Stevin, 39 (1966), 93-116.
Z241.65015; M33#5089; R1967,3B58

[2] An infinite set of recurrence formulae for the divisor sums. I, II, Bull. Soc. Math. Belg. Sér. A, 29 (1977), no. 1, 3-49; no. 2, 95-138.
Z442.10044; M83d:10005a,b

GROSS B.H.,
[1] On the Factorization of p-adic L-series, Invent. Math., 57 (1980), no. 1, 83-95.
Z472.12011; M82a:12010; R1980,9A339

[2] Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., No. 776, Berlin, (1980), 95pp.
Z433.14032; M81f:10041; R1981,2A432K

[3] Representation theory and the cuspidal group of $ X(p)$, Duke Math. J., 54 (1987), no. 1, 67-75.
Z629.14021; M89b:11052; R1987,11A546

[4] On the value of abelian L-functions at s=0, J. Fac. Sci. Univ. Tokyo, IA, 35 (1988), no. 1, 177-197.
Z681.12005; M89h:11071; R1988,10A317

GROSS B.H.: see also BUHLER J.P., GROSS B.H.

Grosset, Marie-Pierre; Veselov, Alexander P.,
[1] Bernoulli numbers and solitons. J. Nonlinear Math. Phys. 12 (2005), no. 4, 469-474.
M2006g:35233

GROSSWALD E.,
[1] Comments on some formulae of Ramanujan, Acta Arith., 21 (1972), no. 1, 25-34.
Z246.10024; M46#1744; R1973,4A192

[2] Representations of integers as sums of squares, Springer-Verlag, New York-Berlin, 1985. xi+251 pp.
Z574.10045; M87g:11002; R1986,4A143K

[3] Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1970), 9-13.
Z206.05902; M42#7606; R1972,10A87

[4] Relations between the values of zeta and L-functions at integral arguments, Acta Arith., 24 (1973), 369-378.
Z242.12008; M48#11005

GROSSWALD E.: see also RADEMACHER H., GROSSWALD E.

GRUDER, O.,
[1] Über die Potenzsummen komplexer Zahlen und die entsprechende Bernoulli'sche Funktion, Sitzungsber. Kaiserl. Akad. der Wiss. Wien, Math.-naturw. Klasse, Abt. IIa, 125 (1916), no. 6, 613-657.
J46.0359.01

[2] Über die Entwicklungskoeffizienten elliptischer Funktionen, Sitzungsber. Kaiserl. Akad. der Wiss. Wien, Math.- naturw. Klasse, Abt. IIa,, 126 (1917), 125-183.
J46.0603.03

[3] Über teilerfremde Zahlen und deren Potenzsummen, Sitzungsber. Kaiserl. Akad. der Wiss. Wien, Abt. IIa, 137 (1928), 381-407.
J54.0181.02

[4] Über symmetrische Grundfunktionen natürlicher Zahlen, J. Reine Angew. Math., 161 (1929), 152-178.
J55.0094.03

GRÜN O.,
[1] Zur Fermatschen Vermutung, J. Reine Angew. Math., 170 (1934), 231-234.
J60.0128.02; Z8.24203

[2] Eine Kongruenz für Bernoullische Zahlen, Jahresber. Deutsch. Math.-Verein., 50 (1940), 111-112.
J66.0139.01; Z23.20302; M2-34d

[3] Beziehungen zwischen Bernoullischen Zahlen, Math. Ann., 135 (1958), 417-419.
Z102.05001; M20#2478; R1959,4424

GRUNDMAN H.G.,
[1] The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields, J. Number Theory, 37 (1991), no. 3, 343-365.
Z715.11023; M92d:11047

GRUNERT J.A.,
[1] "Bernoulli'sche Zahlen" in Supplemente zu Georg Simon Klügel's Wörterbuche, Erste Abtheilung. Leipzig, 1833.

GUALTIERI M.I: see COSTABILE F., GUALTIERI M.I., SERRA CAPIZZANO S.

