Bernoulli Bibliography

S


Back to Index       Back to R       On to T


SAALSCHÜTZ L.,
[1] Zwei Abhandlungen aus dem Gebiete der Bernoullischen Zahlen, Schrift. Phys.-ökonom. Gesell. Königsb. 33 (1892), 44-49.

[2] Verkürzte Recursionsformeln für die Bernoulli'schen Zahlen, Zeit. für Math. und Phys., 37 (1892), 374-378.
J24.0237.01

[3] Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen, Springer-Verlag, Berlin, 1893. viii + 208 S.
J24.0236.01

[4] Studien zu Raabe's Monographie über die Jacob Bernoullische Funktion, Zeit. für Math. und Phys., 42 (1897), 1-13.
J28.0375.02

[5] Über Beziehungen zwischen den Anfangsgliedern von Differenzreihen und von deren Verwendung zu Summationen und zur Darstellung der Bernoullischen Zahlen, Schrift. Phys.-ökonom. Gesell. Königsb., 41 (1900), 14-17.

[6] Gleichungen zwischen den Anfangsgliedern von Differenzreihen und deren Verwendung zu Summationen und zur Darstellung der Bernoullischen Zahlen, J. Reine Angew. Math., 123 (1901), 210-240.
J32.0280.03

[7] Die ganzen Potenzen der Cotangente und der Cosecante nebst neuen Formeln für die Bernoullischen Zahlen. Schriften der physik-ökonom. Ges. zu Königsberg i. Pr., 44 (1903), 32p.
J34.0482.01

[8] Neue Formeln für die Bernoullischen Zahlen. J. Reine Angew. Math., 126 (1903), 99-101.
J34.0482.02

SACHKOV V.N.,
[1] Combinatorical methods of discrete mathematics. (Russian) Moscow: Nauka, 1977, 319 pp.
R1978,4V321

[2] Probabilistic methods in combinatorical analysis. (Russian) Moscow: Nauka, 1978, 287 pp.
Z517.05011; M80g:05002; R1979,2V7

[3] Introduction to combinatorical methods of discrete mathematics. (Russian) Moscow: Nauka, 1982, 384 pp.
M85g:05001

SACHSE A.,
[1] Ueber die Darstellung der Bernoullischen und Eulerschen Zahlen durch Determinanten, Arch. für Math. und Phys., 68 (1882), 427-432.
J14.0110.01; J14.0191.04

SAGAN B.E., ZHANG PING,
[1] Arithmetic properties of generalized Euler numbers, Southeast Asian Bull. Math. 21 (1997), no. 1, 73-78.
Z970.56656; M98h:11025

SAITO H.: see IBUKIYAMA T., SAITO H.

SAITO T.: see KATO K., KUROKAWA N., SAITO T.

SALIÉ H.,
[1] Eulersche Zahlen, Sammelband zu Ehren des 250. Geburtstags Leonhard Eulers, Akademie-Verlag, Berlin, 1959, 293-310.
Z106.03106; M24#A75; R1960,7814

[2] Arithmetische Eigenschaften der Koeffizienten einer speziellen Hurwitzschen Potenzreihe, Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturw. R., 12 (1963), 617-618.
Z117.27703; M29#58

[3] Über die Koeffizienten Blasiusscher Reihen, Math. Nachr., 14 (1955), 241-248.
M18,379i; R1957,3757

SAMI Z.,
[1] On the first case of Fermat's last theorem, Glas. Mat. Ser. III, 21(41) (1986), no.2, 259-269.
Z621.10012; M88g:11012; R1987,12A82

[2] A sequence of numbers $a^m_{j,n}$, Glas. Mat. Ser. III, 23(43) (1988), no. 1, 3-13.
Z657.10009; M90f:11014; R1989,4B463

[3] On a sequence of polynomials, Proceedings of the Mathematical Conference in Pristina 1994, 39-46, Univ. Pristina, Pristina, 1995.
Z885.11022; M98h:11028

[4] Sequence $a\sp m\sb {j,n}$ and Bernoulli numbers. Proceedings of the Mathematical Conference in Pristina 1994, 47-50, Univ. Pristina, Pristina, 1995.
Z885.11019; M98h:11029

SÁNCHEZ-PEREGRINO R.,
[1] The Lucas congruence for Stirling numbers of the second kind. Acta Arith. 94 (2000), no. 1, 41-52.
Z947.11012; M2001b:11018

[2] Closed formula for poly-Bernoulli numbers. Fibonacci Quart. 40 (2002), no. 4, 362-364.
Z1030.11006; M2003e:11022

[3] A note on a closed formula for Poly-Bernoulli numbers. Amer. Math. Monthly 109 (2002), no. 8, 755-756.

SANDHAM H.F.,
[1] Some infinite series, Proc. Amer. Math. Soc., 5 (1954), no. 3, 430-436.
M15-950f; R1955,3271

SÁNDOR J.,
[1] Remarks on Bernoulli polynomials and numbers, Stud. Cerc. Math., 41 (1989), no. 1, 47-49.
Z671.10009; M90h:11017

[2] On the open problems OQ.487 and OQ.507, Octogon Math. Mag. 9 (2001), no.1, 550-551; 558-559.
R01.07-13A84

SANDS J. W.: see FRIEDMAN E., SANDS J. W.

SANKARANARAYANAN A.,
[1] An identity involving Riemann zeta function. Indian J. Pure Appl. Math., 18 (1987), no. 9, 794-800.
Z625.10031; M88i:11059; R1988,3A156

SANKARANARAYANAN A.: see RAMACHANDRA K., SANKARANARAYANAN A.

SARAFYAN D.: see OUTLAW C., SARAFYAN D., DERR L.

SASVÁRI Z.,
[1] An elementary proof of Binet's formula for the gamma function, Amer. Math. Monthly 106 (1999), no. 2, 156-158.

SATGÉ Ph.: see RIBET K. [3].

SATO K.: see SHIRAI S., SATO K.

SATO M.,
[1] On formal fractions associated with the symmetric groups, J. Combin. Theory, Ser. A, 20 (1976), no. 1, 124-131.
Z335.10016; M52#13413; R1976,7V378

SATOH J.,
[1] $q$-analogue of Riemann's $\zeta$-function and $q$-Euler numbers, J. Number Theory, 31 (1989), no. 3, 346-362.
Z675.12010; M90d:11132

[2] The Iwasawa $\lambda\sb p$-invariants of $\Gamma$-transforms of the generating functions of the Bernoulli numbers, Japan. J. Math. (N.S.) 17 (1991), no. 1, 165--174.
Z739.11047; M92e:11122

[3] A construction of $q$-analogue of Dedekind sums. Nagoya Math. J., 127 (1992), 129-143.
Z761.11023; M93h:11022; R1976/77,5B12

[4] Construction of $q$-analogue by using Stirling numbers. Japan J. Math. (N.S.), 20 (1994), no. 1, 73-91.
Z808.11018; M95j:11015

[5] Sums of products of two $q$-Bernoulli numbers, J. Number Theory, 74 (1999), 173-180
Z916.11014; M99m:11019

[6] A recurrence formula for $q$-Bernoulli numbers attached to formal group. Nagoya Math. J. 157 (2000), 93-101.
M2001c:11025

[7] Another look at the $q$-analogue from the viewpoint of formal groups. Proceedings of the Jangjeon Mathematical Society, 145-159, Proc. Jangjeon Math. Soc., 1, Jangjeon Math. Soc., Hapcheon, 2000.
M2001k:11029

SAUZET O.,
[1] Théorie d'Iwasawa des corps $p$-rationnels et $p$-birationnels, Manuscripta Math. 96 (1998), no. 3, 263-273.
Z905.11047; M99h:11123

SAVEL'EV L.Ya.,
[1] Combinatorics and probability. (Russian) Novosibirsk: Nauka, 1975, 423 pp.
Z447.05001; M52#13395; R1975,9V3K

SAYER F.P.,
[1] The sums of certain series containing hyperbolic functions. Fibonacci Quart., 14 (1976), no. 3, 215-223.
Z344.40002; M54#5663; R1976/77,5B12

SCAROWSKY M.,
[1] On a formal analogue of the Bernoulli numbers, J. Number Theory, 19 (1984), no. 2, 228-232.
Z546.10021; M86h:11019; R1985,8A110

SCHÄFFER J.J.,
[1] The equation $1^p+ 2^p+ 3^p+ \cdots +n^p = m^q$, Acta Math., 95 (1956), no. 3-4, 155-189.
Z71.03702; M17-1187a; R1957,2878

SCHAPPACHER N., SCHOLL A.J.,
[1] The boundary of the Eisenstein symbol. Math. Ann., 290 (1991), no. 2, 303-321. Erratum: Math. Ann., 290 (1991), no. 4, 815.
Z729.11027; M93c:11037a/b

SCHARLAU W., OPOLKA H.,
[1] Von Fermat bis Minkowski. Eine Vorlesung über Zahlentheorie und ihre Entwicklung, Springer-Verlag, Berlin-New York, 1980. xi + 224pp.
Z426.10001; M82g:10001; R1981,3A85K

[2] From Fermat to Minkowski. Lectures on the theory of numbers and its historical development. (Translation of [1]). Springer-Verlag, New York- Berlin, 1985, xi + 184 pp.
Z551.10001; M85m:11003; R1985,8A102K

SCHEIBNER W.,
[1] Zur Theorie der Maclaurinschen Summenformel, Berichte über die Verhandlungen der Königl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 9 (1857), 190-198.

SCHENDEL L.,
[1] Die Bernoullischen Funktionen und das Taylorsche Theorem nebst einem Beitrag zur analytischen Geometrie der Ebene in trilinearen Coordinaten, H. Costenoble, Jena, 1876.
J08.0133.02

[2] Zur Theorie der Reihen, Zeit. für Math. und Phys., 16 (1871), 211-227.
J03.0105.02

SCHERK H.F.,
[1] Über einen allgemeinen, die Bernoullischen Zahlen und die Coëfficienten der Secantenreihe zugleich darstellenden Ausdruck, J. Reine Angew. Math., 4 (1829), 299-304.

[2] Von den numerischen Coefficienten der Secantenreihe, ihrem Zusammenhange, und ihrer Analogie mit den Bernoullischen Zahlen. Gesammelte Mathematische Abhandlungen, Reimer, Berlin, 1825, 1-30.

