Back to Index Back to B On to D
CAI TIAN XIN, GRANVILLE A.,
CALABI E.: see BEUKERS F., KOLK J.A.C., CALABI E.
Caira, R.; Dell'Accio, F.,
[1] Shepard-Bernoulli operators.
Math. Comp. 76 (2007), no. 257, 299--321.
CALLAN D.,
[1] Letter to the editor: "A new approach to Bernoulli polynomials"
by D.H. Lehmer,
Amer. Math. Monthly, 96 (1989), no.6, 510.
M90g:11024
CALLANDREAU O.,
[1] Sur la formule sommatoire de Maclaurin, C.R. Acad.
Sci., Paris, 86 (1878), 589-592.
J10.0178.01
ÇALLIALP F.,
[1] On the class number of real quadratic fields and the
Riemann hypothesis (Turkish, English summary),
Doga Math., 14 (1990), no. 2, 114-119.
M91h:11121
CAMERON D.,
[1] Euler and Maclaurin made easy,
Math. Sci., 12 (1987), no. 1, 3-20.
Z649.41016; M89g:41021; R1988,1B4
CAMPBELL R.,
[1] Les intégrales eulériennes et leurs applications.
Étude approfondie de la fonction gamma. Collection Universitaire de
Mathématiques, XX. Dunod, Paris 1966 xxv+268 pp.
Z174.36201; M34#6161; R1967,9B132K
Can, Mümün; Cenkci, Mehmet; Kurt, Veli,
[1] A recurrence relation for Bernoulli numbers.
Bull. Korean Math. Soc. 42 (2005), no. 3, 617-622.
M2006d:11021
CAN MIMIN: see also CENKCI M., CAN MIMIN, KURT V.
CANDELPERGHER B., COPPO M.A., DELABAERE E.,
[1] La sommation de Ramanujan,
Enseign. Math. (2) 43 (1997), no. 1-2, 93-132.
Z884.40008; M99a:11149
CANTERZANI S.,
[1] Lettera a Torquato Vareno, sopra una maniera di
cavare i numeri Bernoulliani, Mem. Mat. e Fis. Soc. Ital., Modena,
CAO ZHEN FU,
[1] On the Diophantine equation $x^4-py\sp 2=z\sp p$
C. R. Math. Rep. Acad. Sci. Canada 17 (1995), no. 2-3, 61-66.
Corrig.: C. R. Math. Rep. Acad. Sci. Canada 18 (1996), no. 5, 233-234.
Z857.11011; M96h:11020, 97i:11026
CARDA K.,
[1] Zur Theorie der Bernoullischen Zahlen, Monatsh.
Math. und Phys., 5 (1894), 185-192.
J25.0412.02
[2] Zur Darstellung der Bernoullischen Zahlen durch
bestimmte Integrale, Monatsh. Math. und Phys., 5 (1894),
321-324.
J25.0413.01
[3] Über eine Beziehung zwischen bestimmten
Integralen, Monatsh. Math. und Phys., 6 (1895),
121-126.
J26.0317.02
CARLITZ L.,
[1] An analogue of the von Staudt-Clausen theorem,
Duke Math. J., 3 (1937), 503-517.
J63.0879.03; Z17.19501
[2] An analogue of the von Staudt-Clausen theorem,
Duke Math. J., 7 (1940), 62-67.
J66.0056.01; Z24.24410; M2-146e
[3] An analogue of the Bernoulli polynomials,
Duke Math. J., 8 (1941), 405-412.
J67.0060.02; Z25.09804; M2-342e
[4] Generalized Bernoulli and Euler numbers,
Duke Math. J., 8 (1941), 585-589.
J67.0995.02; Z63.00704; M3-67b
[5] The coefficients of the reciprocal of a series,
Duke Math. J., 8 (1941), no. 3, 689-700.
Z63.00705; M3-147j
[6] q-Bernoulli numbers and polynomials,
Duke Math. J., 15 (1948), 987-1000.
Z32.00304; M10-283g
[7] Some properties of Hurwitz series,
Duke Math. J., 16 (1949), no. 2, 285-295.
Z41.17401; M10-593e
[8] Congruences for the coefficients of the Jacobi elliptic
functions, Duke Math. J., 16 (1949), no. 2, 297-302.
Z38.17903; M10-593f
[9] Congruences for the coefficients of hyperelliptic and
related functions, Duke Math. J., 19 (1952), no. 2,
329-337.
Z48.03001; M13-913j
[10] Note on irreducibility of the Bernoulli and Euler
polynomials, Duke Math. J., 19 (1952),
475-481.
Z47.25401; M14-163h
[11] Some theorems on Bernoulli numbers of higher order,
Pacific J. Math., 2 (1952), 127-139.
Z46.04005; M14-138d
[12] A divisibility property of the Bernoulli polynomials,
Proc. Amer. Math. Soc. 3 (1952), 604-607.
Z49.16304; M14-539d
[13] A note on Bernoulli numbers and polynomials of
higher order, Proc. Amer. Math. Soc., 3 (1952), 608-613.
Z49.16305; M14-539e
[14] Some congruences for the Bernoulli numbers,
Amer. J. Math., 75 (1953), 163-172.
Z50.03902; M14-539c; R1954,2861
[15] Some congruences of Vandiver,
Amer. J. Math., 75 (1953), 707-712.
Z51.27603; M15-201a; R1954,4340
[16] Some sums containing Bernoulli functions,
Amer. Math. Monthly, 60 (1953), 475-476.
Z51.00705; M15-104h; R1954,3209
[17] A theorem of Glaisher, Canad. J. Math.,
5 (1953), 306-316.
Z52.03802; M14-1064b; R1954,3216
[18] Note on the class number of real quadratic fields,
Proc. Amer. Math. Soc., 4 (1953), 535-537.
M15-104g; R1954,3214
[19] Some sums connected with quadratic residues,
Proc. Amer. Math. Soc., 4 (1953), 12-15.
Z50.26704; M14-621e; R1953,565
[20] A note on Bernoulli and Euler numbers of order
$\pm p$, Proc. Amer. Math. Soc., 4 (1953), 178-183.
Z51.27602; M14-1064d; R1954,1051
[21] Remark on a formula for the Bernoulli numbers, Proc.
Amer. Math. Soc., 4 (1953), 400-401.
Z50.00905; M14-973h; R1954,2518
[22] A note on the multiplication formulas for the
Bernoulli and Euler polynomials, Proc. Amer. Math. Soc., 4 (1953),
184-188.
Z51.25002; M14-640h; R1953,1052
[23] A special congruence, Proc. Amer. Math. Soc., 4 (1953),
933-936.
