Back to Index Back to D On to F
EDWARDS A.W.F.,
EDWARDS H.M.,
[2] The background of Kummer's proof of
Fermat's last theorem for regular primes, Arch. Hist.
Exact. Sci., 14 (1975), no. 3, 219-236.
Z323.01022; M57#12066a; R1976,8A15
[3] Fermat's last theorem. A genetic
introduction to algebraic number theory, Springer-Verlag, New
York-Berlin, 1977. xv + 410 pp.
Z355.12001; M83b:12001a; R1978,4A94K
[4] Postscript to:"The background of Kummer's proof of Fermat's last
theorem for regular primes",
Arch. History Exact Sci., 17 (1977), no. 4, 381-394.
Z364.01004; M57#12066b; R1978,6A15
[5] Fermat's last theorem, Sci. Amer., 239 (1978), no. 4, 104-122.
[6] Fermat's last theorem. (Bulgarian).
Fiz.-Mat. Spis. B"lgar. Akad. Nauk., 22 (55)(1979), no. 4, 290-300
(1980).
Z462.10001; M82d:10002
EGAMI S.,
[1] Reciprocity laws of multiple zeta functions and generalized Dedekind sums.
In: Analytic number theory and related topics (Tokyo, 1991), 17-27,
World Sci. Publishing, River Edge, NJ, 1993.
Z0978.11016; M96m:11078
EGAMI S.: see AKIYAMA S., EGAMI S., TANIGAWA Y.
EGORYCHEV G.P.,
[1] Integral representation and computation of combinatorical
sums. (Russian) Izdat. "Nauka" Sibirsk. Otdel, Novosibirsk, 1977, 283 pp.
Z453.05001; M58#10474; R1978,3V444K
EHRENBORG R., STEINGRIMSSON E.,
[1] Yet another triangle for the Genocchi numbers.
European J. Combin. 21 (2000), no. 5, 593-600.
M2001h:05008
EIE MINKING [YÜ WÊN CH'ING],
[1] On the values at nonpositive integers of the Dedekind zeta
function of a real quadratic field,
Chinese J. Math., 15 (1987), no. 4, 215-226.
Z661.10031; M90e:11177
[2] On the values at negative half-integers of the Dedekind zeta
function of a real quadratic field,
Proc. Amer. Math. Soc., 105 (1989), no. 2, 273-280.
Z667.10013; M90a:11137; R1990,1A151
[3] On a Dirichlet series associated with a polynomial,
Proc. Amer. Math. Soc., 110 (1990), no. 3, 583-590.
Z708.11040; M91m:11071; R1991,105139
[4] On the values at negative integers of zeta-functions
associated with polynomials,
Soochow J. Math., 16 (1990), no. 1, 53-61.
Z701.11030; M91k:11076
[5] The Maass space for Cayley numbers,
Math. Z., 207 (1991), no. 4, 645-655.
Z737.11012; M92k:11053
[6] The special values at negative integers of Dirichlet series
associated with polynomials of several variables,
Proc. Amer. Math. Soc., 119 (1993), no.1, 51-61.
Z789.11052; M93k:11082
[7] A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials.
Trans. Amer. Math. Soc. 348 (1996), no. 3, 1117-1136.
Z864.11043; M96h:11011; M1996,8V251
EIE M., CHEN KWANG-WU
[1] A theorem on zeta functions associated with polynomials,
Trans. Amer. Math. Soc. 351 (1999), no. 8, 3217-3228.
Z928.11038; M99m:11099
EIE M., KRIEG A.,
[1] The Maass space on the half-plane of Cayley numbers of degree two,
Math. Z., 210 (1992), no.1, 113-128.
Z729.11022; M93e:11063
EIE M., LAI K.F.,
[1] On Bernoulli identities and applications,
Rev. Mat. Iberoamericana, 14 (1998), no. 1, 167-213.
M99h:11017; R1999,1A80
EIE M., ONG Y.L.,
[1] A generalization of Kummer's congruences,
Abh. Math. Sem. Univ. Hamburg 67 (1997), 149-157.
Z896.11035; M98h:11024; R1999,1A180
[2] A new approach to congruences of Kummer type for Bernoulli numbers.
Number theory for the millennium, I (Urbana, IL, 2000), 377-391,
A K Peters, Natick, MA, 2002.
Z1033.11009; M2003m:11033
[3] On sums of certain trigonometric series.
Bull. Austral. Math. Soc. 67 (2003), no. 1, 103-114.
M2004g:11079
EIE M.: see also CHEN KWANG-WU, EIE MINKING
EIE M.: see also FANG C.-H., EIE M.
EIGEL E.G., Jr.,
[1] Sums of powers of integers,
Pi Mu Epsilon J., 4 (1964), 7-10.
