Bernoulli Bibliography

E


Back to Index       Back to D       On to F


EBBINGHAUS H.-D., HERMES H., HIRZEBRUCH F., KOECHER M., MAINZER K., NEUKIRCH J., PRESTEL A., REMMERT R.,
[1] Numbers, Springer-Verlag, Berlin etc., 1990, xviii+391pp.
Z705.00001; Z741.00003; M91h:00005

EDWARDS A.W.F.,
[1] Sums of powers of integers: a little of the history, Math. Gaz., 66 (1982), no. 435, 22-28.
Z493.10004; M83e:10013

EDWARDS H.M.,
[1] Riemann's zeta function, Academic Press, New York-London, 1974. xiii + 315 pp.
Z315.10035; M57#5922; R1975,12A133K

[2] The background of Kummer's proof of Fermat's last theorem for regular primes, Arch. Hist. Exact. Sci., 14 (1975), no. 3, 219-236.
Z323.01022; M57#12066a; R1976,8A15

[3] Fermat's last theorem. A genetic introduction to algebraic number theory, Springer-Verlag, New York-Berlin, 1977. xv + 410 pp.
Z355.12001; M83b:12001a; R1978,4A94K

[4] Postscript to:"The background of Kummer's proof of Fermat's last theorem for regular primes", Arch. History Exact Sci., 17 (1977), no. 4, 381-394.
Z364.01004; M57#12066b; R1978,6A15

[5] Fermat's last theorem, Sci. Amer., 239 (1978), no. 4, 104-122.

[6] Fermat's last theorem. (Bulgarian). Fiz.-Mat. Spis. B"lgar. Akad. Nauk., 22 (55)(1979), no. 4, 290-300 (1980).
Z462.10001; M82d:10002

EGAMI S.,
[1] Reciprocity laws of multiple zeta functions and generalized Dedekind sums. In: Analytic number theory and related topics (Tokyo, 1991), 17-27, World Sci. Publishing, River Edge, NJ, 1993.
Z0978.11016; M96m:11078

EGAMI S.: see AKIYAMA S., EGAMI S., TANIGAWA Y.

EGORYCHEV G.P.,
[1] Integral representation and computation of combinatorical sums. (Russian) Izdat. "Nauka" Sibirsk. Otdel, Novosibirsk, 1977, 283 pp.
Z453.05001; M58#10474; R1978,3V444K

EHRENBORG R., STEINGRIMSSON E.,
[1] Yet another triangle for the Genocchi numbers. European J. Combin. 21 (2000), no. 5, 593-600.
M2001h:05008

EIE MINKING [YÜ WÊN CH'ING],
[1] On the values at nonpositive integers of the Dedekind zeta function of a real quadratic field, Chinese J. Math., 15 (1987), no. 4, 215-226.
Z661.10031; M90e:11177

[2] On the values at negative half-integers of the Dedekind zeta function of a real quadratic field, Proc. Amer. Math. Soc., 105 (1989), no. 2, 273-280.
Z667.10013; M90a:11137; R1990,1A151

[3] On a Dirichlet series associated with a polynomial, Proc. Amer. Math. Soc., 110 (1990), no. 3, 583-590.
Z708.11040; M91m:11071; R1991,105139

[4] On the values at negative integers of zeta-functions associated with polynomials, Soochow J. Math., 16 (1990), no. 1, 53-61.
Z701.11030; M91k:11076

[5] The Maass space for Cayley numbers, Math. Z., 207 (1991), no. 4, 645-655.
Z737.11012; M92k:11053

[6] The special values at negative integers of Dirichlet series associated with polynomials of several variables, Proc. Amer. Math. Soc., 119 (1993), no.1, 51-61.
Z789.11052; M93k:11082

[7] A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials. Trans. Amer. Math. Soc. 348 (1996), no. 3, 1117-1136.
Z864.11043; M96h:11011; M1996,8V251

EIE M., CHEN KWANG-WU
[1] A theorem on zeta functions associated with polynomials, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3217-3228.
Z928.11038; M99m:11099

EIE M., KRIEG A.,
[1] The Maass space on the half-plane of Cayley numbers of degree two, Math. Z., 210 (1992), no.1, 113-128.
Z729.11022; M93e:11063

EIE M., LAI K.F.,
[1] On Bernoulli identities and applications, Rev. Mat. Iberoamericana, 14 (1998), no. 1, 167-213.
M99h:11017; R1999,1A80

EIE M., ONG Y.L.,
[1] A generalization of Kummer's congruences, Abh. Math. Sem. Univ. Hamburg 67 (1997), 149-157.
Z896.11035; M98h:11024; R1999,1A180

[2] A new approach to congruences of Kummer type for Bernoulli numbers. Number theory for the millennium, I (Urbana, IL, 2000), 377-391, A K Peters, Natick, MA, 2002.
Z1033.11009; M2003m:11033

[3] On sums of certain trigonometric series. Bull. Austral. Math. Soc. 67 (2003), no. 1, 103-114.
M2004g:11079

EIE M.: see also CHEN KWANG-WU, EIE MINKING

EIE M.: see also FANG C.-H., EIE M.