Z52.03801; M15-400h; R1955,55
[24] The class number of an imaginary quadratic field,
Comm. Math. Helv., 27 (1953), 338-345.
Z52.03402; M15-404d; R1955,2540
[25] Some theorems on Kummer's congruences, Duke
Math. J., 20 (1953), 423-431.
Z51.27604; M15-10f; R1954,3614
[26] The multiplication formulas for the Bernoulli and
Euler polynomials, Math. Mag., 27 (1953),
59-64.
Z51.30704; M15-308g; R1955,1813
[27] Some theorems on the Schur derivative, Pacific J.
Math., 3 (1953), 321-332.
Z50.03805; M14-951e; R1954,3217
[28] Some theorems on generalized Dedekind sums, Pacific
J. Math., 3 (1953), 513-522.
Z57.03701; M15-12b; R1954,3219
[29] Some congruences of Bernoulli numbers of higher
order, Quarter. J. Math. Oxford Ser.(2), 4 (1953),
112-116.
Z50.26703; M14-1064c; R1954,1976
[30] Note on a theorem of Glaisher, J. London Math.
Soc., 28 (1953), 245-246.
Z50.26702; M14-726b; R1953,566
[31] The first factor of the class number of a
cyclic field, Canad. J. Math., 6
(1954), 23-26.
Z55.03401; M15-686b; R1954,5046
[32] A theorem of Ljunggren and Jacobsthal on
Bernoulli numbers, Proc. Amer. Math. Soc., 5
(1954), 34-37.
Z55.03506; M15-507a; R1955,611
[33] Note on irregular primes, Proc. Amer. Math. Soc., 5
(1954), 329-331.
Z58.03702; M15-778b; R1955,2090
[34] $q$-Bernoulli and Eulerian numbers,
Trans. Amer. Math. Soc., 76 (1954), 332-350.
Z58.01204; M15-686a; R1956,180
[35] Hankel determinants and Bernoulli
numbers, Tôhoku Math. J. (2), 5 (1954),
272-276.
Z55.27003; M15-777d; R1955,3052
[36] Note on the cyclotomic polynomial,
Amer. Math. Monthly, 61 (1954),
106-108.
Z55.03507; M15-508d; R1955,612
[37] A note on generalized Dedekind sums,
Duke Math. J., 21 (1954),
399-403.
Z57.03802; M16-14f; R1955,3603
[38] Dedekind sums and Lambert series,
Proc. Amer. Math. Soc., 5 (1954), 580-584.
Z57.03702; M16-14d; R1955,4853
[39] Extension of a theorem of Glaisher and some
related results, Bull. Calcutta Math. Soc., 46
(1954), no. 2, 77-80.
Z56.26801; M16-570b; R1955,4853
[40] A note on power residues,
Duke Math. J., 22 (1955), no. 4, 583-587.
M17-713d; R1959,9743
[41] Note on the class number of quadratic fields,
Duke Math. J., 22 (1955), 589-593.
Z66.02703; M17-713e; R1959,9743
[42] A degenerate Staudt-Clausen theorem, Arch.
Math. und Phys., 7 (1956), 28-33.
Z70.04003; M17-586a; R1956,7091
[43] Arithmetic properties of elliptic functions, Math. Z.,
64 (1956), no. 4, 425-432.
Z72.03302; M17-1057e; R1958,8953
[44] A note on Bernoulli numbers of higher
order, Scripta Math., 22 (1956),
217-221.
Z78.03201; M19-941c; R1958,4477
[45] The coefficients of $\sinh x/ \sin x$,
Math. Mag., 29 (1956), 193-197.
Z70.27301; M17-944e; R1957,83
[46] A note on Kummer's congruences, Arch.
Math., 7 (1957), 441-445.
Z77.05103; M19-120a; R1957,8427
[47] A note on the Staudt-Clausen theorem, Amer.
Math. Monthly, 64 (1957), 19-21.
Z77.05104; M18-560c; R1957,7620
[48] Some polynomials of Touchard connected with the Bernoulli
numbers, Canadian J. Math., 9 (1957), no. 2, 188-190.
Z77.28103; M19-27e; R1959,534
[49] Expansion of q-Bernoulli numbers, Duke
Math. J., 25 (1958), 355-364.
Z102.03201; M20#2480; R1959,4425
[50] Bernoulli and Euler numbers and
orthogonal polynomials, Duke Math. J., 26
(1959), 1-15.
Z85.28702; M21#2761; R1960,1287
[51] Multiplication formulas for products of Bernoulli and Euler
polynomials, Pacific J. Math., 9 (1959), no. 3, 661-666.
Z89.28002; M21#7317; R1961,4B458
[52] Some congruences involving binomial
coefficients, Elem. Math., 14 (1959), no. 1,
11-13.
Z85.02802; M20#6384; R1959,9762
[53] Composition of sequences satisfying Kummer's congruences,
Memoria publicada en Collectanea Mathematica (Barcelona), XI
(1959), 137-152.
Z96.02701; M22#4671; R1961,2A97
[54] Note on the coefficients of $\cosh x / \cos x$, Math.
Mag., 32 (1959), 132-136.
Z95.26201; M21#2754; R1960,1316
[55] Eulerian numbers and polynomials,
Math. Mag., 32 (1959), no. 5, 247-260.
Z92.06601; M21#3596; R1961,1B349
[56] Some finite summation formulas of arithmetic character,
Publ. Math. Debrecen, 6 (1959), 262-268.
Z97.26402; M22#1549; R1962,2A142
[57] A property of the Bernoulli numbers, Amer.
Math. Monthly, 66 (1959), 714-715.
R1960,8581
[58] Arithmetic properties of generalized
Bernoulli numbers, J. Reine Angew. Math., 202
(1959), 174-182.
Z125.02202; M22#20; R1960,8580
[59] Some arithmetic properties of generalized
Bernoulli numbers, Bull. Amer. Math. Soc., 65
(1959), 68-69.
Z86.03201; M21#3383; R1960,6167
[60] Note on the integral of the product of
several Bernoulli polynomials, J. London Math. Soc.,
34 (1959), 361-363.
Z86.05801; M21#5750; R1960,10534
[61] Kummer's congruences $\pmod{2^r}$,
Monatsh. Math., 63 (1959), 394-400.
Z103.02602; M21#6350; R1960,6145
[62] A special case of Kummer's congruences
$\pmod{2^e}$, Enseigment Math. (2), 5 (1959),
171-175 (1960).
Z104.26701; M23#A1587; R1960,12480
[63] Note on Nörlund's polynomial $B_n^{(z)}$,
Proc. Amer. Math. Soc., 11 (1960),
452-455.
Z100.01705; M22#5587; R1961,3B61
[64] Eulerian numbers and polynomials of higher order,
Duke Math. J., 27 (1960), no. 3, 401-423.