SCHIKHOF W.H.,
[1] Ultrametric calculus. An introduction to $p$-adic analysis. Cambridge University Press, Cambridge-New York, 1984. viii+306 pp.
Z553.26006; M86j:11104

SCHIKORE K.,
[1] Die Bernoullischen Zahlen. Published by the author, Breslau, 1929. 1 p.
J55.0802.04

SCHINZEL A.,
[1] Sur les nombres composés $n$ qui divisent $a^n - a$, Rend. Circ. Mat. Palermo (2), 7 (1958), no. 1, 37-41.
Z83.26103; M21#4935; R1959,9761

SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.,
[1] Class numbers and short sums of Kronecker symbols, J. Number Theory 78 (1999), no. 1, 62-84.
Z0934.11053; M2000g:11103

SCHLÄFLI L.,
[1] On Staudt's theorem relating to the Bernoullian numbers, Quart. J. Math., 6 (1864), 75-77.

SCHLÖMILCH O.,
[1] Ueber Bernoullische Zahlen und die Coefficienten der Secantreihen, Arch. für Math. und Phys., 1 (1841), 360-363.

[2] Ueber die recurrirende Bestimmung der Bernoullischen Zahlen, Arch. für Math. und Phys., 3 (1843), 9-18.

[3] Développement d'une formule qui donne en mème temps les nombres de Bernoulli et les coëfficients de la série qui exprime la sécante, J. Reine Angew. Math., 32 (1846), 360-364.

[4] Relationen zwischen den Facultätencoefficienten, Arch. für Math. und Phys., 9 (1847), 333-335.

[5] Uebungsaufgaben für Schüler. Arch. für Math. und Phys., 10 (1847), 340-341.

[6] Über die Summe der Reihe $1^m + \cdots + z^m$, Arch. für Math. und Phys., 10 (1847), 342-344.

[7] Theorie der Differenzen und Summen. Druck und Verlag von H.W. Schmidt, Halle, 1848, 241 pp.

[8] Neue Methode zur Summirung endlicher und unendlicher Reihen, Arch. für Math. und Phys., 12 (1849), 130-166.

[9] Übungsaufgaben für Schüler. III. Arithmetisches Theorem. Arch. für Math. und Phys., 14 (1850), 108-109.

[10] Neue Formeln zur independenten Bestimmung der Sekanten- und Tangentenkoeffizienten, Arch. für Math. und Phys., 16 (1851), 411-418.

[11] Handbuch der algebraischen Analysis, 2te Auflage. Druck und Verlag von Fr. Frommann, Jena, 1851. viii + 344 pp.

[12] Über die independente Bestimmung der Coëfficienten unendlicher Reihen und der Facultätencoefficienten insbesondere, Arch. für Math. und Phys., 18 (1852), 306-327.

[13] Über die Bernoulli'schen Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeit. für Math. und Phys. (2), 1 (1856), 193-211.

[14] Über ein allgemeines Princip für Reihenentwickelungen, Zeitsch. für Math. und Phys., 2 (1857), 289-298.

[15] Über die Lambert'sche Reihe, Zeit. für Math. und Phys. (2), 6 (1861), 407-415.

[16] Compendium der höheren Analysis. Band 2. Braunschweig, 1862.

[17] Die Bernoulli'schen Funktionen und die halbconvergenten Reihen, Compendium der höheren Analysis, II (1874), 207-238.

SCHMIDT C.-G.,
[1] The p-adic L-functions attached to Rankin convolutions of modular forms, J. Reine Angew. Math., 368 (1986), 201-220.
Z585.10020; M88e:11038; R1986,12A586

SCHMIDT C.-G.: see also BÖCHERER S., SCHMIDT C.-G.,

SCHMIDT H.,
[1] Asymptotische Entwicklung von verallgemeinerten Bernoullischen Funktionen und von Teilsummen Dirichletscher Reihen mit periodischer Koeffizientenfolge, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III, J. Reine Angew. Math., 274/275 (1975), 94-103.
Z312.10027; M52#303; R1975,12A143

[2] Zur Theorie und Anwendung Bernoulli-Nörlundscher Polynome und gewisser Verallgemeinerungen der Bernoullischen und der Stirlingschen Zahlen, Arch. Math. (Basel), 33 (1979), no. 4, 364-374.
Z438.10011; M81i:10017; R1980,11V460

SCHMIDT M.: see BUTZER P.L. et al.

SCHMIDT P.,
[1] The Stickelberger element of an imaginary quadratic field, Acta Math. 91 (1999), no. 2, 165-169.

SCHMIT C.: see BALAZS N.L., SCHMIT C., VOROS A.

SCHMITZ E.,
[1] Asymptotic expansions for the coefficients of $e^{P(z)}$, Bull. London Math. Soc., 21 (1989), 482-486.

SCHNEIDER I.,
[1] Potenzsummenformeln im 17. Jahrhundert. Historia Math. 10 (1983), no. 3, 286-296.
Z0522.01004; M85h:01017

SCHNEIDER P.,
[1] Über die Werte der Riemannschen Zeta-funktion an den ganzzahligen Stellen, J. Reine Angew. Math., 313 (1980), 189-194.
Z422.10030; M82g:10057; R1980,8A120

SCHOENBERG I.J.,
[1] Monosplines and quadrature formulae. 1969 Theory and Applications of Spline Functions (Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1968) pp. 157-207 Academic Press, New York.
Z203.37002; M39 #3202

[2] Norm inequalities for a certain class of $C\sp{\infty }$ functions, Israel J. Math. 10 (1971), 364-372.
Z229.26019; M45 #3661

[3] The elementary cases of Landau's problem of inequalities between derivatives, Amer. Math. Monthly, 80 (1973), no. 2, 121-158.
Z261.26014; M47#3619; R1973,8B56

[4] Cardinal spline interpolation. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. vi+125 pp.
Z264.41003; M54 #8095

[5] Cardinal spline interpolation and the exponential Euler splines. Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), pp. 477-489. Lecture Notes in Math., Vol. 399, Springer, Berlin, 1974.
Z295.41007; M52 #14760; R1975,5B80

[6] On the remainders and the convergence of cardinal spline interpolation for almostperiodic functions. Studies in spline functions and approximation theory, pp. 277-303. Academic Press, New York, 1976.
Z338.41007; M58 #1838

SCHOENEBERG B.,
[1] Elliptic modular functions. Springer-Verlag, New York-Heidelberg, 1974. viii + 233 pp.
Z285.10016; M54#236; R1975,5A640K

SCHOENFELD L.: see BERNDT B.C., SCHOENFELD L.

SCHOFF R.,
[1] The structure of the minus class groups of abelian number fields. University of Utrecht, Preprint No. 588, Oct. 1989.

SCHOISSENGEIER J.,
[1] Der numerische Wert gewisser Reihen, Manuscr. Math., 38 (1982), no. 2, 257-263.
Z499.10013; M83i:10039; R1983,1A82

[2] Der numerische Wert gewisser Reihen, Lecture Notes in Mathematics, No. 1114, 143-147, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
Z557.10013; R1985,11A129

[3] Abschätzung für $\sum_{n\leq N}B_1(n\alpha)$, Monatsh. Math., 102 (1986), no. 1, 59-77.
Z613.10011; M87j:11020; R1987,3A168

[4] Eine explizite Formel für $\sum_{n \leq X}B_2(\{n\alpha\)$. In: Zahlentheoretische Analysis II. Seminar, 1984-86, pp. 134-138. Lecture Notes in Mathematics No. 1262, Springer-Verlag, Berlin - Heidelberg - New York, 1987.
Z622.10007; M90j:11021; R1988,3A199

SCHOISSENGEIER J.: see also HLAWKA E., SCHOISSENGEIER J., TASCHNER R.

SCHOLL A.J.: see SCHAPPACHER N., SCHOLL A.J.

SCHONBACH D.I.: see NEUMAN C.P., SCHONBACH D.I.

SCHÖNHAGE A.: see ODLYZKO A.M., SCHÖNHAGE A.

SCHRÖDER E.,
[1] Verallgemeinerung von Maclaurins Summenformel und Bernoullische Funktionen, Zürich, 1867.

[2] Neueres über Bernoullische Functionen von natürlicher Ordnungszahl, Verhandl. Gesellschaft deutscher Naturforscher und Ärzte, Bremen, 15. - 20. September 1890, 5-6.
J22.0270.01

SCHOOF R.,
[1] Minus class groups of the fields of the $l$th roots of unity, Math. Comp., 67 (1998), no. 223, 1225-1245.
View or retrieve article
Z980.24860; M98j:11085; R01.07-13A.207

SCHROTH P.,
[1] Characterization of the Bernoulli-polynomials, $\exp$ and $\psi$ by Nörlund's multiplication formula, Period. Math. Hung., 12 (1981), no. 3, 191-204.
Z445.39002; M83j:39001; R1982,3B12

SCHULTZ H.J.,
[1] The sum of the $k$-th power of the first $n$ integers. Amer. Math. Monthly, 87 (1980), no. 6, 478-481.
Z445.05006; M82c:05014; R1981,7B565

SCHUMER P.: A HREF="bernd.html#DASC">see DAMIANOU P., SCHUMER P.

SCHUSTER W.,
[1] Improving Stirling's formula. Arch. Math. (Basel) 77 (2001), no. 2, 170-176.
Z1002.33001; M2002f:33005

SCHÜTZENBERGER M.-P.: see FOATA D., SCHÜTZENBERGER M.-P.

SCHWARTZ L.: see BAKER A.J. et al.

