Back to Index Back to A On to C
Babadganjan, R.S.,
[1] Ob ostatochnom chlene v formule Ejlera-Maklorena (Russian)
[On the remainder term in the Euler-Maclaurin formula].
Leningr. Gos. Pedagog. In-t., Leningrad, 1986, 14 str.
R1986,7A18DEP
[2] K istorii odnogo funktsional'nogo uravneniya Ejlera (Russian)
[On the history of a functional equation of Euler].
Leningr. Gos. Pedagog. In-t., Leningrad, 1986, 6 str.
R1986,7A19DEP
Babbage, Ch.,
[1] On some new methods of investigating the sums of
several classes of infinite series,
Philos. Trans. Roy. Soc. London 109 (1819), 249-282.
Babini, J.,
[1] Polinomios generalizades de Bernoulli y sus correlativos,
Boletén Sem. mat. Argentino, 4 (1934), 23-25.
and Rev. mat. hisp-amer. (2), 10 (1934), 23-25.
J61.1166.03; J60.1041.04; Z11.21301
[2] Generalización de los polinomios de Bernoulli,
Rev. Acad. Sci. Madrid, 32 (1935), 491-500.
J61.0378.01; Z13.16703
Bach, E.,
The complexity of number-theoretic constants.
Inform. Process. Lett. 62 (1997), no. 3, 145-152.
M1453698
BACHMANN P.,
[1] Niedere Zahlentheorie, Additive Zahlentheorie,
Leipzig, 1910 / New York: Chelsea, 1968, Part 1: x+402p; Part II: x+480p.
J41.0221.10; Z253.10001; M39#25
[2] Das Fermatproblem in seiner bisherigen
Entwicklung, Walter de Gruyter & Co., Berlin-Leipzig, 1916, 160pp.
J47.0105.02
[3] Ein Satz von den Tangentenkoeffizienten,
Arch. der Math. u. Physik (3), 16 (1910), 363-365.
J41.0223.01
BAILEY D.H., BORWEIN J.M., CRANDALL R.E.,
[1] On the Khintchine constant.
Math. Comp., 66 (1997), no. 217, 417-431.
Z854.11078; M97c:11119
BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.,
[1] Experimental evaluation of Euler sums.
Experiment. Math., 3 (1994), no. 1, 17-30.
Z810.11076; M96e:11168
BAKER Alan,
[1] A Concise Introduction to the Theory of Numbers, Cambridge
University Press, Cambridge, 1984. xiii + 95 pp.
Z554.10001; M86f:11001
BAKER A.J., CLARKE F., RAY N., SCHWARTZ L.,
[1] On the Kummer congruences and the stable homotopy of BU,
Trans. Amer. Math. Soc., 316 (1989), no. 2, 385-432.
Z709.55012; M90c:55003; R1990,12A606
BAKER Andrew,
[1] A supersingular congruence for modular forms,
Acta Arith. 86 (1998), no. 1, 91-100.
M99j:11066; R01.02-13A.299
BAKHMUTSKAYA E.Ya.,
[1] Dzhon Blissard i ego simvolicheskoye ischisleniye [John Blissard and
his symbolic calculus],
Trudy XIII mezhdunarodnogo kongressa po istorii nauki, sek. 5, 1971,
121-124. Nauka, Moskva, 1974.
Z296.01015; R1975,1A44
BALAN G.,
[1] Group of unit of cyclotomic field, In: Proc. Conference on Algebra.
Univ. of Cluj-Napoca, Faculty of Math., Research Seminars. Preprint No. 9,
1986, 3-6.
Z691.12001; R1987,5A317
BALANZARIO E.P.,
[1] Evaluation of Dirichlet Series.
Amer. Math. Monthly 108 (2001), no. 10, 969-971
BALATONI F.,
[1] Valós kvadraticus számtestek
osztályszámáról [On the class number of quadratic
number fields] (Hungarian), Math. Lapok, 24 (1973), 107-112.
Z326.12004 ; M53#5527; R1976,6A179
BALAZS N.L., SCHMIT C., VOROS A.,
[1] Spectral fluctuations and zeta functions,
J. Statistical Physics, 46 (1987), no. 5/6, 1067-1090.
Z692.58027; M89b:58171
BALK M.B.,
[1] A property of the Bernoulli numbers. (Russian),
Moskov. Oblast. Pedagog. Inst. Uch. Zap., 57 (1957), 55-59.
Z90.27901; M20#5892; R1958,7462
BALOG A., DARMON H., ONO K.,
[1] Congruence for Fourier coefficients of half-integral weight modular
forms and special values of $L$-functions.
Analytic number theory, Vol. 1 (Allerton Park, IL, 1995),
105-128, Progr. Math., 138, Birkhäuser Boston, Boston, MA, 1996.
Z863.11031; M97e:11056
BAMBAH R.P.,
[1] Chowla, the mathematics man.
Math. Student 67 (1998), no. 1-4, 153-161.
BANASZAK G., GAJDA W.,
[1] On the arithmetic of cyclotomic fields and the $K$-theory of ${\bf Q}$,
Algebraic $K$-theory Poznan, 1995), 7-18, Contemp. Math., 199, Amer. Math.
Soc., Providence, RI, 1996.
Z866.19004; M97h:11146
BANERJEE D.P.,
[1] On some arithmetical properties of Bernoulli's
and Euler's generalized polynomials, Proc. Indian Nat. Sci. Acad. Part A,
34 (1964), 92-96.
Z171.32601; M36#2851; R1965,6V50
BANKS W.,
[1] Some unusual identities for special values of the Riemann zeta function.
Ramanujan J. 5 (2001), no. 2, 153-157.
Z1031.11048; M2002f:11112
BANUELOS A., DEPINE R.A.,
[1] A program for computing the Riemann zeta
function for complex argument, Comput. Phys. Comm., 20
(1980), 441-445.
Z457.10001; R1981,5V1033
BARANIECKI M.A.,
[1] Ueber die Bernoulli'schen Functionen. [On the Bernoulli functions].
