Bernoulli Bibliography

C


Back to Index       Back to B       On to D


CAI TIANXIN,
[1] A congruence involving the quotients of Euler and its applications. I. Acta Arith. 103 (2002), no. 4, 313-320.
M2003d:11007

CAI TIAN XIN, GRANVILLE A.,
[1] On the residues of binomial coefficients and their products modulo prime powers. Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 2, 277-288.
M2003e:11003

CALABI E.: see BEUKERS F., KOLK J.A.C., CALABI E.

Caira, R.; Dell'Accio, F.,
[1] Shepard-Bernoulli operators. Math. Comp. 76 (2007), no. 257, 299--321.

CALLAN D.,
[1] Letter to the editor: "A new approach to Bernoulli polynomials" by D.H. Lehmer, Amer. Math. Monthly, 96 (1989), no.6, 510.
M90g:11024

CALLANDREAU O.,
[1] Sur la formule sommatoire de Maclaurin, C.R. Acad. Sci., Paris, 86 (1878), 589-592.
J10.0178.01

ÇALLIALP F.,
[1] On the class number of real quadratic fields and the Riemann hypothesis (Turkish, English summary), Doga Math., 14 (1990), no. 2, 114-119.
M91h:11121

CAMERON D.,
[1] Euler and Maclaurin made easy, Math. Sci., 12 (1987), no. 1, 3-20.
Z649.41016; M89g:41021; R1988,1B4

CAMPBELL R.,
[1] Les intégrales eulériennes et leurs applications. Étude approfondie de la fonction gamma. Collection Universitaire de Mathématiques, XX. Dunod, Paris 1966 xxv+268 pp.
Z174.36201; M34#6161; R1967,9B132K

Can, Mümün; Cenkci, Mehmet; Kurt, Veli,
[1] A recurrence relation for Bernoulli numbers. Bull. Korean Math. Soc. 42 (2005), no. 3, 617-622.
M2006d:11021

CAN MIMIN: see also CENKCI M., CAN MIMIN, KURT V.

CANDELPERGHER B., COPPO M.A., DELABAERE E.,
[1] La sommation de Ramanujan, Enseign. Math. (2) 43 (1997), no. 1-2, 93-132.
Z884.40008; M99a:11149

CANTERZANI S.,
[1] Lettera a Torquato Vareno, sopra una maniera di cavare i numeri Bernoulliani, Mem. Mat. e Fis. Soc. Ital., Modena, CAO ZHEN FU,
[1] On the Diophantine equation $x^4-py\sp 2=z\sp p$ C. R. Math. Rep. Acad. Sci. Canada 17 (1995), no. 2-3, 61-66. Corrig.: C. R. Math. Rep. Acad. Sci. Canada 18 (1996), no. 5, 233-234.
Z857.11011; M96h:11020, 97i:11026

CARDA K.,
[1] Zur Theorie der Bernoullischen Zahlen, Monatsh. Math. und Phys., 5 (1894), 185-192.
J25.0412.02

[2] Zur Darstellung der Bernoullischen Zahlen durch bestimmte Integrale, Monatsh. Math. und Phys., 5 (1894), 321-324.
J25.0413.01

[3] Über eine Beziehung zwischen bestimmten Integralen, Monatsh. Math. und Phys., 6 (1895), 121-126.
J26.0317.02

CARLITZ L.,
[1] An analogue of the von Staudt-Clausen theorem, Duke Math. J., 3 (1937), 503-517.
J63.0879.03; Z17.19501

[2] An analogue of the von Staudt-Clausen theorem, Duke Math. J., 7 (1940), 62-67.
J66.0056.01; Z24.24410; M2-146e

[3] An analogue of the Bernoulli polynomials, Duke Math. J., 8 (1941), 405-412.
J67.0060.02; Z25.09804; M2-342e

[4] Generalized Bernoulli and Euler numbers, Duke Math. J., 8 (1941), 585-589.
J67.0995.02; Z63.00704; M3-67b

[5] The coefficients of the reciprocal of a series, Duke Math. J., 8 (1941), no. 3, 689-700.
Z63.00705; M3-147j

[6] q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987-1000.
Z32.00304; M10-283g

[7] Some properties of Hurwitz series, Duke Math. J., 16 (1949), no. 2, 285-295.
Z41.17401; M10-593e

[8] Congruences for the coefficients of the Jacobi elliptic functions, Duke Math. J., 16 (1949), no. 2, 297-302.
Z38.17903; M10-593f

[9] Congruences for the coefficients of hyperelliptic and related functions, Duke Math. J., 19 (1952), no. 2, 329-337.
Z48.03001; M13-913j

[10] Note on irreducibility of the Bernoulli and Euler polynomials, Duke Math. J., 19 (1952), 475-481.
Z47.25401; M14-163h

[11] Some theorems on Bernoulli numbers of higher order, Pacific J. Math., 2 (1952), 127-139.
Z46.04005; M14-138d

[12] A divisibility property of the Bernoulli polynomials, Proc. Amer. Math. Soc. 3 (1952), 604-607.
Z49.16304; M14-539d

[13] A note on Bernoulli numbers and polynomials of higher order, Proc. Amer. Math. Soc., 3 (1952), 608-613.
Z49.16305; M14-539e

[14] Some congruences for the Bernoulli numbers, Amer. J. Math., 75 (1953), 163-172.
Z50.03902; M14-539c; R1954,2861

[15] Some congruences of Vandiver, Amer. J. Math., 75 (1953), 707-712.
Z51.27603; M15-201a; R1954,4340

[16] Some sums containing Bernoulli functions, Amer. Math. Monthly, 60 (1953), 475-476.
Z51.00705; M15-104h; R1954,3209

[17] A theorem of Glaisher, Canad. J. Math., 5 (1953), 306-316.
Z52.03802; M14-1064b; R1954,3216

[18] Note on the class number of real quadratic fields, Proc. Amer. Math. Soc., 4 (1953), 535-537.
M15-104g; R1954,3214

[19] Some sums connected with quadratic residues, Proc. Amer. Math. Soc., 4 (1953), 12-15.
Z50.26704; M14-621e; R1953,565

[20] A note on Bernoulli and Euler numbers of order $\pm p$, Proc. Amer. Math. Soc., 4 (1953), 178-183.
Z51.27602; M14-1064d; R1954,1051

[21] Remark on a formula for the Bernoulli numbers, Proc. Amer. Math. Soc., 4 (1953), 400-401.
Z50.00905; M14-973h; R1954,2518

