Back to Index       Back to newest additions
KIM TAEKYUN,
[8] On $p$-adic $q$-$L$-functions and sums of powers.
Discrete Math. 252 (2002), no. 1-3, 179-187.
SLAVUTSKII I.SH.
[36] A real quadratic field and the Ankeny-Artin-Chowla conjecture. (Russian.)
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286
(2002), Anal. Teor. Chisel i Teor. Funkts. 18, 159-168, 230-231.
SUN ZHI-HONG,
[6] Five congruences for primes.
Fibonacci Quart. 40 (2002), no. 4, 345-351.
CARLITZ L.,
[106] A note on the generalized Wilson's theorem.
Amer. Math. Monthly 71 (1964), 291-293.
PERL E.,
[1] Untersuchungen über Differentialkoeffizienten erster und zweiter Art,
insbesondere über ihren Zusammenhang mit
verwandten Grössen. Diss. Königsberg. 1911, 126 pp.
(4. Independente Darstellungen der Bernoullischen Zahlen).
DAHLGREN T.,
[1] Sur le théorème de condensation de Cauchy.
Dissertation, Lund, 1918. 69pp. (Ch. 1: Sur les nombers et les polynomes de
Bernoulli doubles et multiples.)
GLAISHER J.W.L.,
[42] On the series $\frac 1 3 - \frac 1 5 + \frac 1 7 + \frac 1 {11} -
\frac 1 {13} - \cdots$.
Quart. J. Math. 25 (1891), 375-383
December 29, 2003:
KIM MIN-SOO, KIM TAEKYUN
[5] Bernoulli numbers in $p$-adic analysis.
Appl. Math. Comput. 146 (2003), no. 1, 289-297.
DOYON B., LEPOWSKY J., MILAS A.,
Twisted modules for vertex operator algebras and Bernoulli polynomials.
Int. Math. Res. Not. 2003, no. 44, 2391-2408.
LUO QIU-MING, GUO TIAN FEN, QI FENG,
[1] Relations of Bernoulli numbers and Euler numbers. (Chinese)
J. Henan Norm. Univ. Nat. Sci. 31 (2003), no. 2, 9-11.
LUO QIU MING,
[2] The relations of Bernoulli polynomials and Euler polynomials. (Chinese)
Math. Practice Theory 33 (2003), no. 3, 119-122.
NATALINI P., BERNARDINI A.,
[1] A generalization of the Bernoulli polynomials.
J. Appl. Math. 2003, no. 3, 155-163.
CHEN HONGWEI,
[1] Bernoulli numbers via determinants.
Internat. J. Math. Ed. Sci. Tech. 34 (2003), no. 2, 291-297.
VLADIMIROV V.S.,
[1] Left factorials, Bernoulli numbers, and the Kurepa conjecture. (Russian)
Publ. Inst. Math. (Beograd) (N.S.) 72(86) (2002), 11-22.
LIU JIAN JUN,
[1] A kind of counting identities containing Bernoulli numbers. (Chinese)
J. Liaoning Univ. Nat. Sci. 29 (2002), no. 4, 301-303.
SÁNCHEZ-PEREGRINO R.,
[3] A note on a closed formula for Poly-Bernoulli numbers.
Amer. Math. Monthly 109 (2002), no. 8, 755-756.
ZHU WEI YI,
[1] An identical relation between the Bernoulli numbers and the Euler numbers.
(Chinese) J. Ningxia Univ. Nat. Sci. Ed. 22 (2001), no. 4, 370-371.
BENCZE M., SMARANDACHE F.,
[1] About Bernoulli's numbers.
Octogon Math. Mag. 7 (1999), no. 1, 151-153.
LIU GUO DONG,
[9] Recurrent sequences and higher-order multivariable Euler-Bernoulli
polynomials. (Chinese)
Xiamen Daxue Xuebao Ziran Kexue Ban 38 (1999), no. 3, 352-356.
BECK M.,
[1] Dedekind cotangent sums.
Acta Arith. 109 (2003), no. 2, 109-130.
CAI TIAN XIN, GRANVILLE A.,
[1] On the residues of binomial coefficients and their products modulo prime
powers. Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 2, 277-288.
ELKIES N. D.,
[1] On the sums $\sum\sp \infty\sb {k=-\infty}(4k+1)\sp {-n}$.
Amer. Math. Monthly 110 (2003), no. 7, 561-573.
August 11, 2003:
LUO QIU-MING, QI FENG,
[1] Relationships between generalized Bernoulli numbers and polynomials and
generalized Euler numbers and polynomials.
Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 1, 11-18.
TSABAN B.,
[1] Bernoulli numbers and the probability of a birthday surprise.
Discrete Appl. Math. 127 (2003), no. 3, 657-663.
KANEKO M., KUROKAWA N., WAKAYAMA M.,
[1] A variation of Euler's approach to values of the Riemann zeta-function.
Kyushu J. Math. 57 (2003), no. 1, 175-192.
SZENES, A.,
[2] Residue theorem for rational trigonometric sums and Verlinde's formula.
Duke Math. J. 118 (2003), no. 2, 189-227.
GUNNELLS P.E., SCZECH R.,
[1] Evaluation of Dedekind sums, Eisenstein cocycles, and special values of
$L$-functions.
Duke Math. J. 118 (2003), no. 2, 229-260.
FOX, G.J.,
[6] A method of Washington applied to the derivation of a two-variable
$p$-adic $L$-function.
Pacific J. Math. 209 (2003), no. 1, 31-40.
August 6, 2003:
BYEON D.,
[2] Existence of certain fundamental discriminants and class numbers of real
quadratic fields.
J. Number Theory 98 (2003), no. 2, 432-437.
CHEN KWANG-WU,
[2] Sums of products of generalized Bernoulli polynomials.
Pacific J. Math. 208 (2003), no. 1, 39-52.
CHOI JUNESANG,
[2] Note on Cahen's integral formulas.
Commun. Korean Math. Soc. 17 (2002), no. 1, 15-20.
NAGASAKA Y., OTA K., SEKINE C.,
[1] Generalizations of Dedekind sums and their reciprocity laws.
Acta Arith. 106 (2003), no. 4, 355-378.
OTA K.,
[2] Dedekind sums with characters and class numbers of imaginary quadratic
fields.
Acta Arith. 108 (2003), no. 3, 203-215.
[3] Derivatives of Dedekind sums and their reciprocity law. J. Number Theory 98 (2003), no. 2, 280-309.
ZUDILIN W.,
[1] Algebraic relations for multiple zeta values.
Russian Math. Surveys 58 (2003), no. 1, 1-20
July 5, 2003:
LUO QIU MING,
[1] Generalizations of Bernoulli numbers and higher-order Bernoulli numbers.
(Chinese) Pure Appl. Math. 18 (2002), no. 4, 305-308.
CHEON GI-SANG,
[1] A note on the Bernoulli and Euler polynomials.
Appl. Math. Lett. 16 (2003), no. 3, 365-368.
DAMIANOU P., SCHUMER P.,
[1] A theorem involving the denominator of Bernoulli numbers.
Math. Mag. 76 (2003), 219-224.
ADELBERG A.,
[10] Universal Kummer congruences mod prime powers.
Preprint, June 24, 2003.
LIN KE-PAO, YAU STEPHEN S.-T.,
[1] Counting the Number of Integral Points in General n-Dimensional Tetrahedra
and Bernoulli Polynomials.
Canad. Math. Bull. 46 (2003), no. 2, 229-241.
May 1, 2003:
BYKOVSKII V.A.,
[1] Pairwise products of Eisenstein series, and Manin theta functions.
(Russian) Dokl. Akad. Nauk 375 (2000), no. 2, 154-156.
CAI TIANXIN,
[1] A congruence involving the quotients of Euler and its applications. I.
Acta Arith. 103 (2002), no. 4, 313-320.
LEU MING-GUANG,
[1] Character sums and the series $L(1,\chi)$.
J. Aust. Math. Soc. 70 (2001), no. 3, 425-436.
PAP E.,
[1] Complex analysis through examples and exercises.
Kluwer Texts in the Mathematical Sciences, 21.
Kluwer Academic Publishers Group, Dordrecht, 1999. x+337 pp.
PORUBSKÝ S.,
[9] Covering systems, Kubert identities and difference equations.
Math. Slovaca 50 (2000), no. 4, 381-413.
CHANG KU-YOUNG, KWON SOUN-HI,
[3] Class numbers of imaginary abelian number fields.
Proc. Amer. Math. Soc. 128 (2000), no. 9, 2517-2528.
GAMELIN T.W.,
[1] Complex analysis.
Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 2001. xviii+478 pp.
van der POORTEN A.J., te RIELE, H.J.J., WILLIAMS H.C.,
[2] Corrigenda and addition to: "Computer verification of the
Ankeny-Artin-Chowla conjecture for all primes less than $100\,000\,000\,000$"
[Math. Comp. 70 (2001), no. 235, 1311-1328].
Math. Comp. 72 (2003), no. 241, 521-523.