Kraków, Ak. (Mat.-Przyrod.) Rozpr. 13 (1885), 183-195.
J17.0416.03
BARNER K.,
[1] Über die Werte der Ringklassen-L-Funktionen
reell-quadratischer Zahlkörper an natürlichen Argumentstellen,
J. Number Theory, 1 (1969), no. 1, 28-64.
Z174.08604; M39#139; R1970,2A127
BARNES E. W.,
[1] The theory of the gamma function,
Messenger Math. (2), 29 (1899/1900), 64-128.
J30.0389.01
[2] The theory of the double gamma function,
Philos. Trans. London, 196A (1901), 271-285.
J32.0442.02
[3] On the theory of the multiple gamma function,
Trans. Cambr. Philos. Soc., 19 (1904), 374-425.
J35.0462.01
BARNIVILLE J.J., DICKSON J.D.H., LAMPE E.,
[1] Solution of question 9977, Math. questions etc.,
edited by W.J.C. Miller, London, 52 (1890),
41-44.
J22.0268.03
BARSKY D.,
[1] Analyse p-adique et nombres de Bernoulli, C.R.
Acad. Sci. Paris, 283 (1976), no. 16, A1069-A1072.
Z359.12018 ; M55#2855; R1977,7A339
[2] Congruences de coefficients de séries de Taylor
(Application aux nombres de Bernoulli-Hurwitz), Groupe d'étude
d'analyse ultramétrique, no. 17, (1975-76), 9pp.
Z355.12016; M58#5496; R1978,3A300
[3] Fonction génératrice et congruences
(Application aux nombres de Bernoulli), Sém.
Delange-Pisot-Poitou (Théorie de nombres), 1975-76 (1977),
17, fasc. 1, exp. 21, 16pp.
Z336.12012 ; M57#5967; R1978,3A235
[4] Analyse p-adique et nombres de Bernoulli-Hurwitz,
C.R. Acad. Sci. Paris, 284 (1977), no. 3, A137-A140.
Z343.12007; M55#12705; R1977,10A208
BARSKY D., DUMONT D.,
[1] Congruences pour les nombres de Genocchi de deuxième espèce,
Seminaire du groupe d'étude d'analyse ultramétrique,
34 (1980-81), 1-13.
Z474.10011; M82m:10021; R1982,1V747
BARTZ K.,
[1] On Carlitz theorem for Bernoulli polynomials. Number theory (Cieszyn, 1998).
Ann. Math. Sil. No. 12 (1998), 9-13.
Z924.11009; M2000a:11030
BARTZ K., RUTKOWSKI J.,
[1] On the von Staudt-Clausen theorem,
C. R. Math. Rep. Acad. Sci. Canada, 15 (1993), no. 1,
46-48.
Z769.11011; M94b:11017; R1993,11A101
BASKOV B.M.,
[1] Svyaz' dzeta-funktsii Rimana s mnogochlenami Bernulli (Russian)
[Connection between the Riemann zeta function and the Bernoulli polynomials].
Trudy Uzbeksk. Gos. Universiteta, novaya ser., fiz.-mat. fakul't., Samarkand,
(1958), no. 78, 163-183.
R1962,5A127
[2] Novoe dokazatel'stvo teoremy Shtaudta (Russian)
[A new proof of Staudt's theorem].
Materialy 3-i ob'ed. nauch. konf. uchenykh Samarkanda, ser. gumanit. i
estest. nauk, Samarkand, (1961), 260-262.
R1963,3A140
BATEN W. D.,
[1] A remainder for the Euler-Maclaurin summation formula
in two independent variables,
Amer. J. Math., 54 (1932), 265-275.
J58.1044.08; Z4.25001
BAUER G.,
[1] Von den Gamma-functionen und einer besonderen Art
unendlicher Producte, J. Reine Angew. Math.,
57 (1860) ,
256-272.
[2] Von einigen Summen-und Differenzenformeln und den Bernoullischen Zahlen, J. Reine Angew. Math., 58 (1861), 292-300.
Bayad, Abdelmejid,
[1] Applications aux sommes elliptiques d'Apostol-Dedekind-Zagier. (French)
[Applications to elliptic Apostol-Dedekind-Zagier sums]
C. R. Math. Acad. Sci. Paris 339 (2004), no. 8, 529-532.
M2005k:11094
[1] A generalization of Wolstenholme's theorem,
Amer. Math. Monthly 104 (1997), no. 6, 557-560.
Z916.11002; M98e:11007
BÁYER P.,
[1] Value of the Iwasawa L-function at point $s=1$,
Arch. Math., 32 (1979), no. 1, 38-54.
Z403.12022; M80h:12016
; R1980,2A374
[2] Sobre el indice de irregularidad de los numeros primos,
Collect. Math., 30 (1979), no. 1, 11-20, (Spanish).
Z499.12003; M81h:12003
[3] Variae observationes circa series infinititas,
Butlleti Soc. Catalana Ciénc. Fis., Quimiques i Matem., 2 (1984), no. 4,
429-481.
Z598.10002; M86i:01026
BEACH B., WILLIAMS H., ZARNKE C.,
[1] Some computer results on units in quadratic and cubic
fields, Proc. of the Twenty-Fifth Summer Meeting of the
Canad. Math. Congress, Lakehead Univ., (1971),
609-648.
M49#2656
BEARDON A. F.,
[1] Sums of powers of integers.
Amer. Math. Monthly, 103 (1996), no. 3,201-213 .
Z851.11012; M97f:11020; R1996,10B189
BEAUPAIN J.,
[1] Sur une classe de fonctions qui se rattachent aux fonctions de
Jacques Bernoulli.
Mémoires Couronnés et Mémoires des Savants
Étrangers publiés par l'Académie Royale des Sciences,
des Lettres et des Beaux-Arts de Belgique, Bruxelles, 59 (1901),
pt. 1, 33 pp.
J34.0483.01
BECK M.,
[1] Dedekind cotangent sums.