EISENLOHR O.,
[1] Entwicklung der Functionsweise der
Bernoullischen Zahlen, J. Reine Angew. Math., 28
(1844), 193-212.
ELIZALDE E.,
[1] An asymptotic expansion for the first derivative of the generalized
Riemann zeta function, Math. Comp., 47 (1986), no. 175, 347-350.
Z603.10040; M87h:11081; R1987,2A95
[2] A simple recurrence for the higher derivatives of the Hurwitz
zeta function.
J. Math. Phys., 34 (1993), no. 7, 3222-3226.
Z779.11037; M94h:11078
ELKIES N. D.,
[1] On the sums $\sum\sp \infty\sb {k=-\infty}(4k+1)\sp {-n}$.
Amer. Math. Monthly 110 (2003), no. 7, 561-573.
ELY G.S.,
[1] Bibliography of Bernoulli's numbers, Amer.
J. Math., 5 (1882), 228-235.
J15.0021.04
[2] Some notes on the numbers of Bernoulli and
Euler, Amer. J. Math., 5 (1883), 337-341.
J15.0200.02
[3] On the numbers $a_{n,m}$, which occur in connection with the proof of
Staudt's theorem concerning Bernoulli numbers, Johns Hopkins Univ.
Circulars, 2 (1883), 47-48.
J15.0204.01
ENDÔ A.,
[1] The relative class number of certain imaginary abelian fields,
Abh. Math. Sem. Univ. Hamburg, 58 (1988), 237-243.
Z699.12015; M90m:11169; R1990,5A283
[2] The relative class number of certain imaginary abelian number
fields and determinants,
J. Number Theory, 34 (1990), no. 1, 13-20.
Z695.12004; M91b:11121
[3] On an index formula for the relative class number of a
cyclotomic number field,
J. Number Theory, 36 (1990), no. 3, 332-338.
Z715.11062; M91m:11092
[4] On the Stickelberger ideal of (2,...,2)-extensions of a
cyclotomic number field,
Manuscr. Math., 69 (1990), no. 2, 107-132.
Z715.11061; M91i:11144
[5] The relative class number of certain imaginary abelian number fields of odd
conductors. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 3, 64-68.
Z862.11062; M97e:11137; R1996,10A251
ENTRINGER R.C.,
[1] A combinatorial interpretation of the Euler and Bernoulli numbers,
Nieuw Arch. Wisk. (3), 14 (1966), 241-246.
Z145.01402; M34#5692; R1967,10V246
ERDÉLYI A.,
MAGNUS W., OBERHETTINGER F.,
TRICOMI F.,
[1] Higher transcendental functions. Vol. III.,
McGraw-Hill, New York, 1955. xvii + 292 pp.
Z64.06302; M16-586c; R1957,3259K
ERDÖS P., WAGSTAFF S.,
[1] The fractional parts of the Bernoulli
numbers, Illinois J. Math., 24 (1980), no. 1, 104-112.
Z405.10011; M81c:10064; R1980,11A108
ERNVALL R.,
[1] On the distribution $\pmod 8$ of the
E-irregular primes, Ann. Acad. Sci. Fenniae, Ser. A1,
Math., 1 (1975), no. 1, 195-198.
Z313.10010; M52#5594; R1976,10A98
[2] E-irregular primes and related tables, Math. Comp., 32 (1978), 656-657.
[3] Generalized Bernoulli numbers, generalized
irregular primes, and class number, Ann. Univ.
Turku., Ser. A1, (1979), no. 178, 1-72.
Z403.12010; M80m:12002; R1980,2A352
[4] Irregular primes (A lecture given in Finnish at the meeting of the Finnish Mathematical Society), Helsinki University of Technology Report Mat-C3, (1983), 7-14.
[5] Generalized irregular primes,
Mathematika, 30 (1983), no. 1, 67-73.
Z506.12007; M85g:11022; R1984,5A126
[6] An upper bound for the index of $\chi$-irregularity,
Mathematika, 32 (1985), no. 1, 39-44.
Z555.12003; M87e:11024
[7] A generalization of Herbrand's theorem,
Ann. Univ. Turku. Ser. AI, 1989, no. 193, 15 pp.
Z658.12003; M90e:11159; R1989,10A319
[8] A note on the cyclotomic units,
Comm. Math. Univ. St. Paul., 40 (1991), no. 1, 1-6.
Z742.11052; M92c:11118; R1992,5A266
[9] A congruence on Euler numbers (solution to a problem), Amer. Math. Monthly, 89 (1982), no. 6, 431.
ERNVALL R., METSÄNKYLÄ T.,
[1] Cyclotomic invariants and E-irregular primes,
Math. Comp., 32 (1978), 617-629; corrig. Math. Comp., 33
(1979), 433.