Z104.29003; M23#A1588; R1961,6A139
[65] Multiplication formulas for generalized Bernoulli and Euler
polynomials, Duke Math. J., 27 (1960), no. 4, 537-545.
Z132.05503; M22#9636; R1961,12B314
[66] A property of the Bernoulli numbers,
Amer. Math. Monthly, 67 (1960), no. 10,
1011-1012.
R1961,9A148
[67] Kummer's congruences for the Bernoulli
numbers, Portug. Math., 19 (1960),
203-210.
Z95.03004; M23#A2361; R1961,9A153
[68] A note on Bernoulli and Euler polynomials of the second kind,
Scripta Math., 25 (1961), no. 4, 323-330.
Z118.06501; M25#4138; R1963,3B44
[69] Criteria for Kummer's congruences,
Acta Arith., 6 (1961), 375-391.
Z99.02805; M27#4786; R1952,3A104
[70] The Staudt-Clausen theorem,
Math. Mag., 34 (1961), 131-146.
Z122.04702; M24#A258; R1961,12A212
[71] A generalization of Maillet's determinant
and a bound for the first factor of the class-number,
Proc. Amer. Math. Soc., 12 (1961), 256-261.
Z131.03602; M22#12093; R1962,1A139
[72] Some generalized multiplication formulas for the Bernoulli
polynomials and related functions, Monatsh. Math., 66
(1962), no. 1, 1-8.
Z102.05503; M25#2244; R1963,3B44
[73] A note on sums of powers of integers, Amer. Math. Monthly, 69 (1962), 290-291.
[74] A conjecture concerning the Euler numbers,
Amer. Math. Monthly, 69 (1962), no.6, 538-540.
Z105.26403; R1963,4B55
[75] A note on Eulerian numbers,
Arch. Math., 14 (1963), 383-390.
Z116.25103; M28#3960
[76] Some formulas for the Bernoulli and Euler
polynomials, Math. Nachr., 25
(1963), 223-231.
Z112.04501; M27#2663; R1964,1B53
[77] Generalized Dedekind sums, Math. Z., 85
(1964), no. 1, 83-90.
Z122.05104; M29#3427; R1965,3A135
[78] Summation of certain series,
Amer. Math. Monthly, 71 (1964), 41-44.
Z129.04601; R1964,12B33
[79] Recurrences for the Bernoulli and Euler
numbers, J. Reine Angew. Math., 214/215 (1964),
184-191.
Z126.26204; M28#3961; R1965,3A136
[80] Extended Bernoulli and Eulerian numbers,
Duke Math. J., 31 (1964), 667-689.
Z127.29501; M29#5796; R1965,7B39
[81] Recurrences for the Bernoulli and Euler
numbers II, Math. Nachr., 29 (1965),
151-160.
Z151.01501; M31#5825; R1967,8V221
[82] The coefficients of $\cosh x/ \cos x$,
Monatsh. Math., 69 (1965), 129-135.
Z141.04102; M31#1222; R1965,11A151
[83] Linear relations among generalized
Dedekind sums, J. Reine Angew. Math., 220
(1965), 154-162.
Z148.27305; M32#88; R1966,10A79
[84] A theorem on generalized Dedekind sums, Acta Arith.,
11 (1965), no. 2, 253-260.
Z131.28801; M32#87; R1966,5A110
[85] The irreducibility of the Bernoulli
polynomial $B_{14}(x)$, Math. Comp., 19
(1965), 667-670.
Z135.01703; M33#117; R1966,9A128
[86] Some properties of the Nörlund polynomial
$B_n^{(x)}$, Math. Nachr., 33 (1967), 297-311.
Z154.29301; M36#129; R1967,12V280
[87] Bernoulli numbers, Fibonacci Quart.,
6 (1968), no.3, 71-85.
Z159.05601; M38#1071; R1970,6V335
[88] Some unusual congruences for the Bernoulli
and Genocchi numbers, Duke Math. J., 35
(1968), 563-566.
Z169.36803; M37#2672; R1969,6V225
[89] A conjecture concerning Genocchi numbers,
K. Norske Vidensk. Selsk. Sk., (1971), No. 9, 1-4.
Z245.05004; M45#6749; R1972,4B73
[90] A note on Bernoulli numbers and
polynomials, Elemente Math., 29 (1974),
90-92.
Z283.10003; M50#4604; R1975,2V454
[91] Note on some convolved power sums, SIAM J. Math. Anal.,
8 (1977), no. 4, 701-709.
Z363.10008; M56#3384; R1978,2V417
[92] Generalized Stirling and related numbers,
Revista Mat. Univ. Parma (4), 4 (1978), 79-99.
Z402.10017; M80h:10017; R1980,7V487
[93] A characterization of the Bernoulli and
Euler polynomials, Rend. Sem. Mat. Univ. Padova,
62 (1980), 309-318.
Z443.33020; M81k:10020; R1981,8V590
[94] Some polynomials related to the Bernoulli
and Euler polynomials, Util. Math., 19 (1981),
81-127.
Z474.10012; M82j:10023; R1981,12B38
[95] Some remarks on the multiplication
theorems for the Bernoulli and Euler polynomials,
Glas. Math. (3), 16 (36) (1981), no. 1,
3-23, (Serbo-Croatian Summary).
Z474.10013; M83b:10009; R1982,3B34
[96] The reciprocity theorem for Dedekind sums,
Pacific J. Math., 3 (1953), 523-527.
R1954,2515
[97] A note on Euler numbers and polynomials,
Nagoya Math. J., 7 (1954), 35-43.
M16-220; R1956,179
[98] Note on a formula of Hermite,
Math. Mag., 33 (1959/60), 7-11.
M21#5602; R1960,9983
[99] A recurrence formula for $\zeta(2n)$.
Proc. Amer. Math. Soc., 12 (1961), no. 6, 991-992.
Z101.03901; M24#A3140; R1962,7B42
[100] Some arithmetic properties of a special sequence of integers,
Canad. Math. Bull., 19 (1976), no. 4, 425-429.
M56#239
[101] Degenerate Stirling, Bernoulli and Eulerian numbers,
Utilitas Math., 15 (1979), 51-88.
Z404.05004; M80i:05014; R1979,11V408
[102] Explicit formulas for the Dumont-Foata polynomials,
Discrete Math., 30 (1980), no. 3, 211-225.
M81f:05007; R1980,10V450
[103] Some restricted multiple sums,
Fibonacci Quart. 18 (1980), no. 1, 58-65.
Z426.10014; M84c:05012; R1980,9A119
[104] Some arithmetic properties of the Olivier functions,
Math. Ann., 128 (1955), 412-419.