SCHWARZ S.,
[1] Algebraic Numbers, (Slovak), Prague, 1950.
Z41.01104; M14-22f

SCHWATT I.J.,
[1] An Introduction to the Operations with Series, Philadelphia, 1924, (s. W. Sierpinski, Rachunek rózniczkowy, Warszawa, 1947).
J50.0151.01

[2] The sum of like powers of a series of numbers forming an arithmetical progression and the Bernoulli numbers, Mat. sbornik, 39 (1932), no. 4, 134-140.
Z7.07002; J58.0093.01

[3] Finite expressions for the Bernoulli numbers obtained by the actual expansion of trigonometric functions by Maclaurin's theorem, J. Math. Pures Appl. (9), 11 (1932), 143-151.
Z5.01402; J58.0093.02

[4] Independent expressions for the Bernoulli numbers. (Abstract). Bull. Amer. Math. Soc., 27 (1921), 261-262.
J48.0255.10

[5] Independent expressions for the Euler numbers. (Abstract). Bull. Amer. Math. Soc., 27 (1921), 262.
J48.0255.11

[6] Independent expressions for the Euler numbers of Higher Order. (Abstract). Bull. Amer. Math. Soc., 27 (1921), 262.
J48.0255.12

[7] Relations involving the numbers of Bernoulli and Euler (Abstract). Bull. Amer. Math. Soc., 27 (1921), 262.
J48.0255.13

[8] Expressions for the Bernoulli function of order $p$. (Abstract). Bull. Amer. Math. Soc., 27 (1921), 348.
J48.0255.14

[9] The values of $\sum_{k=1}^n\sum_{a=1}^{2k} \tan^p a\pi /(2k+1),\; \sum_{k=1}^\infty \prod_{a=1}^{2k} {\rm ctn}^p a\pi(2k+1)$, and similar forms in terms of Bernoulli and Eulerian numbers. (Abstract). Bull. Amer. Math. Soc., 29 (1923), 151.
J49.0161.08

[10] Expressions for the Euler numbers obtained by expanding $\sec x$ by means of Maclaurin's Theorem. Math. Z., 31 (1930), 151-158.
J55.0135.01

[11] Certain expansions involving the Bernoulli numbers. Giornale di Mat., 67 (1929), 162-167.
J55.0216.03

SCHWERING K.,
[1] Zur Theorie der Bernoulli'schen Zahlen, Math. Ann., 52 (1899), no. 1, 171-173.
J30.0253.01

SCOVILLE R.: see CARLITZ L., SCOVILLE R.

SCZECH R.,
[1] Zur Summation von L-Reihen, Bonner Math. Schriften, 1982, No. 141.
Z492.10035; M84m:12015; R1983,4B134

[2] Eisenstein cocylces for $GL_2 Q$ and values of $L$-functions in real quadratic fields. Comment. Math. Helv., 67 (1992), no. 3, 363-382.
Z776.11021; M93h:11047

[3] Eisenstein group cocyles for $GL_n$ and values of $L$-functions. Invent. Math., 113 (1993), no. 3, 581-616.
Z809.11029; M94j:11049

SCZECH R.: see also GUNNELLS P.E., SCZECH R.

SEGAL R.S.,
[1] Application of Bernoulli polynomials to the theory of cyclotomic fields, Ph.D. Thesis, MIT, 1965.

[2] Generalized Bernoulli numbers and the theory of cyclotomic fields, Acta. Math., 121 (1968), 48-75.
Z164.05802; M38#133; R1969,3A126

SEIDEL P.L. von,
[1] Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungs. Akad. Wiss. München, Mat.-Phys. Kl., 7 (1877), 157-187.

Sekine, Chizuru,
[1] Dedekind sums with roots of unity and their reciprocity law. Tokyo J. Math. 26 (2003), no. 2, 485-494.
Z1044.11027; M2004i:11038; R 04.10-13A.179

SEKINE C.: see also NAGASAKA Y., OTA K., SEKINE C.

SELBERG A.: see BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.

SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.,
[1] Proof of Fermat's Last Theorem for all prime exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A., 41 (1955), no. 11, 970-973.
Z65.27304; M17-348a; R1956,7085

SELIWANOFF D.,
[1] Lehrbuch der Differenzenrechnung. Leipzig, 1904.
J35.0346.07

SELUCKÝ K., SKULA L.,
[1] Irregular imaginary fields, Arch. Math. (Brno), 17 (1981), 95-112.
Z476.12005; M84a:12015; R1982,2A163

SEREBRENIKOV S.Z.,
[1] Tablitsy pervykh devyanosta chisel Bernulli [Tables of the first ninety Bernoulli numbers]. Zap. Akad. Nauk, Sankt Peterburg, 16 (1905), no. 10, 1-8.
J36.0342.02

[2] Novyi sposob vychisleniya chisel Bernulli [A new method of computation of Bernoulli numbers]. Zap. Akad. Nauk, Sankt Peterburg, 19 (1906), 1-6.
J38.0324.05

SERRA CAPIZZANO S.: see COSTABILE F., GUALTIERI M.I., SERRA CAPIZZANO S.

SERRE J.P.,
[1] Cours d'arithmétique, Paris, 1970, Ch.7.
Z225.12002; M41#138; R1971,7A102K

[2] Formes modulaires et fonctions zêta p-adiques. In: Modular functions of one variable, III, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972, 191-268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.
Z277.12014; M53#7949a; R1974,6A446

[3] Sur le residu de la fonction zêta p-adique d'un corps de nombres, C.R. Acad. Sci., Paris, 287A (1978), 183-188.
Z393.12026; M58#22024; R1979,2A259

SERRET J.-A.,
[1] Sur l'évaluation approchée du produit $1. 2. ... .x$ lorsque $x$ est un très-grand nombre, et sur la formule de Stirling, C.R. Acad. Sci., Paris, 50 (1860), 662-666.

SHAFAREVICH I.R.,
[1] Zeta-function. Lecture Notes 1966/67. (Russian) Moscow State Univ., 1969.
R1969,12A249

[2] Selected chapters of algebra (Russian), Matem. obrazovanie, 1997, no. 2, 3-33.

SHAFAREVICH I.R.: see also BOREVICH Z.I., SHAFAREVICH I.R.

SHAH K.N.,
[1] Explicit formulas for $\sum_{i=1}^ri^r (\equiv S_r)$ and Bernoulli's numbers $B_r$, Vidya, B 15 (1972), no. 2, 106-117.
M52#5552

SHAN ZUN: see BUNDSCHUH P., JI CHUN-GANG, SHAN ZUN

SHANK H.S.: see DICKEY L.J., KAIRIES H.H., SHANK H.S.

SHANK H.S.: see GRANVILLE A., SHANK H.S.

SHANKS D.,
[1] Solved and unsolved problems in number theory, Vol. 1. Spartan Books, Washington, 1962. xi + 229 pp.
Z116.03002; M28#3952

[2] Generalized Euler and class numbers, Math. Comp., 21 (1967), 689-694.
Z164.05102; M36#6343; R1968,8A118

SHANKS E.B.,
[1] Iterated sums of powers of the binomial coefficients, Amer. Math. Monthly, 58 (1951), 404-407.
Z43.01201; M13-899f

[2] A finite formula for the Bernoulli numbers, Amer. Math. Monthly, 59 (1952), 496.

SHANNON A.G.,
[1] Fibonacci analogs of the classical polynomials, Math. Mag., 48 (1975), 123-130.
Z306.33005; M51#6000; R1976,3V518

[2] Jackson's calculus of sequences and Bernoulli polynomials. Bull. Number Theory Related Top., 13 (1989), no. 1-3, 7-16.
Z745.11017; M93f:11019

[3] Generalized Bernoulli polynomials & Jackson's calculus of sequences. Notes Number Theory Discrete Math. 9 (2003), no. 1, 1-6.

SHANNON A.G.: see also HORADAM A.F., SHANNON A.G.

SHANNON A.G.: see also MELHAM R.S., SHANNON A.G.

SHARMA A.,
[1] q-Bernoulli and Euler numbers of higher order, Duke Math. J., 25 (1958), 343-353.
Z102.03105; M20#2479; R1969,6619

Shenton, L. R.; Bowman, K. O.,
[1] Polygamma functions, the zeta functions, and Euler numbers. Far East J. Appl. Math. 18 (2005), no. 3, 241-249.
M2006a:11110

SHEPPARD W.F.,
[1] On the relation between Bernoulli and Euler numbers, Quart. J. Math., 30 (1899), 18-46.
J29.0376.04

[2] The power-sum formula and Bernoullian function, Math. Gaz. 6 (1912), 332-336.
J43.0337.03

[3] The power-sum formula and the Bernoullian functions. III. The Euler-Maclaurin formula. Math. Gaz., 7 (1913), 100-104.
J44.0514.03

SHERWOOD H.,
[1] Sums of powers of integers and Bernoulli numbers, Math. Gaz., 54 (1970), no. 389, 272-274.
Z206.05601; M58#10708; R1971,5B341

SHEVELEV V.S.,
[1] On an arithmetic property of permutation numbers with a given signature associated with the Morse sequence (Russian), Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki 1996, no. 2, 20-24, 98-99.
M99e:11023

SHIMADA T.,
[1] Fermat quotient of cyclotomic units. Acta Arith. 76 (1996), no. 4, 335--358.
Z867.11076; M97k:11147

[2] An application of the Fermat quotient of units to the method of Kim. Abh. Math. Sem. Univ. Hamburg 71 (2001), 1-14.
Z 0992.11060; M2002h:11108

SHINTANI T.,
[1] On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), no.2, 393-417.
Z349.12007; M55#266; R1977,4A117

[2] On Kronecker limit formula for real quadratic fields, Proc. Japan Acad., 52 (1976), no. 7, 355-358.
Z359.12004; M58#596; R1977,5A95

[3] On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo, Ser. IA, Math., 24 (1977), no. 1, 167-199.
Z364.12012; M57#12012; R1977,12A136

SHIRAI S., SATO K.,
[1] Some identities involving Bernoulli and Stirling numbers. J. Number Theory 90 (2001), no. 1, 130-142.
M2002k:11027

SHIRATANI K.,
[1] On some relations between Bernoulli numbers and class numbers of cyclotomic fields, Mém. Fac. Sci. Kyushu Univ., Ser. A, 18 (1964), 127-135.
Z148.02801; M30#3086; R1966,1A137

[2] Ein Satz zu den Relativklassenzahlen der Kreiskörper, Mém. Fac. Sci. Kyushu Univ., 21 (1967), 132-137.
Z189.05301; M35#6648; R1968,5A188

[3] A generalization of Vandiver's congruence, Mém. Fac. Sci. Kyushu Univ., 25 (1971), 144-151.
Z252.12008; M46#5289; R1972,1A595

[4] Kummer's congruence for generalized Bernoulli numbers and its application. Seminar on Modern Methods in Number Theory, Paper No. 31, 7 pp., Inst. Statist. Math., Tokyo, 1971.
Z307.12014; M51#10215