[22] A note on the multiplication formulas for the Bernoulli and Euler polynomials, Proc. Amer. Math. Soc., 4 (1953), 184-188.
Z51.25002; M14-640h; R1953,1052

[23] A special congruence, Proc. Amer. Math. Soc., 4 (1953), 933-936.
Z52.03801; M15-400h; R1955,55

[24] The class number of an imaginary quadratic field, Comm. Math. Helv., 27 (1953), 338-345.
Z52.03402; M15-404d; R1955,2540

[25] Some theorems on Kummer's congruences, Duke Math. J., 20 (1953), 423-431.
Z51.27604; M15-10f; R1954,3614

[26] The multiplication formulas for the Bernoulli and Euler polynomials, Math. Mag., 27 (1953), 59-64.
Z51.30704; M15-308g; R1955,1813

[27] Some theorems on the Schur derivative, Pacific J. Math., 3 (1953), 321-332.
Z50.03805; M14-951e; R1954,3217

[28] Some theorems on generalized Dedekind sums, Pacific J. Math., 3 (1953), 513-522.
Z57.03701; M15-12b; R1954,3219

[29] Some congruences of Bernoulli numbers of higher order, Quarter. J. Math. Oxford Ser.(2), 4 (1953), 112-116.
Z50.26703; M14-1064c; R1954,1976

[30] Note on a theorem of Glaisher, J. London Math. Soc., 28 (1953), 245-246.
Z50.26702; M14-726b; R1953,566

[31] The first factor of the class number of a cyclic field, Canad. J. Math., 6 (1954), 23-26.
Z55.03401; M15-686b; R1954,5046

[32] A theorem of Ljunggren and Jacobsthal on Bernoulli numbers, Proc. Amer. Math. Soc., 5 (1954), 34-37.
Z55.03506; M15-507a; R1955,611

[33] Note on irregular primes, Proc. Amer. Math. Soc., 5 (1954), 329-331.
Z58.03702; M15-778b; R1955,2090

[34] $q$-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332-350.
Z58.01204; M15-686a; R1956,180

[35] Hankel determinants and Bernoulli numbers, Tôhoku Math. J. (2), 5 (1954), 272-276.
Z55.27003; M15-777d; R1955,3052

[36] Note on the cyclotomic polynomial, Amer. Math. Monthly, 61 (1954), 106-108.
Z55.03507; M15-508d; R1955,612

[37] A note on generalized Dedekind sums, Duke Math. J., 21 (1954), 399-403.
Z57.03802; M16-14f; R1955,3603

[38] Dedekind sums and Lambert series, Proc. Amer. Math. Soc., 5 (1954), 580-584.
Z57.03702; M16-14d; R1955,4853

[39] Extension of a theorem of Glaisher and some related results, Bull. Calcutta Math. Soc., 46 (1954), no. 2, 77-80.
Z56.26801; M16-570b; R1955,4853

[40] A note on power residues, Duke Math. J., 22 (1955), no. 4, 583-587.
M17-713d; R1959,9743

[41] Note on the class number of quadratic fields, Duke Math. J., 22 (1955), 589-593.
Z66.02703; M17-713e; R1959,9743

[42] A degenerate Staudt-Clausen theorem, Arch. Math. und Phys., 7 (1956), 28-33.
Z70.04003; M17-586a; R1956,7091

[43] Arithmetic properties of elliptic functions, Math. Z., 64 (1956), no. 4, 425-432.
Z72.03302; M17-1057e; R1958,8953

[44] A note on Bernoulli numbers of higher order, Scripta Math., 22 (1956), 217-221.
Z78.03201; M19-941c; R1958,4477

[45] The coefficients of $\sinh x/ \sin x$, Math. Mag., 29 (1956), 193-197.
Z70.27301; M17-944e; R1957,83

[46] A note on Kummer's congruences, Arch. Math., 7 (1957), 441-445.
Z77.05103; M19-120a; R1957,8427

[47] A note on the Staudt-Clausen theorem, Amer. Math. Monthly, 64 (1957), 19-21.
Z77.05104; M18-560c; R1957,7620

[48] Some polynomials of Touchard connected with the Bernoulli numbers, Canadian J. Math., 9 (1957), no. 2, 188-190.
Z77.28103; M19-27e; R1959,534

[49] Expansion of q-Bernoulli numbers, Duke Math. J., 25 (1958), 355-364.
Z102.03201; M20#2480; R1959,4425

[50] Bernoulli and Euler numbers and orthogonal polynomials, Duke Math. J., 26 (1959), 1-15.
Z85.28702; M21#2761; R1960,1287

[51] Multiplication formulas for products of Bernoulli and Euler polynomials, Pacific J. Math., 9 (1959), no. 3, 661-666.
Z89.28002; M21#7317; R1961,4B458

[52] Some congruences involving binomial coefficients, Elem. Math., 14 (1959), no. 1, 11-13.
Z85.02802; M20#6384; R1959,9762

[53] Composition of sequences satisfying Kummer's congruences, Memoria publicada en Collectanea Mathematica (Barcelona), XI (1959), 137-152.
Z96.02701; M22#4671; R1961,2A97

[54] Note on the coefficients of $\cosh x / \cos x$, Math. Mag., 32 (1959), 132-136.
Z95.26201; M21#2754; R1960,1316

[55] Eulerian numbers and polynomials, Math. Mag., 32 (1959), no. 5, 247-260.
Z92.06601; M21#3596; R1961,1B349

[56] Some finite summation formulas of arithmetic character, Publ. Math. Debrecen, 6 (1959), 262-268.
Z97.26402; M22#1549; R1962,2A142

[57] A property of the Bernoulli numbers, Amer. Math. Monthly, 66 (1959), 714-715.
R1960,8581

[58] Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math., 202 (1959), 174-182.
Z125.02202; M22#20; R1960,8580

[59] Some arithmetic properties of generalized Bernoulli numbers, Bull. Amer. Math. Soc., 65 (1959), 68-69.
Z86.03201; M21#3383; R1960,6167

[60] Note on the integral of the product of several Bernoulli polynomials, J. London Math. Soc., 34 (1959), 361-363.
Z86.05801; M21#5750; R1960,10534

[61] Kummer's congruences $\pmod{2^r}$, Monatsh. Math., 63 (1959), 394-400.
Z103.02602; M21#6350; R1960,6145

[62] A special case of Kummer's congruences $\pmod{2^e}$, Enseigment Math. (2), 5 (1959), 171-175 (1960).
Z104.26701; M23#A1587; R1960,12480