Z065.27203; M16,677b; R1956,181
[105] Generating functions,
Fibonacci Quart. 7 (1969), no. 4, 359-393.
Z194.00701; M41 #8254; R1970,10V210
[106] A note on the generalized Wilson's theorem.
Amer. Math. Monthly 71 (1964), 291-293.
Z0129.02507; M28 #3962; R1962,1A157
CARLITZ L., LEVINE J.,
[1] Some problems concerning Kummer's congruences for the
Euler numbers and polynomials, Trans. Amer. Math. Soc.,
96 (1960), 23-37.
Z99.02902; M22#6768; R1961,5A150
CARLITZ L., OLSON F.R.,
[1] Some theorems on Bernoulli and Euler
numbers of higher order, Duke Math. J., 21
(1954), 405-421.
Z56.03604; M15-934b; R1955,4216
CARLITZ L., RIORDAN J.,
[1] Congruences for Eulerian numbers,
Duke Math. J., 20 (1953), no. 3, 339-343.
Z51.27601; M15-10e; R1954,4341
[2] The divided central difference of zero,
Canad. J. Math., 15 (1963), 94-100.
Z108.25106; M26#48
CARLITZ L., SCOVILLE R.,
[1] The sign of the Bernoulli and Euler numbers,
Amer. Math. Monthly, 80 (1973), 548-549.
Z273.10012; M47#4917
[2] Tangent numbers and operators,
Duke Math. J., 39 (1972), 413-429.
Z243.05009; M46#1968; R1973,5V422
[3] Enumeration of up-down permutations by upper records,
Monatsh. Math., 79 (1975), 3-12.
Z315.05004; M50#12748; R1975,10V259
[4] Enumeration of rises and falls by position,
Discrete Math., 5 (1973), 45-59.
Z259.05008; M47#1626; R1973,11B434
[5] Generating functions for certain types of permutations,
J. Combinatorial Theory Ser. A, 18 (1975), no. 3, 262-275.
Z303.05007; M51#7890; R1975,11B334
CARLITZ L., STEVENS H.,
[1] Criteria for generalized Kummer's congruences,
J. Reine Angew. Math., 207 (1961),
203-220.
Z99.02901; M23#A1585; R1962,3A105
CARLITZ L.: see also AL-SALAM W.A., CARLITZ L.
CARMICHAEL R.D.,
[1] The theory of numbers and diophantine
analysis, New York, 1915.
J45.0283.11
CARR G.S.,
[1] A synopsis of elementary results in pure mathematics containing
propositions, formulae, and methods of analysis, with abridged demonstrations.
Macmillan and Bowes, Cambridge, 1886. xxxvi + 936 pp.
J17.1154.01
CARTIER P.,
[1] An introduction to zeta functions. From number theory to physics
(Les Houches, 1989), 1-63. Springer, Berlin, 1992.
Z790.11061; M94b:11081
CARTIER P., ROY Y.,
[1] Certains calculs numériques relatifs à l'interpolation
p-adique des séries de Dirichlet. In: Modular functions of one variable III,
pp. 269-349. Lecture Notes in Math., Vol. 350, Springer-Verlag,
Berlin, 1973.
Z265.10021; M48#8451; R1974,6A447
CASSELS J.W.S.,
[1] Local Fields. London Math. Soc. Student Texts, 3. Cambridge Univ.
Press, Cambridge-New York, 1986. xiv + 360 pp.
Z595.12006; M87i:11172; R1987,8A307
CASSOU-NOGUÈS PH., TAYLOR M.J.,
[1] Un élément de Stickelberger quadratique,
J. Number Theory, 37 (1991), no. 3, 307-342.
Z719.11075; M92e:11125
CASSOU-NOGUÈS P.,
[1] Formes linéaires p-adiques et prolongement analytique.
Sémin. Théor. Nombres, 1970-71 (Univ. Bordeaux I, Talence), Exp. No. 14,
7 pp., Talence, 1971.
Z227.12005; M53#2904
[2] Formes linéaires p-adiques et prolongement analytique,
C.R. Acad. Sci. Paris, A 274 (1972), 5-8.
Z227.12005; M45#5092; R1972,6A348
[3] Formes linéaires p-adiques et
prolongement analytique, Bull. Soc. Math. France,
(1974), Suppl., no. 39/40, 23-26.
Z301.12004; M50#12985; R1975,7A475
[4] Analogues p-adiques de certaines fonctions arithmétiques.
Sémin. Théor. Nombres, 1974-75 (Univ. Bordeaux I, Talence), Exp. No. 24,
12 pp., Talence, 1975.
Z386.12011; M53#363; R1976,7A434
[5] Prolongement analytique et valeurs aux entiers négatifs de
certaines séries arithmétiques relatives à des formes
quadratiques.
Sémin. Théor. Nombres, 1975-76 (Univ. Bordeaux I, Talence), Exp. No. 4,
34 pp., Talence, 1976.
Z227.12005; M55#12696
[6] Valeurs aux entiers négatifs des fonctions zêta et des
fonctions zêta p-adiques,
Invent. Math., 51 (1979), no. 1, 29-59.
Z408.12015; M80h:12009b; R1979,9A328
[7] Séries de Dirichlet. Séminaire de théorie des
nombres. Univ. Bordeaux I, Année 1980-81, Exposé no. 22, 14 pp. (1981).
Z507.12007; M84b:12017
[8] Applications arithmétiques de l'étude des
valeurs aux entiers négatifs des séries de Dirichlet
associées à un polynôme, Ann. Inst. Fourier,
31 (1981), Suppl., fasc. 4, 1-36.
Z496.12009; M83e:12011; R1982,6A114
[9] Valeurs aux entiers négatifs des séries de
Dirichlet associées à un polynôme, 1, J.
Number Theory, 14 (1982), no. 1, 32-64.
Z496.12008; M83e:12012; R1982,8A359
CASTELLANOS D.,
[1] The ubiquitous $\pi$. I.
Math. Mag., 61 (1988), no. 2, 67-98.
Z654.10001; M89c:01025; R1989,3A7
[2] The ubiquitous $\pi$. II.
Math. Mag., 61 (1988), no. 3, 148-163.
M89c:11184
[3] A generalization of Binet's formula and some of its consequences.
Fibonacci Quart., 27 (1989), no. 5, 424-438.
Z689.10020; M91e:11018
[4] A note on Bernoulli polynomials,
Fibonacci Quart., 29 (1991), no. 2, 98-102.
Z725.11010; M92h:11018
CATALAN E.,
[1] Sur les différences de $1^p$ et sur le calcul des nombres de
Bernoulli, Annali sci. mat. e fis., Roma, 2 (1859), 195-199,
Annali di Matematica Pura et Applicata, (1) 2 (1859), 239-243.