Acta Arith. 109 (2003), no. 2, 109-130.
BEEBEE J.,
[1] Bernoulli numbers and exact covering systems,
Amer. Math. Monthly, 99 (1992), no. 10, 946-948.
Z776.11008; M93i:11025; R1993,8A109
BEEGER N.W.G.H.,
[1] Quelques remarques sur les congruences $\tau^{p-1
\equiv 1 (\bmod p^2)$ et $(p - 1)! \equiv (\bmod p^2)$,
Messeng. Math. (2), 43 (1913), 72-84.
J44.0227.01
[2] On some new congruences in the theory of Bernoulli
numbers, Bull. Amer. Math. Soc., 44 (1938), 684-688.
J64.0096.01; Z19.29201
[3] Report on some calculations of prime
numbers, Nieuw Arch. Wisk., 20 (1939), 48-50.
J65.0161.02; Z20.10506; M1-65g
BEESLEY E.M.,
[1] An integral representation for the Euler numbers,
Amer. Math. Monthly, 76 (1969), 389-391.
Z185.03002; M39#4330; R1970,3V274
BELL E.T.,
[1] The Bernoullian functions occuring in the arithmetical
applications of elliptic functions,
Messeng. Math. (2), 50 (1921), 177-186.
= Bull Amer. Math. Soc., 27 (1921), 413.
J48.0444.04; J48.1245.04
[2] Note on the prime divisors of the numerator of Bernoulli's numbers,
Amer. Math. Monthly, 28 (1921), 258-259.
= Bull. Amer. Math. Soc., 27 (1921), 414.
J48.0137.01; J48.0255.18
[3] An harmonic polynomial generalizations of the numbers of
Bernoulli and Euler,
Bull. Amer. Math. Soc., 27 (1921), 414.
J48.0255.19
[4] An harmonic polynomial generalizations of the numbers of
Bernoulli and Euler, Trans. Amer. Math. Soc., 24 (1922), no. 2,
89-112.
J49.0708.01
[5] A revision of the Bernoullian and Eulerian functions,
Bull. Amer. Math. Soc., 28 (1922), 443-450.
J48.1194.03
[6] Relations between the numbers of Bernoulli, Euler, Genocchi, and Lucas,
Messeng. Math., 52 (1923), 56-68.
J49.0328.01
[7] Umbral symmetric functions and algebraic analogues of the
Bernoullian and Eulerian numbers and functions,
Bull. Amer. Math. Soc., 29 (1923), 11.
= Math. Z., 19 (1924), 35-49.
J49.0078.04; J49.0250.02
[8] An algebra of sequences of functions with an application to
the Bernoulli functions, Trans. Amer. Math. Soc., 28 (1926),
no. 1, 129-148.
J52.0372.03
[9] General relations between Bernoulli, Euler and allied
polynomials, Trans. Amer. Math. Soc., 38 (1935), 493-500.
J61.0377.04; Z13.00503
[10] The history of Blissard's symbolic method, with a sketch of
its inventor's life,
Amer. Math. Monthly, 45 (1938), 414-421.
Z19.38902
[11] Trigonometry and the numbers B, E, G, R of Bernoulli, Euler,
Genocchi and Lucas (Abstract),
Bull. Amer. Math. Soc., 28 (1922), 283.
J48.0256.02
[12] The modular Bernoullian and Eulerian functions (Abstract
),
Bull. Amer. Math. Soc., 32 (1926), 417-418.
J52.0373.02
[13] On generalizations of the Bernoullian functions and numbers,
Amer. J. Math., 47 (1926), 277-288.
J51.0289.01
[14] $B, E$ polynomials and their related integrals,
Tôhoku Math. J, 26 (1926), 391-405.
J52.0354.01
[15] Modular Bernoullian and Eulerian functions,
Univ. of Washington Publ. in Math., 1 (1926), no. 1, 1-7.
J57.1369.02
BELL J.L.,
[1] Chains of congruences for the numerators and denominators of the Bernoulli
numbers, Ann. of Math. (2), 29 (1927), 106-112.
J53.0137.02
BELLAVITIS G.,
[1] Sulle serie di numeri che comprendono i Bernoulliani,
Annali. sci. mat. e fis. Roma, 4 (1853), 108-127.
BENCZE M., SMARANDACHE F.,
[1] About Bernoulli's numbers.
Octogon Math. Mag. 7 (1999), no. 1, 151-153.
BENDERSKI L.,
[1] Sur la fonction gamma géneralisée,
Acta Math. 61 (1933), 263-322.
BENNETON G.,
[1] Sur le dernier théorème de Fermat, Ann. Sci. Univ.
Besançon, Math. (3), fasc. 7 (1974), 15pp.
Z348.10010; M54#7368
BENTSEN S., MADSEN I.,
[1] Trace maps in algebraic $K$-theory and the Coates-Wiles homomorphism,
J. Reine Angew. Math., 411 (1990), 171-195.
Z716.11055; M91i:19002
BERG F.J. van den,
[1] Over periodieke terugloopende betrekkingen tusschen
de Coëfficiënten in de ontwikkeling van functiën, meer in het
byzonder tusschen de Bernoulliaansche en ook tusschen eenige
daarmede verwante Coëfficiënten, Versl. Meed. Kon. Ak. Weten.,
(2), 16 (1881), 74-176 = Arch. Néerl. Sci. Ex. Nat.
Soc. Holland., 16 (1881), 387-443.
J13.0193.01
[2] Eenige formulen voor de berekening van de
Bernoulliaansche en van de tangenten-coëfficiënten, Verhand. Kgl.
Akad. Wetensch. Amsterdam, (3), 5 (1889), 388-397;
6 (1889), 265-276.
J20.0265.02
[3] Nogmaals over de Bernoulliaansche coëfficienten.
Amst. Versl. en Meded. (3) 6 (1889), 265-276.
J21.0248.02
[4] Quelques formules pour le calcul des nombres de
Bernoulli et des coefficients des tangentes, Arch.