[63] Note on Nörlund's polynomial $B_n^{(z)}$, Proc. Amer. Math. Soc., 11 (1960), 452-455.
Z100.01705; M22#5587; R1961,3B61

[64] Eulerian numbers and polynomials of higher order, Duke Math. J., 27 (1960), no. 3, 401-423.
Z104.29003; M23#A1588; R1961,6A139

[65] Multiplication formulas for generalized Bernoulli and Euler polynomials, Duke Math. J., 27 (1960), no. 4, 537-545.
Z132.05503; M22#9636; R1961,12B314

[66] A property of the Bernoulli numbers, Amer. Math. Monthly, 67 (1960), no. 10, 1011-1012.
R1961,9A148

[67] Kummer's congruences for the Bernoulli numbers, Portug. Math., 19 (1960), 203-210.
Z95.03004; M23#A2361; R1961,9A153

[68] A note on Bernoulli and Euler polynomials of the second kind, Scripta Math., 25 (1961), no. 4, 323-330.
Z118.06501; M25#4138; R1963,3B44

[69] Criteria for Kummer's congruences, Acta Arith., 6 (1961), 375-391.
Z99.02805; M27#4786; R1952,3A104

[70] The Staudt-Clausen theorem, Math. Mag., 34 (1961), 131-146.
Z122.04702; M24#A258; R1961,12A212

[71] A generalization of Maillet's determinant and a bound for the first factor of the class-number, Proc. Amer. Math. Soc., 12 (1961), 256-261.
Z131.03602; M22#12093; R1962,1A139

[72] Some generalized multiplication formulas for the Bernoulli polynomials and related functions, Monatsh. Math., 66 (1962), no. 1, 1-8.
Z102.05503; M25#2244; R1963,3B44

[73] A note on sums of powers of integers, Amer. Math. Monthly, 69 (1962), 290-291.

[74] A conjecture concerning the Euler numbers, Amer. Math. Monthly, 69 (1962), no.6, 538-540.
Z105.26403; R1963,4B55

[75] A note on Eulerian numbers, Arch. Math., 14 (1963), 383-390.
Z116.25103; M28#3960

[76] Some formulas for the Bernoulli and Euler polynomials, Math. Nachr., 25 (1963), 223-231.
Z112.04501; M27#2663; R1964,1B53

[77] Generalized Dedekind sums, Math. Z., 85 (1964), no. 1, 83-90.
Z122.05104; M29#3427; R1965,3A135

[78] Summation of certain series, Amer. Math. Monthly, 71 (1964), 41-44.
Z129.04601; R1964,12B33

[79] Recurrences for the Bernoulli and Euler numbers, J. Reine Angew. Math., 214/215 (1964), 184-191.
Z126.26204; M28#3961; R1965,3A136

[80] Extended Bernoulli and Eulerian numbers, Duke Math. J., 31 (1964), 667-689.
Z127.29501; M29#5796; R1965,7B39

[81] Recurrences for the Bernoulli and Euler numbers II, Math. Nachr., 29 (1965), 151-160.
Z151.01501; M31#5825; R1967,8V221

[82] The coefficients of $\cosh x/ \cos x$, Monatsh. Math., 69 (1965), 129-135.
Z141.04102; M31#1222; R1965,11A151

[83] Linear relations among generalized Dedekind sums, J. Reine Angew. Math., 220 (1965), 154-162.
Z148.27305; M32#88; R1966,10A79

[84] A theorem on generalized Dedekind sums, Acta Arith., 11 (1965), no. 2, 253-260.
Z131.28801; M32#87; R1966,5A110

[85] The irreducibility of the Bernoulli polynomial $B_{14}(x)$, Math. Comp., 19 (1965), 667-670.
Z135.01703; M33#117; R1966,9A128

[86] Some properties of the Nörlund polynomial $B_n^{(x)}$, Math. Nachr., 33 (1967), 297-311.
Z154.29301; M36#129; R1967,12V280

[87] Bernoulli numbers, Fibonacci Quart., 6 (1968), no.3, 71-85.
Z159.05601; M38#1071; R1970,6V335

[88] Some unusual congruences for the Bernoulli and Genocchi numbers, Duke Math. J., 35 (1968), 563-566.
Z169.36803; M37#2672; R1969,6V225

[89] A conjecture concerning Genocchi numbers, K. Norske Vidensk. Selsk. Sk., (1971), No. 9, 1-4.
Z245.05004; M45#6749; R1972,4B73

[90] A note on Bernoulli numbers and polynomials, Elemente Math., 29 (1974), 90-92.
Z283.10003; M50#4604; R1975,2V454

[91] Note on some convolved power sums, SIAM J. Math. Anal., 8 (1977), no. 4, 701-709.
Z363.10008; M56#3384; R1978,2V417

[92] Generalized Stirling and related numbers, Revista Mat. Univ. Parma (4), 4 (1978), 79-99.
Z402.10017; M80h:10017; R1980,7V487

[93] A characterization of the Bernoulli and Euler polynomials, Rend. Sem. Mat. Univ. Padova, 62 (1980), 309-318.
Z443.33020; M81k:10020; R1981,8V590

[94] Some polynomials related to the Bernoulli and Euler polynomials, Util. Math., 19 (1981), 81-127.
Z474.10012; M82j:10023; R1981,12B38

[95] Some remarks on the multiplication theorems for the Bernoulli and Euler polynomials, Glas. Math. (3), 16 (36) (1981), no. 1, 3-23, (Serbo-Croatian Summary).
Z474.10013; M83b:10009; R1982,3B34

[96] The reciprocity theorem for Dedekind sums, Pacific J. Math., 3 (1953), 523-527.
R1954,2515

[97] A note on Euler numbers and polynomials, Nagoya Math. J., 7 (1954), 35-43.
M16-220; R1956,179

[98] Note on a formula of Hermite, Math. Mag., 33 (1959/60), 7-11.
M21#5602; R1960,9983

[99] A recurrence formula for $\zeta(2n)$. Proc. Amer. Math. Soc., 12 (1961), no. 6, 991-992.
Z101.03901; M24#A3140; R1962,7B42

[100] Some arithmetic properties of a special sequence of integers, Canad. Math. Bull., 19 (1976), no. 4, 425-429.
M56#239

[101] Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51-88.
Z404.05004; M80i:05014; R1979,11V408

[102] Explicit formulas for the Dumont-Foata polynomials, Discrete Math., 30 (1980), no. 3, 211-225.
M81f:05007; R1980,10V450