[2] Sur les nombres de Bernoulli et sur quelques formules qui en dépendent, C.R. Acad. Sci. Paris, 54 (1862), 1030-1033, 1059-1062.
[3] Remarques sur une note de M. Le Besgue (relative aux nombres de Bernoulli), C.R. Acad. Sci. Paris, 58 (1864), 902-904.
[4] Sur les calcul des nombres de Bernoulli, C.R. Acad. Sci. Paris, 58 (1864), 1105-1108.
[5] Sur les nombres d'Euler, C.R. Acad. Sci. Paris, 66 (1868), 415-416.
[6] Sur les nombres de Bernoulli et d'Euler et sur quelques intégrales
définies, Brux. Acad. Sci. Mém., 37 (1869), 1-19.
J02.0155.01
[7] Recherches sur le développement de la fonction $\Gamma$,
Bull. de l'Acad., Bruxelles, 36 (1873), 4-16.
J05.0169.01
[8] Note sur les nombres de Bernoulli, Bull. de
l'Acad., Bruxelles, 81 (1875), 441-443.
J07.0160.01
[9] Rapport sur la note de Mr. Le Paige, Bull. Acad. Royal Sci. Belgiques (2), 61 (1876), 935-939.
[10] Note sur la communication
précédente, Bull. Acad. Royal Sci., Belgiques (2),
41 (1876), 1018-1019.
J08.0147.03
[11] Extrait d'une lettre de M. Catalan à M. G. de Longchamps
(Sur les nombres de Bernoulli), Nouv. Corres. Math.,
4 (1878), 119.
J8.193
[12] Sur les manières contradictoires de définir les nombres de Bernoulli, Nouv. Corres. Math.,
[13] Extraits d'une lettre à M. Hermite, Nouv.
Corres. Math., 6 (1880), 320-321.
J12.0122.02
[14] Théorème de Staudt et de Clausen, Bull.
Sci. Math. et Astr. (2), 4 (1880), 77-82.
J12.0128.03
[15] Mélanges mathématiques, Mém. Soc.
Royal. Sci., Liège (2), 12 (1885),
1-407.
J17.0022.01
[16] Mémoires de la Sociétée Royale des Sciences, XII (1885), Chapters: XXXII, XXXIII, XXXIV, XXXV, LXXVI, 86-119, 320-327.
CATALAN E.: see also LUCAS E., CATALAN E.
CATTABIANCHI L.T.,
[1] Numeri e polinomi di Bernoulli parametrizzati,
Riv. Mat. Univ. Parma (2), 4 (1963), 281-291.
Z149.04402; M32#1378
CAUCHY A.L.,
[1] Sur la théorie des nombres,
Bull. Sci. Math., Phys. et Chim., Paris, 15
(1831), 137-139.
[2] Mémoire sur la théorie des nombres, Mémoires Acad. Sci., Paris, 17 (1840), 249-269, 435-455.
CAYLEY A.,
[1] A dissertation on Bernoulli's numbers,
Messeng. Math., 4 (1875), 157-160.
J07.0132.02
CELÉRIER C.,
[1] Démonstration d'un théorème
fondamental relatif aux facteurs primitifs des nombres
premiers, Applications au théorème de Fermat et à
la recherche des facteurs primitifs, Mém. Soc. de
Phys. et d'Hist. Nat. de Genève, 32 (1896), partie
2, no. 7, 1-61.
J28.0188.03
CELKO M.,
[1] On the sums of some infinite series using the Bernoulli numbers (Slovak).
In: Kovácik, O. (Ed.), Proceedings of the seminar on orthogonal
polynomials and other applications, held in Zilina, Slovakia. Univ. of
Transport and Communications, Dept. of Math., Zilina, 1993. pp. 3-6.
Z793.40002
Cenkci, Mehmet; Can, Mümün,
[1] Some results on $q$-analogue of the Lerch zeta function.
Adv. Stud. Contemp. Math. (Kyungshang) 12 (2006), no. 2, 213-223.
M2007c:11098
Cenkci, Mehmet; Can, Mümün; Kurt, Veli,
[1] $p$-adic interpolation functions and Kummer-type congruences for
$q$-twisted and $q$-generalized twisted Euler numbers.
Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 203-216.
M2005k:11230
[2] $q$-extensions of Genocchi numbers.
J. Korean Math. Soc. 43 (2006), no. 1, 183-198.
M2006h:11018
CESARANO C.: see DATTOLI G., LORENZUTTA S., CESARANO C.
CESÀRO E.,
[1] Quelques formules, Nouv. Corres. Math., 6 (1880), 450-452.
[2] Principes du calcul symbolique, Mathesis,
3 (1883), 10-17.
J15.0206.01
[3] Sull' inversione delle indentità arithmetiche,
Giorn. Mat., 23 (1885), 168-174.
J17.0138.01
[4] Sur les nombres de Bernoulli et d'Euler,
Nouv. Ann. Math. (3), 5 (1886), 305-327, 496.
J18.0227.01
[5] Sur un théorème de M. Lipschitz, et sur la
partie fractionnaire des nombres de Bernoulli,
Annali Mat., Milano (2), 14 (1886), 221-226.
J18.0226.01
[6] Sur les démonstrations du théorème de
Staudt et de Clausen, Bull. Acad. Royale Sci. Belgique
(3), 20 (1890), 280-289.
J22.0267.02
[7] A proposito d'una generalizzazione della
funzione $\varphi$ di Gauss, Periodico de Mat., 7
(1892), 1-6.
J24.0167.01
[8] Elementares Lehrbuch der algebraischen
Analysis und der Infinitesimalrechnung mit zahlreichen
Übungsbeispielen. Nach einem Manuskript des
Verfassers deutsch herausgegeben von G. Kowalewski,
Leipzig, 1904.
J35.0294.01
CHABA A.N.: see BEZERRA V.B., CHABA A.N.
CHANG CHENG-HUNG, MAYER D.H.
[1] The transfer operator approach to Selberg's zeta function and modular and
Maass wave forms for ${\rm PSL}(2,Z)$. In: Emerging applications of number
theory (Minneapolis, MN, 1996), 73-141, IMA Vol. Math. Appl., 109,
Springer, New York, 1999.
[2] Eigenfunctions of the transfer operators and the period functions for
modular groups. Dynamical, spectral, and arithmetic zeta functions (San
Antonio, TX, 1999), 1-40, Contemp. Math., 290, Amer. Math. Soc.,
Providence, RI, 2001.
CHANG CHING-HUA, HA CHUNG-WEI,
[1] The Green functions of some boundary value problems via the Bernoulli
and Euler polynomials.
Arch. Math. (Basel) 76 (2001), no. 5, 360-365.
