Back to Index Back to N On to P-Q
OBRESCHKOFF N.,
[1] Neue Quadraturformeln, Abhandl. der Preussisch. Akad. d.
Wissen., math.-naturw. Kl., (1940), no. 4, 1-20.
J66.0581.03; Z24.02602; M2-284c
D'OCAGNE M.,
[1] Sur une classe de nombres remarquables.
American J. Math. 9 (1887), no. 4, 353-380.
J19.0241.01
[2] Sur les nombres de Bernoulli, Bull. Soc. Math. France, 17
(1889), 107-109.
J21.0248.01
[3] Sur une classe de nombres rationnels réductibles aux
nombres de Bernoulli.
Bull. des sciences math. (2), 28 (1904), 29-32.
J35.0449.01
ODLYZKO A.M., SCHÖNHAGE A.,
[1] Fast algorithms for multiple evaluation of the Riemann zeta function,
Trans. Amer. Math. Soc., 309 (1988), no. 2, 797-809.
Z706.11047; M89j:11083; R1989,5G177
OESTERLÈ J.,
[1] Travaux de Ferrero et Washington sur le nombre de classes
d'idéaux des corps cyclotomiques, Lect. Notes Math.,
770 (1980), 170-182.
Z436.12003; M81i:12005; R1980,9A345
OETTINGER L.,
[1] Beiträge zur Summirung der Reihen,
Archiv der Math. und Phys., 26 (1856), 1-42.
OHM M.,
[1] De nonnullis problematis analyticis caute tractandis,
Mémoires présentés à l'Academie Imperiale des
Sciences de St. Petersbourg par divers savants,
1 (1831), 109-130.
[2] Etwas über die Bernoulli'schen Zahlen, J. Reine Angew. Math., OHTSUKI M.: see KATAYAMA K., OHTSUKI M.
OKADA S.,
[1] Generalized Maillet determinant, Nagoya Math. J.,
94 (1984), 165-170.
Z535.12005; M85j:11147; R1985,12A387
[2] Kummer's theory for function fields,
J. Number Theory, 38 (1991), no. 2, 212-215.
Z728.11031; M92e:11134
[3] A calculus of Bernoulli numbers for function fields.
Mem. Gifu Nat. Coll. Technol. (2000), no. 35, 1-4.
R01.03-13A.172
OKADA T.,
[1] Dirichlet series with periodic algebraic coefficients,
J. London Math. Soc., 33 (1986), no. 1, 13-21.
Z589.10034; M87i:11087; R1986,12A114
OKAZAKI R.,
[1] On evaluation of $L$-functions over real quadratic fields.
J. Math. Kyoto Univ., 31 (1991), no. 4, 1125-1153.
Z776.11071; M93b:11154
OLIVIER M.: see COHEN H., OLIVIER M.
OLSON F.R.,
[1] Some determinants involving Bernoulli and Euler numbers of
higher order, Pacific J. Math., 5 (1955), 259-268.
Z68.28401; M16-988i; R1956,3658
[2] Arithmetical properties of Bernoulli numbers of higher order,
Duke Math. J., 22 (1955), 641-653.
Z66.29101; M17-238b; R1956,5709
OLSON F.R.: see also CARLITZ L., OLSON F.R.
OLTRAMARE G.,
[1] Mémoire sur les nombres inférieurs et premiers, à un
nombre donné, Mémoire de l'Inst. Nat. Genèvois,
4 (1856), 1-10.
OLVER F.W.J.,
[1] Asymptotics and special functions. Academic Press, New York,
1974. xvi + 572 pp.
Z303.41035; M55#8655; R1975,3B32K
ONG Y.L.: see EIE M., ONG Y.L.
ONO K.,
[1] Indivisibility of class numbers of real quadratic fields,
Compositio Math. 119 (1999), no. 1, 1-11.
M2000i:11169
ONO K.: see also BALOG A., DARMON H., ONO K.
OPOLKA H.: see SCHARLAU W., OPOLKA H.
ORIAT B.,
[1] Lien algébrique entre les deux facteurs de la formule analytique
du nombre de classes dans les corps abéliens,
Acta Arith., 46 (1986), no. 4, 331-354.
Z615.12005; M88c:11063; R1987,6A370
ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.,
[1] A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=1(1)61$.
Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., No. 20
(1987),11-31. Corrigenda: Ibid. 22 (1989), 133-134.
Z682.10011; Z697.10008; M89e:11016
[2] A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=1(1)61$.
Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., No. 21
(1988), 49-64.
Z682.10012; M90g:11026
ORTEGA ARAMBURU J.M.
[1] Euler, series y algunas funcciones especiales,
Butl. Soc. Catalana Ciènc. Fís. Quím. Mat. (2), 2
(1984), no. 4, 384-404.
Z545.01004; M86i:01026
OSIPOV Yu.V.,
[1] p-adic Fourier transform. (Russian) Uspekhi. Mat. Nauk., 34 (1979),
no. 5(209), 227-228.
Z431.43004; M81b:12021; R1980,4B987
[2] p-adic zeta-functions and Bernoulli numbers. (Russian) Studies in number
theory, 6, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
93 (1980), 192-203, 228.
Z467.12019; M81f:12012; R1980,9A344
[3] On p-adic distributions. (Russian) Uspekhi Mat. Nauk., 37 (1982),
no. 3(225), 193-194.
Z498.43007; M84d:12016; R1982,11B963
T.J. Osler,
[1] Finding $\zeta(2p)$ from a product of sines,
Amer. Math. Monthly 111 (2004), no. 1, 52-54.
M2026315
ÖSTLUND J.,
[1] Ett elementärt bevis för Bernoullis formel för
potenssummor.
Ark. för Mat., Astron. och Fys., 8 (1912), no. 12, 3p.
J43.0345.07
[2] Sur le théorème de v. Staudt concernant le
propriétés des nombres de Bernoulli.
Ark. för Mat., Astron. och Fys., 11 (1916), 4 p.
J46.0358.03
OSTMANN H.-H.,
[1] Additive Zahlentheorie, Teil II.
Springer-Verlag, Berlin, 1956. 133 pp.
Z72.03102; M20#5176; R1957,1137
OSTROGRADSKY M.V.,
[1] Mémoire sur les quadratures définies, Zap. Peterb.
Akad. Nauk, VI ser., Fiz.-mat. Nauki, 2 (1841), 322-323.
OSTROWSKI A.,
[1] On the zeros of Bernoulli polynomials of even order,
Enseign. Math. (2), 6 (1960), 27-47. (Collected
Mathematical Papers, vol. 1, 764-784.)
Z103.25401; M23#A3868; R1962,1B48
OTA K.,
[1] On Kummer-type congruences for derivatives of Barnes' multiple Bernoulli
polynomials. J. Number Theory 92 (2002), no. 1, 1-36.
Z0993.11008; M2003c:11021
[2] Dedekind sums with characters and class numbers of imaginary quadratic fields. Acta Arith. 108 (2003), no. 3, 203-215.
[3] Derivatives of Dedekind sums and their reciprocity law. J. Number Theory 98 (2003), no. 2, 280-309.
OTA K.: see also NAGASAKA Y., OTA K., SEKINE C.
OTSUBO T.,
[1] Algebraic surfaces derived from quaternion algebras
over real quadratic fields,
Siatama Math. J., 3 (1985), 1-10.
Z607.14028; M87b:14018; R1986,5A541
OUTLAW C., SARAFYAN D., DERR L.,
[1] Generalization of the Euler-Maclaurin formula for Gauss,
Lobatto and other quadrature formulas, Rend. Mat. (7), 2
(1982), no. 3, 523-530.
Z508.65008; M84i:65031; R1983,7B1015
OVERHOLTZER G.,
[1] A new application of the Schur derivative,
Bull. Amer. Math. Soc., 51 (1945), no. 4, 313-324.
Z60.08603; M6-255f
[2] Sum functions in elementary $p$-adic analysis,
Amer. J. Math., 74 (1952), 332-346.
M14-21g
OWENS R.W.,
[1] Sums of powers of integers.
Math. Mag., 65 (1992), no. 1, 38-40.
Z765.11007; M93a:11017
ÖZLÜK A.E., SNYDER C.,
[1] An identity involving Nörlund polynomials,
Bull. Austral. Math. Soc., 43 (1991), no. 2, 307-315.
Z711.11011; M92c:11046; R1991,11B25
Back to Index Back to N On to P-Q