Néerl. Sci. Exactes et Natur. Soc. Hollandaise, 24
(1891), 99-141.
J22.0268.02
BERG L.,
[1] On the solution of Jordan's system of difference equations. Rostock. Math.
Kolloq. No. 56 (2002), 25-28.
M2003f:39010; R02.12-13B.272
[2] On polynomials related with generalized Bernoulli numbers. Rostock. Math.
Kolloq. No. 56 (2002), 55-61.
M2003d:11027
BERGER A.,
[1] Elementära bevis för några formler i differenskalkylen,
Handl. Kgl. Svenska Vetens. Akad., Stockholm, 37
(1882), 39-53.
J14.0192.01
[2] De Bernoulli'ska talens och funktionernas teori, baserad
på ett system af funktionaleqvationer, Öfversigt af Kgl.
Svenska Vetens. Akad. Förhand., Stockholm, 45 (1888),
433-461.
J20.0424.02
[3] Härledning af några independenta uttryck för de
Bernoulli'ska talen, Öfversigt af Kgl. Svenska Vetens. Akad.
Förhand., Stockholm, 46 (1889), 129-138.
J1.0247.02
[4] Sur une généralisation des nombres et des fonctions
de Bernoulli, Bihang Kgl. Svenska Vetens. Akad. handl.,
Stockholm, 13 (1890), no. 9, 1-43.
J20.0266.01
[5] Recherches sur les nombres et les fonctions de
Bernoulli, Acta Math., 14 (1890/91), 249-304.
J23.0267.02
[6] Om en användning af de Bernoulliska funktionerna
vid några serienutvecklingar, Öfversigt af Kgl. Svenska
Vetens. Akad. Förhandl., Stockholm, 48 (1891),
523-540.
J23.0274.02
BERGER E.R.,
[1] Bernoullische Zahlen, Potenzsummen und Stirlingsche
Reihe, Z. Angew. Math. Mech., 35 (1955), no. 1/2, 70-71.
Z64.01308; M16-1014e; R1956,2302
BERGGREN B.,
[1] Summierung der Reihe $1^n + 2^n + 3^n + \cdots + \nu^n$ (Swedish),
Elementa, Stockholm, 22 (1939), 209-212.
J65.1190.03
BERGMANN H.,
[1] Eine explizite Darstellung der Bernoullischen Zahlen,
Math. Nachr., 34 (1967), 377-378.
Z307.10018 ; M36#4030; R1968,6V311
BERNARDINI A.: see NATALINI P., BERNARDINI A.
BERNDT B.C.,
[1] Character transformation formulae similar to those for the
Dedekind eta-function. In:
Analytic number theory (Proc. Sympos. Pure Math., Vol. 24, St. Louis Univ.,
St. Louis, Mo., 1972), pp. 9-30. Amer. Math. Soc., Providence, R. I.,
1973.
Z265.10016; M49#2556
[2] Periodic Bernoulli numbers, summation formulas and applications.
In: Theory and application of special functions (Proc. Advanced Sem., Math.
Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143-189. Math. Res.
Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975.
Z326.10016; M52#10560; R1978,7B39
[3] Elementary evaluation of $\zeta(2n)$,
Math. Mag., 48 (1975), 148-154.
Z303.10038; M51#3078; R1976,5A98
[4] Character analogues of the Poisson and Euler-Maclaurin summation
formulas with applications,
J. Number Theory, 7 (1975), no. 4, 413-445.
Z316.10023; M52#3075; R1976,6A131
[5] On Eisenstein series with characters and the values of Dirichlet L-functions,
Acta Arith., 28 (1975), no. 3, 299-320.
Z279.10023; M52#10601; R1976,8A177
[6] Dedekind sums and a paper of G.H. Hardy,
J. London Math. Soc., 13 (1976), 129-137.
Z319.10006; M53#7918; R1976,12A127
[7] Chapter 8 of Ramanujan's second notebook, J. Reine Angew.
Math., 338 (1983), 1-55.
Z491.33003; M84g:01080; R1983,7B13
[8] Chapter 11 of Ramanujan's second notebook,
Bull. London Math. Soc., 15 (1983), no. 4, 273-320.
Z494.33002; M85a:01043; R1983,12B35
[9] Ramanujan's quarterly reports, Bull.
London Math. Soc., 16 (1983), no. 5, 449-489.
Z511.01007; M85j:01021; R1985,4A101
[10] Remarks on some of Ramanujan's number theoretical discoveries found in
his second notebook. Number Theory. Proc. 4th Matscience Conf. held at
Ootacamund, India, January 5-10, 1984. Lect. Notes Math. No. 1122,
Springer-Verlag Berlin-New York, 1985, 47-55.
Z555.10002; M87b:11013; R1985,11A121
[11] Ramanujan's Notebooks. Part I. Springer-Verlag, New York-Berlin,
1985, x + 357 pp.
Z555.10001; M86c:01062; R1986,2B1K
[12] Ramanujan's notebooks. Part IV. Springer-Verlag, New York,
1994. xii+451pp.
Z785.11001; M95e:11028
[13] Ramanujan's notebooks. Part V. Springer-Verlag, New York,
1998. xiv+624pp.
Z886.11001; M99f:11024
[14] The evaluation of certain classes of nonabsolutely convergent double
series. SIAM J. Math. Anal. 6 (1975), no. 6, 966-977.
Z0311.40002; M52 #1085; R1976,5A123
BERNDT B.C., BIALEK P.,
[1] Five formulas of Ramanujan arising from Eisenstein series.
In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number
Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15,
67-86. Amer. Math. Soc., Providence, 1995.
Z838.40001; M97f:11028; R1997,9A122
BERNDT B.C., EVANS R.J.,
[1] Chapter 7 of Ramanujan's second notebook,
Proc. Indian Acad. Sci. Math. Sci., 92 (1983), no. 2, 67-96.