Z0986.34010; M2002b:34046
[2] On recurrence relations for Bernoulli and Euler numbers.
Bull. Austral. Math. Soc. 64 (2001), no. 3, 469-474.
M2002k:11026
[3] On identities involving Bernoulli and Euler polynomials.
Fibonacci Quart. 44 (2006), no. 1, 39--45.
M2006m:11023
[4] A multiplication theorem for the Lerch zeta function and explicit
representations of the Bernoulli and Euler polynomials.
J. Math. Anal. Appl. 315 (2006), no. 2, 758--767.
M2006k:11168
CHANG KU-YOUNG, KWON SOUN-HI,
[1] Class number problem for imaginary cyclic number fields,
J. Number Theory 73 (1998), no. 2, 318-338.
Z920.11077; M 99i:11102
[2] The imaginary abelian number fields with class numbers equal to their
genus class numbers.
Colloque International de Théorie des Nombres (Talence, 1999).
J. Théor. Nombres Bordeaux 12 (2000), no. 2, 349-365.
Z0972.11107; M 2002b:11157
[3] Class numbers of imaginary abelian number fields.
Proc. Amer. Math. Soc. 128 (2000), no. 9, 2517-2528.
Z 0983.11064; M 2000m:11108; R01.06-13A.253
CHARALAMBIDES CH.A.,
[1] Bernoulli related polynomials and numbers,
Math. Comp., 33
(1979), no. 146, 794-804.
Z402.10009; M80h:10018; R1980,2V594
CHARKANI EL HASSANI M.,
[1] Involution de Leopoldt et unités elliptiques.
Thèse doct. 3ème cycle, math. pure, Univ. Sci. et Méd.
Grenoble,
1984, 47 pp.
R1987,5A310D
CHARKANI EL HASSANI M., GILLARD R.,
[1] Unités elliptiques et groupes de classes,
Ann. Inst. Fourier, 36 (1986), no. 3, 29-41.
Z597.12005; M88f:11056; R1987,5A311
CHEBYSHEV P.L.,
[1] Note sur différentes séries,
J. de Math. (1), 16 (1851), 337-346.
CHELLALI M.,
[1] Nombres de Bernoulli modulo $p^m$ et nombres premiers
irréguliers, Thèse Doct. 3ème cycle, math. pure,
Univ. Sci. et Méd. Grenoble, (1982), Var. pag.
R1986,9A652
[2] Accélération de calcul de nombres de Bernoulli,
J. Number Theory, 28 (1988), no. 3, 347-362.
Z644.10010; M89h:05002; R1988,10A112
[3] Congruences entre nombres de Bernoulli-Hurwitz dans le cas supersingulier,
J. Number Theory, 35 (1990), no. 2, 157-179.
Z705.11008; M92f:11079
CHEN HONGWEI,
[1] Bernoulli numbers via determinants.
Internat. J. Math. Ed. Sci. Tech. 34 (2003), no. 2, 291-297.
CHEN JING RUN, LI JIAN YU,
[1] On the sums of powers of natural numbers,
Chinese Quart. J. Math., 2 (1987), no. 1, 1-17.
Z636.10008; M90i:11108
CHEN KWANG-WU,
[1] Algorithms for Bernoulli numbers and Euler numbers.
J. Integer Seq. 4 (2001), no. 1, Article 01.1.6, 7 pp. (electronic).
Z0973.11021; M2002f:11019
[2] Sums of products of generalized Bernoulli polynomials.
Pacific J. Math. 208 (2003), no. 1, 39-52.
M2004f:11016
[3] Congruences for Euler numbers.
Fibonacci Quart. 42 (2004), no. 2, 128-140.
R05.01 - 13A133
Chen, Kwang-Wu,
[4] A summation on Bernoulli numbers.
J. Number Theory 111 (2005), no. 2, 372-391.
M2005k:11039
[1] A note on generalized Bernoulli numbers.
Pacific J. Math. 199 (2001), no. 1, 41-59.
M2002k:11148; R02.08-13A.66
CHEN KWANG-WU: see also EIE M., CHEN KWANG-WU
CHEN MING-PO,
[1] An elementary evaluation of $\zeta (2m)$.
Chinese J. Math. 3 (1975), no. 1, 11-15.
Z361.10015; M56 #280
CHEN MING-PO, SRIVASTAVA H.M.,
[1] Some families of series representations for the Riemann $\zeta(3)$,
Result. Math., 33 (1998), no.3-4, 179-197.
Z980.45948
CHEN TIAN PING,
[1] Asymptotic expansions for splines,
Approx. Theory Appl., 2 (1986), no. 2, 1-9.
Z608.41006; M88e:41026
CHEN XUMING,
[1] Recursive formulas for $\zeta(2k)$ and $L(2k-1)$,
College Math. J., 26 (1995), no. 5, 372-376.
CHEN ZHI MING,
[1] Some identities for Euler numbers and Bernoulli numbers (Chinese),
Pure Appl. Math., 10 (1994), no. 1, 7-10.
Z841.11009; M95h:11015
CHEON GI-SANG,
[1] A note on the Bernoulli and Euler polynomials.
Appl. Math. Lett. 16 (2003), no. 3, 365-368.
M2004a:05008; R04.11-13A286
CHILDRESS N., GOLD R.,
[1] Zeros of p-adic L-functions,
Acta Arith., 48 (1987), no. 1, 63-71.
Z565.12009; M88i:11091; R1987,12A272
CHISTYAKOV I.I., (TSCHISTIAKOW, J.J.)
[1] Bernullievy chisla [Bernoulli numbers]. Moscow, 1895.
J26.0283.03
CHO HAE-SOOK, KIM EUN-SUP,
[1] A note on $q$-analogue of Volkenborn integral.
Proceedings of the Jangjeon Mathematical Society, 81-90,
Proc. Jangjeon Math. Soc., 4, Jangjeon Math. Soc., Hapcheon, 2002.
M2003f:11027
CHOI JUNESANG,
[1] Explicit formulas for Bernoulli polynomials of order $n$,
Indian J. Pure Appl. Math., 27 (1996), no. 7, 667-674.
Z860.11009; M97e:11029; R00.03-13A.109
[2] Note on Cahen's integral formulas.
Commun. Korean Math. Soc. 17 (2002), no. 1, 15-20.
M2003d:11132
J. Choi, H.M. Srivastava,
An experimental conjecture involving closed-form evaluation of series
associated with the zeta functions,
Math. Inequal. Appl. 16 (2013), no. 4, 971-979.
M3156474
Choie, Youngju; Kohnen, Winfried; Ono, Ken,
[1] Linear relations between modular form coefficients and non-ordinary primes.