GUARESCHI G.,
[1] Espressione dei numeri di Bernoulli mediante funzioni simmetriche complete, Boll. Mat., Genova (4), 1 (1940), 17-19.
J66.0319.02; M2-88f

Guerzhoy, P.,
[1] The Ramanujan differential operator, a certain CM elliptic curve and Kummer congruences. Compos. Math. 141 (2005), no. 3, 583-590.
M2005m11083

GUINAND A.P.,
[1] The umbral method: a survey of elementary mnemonic and manipulative uses, Amer. Math. Monthly, 86 (1979), no. 3, 187-195.
Z406.10013; M80e:05001; R1980,1V1291

GUNARATNE H.S.,
[1] A new generalisation of the Kummer congruence. In: Computational algebra and number theory (Sydney, 1992), 255-265. Math. Appl., 325, Kluwer Acad. Publ., Dordrecht, 1995.
Z833.11005; M96j:11148

[2] Periodicity of Kummer congruences. In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15, 209-214. Amer. Math. Soc., Providence, 1995.
Z843.11012; M97b:11024; R1997,2A75

GUNDERSON N.G.,
[1] Derivation of Criteria for the First Case of Fermat's Last Theorem and the Combination of these Criteria to Produce a New Bound for the Exponent, Ph.D. Thesis, Cornell University, Ithaca, New York, 1948, 111 pp.

GUNNELLS P.E., SCZECH R.,
[1] Evaluation of Dedekind sums, Eisenstein cocycles, and special values of $L$-functions. Duke Math. J. 118 (2003), no. 2, 229-260.

GÜNTHER S.,
[1] Von der expliziten Darstellung der regulären Determinanten aus Binomialkoeffizienten, Zeits. f. Math. u. Physik 24 (1879), 96-103

GUO BAI-NI: see LUO QIU-MING, GUO BAI-NI, QI FENG, DEBNATH L.

GUO D.R.: see WANG Z.X., GUO D.R.

GUO-NIN: see HAN, GUO-NIN

GUO LIZHOU: see ZHANG ZHIZHENG, GUO LIZHOU

GUO BAI-NI, QI FENG,
[1] Generalization of Bernoulli polynomials. Internat. J. Math. Ed. Sci. Tech. 33 (2002), no. 3, 428-431.
M2003d:11028

GUO SEN-LIN, QI FENG,
[1] Recursion formulae for $\sum\sp n\sb {m=1}m\sp k$. Z. Anal. Anwendungen 18 (1999), no. 4, 1123-1130.
Z939.11008

GUO TIAN FEN: see LUO QIU-MING, GUO TIAN FEN, QI FENG

Guo, Victor J. W.; Zeng, Jiang,
[1] Some arithmetic properties of the $q$-Euler numbers and $q$-Salié numbers. European J. Combin. 27 (2006), no. 6, 884-895.
M2007b:05023

GUPTA H.,
[1] Selected Topics in Number Theory, Abacus Press, Turnbridge Wells, Kent, England, 1980, 394pp.
Z425.10001; M81e:10002

[2] On the numbers of Ward and Bernoulli, Proc. Indian Acad. Sci. A, 3 (1936), 193-200.
J62.0051.01; Z13.29503

GUPTA S.: see PRABHAKAR T.R., GUPTA S.

GUT M.,
[1] Eulersche Zahlen und grosser Fermatscher Satz, Comm. Math. Helv., 24 (1950), 73-99.
Z37.16609; M12-243d

[2] Eulersche Zahlen und Klassenzahl des Körpers der 4l-ten Einheitswurzeln, Comm. Math. Helv., 25 (1951), 43-63.
Z42.03602; M12-806f

GUT M., STÜNZI M.,
[1] Kongruenzen zwischen Koeffizienten trigonometrischer Reihen und Klassenzahlen quadratisch imaginärer Körper, Comm. Math. Helv., 41 (1967), 287-302.
Z149.29001; M36#2591; R1967,9A97

GYIRES B.,
[1] On a combinatorial identity, Publ. Math. Debrecen, 31 (1984), no. 3-4, 217-219.
Z567.10008; M86h:05010; R1986,1V719

GYÖRY K., TIJDEMAN R., VOORHOEVE M.,
[1] On the Diophantine equation $1^k+\cdots+x^k+R(x)=y^z$, Acta Math., 143 (1979), no. 1-2, 1-8.
Z426.10019; M80e:10020; R1980,3A84

[2] On the equation $1^k+\cdots+x^k=y^z$, Acta Arith., 37 (1980), 233-240.
Z365.10014; M82h:10021; R1981,6A104


Back to Index       Back to F       On to H