[103] Some restricted multiple sums, Fibonacci Quart. 18 (1980), no. 1, 58-65.
Z426.10014; M84c:05012; R1980,9A119

[104] Some arithmetic properties of the Olivier functions, Math. Ann., 128 (1955), 412-419.
Z065.27203; M16,677b; R1956,181

[105] Generating functions, Fibonacci Quart. 7 (1969), no. 4, 359-393.
Z194.00701; M41 #8254; R1970,10V210

[106] A note on the generalized Wilson's theorem. Amer. Math. Monthly 71 (1964), 291-293.
Z0129.02507; M28 #3962; R1962,1A157

CARLITZ L., LEVINE J.,
[1] Some problems concerning Kummer's congruences for the Euler numbers and polynomials, Trans. Amer. Math. Soc., 96 (1960), 23-37.
Z99.02902; M22#6768; R1961,5A150

CARLITZ L., OLSON F.R.,
[1] Some theorems on Bernoulli and Euler numbers of higher order, Duke Math. J., 21 (1954), 405-421.
Z56.03604; M15-934b; R1955,4216

CARLITZ L., RIORDAN J.,
[1] Congruences for Eulerian numbers, Duke Math. J., 20 (1953), no. 3, 339-343.
Z51.27601; M15-10e; R1954,4341

[2] The divided central difference of zero, Canad. J. Math., 15 (1963), 94-100.
Z108.25106; M26#48

CARLITZ L., SCOVILLE R.,
[1] The sign of the Bernoulli and Euler numbers, Amer. Math. Monthly, 80 (1973), 548-549.
Z273.10012; M47#4917

[2] Tangent numbers and operators, Duke Math. J., 39 (1972), 413-429.
Z243.05009; M46#1968; R1973,5V422

[3] Enumeration of up-down permutations by upper records, Monatsh. Math., 79 (1975), 3-12.
Z315.05004; M50#12748; R1975,10V259

[4] Enumeration of rises and falls by position, Discrete Math., 5 (1973), 45-59.
Z259.05008; M47#1626; R1973,11B434

[5] Generating functions for certain types of permutations, J. Combinatorial Theory Ser. A, 18 (1975), no. 3, 262-275.
Z303.05007; M51#7890; R1975,11B334

CARLITZ L., STEVENS H.,
[1] Criteria for generalized Kummer's congruences, J. Reine Angew. Math., 207 (1961), 203-220.
Z99.02901; M23#A1585; R1962,3A105

CARLITZ L.: see also AL-SALAM W.A., CARLITZ L.

CARMICHAEL R.D.,
[1] The theory of numbers and diophantine analysis, New York, 1915.
J45.0283.11

CARR G.S.,
[1] A synopsis of elementary results in pure mathematics containing propositions, formulae, and methods of analysis, with abridged demonstrations. Macmillan and Bowes, Cambridge, 1886. xxxvi + 936 pp.
J17.1154.01

CARTIER P.,
[1] An introduction to zeta functions. From number theory to physics (Les Houches, 1989), 1-63. Springer, Berlin, 1992.
Z790.11061; M94b:11081

CARTIER P., ROY Y.,
[1] Certains calculs numériques relatifs à l'interpolation p-adique des séries de Dirichlet. In: Modular functions of one variable III, pp. 269-349. Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973.
Z265.10021; M48#8451; R1974,6A447

CASSELS J.W.S.,
[1] Local Fields. London Math. Soc. Student Texts, 3. Cambridge Univ. Press, Cambridge-New York, 1986. xiv + 360 pp.
Z595.12006; M87i:11172; R1987,8A307

CASSOU-NOGUÈS PH., TAYLOR M.J.,
[1] Un élément de Stickelberger quadratique, J. Number Theory, 37 (1991), no. 3, 307-342.
Z719.11075; M92e:11125

CASSOU-NOGUÈS P.,
[1] Formes linéaires p-adiques et prolongement analytique. Sémin. Théor. Nombres, 1970-71 (Univ. Bordeaux I, Talence), Exp. No. 14, 7 pp., Talence, 1971.
Z227.12005; M53#2904

[2] Formes linéaires p-adiques et prolongement analytique, C.R. Acad. Sci. Paris, A 274 (1972), 5-8.
Z227.12005; M45#5092; R1972,6A348

[3] Formes linéaires p-adiques et prolongement analytique, Bull. Soc. Math. France, (1974), Suppl., no. 39/40, 23-26.
Z301.12004; M50#12985; R1975,7A475

[4] Analogues p-adiques de certaines fonctions arithmétiques. Sémin. Théor. Nombres, 1974-75 (Univ. Bordeaux I, Talence), Exp. No. 24, 12 pp., Talence, 1975.
Z386.12011; M53#363; R1976,7A434

[5] Prolongement analytique et valeurs aux entiers négatifs de certaines séries arithmétiques relatives à des formes quadratiques. Sémin. Théor. Nombres, 1975-76 (Univ. Bordeaux I, Talence), Exp. No. 4, 34 pp., Talence, 1976.
Z227.12005; M55#12696

[6] Valeurs aux entiers négatifs des fonctions zêta et des fonctions zêta p-adiques, Invent. Math., 51 (1979), no. 1, 29-59.
Z408.12015; M80h:12009b; R1979,9A328

[7] Séries de Dirichlet. Séminaire de théorie des nombres. Univ. Bordeaux I, Année 1980-81, Exposé no. 22, 14 pp. (1981).
Z507.12007; M84b:12017

[8] Applications arithmétiques de l'étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme, Ann. Inst. Fourier, 31 (1981), Suppl., fasc. 4, 1-36.
Z496.12009; M83e:12011; R1982,6A114

[9] Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme, 1, J. Number Theory, 14 (1982), no. 1, 32-64.
Z496.12008; M83e:12012; R1982,8A359

CASTELLANOS D.,
[1] The ubiquitous $\pi$. I. Math. Mag., 61 (1988), no. 2, 67-98.
Z654.10001; M89c:01025; R1989,3A7

[2] The ubiquitous $\pi$. II. Math. Mag., 61 (1988), no. 3, 148-163.
M89c:11184

[3] A generalization of Binet's formula and some of its consequences. Fibonacci Quart., 27 (1989), no. 5, 424-438.
Z689.10020; M91e:11018

[4] A note on Bernoulli polynomials, Fibonacci Quart., 29 (1991), no. 2, 98-102.
Z725.11010; M92h:11018

CATALAN E.,
[1] Sur les différences de $1^p$ et sur le calcul des nombres de Bernoulli, Annali sci. mat. e fis., Roma, 2 (1859), 195-199, Annali di Matematica Pura et Applicata, (1) 2 (1859), 239-243.