Z381.12002; Z398.12002; M80c:12004a,b; R1978,587
[2] A method for computing the Iwasawa $\lambda$-invariant,
Math. Comp., 49 (1987), no. 179, 281-284.
Z601.12010; M88i:11080
[3] Cyclotomic invariants for primes between 125000 and 150000,
Math. Comp., 56 (1991), no. 194, 851-858.
Z724.11052; M91h:11157
[4] Computations of the zeros of $p$-adic $L$-functions,
Math. Comp., 58 (1992), no. 198, 815-830; S37-S53.
Z760.11021; M92j:11121; R1993,11A285;
[5] Cyclotomic invariants for primes to one million,
Math. Comp., 59 (1992), no. 199, 249-250.
Z760.11029; M93a:11108; R1993,10A296
[6] On the $p$-divisibility of Fermat quotients,
Math. Comp. 66 (1997), no. 219, 1353-1365.
Z 970.26846; M97i:11003; R1998,5A91
ERNVALL R.: see also BUHLER J.P. et al
ESTANAVE E.,
[1] Sur les coefficients des développements en
série de tang $x$, sec$x$ et d'autres fonctions, Bull.
Soc. Math. France, 30 (1902), 220-226.
J33.0290.02
ESTERMANN T.,
[1] Elementary evaluation of $\zeta(2k)$,
J. London Math. Soc., 22 (1947), no. 1, 10-13.
Z29.39403; M9-234d
ETTINGSHAUSEN A.,
[1] Vorlesungen über die höhere Mathematik Bd. 1,
Carl Gerold, Wien, 1829.
EULER L.,
[1] Methodus generalis summandi progressiones,
Comment. Acad. Sci. Petropol., 6 (1732/33), (1738), 68-97.
[2] De summis serierum reciprocarum, Comment. Acad. Sci. Petropol., 7 (1734/35), (1740), 123-134.
[3] Inventio summae cujusque seriei ex dato termino generali, Comment. Acad. Sci. Petropol., 8 (1736), (1741), 9-22.
[4] Consideratio progressiones cujusdam ad circuli quadraturam inveniendam idoneae, Comment. Acad. Sci. Petropol., 11 (1739), (1750), 116-127.
[5] De seriebus quibusdam considerationes, Comment. Acad. Sci. Petropol., 12 (1740), (1750), 53-96.
[6] Introductio in analysin infinitorum, Lausannae, 1748.
[7] Institutiones Calculi Differentialis, Petersburg, 1755.
[8] De curva hypergeometrica hac aequatione expressa $y = 1.2 \cdots x$, Novi Comment. Acad. Sci. Petropol., 13 (1768), (1769), 3-66.
[9] De summis serierum numeros Bernoullianos involventium, Novi Comment. Acad. Sci. Petropol., 14 (1769), (1770), 129-167.
[10] De numero memorabili in summatione progressionis harmonicae naturalis occurrente, Acta. Acad. Petropol., p.2 (1781), (1785), 458-75.
[11] De seriebus potestatum reciprocis methodo nova et facillima summandis. Opuscula analytica, 2 (1785), 257-274 = Opera Omnia, I.15, Teubner, Leipzig-Berlin, 1927, 701-722.
EVANS R.J.: see BERNDT B.C., EVANS R.J.
EVANS R.J.: see BERNDT B.C., EVANS R.J., WILSON B.M.
Everest, G.; van der Poorten, A. J.; Puri, Y.; Ward, T.,
[1] Integer sequences and periodic points.
J. Integer Seq. 5 (2002), no. 2, Article 02.2.3, 10 pp. (electronic).
M2003j:11014
EWELL J.A.,
[1] On values of the Riemann zeta function at integral arguments,
Canad. Math. Bull., 34 (1991), no. 1, 60-66.
Z731.11048; M92c:11087
EYTELWEIN J.A.,
[1] Ueber die Vergleichung der Differenz-Coefficienten mit den Bernoulli'schen
Zahlen,
Abhandl. Kgl. Preuss. Akad. Wiss., Math. Kl., (1816/17) (1819), 28-41.
[2] Grundlehren der höheren Analysis, Berlin, Bd. 2, 1824.
EZHOV I.I.,
[1] Bernoulli numbers and some of their
applications. (Russian), Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976, 109-115
M58#27735; R1977,11V539
[2] Bernoulli numbers and Chebyshev
problems for primes. (Ukrainian), Dokl. Akad. Nauk. Ukrain. SSSR Ser. A,
(1981), no.6, 12-15.
Z459.10003; M83f:10047; R1981,11A81
Back to Index Back to D On to F