YOUNG P.T.,
[3] On the behavior of some two-variable $p$-adic $L$-functions.
J. Number Theory 98 (2003), no. 1, 67-88.
BÜLOW T.,
[1] The negative Pell equation.
C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 55-60.
SITARAMAN S.,
[2] Note on a Fermat-type Diophantine equation.
J. Number Theory 99 (2003), no. 1, 29-35.
LIU GUO DONG,
[8] Higher order multivariable Nörlund Euler-Bernoulli polynomials.
Appl. Math. Mech. (English Ed.) 23 (2002), no. 11, 1348-1356;
translated from Appl. Math. Mech. 23 (2002), no. 11,
1203-1210 (Chinese).
SUN ZHI-WEI,
[2] General congruences for Bernoulli polynomials.
Discrete Math. 262 (2003), no. 1-3, 253-276.
JANG YOUNGHO, KIM DAE SAN,
[1] On higher order generalized Bernoulli numbers.
Appl. Math. Comput. 137 (2003), no. 2-3, 387-398.
WAGSTAFF S.S. JR.,
[7] Prime divisors of the Bernoulli and Euler numbers.
Number theory for the millennium, III (Urbana, IL, 2000), 357-374,
A K Peters, Natick, MA, 2002.
EIE M., ONG Y.L.,
[2] A new approach to congruences of Kummer type for Bernoulli numbers.
Number theory for the millennium, I (Urbana, IL, 2000), 377-391,
A K Peters, Natick, MA, 2002.
DILCHER K.,
[10] Bernoulli numbers and confluent hypergeometric functions.
Number theory for the millennium, I (Urbana, IL, 2000), 343-363,
A K Peters, Natick, MA, 2002.
KIM MIN-SOO, SON JIN-WOO
[4] A $q$-analogue of the Dirichlet $L$-function.
Algebra Colloq. 9 (2002), no. 4, 469-480.
CHO HAE-SOOK, KIM EUN-SUP,
[1] A note on $q$-analogue of Volkenborn integral.
Proceedings of the Jangjeon Mathematical Society, 81-90,
Proc. Jangjeon Math. Soc., 4, Jangjeon Math. Soc., Hapcheon, 2002.
KIM YUNG-HWAN, PARK DAL-WON, JANG LEE-CHAE,
[1] A note on $q$-analogue of Volkenborn integral.
Adv. Stud. Contemp. Math. (Kyungshang) 4 (2002), no. 2, 159-163.
February 25, 2003:
JANG LEECHAE,
[1] A note on Kummer congruence for the Bernoulli numbers of higher order.
Proc. Jangjeon Math. Soc. 5 (2002), no. 2, 141-146.
JANG LEE CHAE, PAK HONG KYUNG,
[1] Non-Archimedean integration associated with $q$-Bernoulli numbers.
Proc. Jangjeon Math. Soc. 5 (2002), no. 2, 125-129.
GEKELER E.-U.,
[3] A series of new congruences for Bernoulli numbers and Eisenstein series.
J. Number Theory 97 (2002), no. 1, 132-143.
KIM TAEKYUN,
[7] Some formulae for the $q$-Bernoulli and Euler polynomials of higher order.
J. Math. Anal. Appl. 273 (2002), no. 1, 236-242.
ADELBERG A., FILASETA M.,
[1] On $m$th order Bernoulli polynomials of degree $m$ that are Eisenstein.
Colloq. Math. 93 (2002), no. 1, 21-26.
FOX, G.J.,
[5] Kummer congruences for expressions involving generalized Bernoulli
polynomials.
J. Théor. Nombres Bordeaux 14 (2002), no. 1, 187-204.
KARPENKOV O.N.,
[1] Combinatorics of multiboundary singularities of the series $B\sp l\sb n$
and the Bernoulli-Euler numbers. (Russian)
Funktsional. Anal. i Prilozhen. 36 (2002), no. 1, 78-81;
translation in Funct. Anal. Appl. 36 (2002), no. 1, 65-67.
KELLNER B.,
[1] Über irreguläre Paare höherer Ordnungen.
Diplomarbeit, Göttingen, 2002.
COSTABILE F., GUALTIERI M.I., SERRA CAPIZZANO S.,
[1] An iterative method for the computation of the solutions of nonlinear
equations.
Calcolo 36 (1999), no. 1, 17-34.
BAMBAH R.P.,
[1] Chowla, the mathematics man.
Math. Student 67 (1998), no. 1-4, 153-161.
Back to Index       New in 2002       New in 2001       New in 2000       New in 1999