[5] Kummer's congruence for generalized Bernoulli numbers and its application, Mém. Fac. Sci. Kyushu Univ., 26 (1972), 119-138.
Z243.12009; M50#12976

[6] On Euler numbers, Mem. Fac. Sci. Kyushu Univ. Ser. A, 27 (1973), 1-5.
Z267.10009; M47#3307; R1973,11V429

[7] On certain values of p-adic L-functions, Mém. Fac. Sci. Kyushu Univ., 28 (1974), 59-82.
Z313.12005; M53#8022; R1975,2A400

[8] On a formula for p-adic L-functions, J. Fac. Sci. Univ. Tokyo, Ser. 1A, Math., 24 (1977), 45-53.
Z362.12014; M56#320; R1977,12A367

[9] On $p$-adic zeta-functions of the Lubin-Tate groups. Kyushu J. Math., 48 (1994), no. 1, 55-62.
Z818.11045; M95g:11117; R1996,7A224

[10] On generalized periods of cusp forms. In: Investigations in number theory, 479-492, Adv. Stud. Pure Math., 13, Academic Press, Boston, MA, 1988.
Z0666.10017; M90b:11129

SHIRATANI K., IMADA T.,
[1] The exponential series of the Lubin-Tate groups and $p$-adic interpolation. Mem. Fac. Sci. Kyushu Univ. Ser. A, 46 (1992), no. 2, 351-365.
Z777.11050; M94f:11123

SHIRATANI K., YAMAMOTO S.,
[1] On a p-adic interpolation function for the Euler numbers and its derivative, Mem. Fac. Sci. Kyushu Univ. Ser. A, 39 (1985), no. 1, 113-125.
Z574.12017; M87f:11099; R1985,12A321

SHIRATANI K., YOKOYAMA S.,
[1] An application of p-adic convolutions, Mém. Fac. Sci. Kyushu Univ., Ser. A, 36 (1982), no. 1, 73-83.
Z574.12017; M83m:10011; R1983,1A343

SHIRATANI K.: see also ISHIBASHI M., SHIRATANI K.

SHIRATANI K.: see also KANEMITSU S., SHIRATANI K.

SHOJI T.: see AGOH T., SHOJI T.,

SHOKROLLAHI M.A.,
[1] Stickelberger codes, Des. Codes Cryptogr. 9 (1996), no. 2, 203-213.
Z866.94022; M98d:94039

[2] Relative class number of imaginary abelian fields of prime conductor below 10000, Math. Comp. 68 (1999), no. 228, 1717-1728.
Z944.11044; M99m:11147

SHOKROLLAHI M.A.: see also BUHLER J.P., CRANDALL R.E., ERNVALL R., METSÄNKYLÄ T., SHOKROLLAHI M. A.

SHOVELTON S.T.,
[1] An elementary proof of Staudt's theorem on Bernoulli's numbers, Messeng. Math., 44 (1914), 24-25.
J45.1244.03

SHTOKALO I.Z.: see POGREBISSKII I.B., SHTOKALO I.Z.

SHUKLA R.N., MISHRA S.S.,
[1] Some important theorems on multivariate Bernoulli polynomials of second kind. (Hindi) Vijnana Parishad Anusandhan Patrika 38 (1995), no. 3, 211-217.
M97g:05006

SHUKLA R.N.: see also MISRA S.S., SHUKLA R.N.

SHU LINGHSUEH,
[1] Kummer's criterion over global function fields, J. Number Theory, 49 (1994), no. 3, 319-359.
Z816.11036; M96c:11134

SIACCI F.,
[1] Sull'uso dei determinanti delle potenze intere dei numeri naturala, Annali di Matematica, Ser. I., 7 (1865), 19-24.

SIDLER G.,
[1] Über eine algebraische Reihe, Mittheil. Naturf. Gesell., Bern, 1899 (1900), 13-32.
J30.0252.01

SIEBERT H.: see KIMURA N., SIEBERT H.

SIEGEL C.L.,
[1] Zu zwei Bemerkungen Kummers, Nachr. Akad. Wiss. Göttingen, Math. -Phys. Kl. II, (1964), no. 6, 51-57.
Z119.27701; M29#1198; R1967,8A102

[2] Über die Fourierschen Koeffizienten der Eisensteinschen Reihen, Det. Kgl. Danske Videns. Selskab., Math-fys. Meddel., 34 (1964), 1-20.
Z132.06401; M30#1984; R1966,6A84

[3] Beweis einer Formel für die Riemannsche Zetafunktion, Math. Scand. 14 (1964), 193-196.
Z137.25801; M31#2219

[4] Bernoullische Polynome und quadratische Zahlkörper, Nachr. Akad. Wiss. Göttingen (2), Math.-Phys. Kl., (1968), no. 2, 7-38.
Z273.12002; M38#2123

[5] Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen (2), Math.-Phys. Kl. II, (1969), no. 10, 87-102.
Z186.08804; M40#5570; R1972,11A85

SIEGEL C.L.: see also BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.

SILVERMAN J.H.,
[1] The arithmetic of elliptic curves, Springer-Verlag, New York etc., 1986, vii + 400 pp. (Graduate Texts in Math., No. 106).
M87g:11070; R1986,8A420K

SILVERMAN L.L.,
[1] Functional generalization of Bernoulli numbers, Riveon Lematematika, 7 (1954), 33-37. (Hebrew. English summary.)
M15-400j; R1955,5612

SIMALARIDES A.,
[1] Congruences mod $p^n$ for the Bernoulli numbers, Fibonacci Quart. 36 (1998), no. 3, 276-281.
Z942.11018; M99e:11024

SIMMONS G.F.,
[1] Calculus gems. Brief lives and memorable mathematics. McGraw-Hill, Inc., New York, 1992, xvi+355 pp.
Z846.01012; M94m:01036

SIMONDS E.F.,
[1] The coefficients of the series for $\tan x$. Math. Gaz., 19 (1935), 37-39.
J61.0066.02; Z11.10806

SIMSEK Y.,
[1] On $q$-analogue of the twisted $L$-functions and $q$-twisted Bernoulli numbers. J. Korean Math. Soc. 40 (2003), no. 6, 963-975.
M2004j:11020

[2] On twisted generalized Euler numbers. Bull. Korean Math. Soc. 41 (2004), no. 2, 299-306.

[3] Theorems on twisted $L$-function and twisted Bernoulli numbers. Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 2, 205-218.
M2006e:11123

[4] $q$-analogue of twisted $l$-series and $q$-twisted Euler numbers. J. Number Theory 110 (2005), no. 2, 267-278.
M2005k:11041

[5] Twisted $(h,q)$-Bernoulli numbers and polynomials related to twisted $(h,q)$-zeta function and $L$-function. J. Math. Anal. Appl. 324 (2006), no. 2, 790--804.

[6] On $p$-adic twisted $q\text{-}L$-functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phys. 13 (2006), no. 3, 340--348.

M2005k:11041

Simsek, Yilmaz; Kim, Daeyeoul; Rim, Seog-Hoon,
[1] On the two-variable Dirichlet $q$-$L$-series. Adv. Stud. Contemp. Math. (Kyungshang) 10 (2005), no. 2, 131-142.
M2005m:11222

Simsek, Y.; Kim, T.; Park, D. W.; Ro, Y. S.; Jang, L. C.; Rim, S. H.,
[1] An explicit formula for the multiple Frobenius-Euler numbers and polynomials. JP J. Algebra Number Theory Appl. 4 (2004), no. 3, 519-529.
M2006c:11143

SINGH A.: see GANDHI J.M., SINGH A.

SINGH A.P., L. R.M.,
[1] A $k$-variable extension of Bernoulli and Euler polynomials of general order. Acta Cienc. Indica Math. 29 (2003), no. 2, 353-357.

SINGH D.,
[1] The numbers $L(m,n)$ and their relations with prepared Brenoullian and Eulerian numbers, Math. Student, 20 (1952), 66-70.
Z49.30903; M14-727f

[2] On the divisibility of Eulerian and prepared Bernoullian numbers by prime numbers, Math. Student, 20 (1952), 71-73.
Z49.30904; M14-728a

SINGH R., PRASAD S.,
[1] An extension of the Bernoulli and Euler polynomials, Jñanabha, 20 (1990), 7-12.
Z727.33011; M92b:11011

SINGH S.N.,
[1] On unification and extension of Bernoulli, Euler and Eulerian polynomials. Proc. National Symposium on Special Functions and Their Applications (Gorakhpur,1986), 163-171, Univ. Gorakhpur.
M91e:11023

SINGH S.N., MISHRA S.S.,
[1] On the extension of Bernoulli, Euler and Eulerian polynomials. Tamkang J. Math. 27 (1996), no. 3, 189-199.
Z873.11017; M98e:11022

SINGH S.N., RAI B.K.,
[1] Characterization of the Appell set $D_n(x;a,k)$, Indian J. Pure Appl. Math., 13 (1982), no.5, 601-605.
Z502.33008; M83g:33010; R1982,11B57

[2] Properties of some extended Bernoulli and Euler polynomials, Fibonacci Quart., 21 (1983), no. 3, 162-173.
Z529.10016; M85f:05005

[3] An Appell cross-sequence suggested by Bernoulli and Euler polynomials, Rev. Roumaine Math. Pures Appl., 33 (1988), no. 7, 613-621.
Z649.33004; M89i:05030; R1989,2B27

SINGH S.N., RAI B.K., RAI V.S.,
[1] An extension of Bernoulli and Euler polynomials, Ganita, 2 (1982), no. 2, 108-112.
Z585.33011; M85k:33012

SINGH S.N., SINGH V.P., RAI B.K.,
[1] A characterization of some extended Bernoulli and Euler polynomials, Vijnana Parishad, Anusandhan Patrika, 26 (1983), no. 2, 61-64.
M85b:11016

SINGH S.N.: see also HUSSAIN M.A., SINGH S.N.

SINGH S.N.: see also RAI B.K. et al.

SINGH S.N.: see also RAI V.S., SINGH S.N.

SINGH V.P.: see SINGH S.N., SINGH V.P., RAI B.K.