Z537.10002; M86d:11020; R1985,3A95
[2] Extensions of asymptotic expansions from Chapter 15 of
Ramanujan's second notebook, J. Reine Angew. Math.,
361 (1985), 118-134.
Z571.41027; M87b:41031; R1986,4A125
[3] Chapter 15 of Ramanujan's second notebook. Part II. Modular forms.
Acta Arith., 47 (1986), no. 2, 123-142.
Z571.10025; M88d:11039; R1987,5A96
[4] Asymptotic expansion of a series of Ramanujan,
Proc. Edinburgh Math. Soc.(2), 35 (1992), no. 2, 189-199.
Z741.41025; M93i:41020
BERNDT B.C., EVANS R.J., WILSON B.M.,
[1] Chapter 3 of Ramanujan's second notebook, Advances
in Math., 49 (1983), no. 2, 123-169.
Z524.41017; M85c:11020; R1984,2B41
BERNDT B.C., SCHOENFELD L.,
[1] Periodic analogues of the Euler-Maclaurin and Poisson summation formulas
with applications to number theory, Acta Arith., 28 (1975), 23-68.
Correction: Acta Arith., 38 (1980/81), 328.
Z268.10008; M52#5586; R1976,5A106
BERNDT B.C., WILSON B.M.,
[1] Chapter 5 of Ramanujan's second notebook. In: Analytic
number theory, Lecture Notes in Math., no. 899, Springer-Verlag, 1981,
49-78.
Z477.10003; M83i:10011
BERNDT B.C.: see also ADIGA C., BERNDT B.C., et al.
BERNOULLI J.,
[1] Ars Conjectandi, Basel, (1713). (Reprinted on pp. 106-286
in Vol. 3 of "Die Werke von Jakob Bernoulli", Birkhäuser Verlag,
Basel, 1975. See also SMITH D.E. [1, pp. 85-90]).
[2] Wahrscheinlichkeitsrechnung, Leipzig, 1899.
BERNSTEIN F.,
[1] Über den zweiten Fall des letzten Fermatschen Lehrsatzes,
Nachr. Akad. Wiss. Göttingen Math.-phys. Kl., (1910), 507-516.
J41.0237.01
BERNSTEIN M., SLOANE N.J.A.,
[1] Some canonical sequences of integers,
Linear Algebra Appl., 226-228 (1995), 57-72.
Z832.05002; M96i:05004
BERTRAND J.,
[1] Traité de calcul différentiel et de calcul intégral,
Paris, 1 (1864), Ch. 6; 2 (1870), Ch. 7. 507-616.
J02.0298.01
BESSEL F.W.,
[1] Über die Summation der Progressionen, Astronom.
Nachr., 16 (1839), no. 361, 1-6.
BEUKERS F., KOLK J.A.C., CALABI E.,
[1] Sums of generalized harmonic series and volumes,
Nieuw Arch. Wisk. (4), 11 (1993), no. 3, 217-224.
Z797.40001; M94j:11022
BEZERRA V.B., CHABA A.N.,
[1] The generalised Euler formula from Poisson's summation formula and some
applications, J. Phys. A 18 (1985), no. 17, 3381-3387.
Z596.40002; M87h:65013; R1986,6B17
BHARGAVA S.: see ADIGA C., BERNDT, B.C. et al.
BHARGAVA S.: see ADIGA C., BHARGAVA S.
BHATTACHARJEE N.R.,
[1] Extension of Bernoulli and Euler numbers (Bengali summary),
Chittagong Univ. Stud. Part II Sci., 10 (1986), no. 1-2, 13-17.
M90d:11030
BHATTACHARJEE N.R., BHATTACHARJEE T.,
[1] Extension of zeta function $\zeta(2m)$,
Indian J. Pure Appl. Math., 21 (1990), no. 11, 977-980.
Z721.11032; M92d:11091
[2] On the evaluation of zeta function $\zeta(2s)$,
Indian J. Pure Appl. Math., 23 (1992), no. 1, 15-19.
Z742.11043; M93b:11105; R1992,9A144
BHIMASENA RAO M.: see KRISHNAMACHARY C., BHIMASENA RAO M.
BIALEK P.: see BERNDT B.C., BIALEK P.
BILU Yu. F., BRINDZA B., KIRSCHENHOFER P., Pintér Á., TICHY R. F.,
[1] Diophantine equations and Bernoulli polynomials. With an appendix by
A. Schinzel. Compositio Math. 131 (2002), no. 2, 173-188.
M2003a:11025; R02.11-13A.79
BINET M.J.,
[1] Mémoires sur les intégrales définies Euleriennes,
Journ. de l'Ecole Polytechn., 16 (1839), 124-343.
[2] Mémoire sur l'application de la théorie des suites à la série des nombres premiers à un nombre composé, C.R. Acad. Sci. Paris, 32 (1851), 918-921.
BIRCH B.J.,
[1] $K_2$ of Global fields, Proc. Sympos. Pure Math.,
20 (1971), 87-95.
Z218.12010; M48#11052
BISHT C.S.: see SRIVASTAVA H.M., JOSHI J.M.C., BISHT C.S.
BJÖRLING E.G.,
[1] Om de Bernoulliska talen, Öfversigt Kgl. Vetens. Akad.
Förhandl., Stockholm, 14 (1857), 107-108.
BLIND A.,
[1] Ueber die Potenzsummen der unter einer Zahl m
liegenden und zu ihr primen Zahlen, Dissertation, Bonn 1876 .
BLISSARD J.,
[1] Theory of generic equations, Quart. J. Math., 4 (1861), 279-305;
[2] Examples of the use and application of representative notation,
Quart. J. Math., 6 (1863), 49-64.
[3] Researches in analysis. I. On the sums of reciprocals, Quart. J. Math., 6 (1864), 242-257.
[4] Researches in analysis. II. On the unlimited variety of result capable of being obtained, by use of Representative Notation, from a single Formula, Quart. J. Pure Appl. Math., 7 (1866), 155-170, 223-226.