[2] Sur les nombres de Bernoulli et sur quelques formules qui en dépendent, C.R. Acad. Sci. Paris, 54 (1862), 1030-1033, 1059-1062.

[3] Remarques sur une note de M. Le Besgue (relative aux nombres de Bernoulli), C.R. Acad. Sci. Paris, 58 (1864), 902-904.

[4] Sur les calcul des nombres de Bernoulli, C.R. Acad. Sci. Paris, 58 (1864), 1105-1108.

[5] Sur les nombres d'Euler, C.R. Acad. Sci. Paris, 66 (1868), 415-416.

[6] Sur les nombres de Bernoulli et d'Euler et sur quelques intégrales définies, Brux. Acad. Sci. Mém., 37 (1869), 1-19.
J02.0155.01

[7] Recherches sur le développement de la fonction $\Gamma$, Bull. de l'Acad., Bruxelles, 36 (1873), 4-16.
J05.0169.01

[8] Note sur les nombres de Bernoulli, Bull. de l'Acad., Bruxelles, 81 (1875), 441-443.
J07.0160.01

[9] Rapport sur la note de Mr. Le Paige, Bull. Acad. Royal Sci. Belgiques (2), 61 (1876), 935-939.

[10] Note sur la communication précédente, Bull. Acad. Royal Sci., Belgiques (2), 41 (1876), 1018-1019.
J08.0147.03

[11] Extrait d'une lettre de M. Catalan à M. G. de Longchamps (Sur les nombres de Bernoulli), Nouv. Corres. Math., 4 (1878), 119.
J8.193

[12] Sur les manières contradictoires de définir les nombres de Bernoulli, Nouv. Corres. Math.,

[13] Extraits d'une lettre à M. Hermite, Nouv. Corres. Math., 6 (1880), 320-321.
J12.0122.02

[14] Théorème de Staudt et de Clausen, Bull. Sci. Math. et Astr. (2), 4 (1880), 77-82.
J12.0128.03

[15] Mélanges mathématiques, Mém. Soc. Royal. Sci., Liège (2), 12 (1885), 1-407.
J17.0022.01

[16] Mémoires de la Sociétée Royale des Sciences, XII (1885), Chapters: XXXII, XXXIII, XXXIV, XXXV, LXXVI, 86-119, 320-327.

CATALAN E.: see also LUCAS E., CATALAN E.

CATTABIANCHI L.T.,
[1] Numeri e polinomi di Bernoulli parametrizzati, Riv. Mat. Univ. Parma (2), 4 (1963), 281-291.
Z149.04402; M32#1378

CAUCHY A.L.,
[1] Sur la théorie des nombres, Bull. Sci. Math., Phys. et Chim., Paris, 15 (1831), 137-139.

[2] Mémoire sur la théorie des nombres, Mémoires Acad. Sci., Paris, 17 (1840), 249-269, 435-455.

CAYLEY A.,
[1] A dissertation on Bernoulli's numbers, Messeng. Math., 4 (1875), 157-160.
J07.0132.02

CELÉRIER C.,
[1] Démonstration d'un théorème fondamental relatif aux facteurs primitifs des nombres premiers, Applications au théorème de Fermat et à la recherche des facteurs primitifs, Mém. Soc. de Phys. et d'Hist. Nat. de Genève, 32 (1896), partie 2, no. 7, 1-61.
J28.0188.03

CELKO M.,
[1] On the sums of some infinite series using the Bernoulli numbers (Slovak). In: Kovácik, O. (Ed.), Proceedings of the seminar on orthogonal polynomials and other applications, held in Zilina, Slovakia. Univ. of Transport and Communications, Dept. of Math., Zilina, 1993. pp. 3-6.
Z793.40002

Cenkci, Mehmet; Can, Mümün,
[1] Some results on $q$-analogue of the Lerch zeta function. Adv. Stud. Contemp. Math. (Kyungshang) 12 (2006), no. 2, 213-223.
M2007c:11098

Cenkci, Mehmet; Can, Mümün; Kurt, Veli,
[1] $p$-adic interpolation functions and Kummer-type congruences for $q$-twisted and $q$-generalized twisted Euler numbers. Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 203-216.
M2005k:11230

[2] $q$-extensions of Genocchi numbers. J. Korean Math. Soc. 43 (2006), no. 1, 183-198.
M2006h:11018

CESARANO C.: see DATTOLI G., LORENZUTTA S., CESARANO C.

CESÀRO E.,
[1] Quelques formules, Nouv. Corres. Math., 6 (1880), 450-452.

[2] Principes du calcul symbolique, Mathesis, 3 (1883), 10-17.
J15.0206.01

[3] Sull' inversione delle indentità arithmetiche, Giorn. Mat., 23 (1885), 168-174.
J17.0138.01

[4] Sur les nombres de Bernoulli et d'Euler, Nouv. Ann. Math. (3), 5 (1886), 305-327, 496.
J18.0227.01

[5] Sur un théorème de M. Lipschitz, et sur la partie fractionnaire des nombres de Bernoulli, Annali Mat., Milano (2), 14 (1886), 221-226.
J18.0226.01

[6] Sur les démonstrations du théorème de Staudt et de Clausen, Bull. Acad. Royale Sci. Belgique (3), 20 (1890), 280-289.
J22.0267.02

[7] A proposito d'una generalizzazione della funzione $\varphi$ di Gauss, Periodico de Mat., 7 (1892), 1-6.
J24.0167.01

[8] Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung mit zahlreichen Übungsbeispielen. Nach einem Manuskript des Verfassers deutsch herausgegeben von G. Kowalewski, Leipzig, 1904.
J35.0294.01

CHABA A.N.: see BEZERRA V.B., CHABA A.N.

CHANG CHENG-HUNG, MAYER D.H.
[1] The transfer operator approach to Selberg's zeta function and modular and Maass wave forms for ${\rm PSL}(2,Z)$. In: Emerging applications of number theory (Minneapolis, MN, 1996), 73-141, IMA Vol. Math. Appl., 109, Springer, New York, 1999.
[2] Eigenfunctions of the transfer operators and the period functions for modular groups. Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999), 1-40, Contemp. Math., 290, Amer. Math. Soc., Providence, RI, 2001.