SINGHOF W.,
[1] Einige Beziehungen zwischen stabiler Homotopietheorie und Zahlentheorie, Jahresber. Deutsch. Math.-Verein., 91 (1989), no. 2, 55-66.
Z702.55012; M90d:55023; R1989,9A444

SINIGALLIA L.,
[1] Sui nuovi numeri pseudo-Euleriani del Prof. Pascal. Rend. Palermo, 24 (1907), 223-228.
J38.0467.01

[2] Una extensione dei numeri Bernoulliani. Rend. Palermo, 25 (1908), 20-35.
J39.0502.01

SINNOTT W.,
[1] On the $\mu$-invariant of the $\Gamma$-transform of a rational function, Invent. Math., 75 (1984), no. 2, 273-282.
Z531.12004; M85g:11112; R1984,8A294

SINNOTT W.: see also COATES J., SINNOTT W.

SINTSOV D.M.,
[1] O funktsiyakh Bernulli drobnykh poryadkov [On Bernoulli functions of fractional orders]. Izvestiya Kazansk. fiz.-mat. obshchestva (1), 8 (1890), 291-336.
J22.0443.02

[2] Bernullievy funktsii s proizvol'nymi ukazatelyami [Bernoulli functions with arbitrary indices]. Izvestiya Kazansk. fiz.-mat. obshchestva (2), 1 (1891), no. 2, 234-256.
J24.0404.02

[3] Razlozhenie proizvol'nykh stepenej trigonometricheskikh funktsij v stepennye stroki [Expansion of arbitrary powers of trigonometrical functions in power series]. Izvestiya Kazansk. fiz.-mat. obshchestva (2), 4 (1894), no. 4, 199-204.
J26.0471.01

[4] Zametka o chislakh Bernulli [A note on Bernouli numbers]. Izvestiya Kazansk. fiz.-mat. obshchestva (2), 8 (1898), no. 2, 104-106.
J29.0221.01

SITARAMACHANDRA RAO R., DAVIS B.,
[1] Some identities involving the Riemann zeta-function. II. Indian J. Pure Appl. Math., 17 (1986), no. 10, 1175-1186.
Z614.10013; M88d:11080; R1987,6B39

[2] Behaviour of $log {\eta}(\tau)$ at a rational point, Indian J. Pure Appl. Math., 18 (1987), no. 2, 111-121.
Z611.10015; M88j:11026; R1987,9A91

SITARAMACHANDRA RAO R.: see KANEMITSU S., SITARAMACHANDRA RAO R.

SITARAMAN S.,
[1] Vandiver revisited. J. Number Theory 57 (1996), no. 1, 122-129.
Z855.11057; M97a:11170

[2] Note on a Fermat-type Diophantine equation. J. Number Theory 99 (2003), no. 1, 29-35.

SKORUPPA N.-P.,
[1] Developments in the theory of Jacobi forms. Max-Planck-Institut für Math., Bonn, MPI/89-40, 17 pp.
Z745.11029; M92e:11043

[2] Binary quadratic forms and the Fourier coefficients of elliptic and Jacobi modular forms. Max-Planck-Institut für Math., Bonn, MPI/89-57, 32 pp.
Z709.11028; M91j:11030

[3] Computations of Siegel modular forms of genus two. Math. Comp., 58 (1992), no. 197, 391-398.
Z749.11030; M92e:11041

SKULA L.,
[1] Non-possibility to prove infinity of regular primes from some theorems, J. Reine Angew. Math., 291 (1977), 162-181.
Z338.10013; M56#5413; R1977,12A141

[2] On certain ideals of the group ring $ Z[G]$, Arch. Math. (Brno), 15 (1979), no.1, 53-56.
Z435.12006; M81f:12007; R1980,3A278

[3] Index of irregularity of a prime, J. Reine Angew. Math., 315 (1980), 92-106.
Z419.10016; M81c:12014; R1980,12A137

[4] A remark on Mirimanoff polynomials, Comment. Math. Univ. St. Paul. (Tokyo), 31 (1982), no.1, 89-97.
Z496.10006; M84b:10022

[5] System of equations depending on certain ideals, Arch. Math. (Brno), 21 (1985), 23-38.
Z589.12005; M87g:11033; R1986,4A421

[6] Systems of Kummer's and Mirimanoff's congruences, Summer School on Number Theory, held at Chlébské, Sept. 1983, Brno, 1985, 44-51.
Z648.10012

[7] A note on the index of irregularity, J. Number Theory, 22 (1986), 125-138.
Z589.12006; M87d:11080; R1986,8A324

[8] On the Kummer's system of congruences, Comment. Math. Univ. St. Paul., 36 (1986), no. 2, 137-163.
Z604.10006; M87m:11016; R1987,12A83

[9] Fermat's last theorem and the Fermat quotients. Conference report of the 9th Czechoslovak Colloquium on Number Theory held at Rackova Dolina, Sept. 1989. pp. 78-86. Masaryk University, Brno, 1990.
Z697.10003

[10] Some consequences of the Kummer system of congruences, Comm. Math. Univ. St. Paul., 39 (1990), no. 1, 19-40.
Z701.11010; M91i:11030; R1991,8A123

[11] Fermat's last theorem and the Fermat quotients. Comm. Math. Univ. St. Paul., 41 (1992), no. 1, 35-54.
Z753.11016; M93f:11028; R1993,7A135

[12] The Kummer system of congruences and index of irregularity. Österr.-Ung.-Slow. Koll. über Zahlentheorie Graz- Mariatrost, 1992. Grazer Math. Ber., 318 (1992), 169-172.
Z796.11004; M94h:11024; R1993,11A133

[13] Some bases of the Stickelberger ideal. Math. Slovaca, 43 (1993), no. 5, 541-571.
Z798.11044; M95e:11117; R1996,2A163

[14] The orders of solutions of the Kummer system of congruences. Trans. Amer. Math. Soc., 343 (1994), no. 2, 587-607.
Z810.11015; M94h:11025; R1995,3A101

[15] Nekteré historické aspekty Fermatova problému (Some historical aspects of Fermat's problem). Pokroky Mat. Fyz. Astronom., 39 (1994), no. 6, 318-330.
Z831.11025; M95k:11002

[16] Agoh's bases of the Stickelberger ideal, Math. Slovaca, 44 (1994), no. 5, 663-670.
Z826.11049; M96c:11123; R1999,3A231

[17] On a special ideal contained in the Stickelberger ideal, J. Number Theory, 58 (1996), no. 1, 173-195.
Z861.11063; M97d:11157

[18] Fermat and Wilson quotients for $p$-adic integers, Acta Math. Inform. Univ. Ostraviensis, 6 (1998), 167-181.
M2002b:11007

SKULA L., SLAVUTSKII I.SH.,
[1] Bernoulli Numbers. Bibliography (1713-1983). J.E. Purkyne Univ., Brno, 1988.
Z637.10001; M89i:11002

SKULA L.: see also AGOH T., SKULA L.

SKULA L.: see also AGOH T., DILCHER K., SKULA L.

SKULA L.: see also DILCHER K., SKULA L.

SKULA L.: see also JEDELSKÝ D., SKULA L.

SKULA L.: see also SELUCKÝ K., SKULA L.

SLAVUTSKII I.SH.,
[1] Ratsionalizatsiya formul Dirikhle dlya chisla klassov idealov veshchestvennogo kvadratichnogo polya [Rationalization of the Dirichlet formulae for the number of classes of ideals of a real quadratic field]. Trudy 7 nauchn. konf. Khabarovsk. Gos. Pedagogichesk. instituta, (1959), 50-52.

[2] On the class-number of the ideals of a real quadratic field. (Russian). Izv. Vyssh. Uchebn. Zaved. Matematika, 1960 (1960), no. 4(17), 173-177.
Z99.02601; M24,A1905; R1962,3A219

[3] Ob arifmeticheskoj strukture L-funktsij Dirikhle [On the arithmetical structure of Dirichlet L-functions]. Trudy 8 nauchn. konf. Khabarovsk. Gos. Pedagogichesk. instituta, (1961), 125-127.

[4] Nekotorye sravneniya dlya chisla klassov veshchestvennogo kvadratichnogo polya s prostym diskriminantom [Some congruences for the class number of a real quadratic field with prime discriminant]. Uch. zap. Leningradsk. Gos. Pedagogichesk. instituta, 218 (1961), 179-189.
Z138.03203; R1962,4A113

[5] Generalized Voronoi-Grün congruence and the class number of an imaginary quadratic field. (Russian). Trudy Nauchn. Ob'ed. Prepodav, Fiz.-Mat. Fak. Ped. Inst. Dal'n. Vostok., Mat. 1 (1962), 82-84.
M35#4191; R1964,7A172

[6] Chislo klassov idealov absolyutno abeleva polya i obobshchennye chisla Bernulli [The number of classes of ideals of an absolute abelian field and generalized Bernoulli numbers]. Trudy Nauchn. Ob'ed. Prepodav, Fiz.-Mat. Fak. Ped. Inst. Dal'n. Vostok., Mat. 3 (1963), 75-80.
R1965,9A236

[7] On irregular primes, (Russian) Acta Arith., 8 (1962/1963), 123-125.
Z113.26805; M27#2475; R1964,2A173

[8] An estimate from above and the arithmetical calculation of the class-number of real quadratic fields, (Russian) Izv. Vyssh. Uchebn. Zaved. Matematika, (1965), no. 2(45), 161-165.
Z126.27501; M32#2400; R1965,9A103

[9] On Mordell's theorem, Acta Arith., 11 (1965), 57-66.
Z132.28302; M31#159; R1966,91A130

[10] Generalized Voronoi congruence and the number of classes of ideals of an imaginary quadratic field, II, (Russian). Izv. Vyssh. Uchebn. Zaved. Matematika, (1966), no. 4(53), 118-126.
Z146.27803; M35#4192; R1966,12A279

[11] L-functions of a local field, and a real quadratic field, (Russian) Izv. Vyssh. Uchebn. Zaved. Matematika, (1969), no. 2(81), 99-105.
Z188.34802; M40#4240; R1969,7A293

[12] The simplest proof of Vandiver's theorem, Acta. Arith., 15 (1969), 117-118.
Z198.07401; M38#5745; R1969,10A78

[13] On the number of classes of ideals and the fundamental unit of a real quadratic field, (Russian) Akad. Nauk Kazakh. SSR, Alma-Ata, (1969), 73-70.
M52#10558

[14] Chislo klassov idealov absolyutno abeleva polya i lokal'nye dzeta-funktsii [The number of classes of ideals of an absolute abelian field and local zeta functions]. X Vsesoyuzn. algebraichesk. kollokvium, Rezyume soobshch. i dokl., Novosibirsk, [15] O chisle klassov absolyutno abeleva polya [On the class number of an absolute abelian field]. XI Vsesoyuzn. algebraichesk. kollokvium, Rezyume soobshch. i dokl., Kishinev, (1971), 331-332.