[5] On the properties of the $\bigtriangleup^m \bigcirc^n$ class of numbers and of others analogous to them, as investigated by means of representative notation, Quart. J. Math., 8 (1867), 85-110.
[6] Note on a certain formula, Quart. J. Pure Appl. Math. 9 (1868), 71-76.
[7] On the properties of the $\bigtriangleup^m \bigcirc^n$ class of numbers, Quart. J. Pure Appl. Math., 9 (1868), 82-94, 154--171.
BLOOM D. M.,
[1] An old algorithm for the sums of integer powers.
Math. Magazine, 66 (1993), no. 5, 304-305.
M94j:11017
BOCK W.,
[1] Eine Beziehung zwischen den Bernoullischen Zahlen und dem
Produkt $\Pi (1-1/p^{2n})$ über alle Primzahlen,
Mitt. Math. Ges. Hamburg, 5 (1920), 304-307.
J47.0219.04
BÖCHERER S.,
[1] Über die Fourierkoeffizienten der Siegelschen
Eisensteinreihen, Manuscripta Math., 45 (1984), no. 3, 273-288.
Z533.10023; M86b:11037; R1984,9A445
BÖCHERER S., SCHMIDT C.-G.,
[1] $p$-adic measures attached to Siegel modular forms.
Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1375-1443.
BÖHMER P.,
[1] Über die Bernoullischen Functionen, Math.
Ann., 68 (1910), no. 3, 338-360.
J41.0371.02
BÖLLING R.,
[1] Bemerkungen über Klassenzahlen und Summen von
Jacobi-Symbolen, Math. Nachr., 90 (1979), 159-172.
Z415.12003; M81g:12008; R1980,5A149
BOOLE G.,
[1] Die Grundlehren der endlichen Differenzen- und Summenrechnung.
Leibrock, Braunschweig, 1867.
[2] Finite differences, Chapters V-VIII, (1872).
[3] A treatise of the calculus of finite differences, London, (1880), 3rd. ed., Ch. 5-8.
BOREVICH Z.I., SHAFAREVICH I.R.,
[1] Number Theory. Academic Press, New York, 1966. x + 435 pp.
Z121.04202; M33#4001
[2] Teoriya chisel [Number Theory], 3rd ed., Nauka, Moscow, 1985, 504 pp.
Z592.12001; M88f:11001; R1986,1A533K
BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.,
[1] Giuga's conjecture on primality,
Amer. Math. Monthly 103 (1996), no. 1, 40-50.
Z860.11003; M97b:11004; R1997,12A58
BORWEIN J.M., BORWEIN P.B.,
[1] Pi and the AGM. A study in analytic number theory and computational
complexity. John Wiley & Sons, Inc., New York, 1987.
Z611.10001; M89a:11134
BORWEIN J.M., BORWEIN P.B., DILCHER K.,
[1] Pi, Euler numbers, and asymptotic expansions,
Amer. Math. Monthly, 96 (1989), no.8, 681-687.
Z711.11009; M91c:40002
[2] Boole summation and asymptotic expansions of some special series. Conference report of the 9th Czechoslovak Colloquium on Number Theory held at Rackova Dolina, Sept. 1989, pp. 11-18. Masaryk University, Brno, 1990.
BORWEIN J.M., BROADHURST D.J., KAMNITZER J.,
[1] Central binomial sums, multiple Clausen values, and zeta values.
Experiment. Math. 10 (2001), no. 1, 25-34.
BORWEIN J.M., WONG E.,
[1] A survey of results relating to Giuga's conjecture on primality.
Advances in mathematical sciences: CRM's 25 years
Montreal, PQ, 1994), 13--27, CRM Proc. Lecture Notes, 11, Amer. Math. Soc.,
Providence, RI, 1997.
Z980.15140; M98i:11005
BORWEIN J.M.: see also BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.
BORWEIN J.M.: see also BAILEY D.H., BORWEIN J.M., CRANDALL R.E.
BORWEIN J.M.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.
BORWEIN P.B.: see BORWEIN J.M., BORWEIN P.B.
BORWEIN P.B.: see also BORWEIN J.M., BORWEIN P.B., DILCHER K.
BORWEIN P.B.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., G IRGENSOHN R.
BOWMAN D., BRADLEY D. M.,
[1] Multiple polylogarithms: a brief survey. In: $q$-series with applications
to combinatorics, number theory, and physics (Urbana, IL, 2000), 71--92,
Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
Z0998.33013; M2003c:33021; R02.10-13A.74
BOYD, D.W.,
[1] A $p$-adic study of the partial sums of the harmonic series,
Experiment. Math. 3 (1994), no. 4, 287-302.
Z838.11015; M96e:11157
BOYER C. B.,
[1] Pascal's formula for the sum of powers of the integers,
Scripta Math., 9 (1943), 237-244.
Z60.00919; M6-85d
BOYLAN M.,
[1] Swinnerton-Dyer type congruences for certain Eisenstein series.
$q$-series with applications to combinatorics, number theory, and physics
(Urbana, IL, 2000), 93-108, Contemp. Math., 291, Amer. Math. Soc.,
Providence, RI, 2001.
Z0990.11028; M2002k:11063; R02.11-13A.79
BRADLEY D.,
[1] A sieve auxiliary function. Analytic number theory, Vol. 1
(Allerton Park, IL, 1995), 173-210, Progr. Math., 138, Birkhäuser
Boston, Boston, MA, 1996.
Z856.11045; M97h:11099
BRADLEY D.: see also BOWMAN D., BRADLEY D. M.
BREMEKAMP H.,
[1] Vraagstuk CXIII,
Wiskundige Opgaven, 14 (1928), 238-240.
J54.0186.01
BRENEV E.E.,
[1] O nekotorykh sootnosheniyakh svyazyvayushchikh dzeta-funktsiyu Rimana s
polinomami Bernulli [On some relations between the Riemann zeta function
and Bernoulli polynomials].