Bull. London Math. Soc. 37 (2005), no. 3, 335-341.
M2005m:11081
[1] The Finite Calculus Associated With Bessel Functions.
Contemporary Mathematics, Vol. 75. Amer. Math. Soc., Providence, R.I.,
1988.
Z691.05007; M89m:05013
CHOWLA P.,
CHOWLA S.,
[1] A note on Bernoulli numbers, J.
Number Theory, 12 (1980), 445-446.
Z445.10014; M82c:10013; R1981,6A327
[2] On Bernoulli numbers, II, J.
Number Theory, 14 (1982), no. 1, 65-66.
Z485.10010; M82m:10022; R1982,7A101
[3] Criterion for the class number of some real quadratic
fields to be 1,
Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 1.
Z617.12002; R1987,12A288
[4] Criteria for the class number of quadratic fields to be 1,
Norske Vid. Selsk.Skr. (Trondheim), 1986, no. 2, 2-3.
Z617.12003; R1987,12A289
[5] Some unsolved problems,
Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 7.
Z617.12008; R1987,12A290
CHOWLA S.D.,
[1] A new proof of Von Staudt's theorem,
J. Indian Math. Soc., 16 (1926), 145-146.
J52.0140.02
[2] Some properties of Eulerian and prepared Bernoullian numbers,
Messenger Math., 57 (1927), 121-126.
J54.0182.02
[3] Some properties of Eulerian numbers.
Tôhoku Math. J. 30 (1929), 324-327
J55.0096.01
[4] On a conjecture of Ramanujan,
Tôhoku Math. J., 33 (1930), 1-2.
J56.0875.04
[5] A note on Bernoulli's numbers. In: Proc. Number Theory, Conf. at Calif. Inst. of Tech., Summer, 1955.
[6] On the signs of certain generalized
Bernoulli numbers, Kgl. Norske Vid. Selskabs Forhandl.,
(1961), 34 (1962), no. 21, 102-104.
Z105.26604; M25#2043; R1962,10A96
[7] Leopoldt's criterion for real quadratic
fields with class-number 1, Abhandl. Math. Sem.
Univ. Hamburg, 35 (1970), 32.
Z222.12002; M43#3232; R1971,5A373
[8] On some formulae resembling the Euler-Maclaurin sum formula,
Kgl. Norske Vid. Selskabs Forhandl., 34 (1961/62), no.23, 107-109.
M25#2044; R1962,10A94
CHOWLA S., HARTUNG P.,
[1] An "exact" formula for the m-th Bernoulli
number, Acta. Arith., 22
(1972), 113-115.
Z244.10008; M46#7151; R1973,3V334
CHOWLA S.: see also ANKENY N.C., ARTIN E., CHOWLA S.
CHOWLA S.: see also ANKENY N.C., CHOWLA S.
CHOWLA S.: see also CHOWLA P., CHOWLA S.
CHU W.: see HSU L.C., CHU W.
CHU WEI PAN: see DANG SI SHAN, CHU WEI PAN
Chu, Wei Pan; Dang, Si Shan,
[1] An identical formula describing the relationship between Bernoulli
numbers and second-kind Stirling numbers. (Chinese)
Pure Appl. Math. (Xi'an) 20 (2004), no. 3, 282-284.
CHU WENCHANG,
[1] Symmetric functions and the Riemann zeta series.
Indian J. Pure Appl. Math. 31 (2000), no. 12, 1677-1689.
Z1001.05118; M2002e:11112; R02.04-13B.21
Ó. Ciaurri, L.M. Navas, F.J. Ruiz, J.L. Varona,
[1] A simple computation of $\zeta(2k)$,
Amer. Math. Monthly 122 (2015), no. 5, 444-451.
M3352803
CIBRARIO M.,
[1] Sui numeri di Bernoulli e di Eulero, Rendic.
Accad. d. Lincei, Cl. Sci., Roma (6), 18 (1933), 110-118.
J59.0171.02; Z7.41302
[2] Sui polinomii di Bernoulli e di Eulero,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 207-214.
J59.1050.01; Z8.16203
[3] Su alcune generalizzazioni dei numeri e dei
polinomii de Bernoulli e di Eulero,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 275-279.
J59.1050.02; Z8.16204
[4] Proprietà dei numeri e dei polinomii di
Bernoulli e di Eulero generalizzati,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 365-369.
J59.1050.03; Z8.26101
CIKÁNEK P.,
[1] Matrices of the Stickelberger ideals $\pmod l$ for all primes up to 125000,
Arch. Math. (Brno), 27a (1991), 3-6.
Z760.11028; M93i:11149; R1992,10A239
[2] A special extension of Wieferich's criterion.
Math. Comp., 62 (1994), no. 206, 923-930.
Z805.11027; M94g:11023
CLARKE F.,
[1] The universal von Staudt theorems,
Trans. Amer. Math. Soc., 315 (1989), no. 2, 591-603.
Z683.10013; M90a:11026; R1990,9A97
[2] On Dibag's generalization of von Staudt's theorem,
J. Algebra, 141 (1991), no. 2, 420-421.
Z734.11019; M92k:11020
[3] On Vandiver's generalised Bernoulli numbers, Preprint, 1990.
CLARKE F., SLAVUTSKII I.SH.,
[1] The integrality of the values of Bernoulli polynomials and of generalised
Bernoulli numbers. Bull. London Math. Soc. 29 (1997), no. 1, 22-24.
Z865.11021; M97k:11022
CLARKE F.: see also BAKER A.J., CLARKE F., et al.
CLAUSEN T.,
[1] Lehrsatz aus einer Abhandlung über die
Bernoullischen Zahlen, Astr. Nachr., 17 (1840),
351-352.
COATES J.,
[1] p-adic L-functions and Iwasawa's theory,
Algebraic Number Fields, ed. Fröhlich A., London,
1977, 269-353.
Z393.12027; M57#276; R1979,5A288
[2] The work of Mazur and Wiles on cyclotomic
fields, Lect. Notes in Math., 901 (1981),
220-242.
Z506.12001; M83i:12005; R1982,8A362
COATES J., POITOU G.,
[1] Du nouveau sur les racines de l'unité, Gaz. Math., 15
(1980), 5-26.
Z476.12007
COATES J., SINNOTT W.,
[1] On p-adic L-functions over real quadratic
fields, Invent. Math., 25 (1974), no. 3/4,
253-279.
Z305.12008; M50#7093; R1975,2A401
COEN L.E.S.,
[1] Sums of Powers and the Bernoulli Numbers.
M.A. thesis, Eastern Illinois University, Charleston, Illinois, 1996. 54pp.
COHEN H., OLIVIER M.,
[1] Calcul des valeurs de la fonction zêta de Riemann en
multiprécision.