[16] Generalized Bernoulli numbers that belong to unequal characters, and an extension of Vandiver's theorem, (Russian) Leningrad. Gos. Ped. Inst. Uchen. Zap., 496 (1972), no. 1, 61-68.
M46#7194; R1972,7A137

[17] Local properties of Bernoulli numbers and a generalization of the Kummer-Vandiver theorem, (Russian). Izv. Vys. Uchebn. Zaved. Matematika., 1972, no. 3(118), 61-69.
Z244.12006; M46#151; R1972,7A287

[18] On the Nagell-Estermann theorem, (Russian) Vil. Gos. Univ., Vilnius, (1974), 235-236.
M51#5462

[19] Square-free numbers and a quadratic field, (Russian). Colloq. Math., 32 (1975), no. 2, 291-300.
Z227.12004; M52#3113; R1976,3A137

[20] On representations of numbers by sums of squares and quadratic field, Arch. Math. (Brno), 13 (1977), no. 1, 29-40.
Z275.10031; M57#5932; R1978,4A115

[21] On the class number of divisors of a real quadratic field, II, Modern Algebra, pp. 124-128, Leningrad. Gos. Ped. Inst., Leningrad, 1980.
Z482.12006; Z482.12006;583.12006; M82b:12003; R1980,10A284

[22] A remark on the paper of T. Uehara "On p-adic continuous functions determined by the Euler numbers", these reports, No. 8 (1980), 1-8, Reports of the Faculty of Science and Engineering, Saga Univ., 15 (1987), no. 1, 1-2.
Z613.10013; M88c:11071; R1987,10A65

[23] Ob ekvivalentnosti sravnenij Voronogo i Vandivera [On the equivalence of Voronoi's and Vandiver's congruences]. Voprosy teoreticheskoj i prikladnoj matematiki. Leningrad, 1986, 80-86.
R1986,11A65

[24] p-adic continuous Uehara functions and Voronoi's congruence. Engl. Transl. in: Soviet Math. (Izv. VUZ), 31 (1987), no. 4, 79-85.
Z632.10007; M88k:11019; R1987,9A131

[25] A remark on the note of Gh. Stoica: "A recurrence formula in the theory of the Riemann zeta function", Stud. Cerc. Mat., 41 (1989), no. 4, 333.
Z681.10007; M91b:11089

[26] Shtaudt i chisla Bernulli [Staudt and Bernoulli numbers]. Conference Report of the 9th Czechoslovak Colloquium on Number Theory held at Rackova Dolina, Sept. 1989. pp. 92--96. Masaryk Univ., Brno, 1990.
Z697.10038

[27] Outline of the history of research on the arithmetic properties of Bernoulli numbers. Staudt, Kummer, Voronoi. (Russian) Istor.-Mat. Issled., no. 32-33 (1990), 158-181.
Z734.01008; M92m:11001

[28] A note on Bernoulli numbers. J. Number Theory, 53 (1995), no. 2, 309-310.
Z830.11009; M96f:11031

[29] Staudt and arithmetical properties of Bernoulli numbers, Historia Sci. (2), 5 (1995), no. 1, 69-74.
Z864.11003; M96j:11005

[30] About von Staudt congruences for Bernoulli numbers, Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 137-144.
M2000f:11022

[31] Leudesdorf's theorem and Bernoulli numbers, Arch. Math. (Brno) 35 (1999), 299-303.
M2001a:11030

[32] A remark on the paper of A. Simalarides: "Congruences mod $p\sp n$ for the Bernoulli numbers" [Fibonacci Quart. 36 (1998), no. 3, 276-281]. Fibonacci Quart. 38 (2000), no. 4, 339-341.
M2001f:11032; R01.02-13A88

[33] On the generalized Bernoulli numbers that belong to unequal characters. Rev. Mat. Iberoamericana 16 (2000), no.3, 459-475.
Z0965.11006; M2002c:11018; R02.07-13A.99

[34] Partial sums of the harmonic series, $p$-adic $L$-functions and Bernoulli numbers. Number theory (LiptovskÝ Ján, 1999). Tatra Mt. Math. Publ. 20 (2000), 11-17.
M2002d:11025

[35] On the generalized Glaisher-Hong's congruences. Chinese Ann. Math. Ser. B 23 (2002), no. 1, 63-66.
M1002.11002; M2003b:11003; R03.02-13A.132

[36] A real quadratic field and the Ankeny-Artin-Chowla conjecture. (Russian.) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 159-168, 230-231.
M2003h:11132

[37] Real quadratic field and Ankeny-Artin-Chowla conjecture. J. Math. Sci. (N.Y.) 122 (2004), no.6., 3673-3678. (Translation of [36]).

SLAVUTSKII I.SH.: see also CLARKE F., SLAVUTSKII I.SH.

SLAVUTSKII I.SH.: see also KISELEV A.A., SLAVUTSKII I.SH.

SLAVUTSKII I.SH.: see also SKULA L., SLAVUTSKII I.SH.

SLAVUTSKII I.SH.: see also DILCHER K., SKULA L., SLAVUTSKII I.SH.

SLOANE N.J.A.,
[1] A handbook of integer sequences, Academic Press, New York-London, 1973. xiii + 206 pp.
Z286.10001; M50#9760; R1975,1V488K

SLOANE N.J.A., PLOUFFE S.,
[1] The encyclopedia of integer sequences. Academic Press, Inc., San Diego, CA, 1995. xiv+587pp.
Z845.11001; M96a:11001

SLOANE N.J.A.: see also BERNSTEIN M., SLOANE N.J.A.

SLOANE N.J.A.: see also CONWAY J.H., SLOANE N.J.A.

SLOANE N.J.A.: see also MILLAR J., SLOANE N.J.A., YOUNG N.E.

SMALL D.: see IRELAND K., SMALL D.

SMARANDACHE F.: see BENCZE M., SMARANDACHE F.

SMITH D.E.,
[1] A Source Book in Mathematics, Dover Publications, Inc., New York, 1959.
J55.0583.01; Z86.00207; M21#4873

SMITH H.J.S.,
[1] Report on the theory of numbers, Report of the British Association for 1860, The collected math. papers, 93-162, Oxford: Clarendon Press, vol.1, 1894, xcv + 603pp.
J25.0029.02

SMORYNSKI C.,
[1] Logical Number Theory I. An Introduction. Springer Verlag, Berlin, etc., 1991, x+405 pp.
Z759.03002; M92g:03001

SNOW D.R.,
[1] Formulas for the sums of powers of integers by functional equations. Aequationes Math., 18 (1978), no. 3, 269-285.
Z398.05010; M80a:10005; R1979,9A102

SNYDER C.,
[1] Partial fraction decompositions and Kummer congruences for the normalized coefficients of the Laurent expansion of elliptic functions parametrizing a nonsingular cubic curve in Hessian normal form, J. Reine Angew. Math., 306 (1979), 60-87.
Z398.12005; M80d:10036; R1979,10A314

[2] A concept of Bernoulli numbers in algebraic function fields, J. Reine Angew. Math., 307/308 (1979), 295-308.
Z398.12006; M81a:12016; R1980,1A377

[3] A concept of Bernoulli numbers in algebraic function fields, II, Manuscripta Math., 35 (1981), no. 1/2, 69-89.
Z478.12013; M83e:12009; R1982,4A373

[4] Kummer congruences in formal groups and algebraic groups of dimension one, Rocky Mountain J. Math., 15 (1985), no. 1, 1-11.
Z578.14041; M86j:14044

[5] p-adic interpolation of Dedekind sums, Bull. Austral. Math. Soc., 39 (1988), no. 2, 293-301.
Z632.10023; M89b:11039; R1988,10A123

SNYDER C.: see also ÖZLÜK A.E., SNYDER C.

SNYDER C.: see also KALLIES J., SNYDER C.

SNYDER W.M.: see ROSEN K.H., SNYDER W.M.

SOLOMON D.,
[1] On the classgroups of imaginary abelian fields, Ann. Inst. Fourier, 40 (1990), no. 3, 467-492.
Z694.12004; M92a:11133; R1991,10A209

SOLOVJEV A.A.: see PETROVA S.S., SOLOVJEV A.A.

SOMASUNDARAM D.,
[1] A formula of Srinivasa Ramanujan in Notebook 3, Math. Student, 59 (1991), no. 1-4, 161-64.
Z781.33001; M93c:11011

SOMPOLSKI R.W.: see BUHLER J.P., CRANDALL R.E., SOMPOLSKI R.W.

SON JIN-WOO, JANG DOUK SOO,
[1] A $q$-analogue of $w$-Bernoulli numbers and their applications. Bull. Korean Math. Soc. 38 (2001), no. 2, 399-412.
M2002e:11019

[2] Explicit evaluations of special multiple zeta values, $\zeta(\{4l+2\}\sb n)$ and $\zeta(\{4l\}\sb n)$. Commun. Korean Math. Soc. 20 (2005), no. 2, 247-257.
M2006g:11190

SON JIN-WOO: see also KIM MIN-SOO, SON JIN-WOO

SON JIN-WOO: see also JANG YOUNGHO, KIM MIN-SOO, SON JIN-WOO

SON JIN-WOO: see also JANG LEE-CHAE, KIM TAEKYUN, RIM SEOGHOON, SON JIN-WOO

SONDOW J.,
[1] Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series. Proc. Amer. Math. Soc., 120 (1994), no. 2, 421-424.
Z796.11033; M94d:11066; R1994,8A144

SONIN N.YA.,
[1] O bernullievykh polinomakh i ikh prilozheniyakh [On Bernoullian polynomials and their applications]. Izv. Varshavsk. Universiteta, (1888), no. 3-4, 1-48.
J20.0424.01

[2] O preryvnoj fynktsii $[x]$ i ee prilozheniyakh [On the discontinuous function $[x]$ and its applications]. Izv. Varshavsk. Universiteta, (1889), no. 7-8, 1-78.
J21.0444.01

[3] Sur les termes complémentaires de la formule sommatoire d'Euler et de celle de Stirling, Ann. Sci. école Norm. Supér. (3), 6 (1889), 257-262.
J21.0235.03

[4] Sur les termes complémentaires de la formule sommatoire d'Euler et de celle de Stirling, C.R. Acad. Sci. Paris, 108 (1889), 725-727.