Trudy Moskovsk. instituta inzhenerov zh.-d. transporta, (1966), no. 230, 77-98.<
br>
R1967,11A141
BRENT B.,
[1] Quadratic minima and modular forms,
Experiment. Math. 7 (1998), no. 3, 257-274.
Z916.11025; M2000f:11048
BRESSOUD D.M.,
[1] A radical approach to real analysis.
Mathematical Association of America, Washington, DC, 1994. xii+324 pp.
Z796.26001; M95d:26002
BRETTI G, RICCI P.E.,
[1] Euler polynomials and the related quadrature rule.
Georgian Math. J. 8 (2001), no. 3, 447--453.
Z0992.33004; M2003d:65018
Bretti, Gabriella; Ricci, Paolo E.,
[2] Multidimensional extensions of the Bernoulli and Appell polynomials.
Taiwanese J. Math. 8 (2004), no. 3, 415-428.
BRETTI G., NATALINI P., RICCI P.E.,
[1] Generalizations of the Bernoulli and Appell polynomials.
Abstr. Appl. Anal. 2004, no. 7, 613-623.
BRILLHART J.,
[1] On the Euler and Bernoulli polynomials, J. Reine Angew.
Math., 234 (1969), 45-64.
Z167.35401; M39#4117; R1969,8B176
[2] Some modular results on the Euler and Bernoulli
polynomials, Acta Arith., 21 (1972),
173-181.
Z213.05503; M46#3433; R1973,4A194
[3] On the Euler and Bernoulli polynomials.
Dissertation, Univ. of California, Berkeley, 1967.
R1986,7V288D
BRINDZA B.,
[1] On some generalizations of the Diophantine equation
$1^k+2^k+ \cdots +x^k = y^z$, Acta Arith., 44 (1984), no. 2, 99-107.
Z497.10010; M86j:11029; R1985,7A188
[2] Power values of sums $1^k+2^k+ \cdots +x^k$,
Number Theory, Vol. II (Budapest, 1987), 595-611, Colloq. Math. Soc. Jànos
Bolyai, 51, Noth-Holland, Amsterdam-New York, 1990.
Z705.11013; M91g:11027; R1992,6A143
BRINDZA B., PINTÉR Á.,
[1] On equal values of power sums,
Acta Arith., 77 (1996), no. 1, 97-101.
Z960.51219; M97e:11040; R1997,3A54
BRINDZA B.: see also BILU Yu. F., BRINDZA B., KIRSCHENHOFER P., Pintér Á., TICHY R. F.
BRINKLEY J.,
[1] An investigation on the general term of an important
series in the inverse method of finite differences, Phil. Trans.
Royal Soc. London 97 (1807), part 1, 114-132.
BRIOSCHI F.,
[1] Sulle funzioni Bernoulliane ed Euleriane.
Annali di Matematica Pura et Applicata, 1 (1858), 260-263.
BROADHURST D.J.: see BORWEIN J.M., BROADHURST D.J., KAMNITZER J.
BROCARD H.,
[1] Solutions des questions proposées (138, 139),
Nouv. Corres. Math., 5 (1879), 282-285.
BRÖDEL W.,
[1] Zum von-Staudtschen Primzahlsatz, Wiss. Z.
Friedrich-Schiller-Univ. Jena, Math.-Nat. Reihe, 10
(1960-61), no. 1-2, 21-23.
M23#A3701; R1962,1A143
BROOKE M.,
[1] Fibonacci formulas.
Fibonacci Quart. 1 (1963), 60.
BRUCKMAN P.S.,
[1] The generalized totient function (Problem #6446, solution by
O.P. Lossers),
Amer. Math. Monthly, 92 (1985), no. 6, 434-435.
Z679.10011; R1987,11A91
BRÜCKNER H.,
[1] Explizites Reziprozitätsgesetz und Anwendungen,
Vorlesungen Fachbereich Math.
Univ. Essen,
Heft 2, (1979), 83pp.
Z437.12001; M80m:12015
BRUGGEMAN R.W.,
[1] Automorphic forms. In: Elementary and analytic theory of numbers
(Warsaw, 1982), 31-74, Banach Center Publ., 17, PWN, Warsaw, 1985.
Z589.10028; M87h:11037
BRUMER A.,
[1] Travaux récent D'Iwasawa et de Leopoldt, Séminaire
Bourbaki, 19e année, 325 (1966/67) (1968),
1-14.
Z191.33501
BRUN V., JACOBSTHAL E.,
SELBERG A., SIEGEL C.,
[1] En brevveksling om et polynom som er i slekt med Riemanns zetafunksjon
[Correspondence about a polynomial which is related to Riemann's zeta function],
Norsk Mat. Tidsskr. 28, (1946). 65-71.
Z063.00643; M87h:11037
DE BRUYN G.F.C.,
[1] Formulas for $a+a^2 2^p+a^3 3^p+\cdots+a^n n^p$.
Fibonacci Quart. 33 (1995), no. 2, 98-103.
Z827.05003; M96e:11026
DE BRUYN G.F.C., DE VILLIERS J.M.,
[1] Formulas for $1+2^p+3^p+\ldots +n^p$.
Fibonacci Quart., 32 (1994), no.3, 271-276.
Z803.11017; M95f:11012
BUCHHEIM A.,
[1] Some applications of symbolic methods.
Messenger of Math. 11 (1882), 143-145.
BUCKHOLTZ T.J.: see KNUTH D.E., BUCKHOLTZ T.J.
BUDMANI P.,
[1] Über die Bernoullischen Zahlen (Croatian),
Arbeiten der südslavischen Akademie von Agram,
Kroatien, 183 (1910), 177-199.
J41.0302.07
BUGAEV N.V.,
[1] Uchenie o chislovykh proizvodnykh [Studies on numerical derivatives](Russian).
Mat. Sbornik, I, 5 (1870), 1-63; 6 (1872/73), 133-180,
201-254, 309-360.