M2000e:11112

CHANG CHING-HUA, HA CHUNG-WEI,
[1] The Green functions of some boundary value problems via the Bernoulli and Euler polynomials. Arch. Math. (Basel) 76 (2001), no. 5, 360-365.
Z0986.34010; M2002b:34046

[2] On recurrence relations for Bernoulli and Euler numbers. Bull. Austral. Math. Soc. 64 (2001), no. 3, 469-474.
M2002k:11026

[3] On identities involving Bernoulli and Euler polynomials. Fibonacci Quart. 44 (2006), no. 1, 39--45.
M2006m:11023

[4] A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials. J. Math. Anal. Appl. 315 (2006), no. 2, 758--767.
M2006k:11168

CHANG KU-YOUNG, KWON SOUN-HI,
[1] Class number problem for imaginary cyclic number fields, J. Number Theory 73 (1998), no. 2, 318-338.
Z920.11077; M 99i:11102

[2] The imaginary abelian number fields with class numbers equal to their genus class numbers. Colloque International de Théorie des Nombres (Talence, 1999). J. Théor. Nombres Bordeaux 12 (2000), no. 2, 349-365.
Z0972.11107; M 2002b:11157

[3] Class numbers of imaginary abelian number fields. Proc. Amer. Math. Soc. 128 (2000), no. 9, 2517-2528.
Z 0983.11064; M 2000m:11108; R01.06-13A.253

CHARALAMBIDES CH.A.,
[1] Bernoulli related polynomials and numbers, Math. Comp., 33 (1979), no. 146, 794-804.
Z402.10009; M80h:10018; R1980,2V594

CHARKANI EL HASSANI M.,
[1] Involution de Leopoldt et unités elliptiques. Thèse doct. 3ème cycle, math. pure, Univ. Sci. et Méd. Grenoble, 1984, 47 pp.
R1987,5A310D

CHARKANI EL HASSANI M., GILLARD R.,
[1] Unités elliptiques et groupes de classes, Ann. Inst. Fourier, 36 (1986), no. 3, 29-41.
Z597.12005; M88f:11056; R1987,5A311

CHEBYSHEV P.L.,
[1] Note sur différentes séries, J. de Math. (1), 16 (1851), 337-346.

CHELLALI M.,
[1] Nombres de Bernoulli modulo $p^m$ et nombres premiers irréguliers, Thèse Doct. 3ème cycle, math. pure, Univ. Sci. et Méd. Grenoble, (1982), Var. pag.
R1986,9A652

[2] Accélération de calcul de nombres de Bernoulli, J. Number Theory, 28 (1988), no. 3, 347-362.
Z644.10010; M89h:05002; R1988,10A112

[3] Congruences entre nombres de Bernoulli-Hurwitz dans le cas supersingulier, J. Number Theory, 35 (1990), no. 2, 157-179.
Z705.11008; M92f:11079

CHEN HONGWEI,
[1] Bernoulli numbers via determinants. Internat. J. Math. Ed. Sci. Tech. 34 (2003), no. 2, 291-297.

CHEN JING RUN, LI JIAN YU,
[1] On the sums of powers of natural numbers, Chinese Quart. J. Math., 2 (1987), no. 1, 1-17.
Z636.10008; M90i:11108

CHEN KWANG-WU,
[1] Algorithms for Bernoulli numbers and Euler numbers. J. Integer Seq. 4 (2001), no. 1, Article 01.1.6, 7 pp. (electronic).
Z0973.11021; M2002f:11019

[2] Sums of products of generalized Bernoulli polynomials. Pacific J. Math. 208 (2003), no. 1, 39-52.
M2004f:11016

[3] Congruences for Euler numbers. Fibonacci Quart. 42 (2004), no. 2, 128-140.
R05.01 - 13A133

Chen, Kwang-Wu,
[4] A summation on Bernoulli numbers. J. Number Theory 111 (2005), no. 2, 372-391.
M2005k:11039

CHEN KWANG-WU, EIE MINKING,
[1] A note on generalized Bernoulli numbers. Pacific J. Math. 199 (2001), no. 1, 41-59.
M2002k:11148; R02.08-13A.66

CHEN KWANG-WU: see also EIE M., CHEN KWANG-WU

CHEN MING-PO,
[1] An elementary evaluation of $\zeta (2m)$. Chinese J. Math. 3 (1975), no. 1, 11-15.
Z361.10015; M56 #280

CHEN MING-PO, SRIVASTAVA H.M.,
[1] Some families of series representations for the Riemann $\zeta(3)$, Result. Math., 33 (1998), no.3-4, 179-197.
Z980.45948

CHEN TIAN PING,
[1] Asymptotic expansions for splines, Approx. Theory Appl., 2 (1986), no. 2, 1-9.
Z608.41006; M88e:41026

CHEN XUMING,
[1] Recursive formulas for $\zeta(2k)$ and $L(2k-1)$, College Math. J., 26 (1995), no. 5, 372-376.

CHEN ZHI MING,
[1] Some identities for Euler numbers and Bernoulli numbers (Chinese), Pure Appl. Math., 10 (1994), no. 1, 7-10.
Z841.11009; M95h:11015

CHEON GI-SANG,
[1] A note on the Bernoulli and Euler polynomials. Appl. Math. Lett. 16 (2003), no. 3, 365-368.
M2004a:05008; R04.11-13A286
CHILDRESS N., GOLD R.,
[1] Zeros of p-adic L-functions, Acta Arith., 48 (1987), no. 1, 63-71.
Z565.12009; M88i:11091; R1987,12A272

CHISTYAKOV I.I., (TSCHISTIAKOW, J.J.)
[1] Bernullievy chisla [Bernoulli numbers]. Moscow, 1895.
J26.0283.03

CHO HAE-SOOK, KIM EUN-SUP,
[1] A note on $q$-analogue of Volkenborn integral. Proceedings of the Jangjeon Mathematical Society, 81-90, Proc. Jangjeon Math. Soc., 4, Jangjeon Math. Soc., Hapcheon, 2002.
M2003f:11027

CHOI JUNESANG,
[1] Explicit formulas for Bernoulli polynomials of order $n$, Indian J. Pure Appl. Math., 27 (1996), no. 7, 667-674.
Z860.11009; M97e:11029; R00.03-13A.109

[2] Note on Cahen's integral formulas. Commun. Korean Math. Soc. 17 (2002), no. 1, 15-20.
M2003d:11132

J. Choi, H.M. Srivastava,
An experimental conjecture involving closed-form evaluation of series associated with the zeta functions,
Math. Inequal. Appl. 16 (2013), no. 4, 971-979.
M3156474