C. R. Acad. Sci. Paris Ser. I Math., 314 (1992), no. 6, 427-430.
Z751.11057; M93g:11134
COHEN S.P.,
[1] Heights of torsion points on commutative group varieties,
Proc London Math. Soc. (3), 52 (1986), no. 3, 427-444.
Z585.14032; M87i:14038; R1987,6A469
COHN H.,
[1] Introduction to the construction of class fields.
Cambridge Studies in Advanced Math., 6. Cambridge Univ. Press,
Cambridge-New York, 1985. x + 213 pp.
Z571.12001; M87i:11165; R1986,11A423
COLEMAN R.,
[1] Local units modulo circular units, Proc.
Amer. Math. Soc., 89 (1983), no. 1, 1-7.
Z528.12005; M85b:11088; R1984,4A367
COMRIE L.J.: see FLETCHER A. et al.
COMTET L.,
[1] Analyse combinatoire. Tomes I, II. Presses Universitaires de France,
Paris, 1970. 192 pp., 190 pp.
Z221.05001 (I); Z221.05002 (II); M41#6697
[2] Advanced combinatorics. The art of finite and infinite expansions.
Revised and enlarged edition. D. Reidel Publ. Co., Dordrecht-Boston, 1974.
x + 343 pp.
Z283.05001; M57#124
CONWAY J.H., SLOANE N.J.A.,
[1] On enumeration of lattices of determinant
one, J. Number Theory, 15 (1982), no. 1,
83-94.
Z496.10023; M84b:10047; R1982,12V585
COOPER S.,
[1] On sums of an even number of squares, and an even number of triangular
numbers: an elementary approach based on Ramanujan's ${}\sb 1\psi\sb 1$
summation formula. In: $q$-series with applications to combinatorics, number
theory, and physics (Urbana, IL, 2000), 115-137, Contemp. Math., 291,
Amer. Math. Soc., Providence, RI, 2001.
Z0998.11019; M2002k:11046; R02.07-13 V.183
COPPO M.A.: see CANDELPERGHER B., COPPO M.A., DELABAE RE E.,
CORNELISSEN G.,
[1] Zeros of Eisenstein series, quadratic class numbers and supersingularity
for rational function fields,
Math. Ann. 314 (1999), no. 1, 175-196.
M2000e:11060
COSTA PEREIRA N.: see PEREIRA N.C.
COSTABILE F.,
[1] Expansions of real functions in Bernoulli polynomials and applications.
Conf. Semin. Mat. Univ. Bari No. 273, (1999), 13 pp.
M2000k:33014
COSTABILE F.A., DELL'ACCIO F.,
[1] Expansion over a rectangle of real functions in Bernoulli polynomials
and applications.
BIT 41 (2001), no. 3, 451-464.
Z0989.65014; M2002g:65015
[2] Expansions over a simplex of real functions by means of Bernoulli
polynomials. In memory of W. Gross.
Numer. Algorithms 28 (2001), no. 1-4, 63-86.
Z0997.65012; M2003b:41024
Costabile, F.; Dell'Accio, F.; Gualtieri, M. I.,
[1] A new approach to Bernoulli polynomials.
Rend. Mat. Appl. (7) 26 (2006), no. 1, 1--12.
M2007a:11023
Costabile, F. A.; Dell'Accio, F.; Luceri, R.,
[1] Explicit polynomial expansions of regular real functions by means of even
order Bernoulli polynomials and boundary values.
J. Comput. Appl. Math. 176 (2005), no. 1, 77-90.
M2005h:41008
[1] An iterative method for the computation of the solutions of nonlinear
equations.
Calcolo 36 (1999), no. 1, 17-34.
Z0942.65049; M2001d:65070
COTLAR M.,
[1] Estudio de una classe de polinomios de Bernoulli, Math. Notae
(Boletin Inst. Math.), Rosario, Argentina, 7
(1946), no. 2, 69-95.
Z61.14001; M9-30f
[2] Un método para obtener congruencias de numeros de Bernoulli
[A method for obtaining congruences of Bernoulli numbers],
Math. Notae (Boletin Inst. Math.), Rosario, Argentina, 7
(1947), no. 1, 1-29.
Z30.01404; M9-175c
COX D.A.,
[1] Introduction to Fermat's Last Theorem.
Amer. Math. Monthly, 101 (1994), no. 1, 3-14.
Z849.11002; M94i:11022; R1994,10A246
Crabb, M. C.,
[1] The Miki-Gessel Bernoulli number identity.
Glasg. Math. J. 47 (2005), no. 2, 327--328.
M2006j:11025
CRANDALL R.E.,
[1] Topics in Advanced Scientific Computation.
TELOS/Springer-Verlag, Santa Clara, CA, 1996.
M97g:65005
CRANDALL R.E., BUHLER J.P.,
[1] On the evaluation of Euler sums.
Experiment. Math., 3 (1994), no. 4, 275-285.
Z833.11045; M96e:11113
CRANDALL R.E., DILCHER K., POMERANCE C.,
[1] A search for Wieferich and Wilson primes,
Math. Comp., 66 (1997), no. 217, 433-449.
Z854.11002; M97c:11004; R1997,10A129
CRANDALL R.E., POMERANCE C.,
[1] Prime numbers. A computational perspective.
Springer-Verlag, New York, 2001. xvi+545 pp.
CRANDALL R.E.: see also BUHLER J.P. et al.
CRANDALL R.E.: see also BAILEY D.H., BORWEIN J.M., CRANDALL R.E.
CROMBEZ G.,
[1] On a generalisation of the Bernoulli and the Euler polynomials,
Ganita, 22 (1971), no. 1, 131-141.
Z222.30019; M45#3810
CSORBA G.,
[1] Über die Partitionen der ganzen Zahlen,
Math. Ann., 75 (1914), 545-568.
J45.0285.01
CVIJOVIC D., KLINOWSKI J.,
[1] New formulae for the Bernoulli and Euler polynomials at rational
arguments,
Proc. Amer. Math. Soc., 123 (1995), no. 5, 1527-1535.
Z827.11012; M95g:11085
[2] New rapidly convergent series representations for $\zeta(2n+1)$,
Proc. Amer. Math. Soc. 125 (1997), no. 5, 1263-1271.
Z863.11055; M97g:11090
[3] Values of the Legendre chi and Hurwitz zeta functions at rational arguments. Math. Comp. 68 (1999), no. 228, 1623-1630.
D. Cvijović, J. Klinowski, H.M. Srivastava,
[1] Some polynomials associated with Williams' limit formula for $\zeta(2n)$,
Math. Proc. Cambridge Philos. Soc. 135> (2003), no. 2, 199-209.
Back to Index Back to B On to D