[5] Ryad Ivana Bernulli. (Epizod iz istorii matematiki) [The series of Jean Bernoulli. (An episode from the history of mathematics)]. Bull. St. Petersb. Acad. Sci., 7 (1895), 337-353.
J28.0224.03

SONIN N.YA., HERMITE CH.,
[1] Sur les polynômes de Bernoulli, J. Reine Angew. Math, 116 (1896), 133-156.
J27.0209.05

SOULÉ CH.,
[1] K-théorie et corps cyclotomique. Séminaire de théorie des nombres, Univ. Bordeaux I, année 1980-81, 1981, exp. no.15, 6 pp.
Z495.12009; M82m:10006

[2] Perfect forms and the Vandiver conjecture, J. Reine Angew. Math. 517 (1999), 209-221.

SPIEGEL M.G.,
[1] Theory and problems of calculus of finite differences and difference equations, Schaum Outlines, New York, 1971.
Z243.39001

SPIESS J.,
[1] Some identities involving harmonic numbers, Math. Comp., 55 (1990), no. 192, 839-863.
Z724.05005; M91c:05021

SPIRA R.,
[1] The nonvanishing of the Bernoulli polynomials in the critical strip, Proc. Amer. Math. Soc., 17 (1966), 1476-1477.
Z154.31902; M34#2967; R1967,10V247

SPITZER S.,
[1] Note über die Summenformel $\sum x^m$, Arch. für Math. und Phys., 23 (1854), 457-460.

SQUIRE W.: see GOULD H.W., SQUIRE W.

SRINIVASAN S.,
[1] A footnote to a conjecture in number theory, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 10 (1986), no. 1, 39-42.
Z632.10042; M88m:11077; R1987,7A103

SRIVASTAVA H.M.,
[1] Some explicit formulas for the Bernoulli and Euler numbers and polynomials, Internat. J. Math. Ed. Sci. Tech., 19 (1988), no. 1, 79-82.
Z608.10016; M89c:11035

[2] Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 77-84.
Z0978.11004; M2001f:11033; R01.02-13B.14

SRIVASTAVA H.M., JOSHI J.M.C., BISHT C.S.,
[1] Functional Calculus and the sums of powers of natural numbers. Stud. Appl. Math., 85 (1991), no. 2, 183-193.
Z727.11008; M92g:11022

Srivastava, H. M.; Kim, T.; Simsek, Y.,
[1] $q$-Bernoulli numbers and polynomials associated with multiple $q$-zeta functions and basic $L$-series. Russ. J. Math. Phys. 12 (2005), no. 2, 241--268.
M2006k:11034

SRIVASTAVA H.M., PINTÉR Á.,
[1] Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 17 (2004), no. 4, 375-380.
M2004m:33020

SRIVASTAVA H.M., TODOROV P.G.,
[1] A short proof of the Srivastava-Todorov formula for the generalized Bernoulli polynomials, Plovdiv. Univ. Nauchn Trud., 26 (1988), no. 3, 25-30.
Z732.11012

[2] An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. Appl., 130 (1988), 509-513.
Z621.33008; M89d:33021; R1988,8B13

SRIVASTAVA H.M., TSUMURA H.,
[1] A certain class of rapidly convergent series representations for $\zeta(2n+1)$. J. Comput. Appl. Math. 118 (2000), no. 1-2, 323-335.
Z 0979.11041; M2001f:11145

[2] Certain classes of rapidly convergent series representations for $L(2n,\chi)$ and $L(2n+1,\chi)$. Acta Arith. 100 (2001), no. 2, 195-201.
M2002g:11130

SRIVASTAVA H.M.: see also CHEN MING-PO, SRIVASTAVA H.M.

STACHEFF J.: see MILNOR J.W., STACHEFF J.

STAFFORD E.T., VANDIVER H.S.,
[1] Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. USA, 16 (1930), no. 2, 139-150.
J56.0887.04

STARK E.L.,
[1] A new method of evaluating the sums of $\sum_{k=1}^\infty (-1)^{k+1} k^{-2p}$, $p=1,2,3,\ldots$ and related series. Elem. Math., 27 (1972), 32-34.
Z225.40002; M45#3996; R1972,8B26

[2] The series $\sum_{k=1}^\infty k^{-s}$, $s=2,3,4,\ldots$, once more, Math. Mag., 47 (1974), no. 4, 197-202.
Z291.40004; M50#5261; R1975,5B17

STARK H.M.,
[1] Values of zeta and L-functions, Abhandl. Braunsch. Wiss. Gesellsch., 33 (1982), 71-83.
Z509.12012; M85c:11110; R1983,5A102

[2] Modular forms and related objects. Number theory (Montreal, 1985), pp. 421-455, CMS Conf. Proc., 7, Amer. Math. Soc., Providence, R.I., 1987.
Z624.10013; M88j:11029

[3] Dirichlet's class-number formula revisited. A tribute to Emil Grosswald: number theory and related analysis, 571--577, Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993.
Z804.11060; M94a:11133; R1994,2A341

STATE E.Y.,
[1] A one-sided summatory function. Proc. Amer. Math. Soc., 60 (1976), 134-138.
Z348.40001; M54#10615; R1976/77,9B101

STAUDT K.G.C. von,
[1] Beweis eines Lehrsatzes die Bernoulli'schen Zahlen betreffend, J. Reine Angew. Math., 21 (1840), 372-374.

[2] De Numeris Bernoullianis, Erlangen, 1, 2, Adolf Ernst June, Erlangen, 1845.

STEFANI W.,
[1] Über eine Klasse von Polynomen und ihre Beziehungen zu den Bernoullischen Zahlen, Math. Nachr., 29 (1965), 131-149.
Z131.04105; M32#2371; R1966,10A94

[2] Über eine Klasse von Polynomen und ihre Beziehungen zu den Bernoullischen Zahlen, II, Math. Nachr., 36 (1968), 15-37.
Z162.05805; M37#3997; R1969,12V378

STEFFENSEN J.F.,
[1] On a generalization of Nörlund's polynomials. Kgl. Danske Vidensk. Selsk. Mat.-fys. Meddelser, 7 (1926), no. 5, 18p.
J52.0467.04

[2] The poweroid, an extension of the mathematical notion of power. Acta Math. 73 (1941), 333-366.
Z026.20805; M3,236g

[3] On the polynomials $R\sb \nu\sp {[\lambda]}(x)$, $N\sb \nu\sp {[\lambda]}(x)$ and $M\sb \nu\sp {[\lambda]}(x)$. Acta Math. 78 (1946), 291-314.
Z060.19211; M8,155a

[4] Interpolation, 2nd ed., Chelsea Publ. Co., New York, 1950, ix + 248 pp.
Z41.02603; M12-164d

STEGUN I.A.: see ABRAMOWITZ M., STEGUN I.A.

STEIN P.R.: see RIORDAN J., STEIN P.R.

STEINGRIMSSON E.: see EHRENBORG R., STEINGRIMSSON E.

STEKLOV W.,
[1] Remarques relatives aux formules sommatoires d'Euler et de Boole, Soobshch. Kharkovsk. mat. obshchestva, 2, 8 (1902), 136-195.
J35.0263.01

STEPHENS A.J., WILLIAMS H.C.,
[1] Some computational results on a problem concerning powerful numbers, Math. Comp., 50 (1988), no. 182, 619-632.
Z642.12001; M89d:11091; R1989,1A292

STERN M.A.,
[1] Über die Coefficienten der Secantenreihe, J. Reine Angew. Math., [2] Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math., 79 (1875), 67-98.
J06.0103.01

[3] Ueber eine Eigenschaft der Bernoullischen Zahlen, J. Reine Angew. Math., 81 (1876), 290-294.
J08.0146.02

[4] Verallgemeinerung einer Jacobi'schen Formel. J. Reine Angew. Math., 84 (1877), 216-219.
J09.0176.02

[5] Zur Theorie der Bernoullischen Zahlen. Auszug aus einem Schreiben an Herrn Borchardt. J. Reine Angew. Math., 84 (1878), 267-269.
J09.0185.01

[6] Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandl. Gesellsch. Wiss. Göttingen, Math., 23 (1878), 1-44.

[7] Zur Theorie der Bernoullischen Zahlen, J. Reine Angew. Math., 88 (1880), 85-95.
J11.0186.01

[8] Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandl. Gesellsch. Wiss. Göttingen, Math., 26 (1880), 1-45.

[9] Zur Theorie der Bernoullischen Zahlen, J. Reine Angew. Math., 92 (1882), 349-350.
J14.0191.05

[10] Sur une propertiété des nombres de Bernoulli, Bull. Soc. Math. France, 10 (1886), 280-282.
J18.0225.02

STEVENS G.,
[1] Arithmetic on modular curves, Progress in Math., 20. Birkhäuser Boston, Inc., Boston, Mass., 1982, xvii + 214pp.
Z529.10028; M87b:11050

[2] The cuspidal group and special values of L-functions, Trans. Amer. Math. Soc., 291 (1985), no. 2, 519-550.
Z579.10011; M87a:11056; R1986,6A673

[3] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., 98 (1989), no. 1, 75-106.
Z697.14023; M90m:11089; R1990,3A393

STEVENS G.: see also KAMIENNY S., STEVENS G.

STEVENS H.,
[1] Generalized Kummer congruences for products of sequences, Duke Math. J., 28 (1961), 25-38.
Z122.04603; M23#A849; R1962,2A142

[2] Generalized Kummer congruences for the products of sequences. Applications. Duke Math. J., 28 (1961), 261-275.
Z122.04701; M23#A850; R1962,2A135

[3] Kummer's congruences of a second kind, Math. Z., 79 (1962), 180-182.
Z106.03202; M29#5809; R1963,2A135

[4] Kummer congruences for products of numbers, Math. Nachr., 24 (1962), no. 4, 219-227.
Z106.03201; M27#1407; R1963,6A133

[5] Bernoulli numbers and Kummer's criterion, Fibonacci Quart., 24 (1986), no. 2, 154-158.
Z588.10012; M87f:11017; R1986,12A161

STEVENS H.: see also CARLITZ L., STEVENS H.