Choie, Youngju; Kohnen, Winfried; Ono, Ken,
[1] Linear relations between modular form coefficients and non-ordinary primes. Bull. London Math. Soc. 37 (2005), no. 3, 335-341.
M2005m:11081

CHOLEWINSKI F.M.,
[1] The Finite Calculus Associated With Bessel Functions. Contemporary Mathematics, Vol. 75. Amer. Math. Soc., Providence, R.I., 1988.
Z691.05007; M89m:05013

CHOWLA P., CHOWLA S.,
[1] A note on Bernoulli numbers, J. Number Theory, 12 (1980), 445-446.
Z445.10014; M82c:10013; R1981,6A327

[2] On Bernoulli numbers, II, J. Number Theory, 14 (1982), no. 1, 65-66.
Z485.10010; M82m:10022; R1982,7A101

[3] Criterion for the class number of some real quadratic fields to be 1, Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 1.
Z617.12002; R1987,12A288

[4] Criteria for the class number of quadratic fields to be 1, Norske Vid. Selsk.Skr. (Trondheim), 1986, no. 2, 2-3.
Z617.12003; R1987,12A289

[5] Some unsolved problems, Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 7.
Z617.12008; R1987,12A290

CHOWLA S.D.,
[1] A new proof of Von Staudt's theorem, J. Indian Math. Soc., 16 (1926), 145-146.
J52.0140.02

[2] Some properties of Eulerian and prepared Bernoullian numbers, Messenger Math., 57 (1927), 121-126.
J54.0182.02

[3] Some properties of Eulerian numbers. Tôhoku Math. J. 30 (1929), 324-327
J55.0096.01

[4] On a conjecture of Ramanujan, Tôhoku Math. J., 33 (1930), 1-2.
J56.0875.04

[5] A note on Bernoulli's numbers. In: Proc. Number Theory, Conf. at Calif. Inst. of Tech., Summer, 1955.

[6] On the signs of certain generalized Bernoulli numbers, Kgl. Norske Vid. Selskabs Forhandl., (1961), 34 (1962), no. 21, 102-104.
Z105.26604; M25#2043; R1962,10A96

[7] Leopoldt's criterion for real quadratic fields with class-number 1, Abhandl. Math. Sem. Univ. Hamburg, 35 (1970), 32.
Z222.12002; M43#3232; R1971,5A373

[8] On some formulae resembling the Euler-Maclaurin sum formula, Kgl. Norske Vid. Selskabs Forhandl., 34 (1961/62), no.23, 107-109.
M25#2044; R1962,10A94

CHOWLA S., HARTUNG P.,
[1] An "exact" formula for the m-th Bernoulli number, Acta. Arith., 22 (1972), 113-115.
Z244.10008; M46#7151; R1973,3V334

CHOWLA S.: see also ANKENY N.C., ARTIN E., CHOWLA S.

CHOWLA S.: see also ANKENY N.C., CHOWLA S.

CHOWLA S.: see also CHOWLA P., CHOWLA S.

CHU W.: see HSU L.C., CHU W.

CHU WEI PAN: see DANG SI SHAN, CHU WEI PAN

Chu, Wei Pan; Dang, Si Shan,
[1] An identical formula describing the relationship between Bernoulli numbers and second-kind Stirling numbers. (Chinese) Pure Appl. Math. (Xi'an) 20 (2004), no. 3, 282-284.

CHU WENCHANG,
[1] Symmetric functions and the Riemann zeta series. Indian J. Pure Appl. Math. 31 (2000), no. 12, 1677-1689.
Z1001.05118; M2002e:11112; R02.04-13B.21

Ó. Ciaurri, L.M. Navas, F.J. Ruiz, J.L. Varona,
[1] A simple computation of $\zeta(2k)$, Amer. Math. Monthly 122 (2015), no. 5, 444-451.
M3352803

CIBRARIO M.,
[1] Sui numeri di Bernoulli e di Eulero, Rendic. Accad. d. Lincei, Cl. Sci., Roma (6), 18 (1933), 110-118.
J59.0171.02; Z7.41302

[2] Sui polinomii di Bernoulli e di Eulero, Rendiconti Accad. d. L. Roma (6), 18 (1933), 207-214.
J59.1050.01; Z8.16203

[3] Su alcune generalizzazioni dei numeri e dei polinomii de Bernoulli e di Eulero, Rendiconti Accad. d. L. Roma (6), 18 (1933), 275-279.
J59.1050.02; Z8.16204

[4] Proprietà dei numeri e dei polinomii di Bernoulli e di Eulero generalizzati, Rendiconti Accad. d. L. Roma (6), 18 (1933), 365-369.
J59.1050.03; Z8.26101

CIKÁNEK P.,
[1] Matrices of the Stickelberger ideals $\pmod l$ for all primes up to 125000, Arch. Math. (Brno), 27a (1991), 3-6.
Z760.11028; M93i:11149; R1992,10A239

[2] A special extension of Wieferich's criterion. Math. Comp., 62 (1994), no. 206, 923-930.
Z805.11027; M94g:11023

CLARKE F.,
[1] The universal von Staudt theorems, Trans. Amer. Math. Soc., 315 (1989), no. 2, 591-603.
Z683.10013; M90a:11026; R1990,9A97

[2] On Dibag's generalization of von Staudt's theorem, J. Algebra, 141 (1991), no. 2, 420-421.
Z734.11019; M92k:11020

[3] On Vandiver's generalised Bernoulli numbers, Preprint, 1990.

CLARKE F., SLAVUTSKII I.SH.,
[1] The integrality of the values of Bernoulli polynomials and of generalised Bernoulli numbers. Bull. London Math. Soc. 29 (1997), no. 1, 22-24.
Z865.11021; M97k:11022

CLARKE F.: see also BAKER A.J., CLARKE F., et al.

CLAUSEN T.,
[1] Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen, Astr. Nachr., 17 (1840), 351-352.

COATES J.,
[1] p-adic L-functions and Iwasawa's theory, Algebraic Number Fields, ed. Fröhlich A., London, 1977, 269-353.
Z393.12027; M57#276; R1979,5A288

[2] The work of Mazur and Wiles on cyclotomic fields, Lect. Notes in Math., 901 (1981), 220-242.
Z506.12001; M83i:12005; R1982,8A362

COATES J., POITOU G.,
[1] Du nouveau sur les racines de l'unité, Gaz. Math., 15 (1980), 5-26.
Z476.12007

COATES J., SINNOTT W.,
[1] On p-adic L-functions over real quadratic fields, Invent. Math., 25 (1974), no. 3/4, 253-279.
Z305.12008; M50#7093; R1975,2A401

COEN L.E.S.,
[1] Sums of Powers and the Bernoulli Numbers. M.A. thesis, Eastern Illinois University, Charleston, Illinois, 1996. 54pp.