J03.0075.03
[2] Svojstva odnogo chislovago integrala po delitelyam i ego razlichnye
primeneniya, logarifmicheskie chislovye funktsii [A property of a numerical
integral with regard to divisors and its various applications] (Russian).
Mat. Sbornik, I, 13 (1888), 757-777.
J20.0186.01
BUHLER J.P., CRANDALL R.E., ERNVALL R., METSÄNKYLÄ T.,
[1] Irregular primes and cyclotomic invariants to four million.
Math. Comp., 61 (1993), no. 203, 151-153.
Z789.11020; M93k:11014
BUHLER J.P., CRANDALL R.E., ERNVALL R., METSÄNKYLÄ T., SHOKROLLAHI M. A.,
[1] Irregular primes and cyclotomic invariants to 12 million.
Computational algebra and number theory (Milwaukee, WI, 1996).
J. Symbolic Comput. 31 (2001), no. 1-2, 89-96.
Z1001.11061; M2001m:11220; R02.09-13A.86
BUHLER J.P., CRANDALL R.E., SOMPOLSKI R.W.,
[1] Irregular primes to one million. Math. Comp. 59 (1992),
no. 200, 717-722.
Z768.11009; M93a:11106; R1994,2A84
BUHLER J.P., GROSS B.H.,
[1] Arithmetic on elliptic curves with complex
multiplication, II, Invent. Math., 79 (1985), no. 1,
11-29.
Z584.14027; M86j#11066; R1985,7A478
BUHLER J.P.: see also CRANDALL R.E., BUHLER J.P.
BUKHSHTABER V.M.,
[1] O $J$-funktorye kletochnykh kompleksov
[The $J$-functor on cellular complexes] (Russian),
Dokl. Akad. Nauk SSSR., 170 (1966), no. 1, 17-20.
Z153.25102; M36#3346; R1967,1A341
BÜLOW T.,
[1] The negative Pell equation.
C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 55-60.
M2003b:11018
BUNDSCHUH P., JI CHUN-GANG, SHAN ZUN,
[1] A remarkable class of congruences.
Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 493-500.
Z0997.11006; M2003a:11003
BURAU W.,
[1] Staudt, K. G. Ch. In: Dictionary of Scientific Biography (Ch. C.
Gillespie, Edit. in Chief), Council of Learned Societies, Ch. Scribner's Son,
New York, 1976. Vol. 13, 4-6.
BURROWS B.L., TALBOT R.F.,
[1] Sums of powers of integers,
Amer. Math. Monthly, 91 (1984), no. 7, 394-403.
Z553.05006; M85j:11018; R1985,5A116
BURSTALL F.W.,
[1] Congrunces se rapportant aux nombres de Bernoulli et
d'Euler au module $p^{i+1}$, J. Math. Pures Appl. (7), 3
(1917), 247-261.
J46.0189.02
BUSK Th.,
[1] On some general types of polynomials in one, two or n variables,
Ejnar Munksgaard, Copenhagen, 1955, 228p.
Z068.25103
BUTZER P.L., FLOCKE S., HAUSS M.,
[1] Euler functions $E_\alpha(z)$ with complex $\alpha$ and
applications. In: Approximation, probability and related fields
(Santa Barbara, CA, 1993), 127-150, Plenum, New York, 1994.
M96b:33013
BUTZER P.L., HAUSS M.,
[1] On Stirling functions of the second kind,
Stud. Appl. Math., 84 (1991), no. 1, 71-91.
Z738.11025; M92k:11023
BUTZER P.L., HAUSS M., LECLERC M.,
[1] Bernoulli numbers and polynomials of arbitrary complex indices,
Appl. Math. Lett., 5 (1992), no. 6, 83-88.
Z768.11010; M96c:11023
[2] Extensions of Euler polynomials to Euler functions $E_\alpha(z)$ with complex indices. Pre-print, Lehrstuhl A für Mathematik, RWTH Aachen, 1992.
BUTZER P.L., MARKETT C., SCHMIDT M.,
[1] Stirling numbers, central factorial numbers, and
representations of the Riemann zeta-function,
Resultate Math., 19 (1991), no. 3-4, 257-274.
Z724.11038; M92a:11095
Butzer, P. L.; Pogány, Tibor K.; Srivastava, H. M.,
[1] A linear ODE for the Omega function associated with the Euler function
$E\sb \alpha(z)$ and the Bernoulli function $B\sb \alpha(z)$.
Appl. Math. Lett. 19 (2006), no. 10, 1073--1077.
BUTZER P.L., SCHMIDT M.,
[1] Central factorial numbers and their role in finite
difference calculus and approximation,
In: Colloq. Math. Soc. János Bolyai, 58 (1990),
(Proc. Conf. on Approximation Theory, Kecskemét,
Hungary, Aug. 5-11, 1990), 127-150.
Z784.41028; M94c:41007; R1997,2A84
BUTZER P.L., SCHMIDT M., STARK E.L., VOGT L.,
[1] Central factorial numbers; their main properties and
some applications,
Numer. Funct. Anal. Optim., 10 (1989), no. 5-6, 419-488.
Z659.10012; M90d:05007; R1990,2V334
BYEON D.,
[1] Special values of zeta functions of the simplest cubic fields and their
applications. Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 1,
13-15.
Z908.11052; M99c:11141
[2] Existence of certain fundamental discriminants and class numbers of real
quadratic fields.
J. Number Theory 98 (2003), no. 2, 432-437.
M2003k:11169
BYKOVSKII V.A.,
[1] Pairwise products of Eisenstein series, and Manin theta functions.
(Russian) Dokl. Akad. Nauk 375 (2000), no. 2, 154-156.
M2002h:11043
BYRD P.F.,
[1] New relations between Fibonacci and Bernoulli
numbers, Fibonacci Quart., 13 (1975), 59-69.
Z297.10007; M51#12684; R1975,10V245
[2] Relations between Euler and Lucas numbers,
Fibonacci Quart., 13 (1975), no. 2, 111-114.
Z301.10013; M50#9771; R1975,11V322
Back to Index Back to A On to C