STEWART D.: see ISMAIL M.E.H., STEWART D.

STEWART I.N., TALL D.O.,
[1] Algebraic number theory, Chapman and Hall, London, 1979, xviii + 257 pp.
Z413.12001; M81g:12001; R1980,11A121K

STHAPIT R.K.,
[1] The Bernoulli Numbers and Polynomials, M.Sc. thesis, Southern Illinois University, Carbondale, 1982.

STIEIRMAN I.JA., AKHIEZER N.I.,
[1] Über den Zusammenhang zwischen der Störmerschen Integrationsmethode und den Bernoullischen Polynomen, Zap. fiz. otdeleniya Akad. Nauk Ukr. SSR, 2 (1927), N 2, 16-24.
J53.0414.02

STÖCKLER J.,
[1] Multivariate Bernoulli splines and the periodic interpolation problem, Constr. Approx., 7 (1991), no. 1, 105-122.
Z721.41015; M91j:41013; R1991,10B118

[2] Interpolation mit mehrdimensionalen Bernoulli- Splines und periodischen Box-Splines. Dissertation, Univ. (Gesamthochschule) Duisburg, Fachbereich Mathematik, 141 pp., 1988.
Z718.41010

[3] On minimum norm interpolation by multivariate Bernoulli splines. Approximation Theory VI, Proc. 6th Int. Symp., College Station, TX. 1989, Vol. II, 635-638 (1989).
Z727.41011; M91j:41002

STOICA G.,
[1] A recurrence formula in the study of the Riemann zeta function (Romanian. English summary). Stud. Cerc. Mat., 39 (1987), no. 3, 261-264.
Z633.10036; M88i:11060; R1988,2A113

[2] On Riemann's zeta function, An. Univ. Bucuresti Mat., 37 (1988), no. 1, 60-64.
Z651.10025; M90a:11103

[3] Some remarks concerning Riemann's zeta function, Stud. Cerc. Mat., 40 (1988), no. 5, 447-454.
Z659.10046; M89m:30061; R1989.5A68

STOLL M.,
[1] On the arithmetic of the curves $y\sp 2=x\sp l+A$. II. J. Number Theory 93 (2002), no. 2, 183-206.

STRAUCH O.,
[1] Some applications of Franel's integral. I. Acta Math. Univ. Comenian., 50/51 (1987), 237-246 (1988).
Z667.10023; M90d:11028; R1989,10A136

[2] Some applications of Franel-Kluyver's integral. II. Math. Slovaca, 39 (1989), no. 2, 127-140.
Z671.10002; M90j:11079; R1989,9A103

STRAUSS H.,
[1] Optimal quadrature formulas, Approximation in Theorie und Praxis (Proc. Symp., Siegen, 1979), 239-250, Bibliographisches Inst., Mannheim, 1979.
Z436.41015; M81b:41024

[2] Optimale Quadraturformeln und Perfektsplines, J. Approx. Theory, 27 (1979), no. 3, 203-226.
Z427.41017; M80m:41007; R1980,7B32

STREHL V.,
[1] Alternating permutations and modified Gandhi polynomials, Discrete Math., 28 (1979), 89-100.
Z426.05005; M81d:05008; R1980,3V605

STREHL V.: see FOATA D., STREHL V.

STRICHARTZ R.S.,
[1] Estimates for sums of eigenvalues for domains in homogeneous spaces, J. Funct. Anal. 137 (1996), no. 1, 152-190.
Z848.58050; M97g:58172

STUDNICKA F.J.,
[1] O novem neodvislem vyjadreni cisel Bernujskich a o vlastnotech prislusneho determinantu [On a new independent representation of the Bernoulli numbers and on properties of related determinants], (Czech), Casopis Pest. Mat. a Fyz., 15 (1886), 97-102.
J18.0224.03

[2] Ueber ein Analogon der Euler'schen Zahlen. Sitzungsber der Kgl. Böhmischen Ges. der Wiss., Prag, 1900, no. 9, 8p.
J31.0438.02

[3] Ueber neue Fermat'sche Lehrsätze. Casopis Pest. Mat. a Fyz., 29 (1900), 257-261.
J31.0438.03

STÜNZI M.: see GUT M., STÜNZI M.

SUBRAMANIAN P.R.,
[1] A short note on the Bernoulli polynomial of the first kind, Math. Student, 42 (1974), 57-59, (1975).
Z358.10005; M53#817; R1977,2V431

[2] Evaluation of ${\rm Tr}(J\sp {2p}\sb \lambda)$ using the Brillouin function, J. Phys. A, 19 (1986), no. 7, 1179-1187.
Z614.33021; M87i:82082

[3] Generating functions for angular momentum traces, J. Phys. A, 19 (1986), no. 13, 2667-2670.
Z614.33022; M87k:81037

SUBRAMANIAN P.R., DEVANATHAN V.,
[1] Generation of angular momentum traces and Euler polynomials by recurrence relations, J. Phys. A, 18 (1985), no. 15, 2909-2915.
M87b:81060; R1985,7V581

[2] Recurrence relations for angular momentum traces, J. Phys. A, 13 (1980), 2689-2693.

SUN QI, HONG SHAO-FANG,
[1] The $p$-adic approach to Wolstenholme's theorem. Northeast. Math. J. 17 (2001), no. 2, 226-230.
M2002f:11003

Sun, Zhe; Yin, Xi Rong,
[1] Integral polynomials of Bernoulli's polynomials. (Chinese). Math. Practice Theory 35 (2005), no. 2, 152-158.

SUN ZHI-HONG,
[1] The combinatorial sum $\sum\sb {k\equiv r\pmod m}\binom nk$ and its applications in number theory. III. (Chinese. English, Chinese summary) Nanjing Daxue Xuebao Shuxue Bannian Kan 12 (1995), no. 1, 90-102.
Z862.11023; M96g:11017

[2] A supplement to a binomial inversion formula. (Chinese) Nanjing Daxue Xuebao Shuxue Bannian Kan 12 (1995), no. 2, 264-271.
Z871.11012; M97d:05009; R1997,12V234

[3] Congruences for Bernoulli numbers and Bernoulli polynomials. Discrete Math. 163 (1997), no. 1-3, 153-163.

Z872.11012; M98b:05001

[4] Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105 (2000), no. 1-3, 193-223.
Z0990.11008; M2001m:11022

[5] Invariant sequences under binomial transformation. Fibonacci Quart. 39 (2001), no. 4, 324-333.
Z0987.05013; M2002f:11012

[6] Five congruences for primes. Fibonacci Quart. 40 (2002), no. 4, 345-351.
Z1009.11004; M2003k:11004; R03.02-13A.126

SUN ZHI-WEI,
[1] Products of binomial coefficients modulo $p\sp 2$. Acta Arith. 97 (2001), no. 1, 87-98.
Z0986.11009; M2002m:11013

[2] General congruences for Bernoulli polynomials. Discrete Math. 262 (2003), no. 1-3, 253-276.
M2003m:11037

[3] On Euler numbers modulo powers of two. J. Number Theory 115 (2005), no. 2, 371-380.
M2006f:11018

[4] Explicit congruences for Euler polynomials. Number theory, 205--218, Dev. Math., 15, Springer, New York, 2006.
M2007a:11025

Sun, Zhi-Wei; Pan, Hao,
[1] Identities concerning Bernoulli and Euler polynomials. Acta Arith. 125 (2006), no. 1, 21--39.

SUN ZHI-WEI: see also GRANVILLE A., SUN ZHI-WEI

SUNSERI R.F.,
[1] Zeros of p-adic L-functions and densities relating to Bernoulli numbers, Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, 1979.

SUNDARAM S.,
[1] Plethysm, partitions with an even number of blocks and Euler numbers. Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994), 171--198, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24, Amer. Math. Soc., Providence, RI, 1996.
Z845.05100; M97c:05162

SURY B.,
[1] The value of Bernoulli polynomials at rational numbers. Bull. London Math. Soc., 25 (1993), no. 4, 327-329.
Z807.11014; M94g:11018; R1995,3A64

[2] Values of Euler polynomials. C. R. Math. Acad. Sci. Soc. R. Can. 23 (2001), no. 1, 12-15.
Z0977.11010; M2001k:11030

SUTTON J.R.,
[1] A series related to Bernoulli's numbers, Nature, 66 (1902), 492.
J33.0291.02

SWINNERTON-DYER H.P.F.,
[1] On $l$-adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable, III (Proc. Int. Summer School, Univ. Antwerp, 1972), pp. 1-55. Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973.
Z267.10032; M53#10717a; R1974,6A443

SYLVESTER J.J.,
[1] Note on the numbers of Bernoulli and Euler, and a new theorem concerning prime numbers, Phil. Magaz., 21 (1861), 127-136.

[2] Sur une properiété de nombres premiers qui se rattache au dernier théorème de Fermat, C.R. Acad. Sci., Paris, 52 (1861), 161-163.

[3] Addition à la précédente note, C.R. Acad. Sci., Paris, 52 (1861), 212-214.

[4] Note relative aux communications faites dans les séances des 28 Janvier et 4 Fèvrier 1861, C.R. Acad. Sci., Paris, 52 (1861), 307-308.

SZÁSZ O.,
[1] Über die Approximation stetiger Funktionen durch Bernoullische Polynome, J. Reine Angew. Math., 148 (1918), 183-188.
J46.0420.02

SZEGÖ G.: see POLYA G., SZEGÖ G.

SZENES, A.,
[1] Iterated residues and multiple Bernoulli polynomials, Internat. Math. Res. Notices 1998, no. 18, 937-956.
Z990.19296; M2000m:11022

[2] Residue theorem for rational trigonometric sums and Verlinde's formula. Duke Math. J. 118 (2003), no. 2, 189-227.

SZMIDT J., URBANOWICZ J.,
[1] Some new congruences for generalized Bernoulli numbers of higher orders, preprint, 30pp.

SZMIDT J., URBANOWICZ J., ZAGIER D.,
[1] Congruences among generalized Bernoulli numbers. Acta Arith., 71 (1995), no. 3, 273-278.
Z829.11011; M96f:11032; R1996,4A75


Back to Index       Back to R       On to T