COHEN H., OLIVIER M.,
[1] Calcul des valeurs de la fonction zêta de Riemann en multiprécision. C. R. Acad. Sci. Paris Ser. I Math., 314 (1992), no. 6, 427-430.
Z751.11057; M93g:11134

COHEN S.P.,
[1] Heights of torsion points on commutative group varieties, Proc London Math. Soc. (3), 52 (1986), no. 3, 427-444.
Z585.14032; M87i:14038; R1987,6A469

COHN H.,
[1] Introduction to the construction of class fields. Cambridge Studies in Advanced Math., 6. Cambridge Univ. Press, Cambridge-New York, 1985. x + 213 pp.
Z571.12001; M87i:11165; R1986,11A423

COLEMAN R.,
[1] Local units modulo circular units, Proc. Amer. Math. Soc., 89 (1983), no. 1, 1-7.
Z528.12005; M85b:11088; R1984,4A367

COMRIE L.J.: see FLETCHER A. et al.

COMTET L.,
[1] Analyse combinatoire. Tomes I, II. Presses Universitaires de France, Paris, 1970. 192 pp., 190 pp.
Z221.05001 (I); Z221.05002 (II); M41#6697

[2] Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. D. Reidel Publ. Co., Dordrecht-Boston, 1974. x + 343 pp.
Z283.05001; M57#124

CONWAY J.H., SLOANE N.J.A.,
[1] On enumeration of lattices of determinant one, J. Number Theory, 15 (1982), no. 1, 83-94.
Z496.10023; M84b:10047; R1982,12V585

COOPER S.,
[1] On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan's ${}\sb 1\psi\sb 1$ summation formula. In: $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), 115-137, Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
Z0998.11019; M2002k:11046; R02.07-13 V.183

COPPO M.A.: see CANDELPERGHER B., COPPO M.A., DELABAE RE E.,

CORNELISSEN G.,
[1] Zeros of Eisenstein series, quadratic class numbers and supersingularity for rational function fields, Math. Ann. 314 (1999), no. 1, 175-196.
M2000e:11060

COSTA PEREIRA N.: see PEREIRA N.C.

COSTABILE F.,
[1] Expansions of real functions in Bernoulli polynomials and applications. Conf. Semin. Mat. Univ. Bari No. 273, (1999), 13 pp.
M2000k:33014

COSTABILE F.A., DELL'ACCIO F.,
[1] Expansion over a rectangle of real functions in Bernoulli polynomials and applications. BIT 41 (2001), no. 3, 451-464.
Z0989.65014; M2002g:65015

[2] Expansions over a simplex of real functions by means of Bernoulli polynomials. In memory of W. Gross. Numer. Algorithms 28 (2001), no. 1-4, 63-86.
Z0997.65012; M2003b:41024

Costabile, F.; Dell'Accio, F.; Gualtieri, M. I.,
[1] A new approach to Bernoulli polynomials. Rend. Mat. Appl. (7) 26 (2006), no. 1, 1--12.
M2007a:11023

Costabile, F. A.; Dell'Accio, F.; Luceri, R.,
[1] Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values. J. Comput. Appl. Math. 176 (2005), no. 1, 77-90.
M2005h:41008

COSTABILE F., GUALTIERI M.I., SERRA CAPIZZANO S.,
[1] An iterative method for the computation of the solutions of nonlinear equations. Calcolo 36 (1999), no. 1, 17-34.
Z0942.65049; M2001d:65070

COTLAR M.,
[1] Estudio de una classe de polinomios de Bernoulli, Math. Notae (Boletin Inst. Math.), Rosario, Argentina, 7 (1946), no. 2, 69-95.
Z61.14001; M9-30f

[2] Un método para obtener congruencias de numeros de Bernoulli [A method for obtaining congruences of Bernoulli numbers], Math. Notae (Boletin Inst. Math.), Rosario, Argentina, 7 (1947), no. 1, 1-29.
Z30.01404; M9-175c

COX D.A.,
[1] Introduction to Fermat's Last Theorem. Amer. Math. Monthly, 101 (1994), no. 1, 3-14.
Z849.11002; M94i:11022; R1994,10A246

Crabb, M. C.,
[1] The Miki-Gessel Bernoulli number identity. Glasg. Math. J. 47 (2005), no. 2, 327--328.
M2006j:11025

CRANDALL R.E.,
[1] Topics in Advanced Scientific Computation. TELOS/Springer-Verlag, Santa Clara, CA, 1996.
M97g:65005

CRANDALL R.E., BUHLER J.P.,
[1] On the evaluation of Euler sums. Experiment. Math., 3 (1994), no. 4, 275-285.
Z833.11045; M96e:11113

CRANDALL R.E., DILCHER K., POMERANCE C.,
[1] A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), no. 217, 433-449.
Z854.11002; M97c:11004; R1997,10A129

CRANDALL R.E., POMERANCE C.,
[1] Prime numbers. A computational perspective. Springer-Verlag, New York, 2001. xvi+545 pp.

CRANDALL R.E.: see also BUHLER J.P. et al.

CRANDALL R.E.: see also BAILEY D.H., BORWEIN J.M., CRANDALL R.E.

CROMBEZ G.,
[1] On a generalisation of the Bernoulli and the Euler polynomials, Ganita, 22 (1971), no. 1, 131-141.
Z222.30019; M45#3810

CSORBA G.,
[1] Über die Partitionen der ganzen Zahlen, Math. Ann., 75 (1914), 545-568.
J45.0285.01

CVIJOVIC D., KLINOWSKI J.,
[1] New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc., 123 (1995), no. 5, 1527-1535.
Z827.11012; M95g:11085

[2] New rapidly convergent series representations for $\zeta(2n+1)$, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1263-1271.
Z863.11055; M97g:11090

[3] Values of the Legendre chi and Hurwitz zeta functions at rational arguments. Math. Comp. 68 (1999), no. 228, 1623-1630.

D. Cvijović, J. Klinowski, H.M. Srivastava,
[1] Some polynomials associated with Williams' limit formula for $\zeta(2n)$, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 199-209.


Back to Index       Back to B       On to D