EIGEL E.G., Jr.,
[1] Sums of powers of integers, Pi Mu Epsilon J., 4 (1964), 7-10.

EISENLOHR O.,
[1] Entwicklung der Functionsweise der Bernoullischen Zahlen, J. Reine Angew. Math., 28 (1844), 193-212.

ELIZALDE E.,
[1] An asymptotic expansion for the first derivative of the generalized Riemann zeta function, Math. Comp., 47 (1986), no. 175, 347-350.
Z603.10040; M87h:11081; R1987,2A95

[2] A simple recurrence for the higher derivatives of the Hurwitz zeta function. J. Math. Phys., 34 (1993), no. 7, 3222-3226.
Z779.11037; M94h:11078

ELKIES N. D.,
[1] On the sums $\sum\sp \infty\sb {k=-\infty}(4k+1)\sp {-n}$. Amer. Math. Monthly 110 (2003), no. 7, 561-573.

ELY G.S.,
[1] Bibliography of Bernoulli's numbers, Amer. J. Math., 5 (1882), 228-235.
J15.0021.04

[2] Some notes on the numbers of Bernoulli and Euler, Amer. J. Math., 5 (1883), 337-341.
J15.0200.02

[3] On the numbers $a_{n,m}$, which occur in connection with the proof of Staudt's theorem concerning Bernoulli numbers, Johns Hopkins Univ. Circulars, 2 (1883), 47-48.
J15.0204.01

ENDÔ A.,
[1] The relative class number of certain imaginary abelian fields, Abh. Math. Sem. Univ. Hamburg, 58 (1988), 237-243.
Z699.12015; M90m:11169; R1990,5A283

[2] The relative class number of certain imaginary abelian number fields and determinants, J. Number Theory, 34 (1990), no. 1, 13-20.
Z695.12004; M91b:11121

[3] On an index formula for the relative class number of a cyclotomic number field, J. Number Theory, 36 (1990), no. 3, 332-338.
Z715.11062; M91m:11092

[4] On the Stickelberger ideal of (2,...,2)-extensions of a cyclotomic number field, Manuscr. Math., 69 (1990), no. 2, 107-132.
Z715.11061; M91i:11144

[5] The relative class number of certain imaginary abelian number fields of odd conductors. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 3, 64-68.
Z862.11062; M97e:11137; R1996,10A251

ENTRINGER R.C.,
[1] A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Arch. Wisk. (3), 14 (1966), 241-246.
Z145.01402; M34#5692; R1967,10V246

ERDÉLYI A., MAGNUS W., OBERHETTINGER F., TRICOMI F.,
[1] Higher transcendental functions. Vol. III., McGraw-Hill, New York, 1955. xvii + 292 pp.
Z64.06302; M16-586c; R1957,3259K

ERDÖS P., WAGSTAFF S.,
[1] The fractional parts of the Bernoulli numbers, Illinois J. Math., 24 (1980), no. 1, 104-112.
Z405.10011; M81c:10064; R1980,11A108

ERNVALL R.,
[1] On the distribution $\pmod 8$ of the E-irregular primes, Ann. Acad. Sci. Fenniae, Ser. A1, Math., 1 (1975), no. 1, 195-198.
Z313.10010; M52#5594; R1976,10A98

[2] E-irregular primes and related tables, Math. Comp., 32 (1978), 656-657.

[3] Generalized Bernoulli numbers, generalized irregular primes, and class number, Ann. Univ. Turku., Ser. A1, (1979), no. 178, 1-72.
Z403.12010; M80m:12002; R1980,2A352

[4] Irregular primes (A lecture given in Finnish at the meeting of the Finnish Mathematical Society), Helsinki University of Technology Report Mat-C3, (1983), 7-14.

[5] Generalized irregular primes, Mathematika, 30 (1983), no. 1, 67-73.
Z506.12007; M85g:11022; R1984,5A126

[6] An upper bound for the index of $\chi$-irregularity, Mathematika, 32 (1985), no. 1, 39-44.
Z555.12003; M87e:11024

[7] A generalization of Herbrand's theorem, Ann. Univ. Turku. Ser. AI, 1989, no. 193, 15 pp.
Z658.12003; M90e:11159; R1989,10A319

[8] A note on the cyclotomic units, Comm. Math. Univ. St. Paul., 40 (1991), no. 1, 1-6.
Z742.11052; M92c:11118; R1992,5A266

[9] A congruence on Euler numbers (solution to a problem), Amer. Math. Monthly, 89 (1982), no. 6, 431.

ERNVALL R., METSÄNKYLÄ T.,
[1] Cyclotomic invariants and E-irregular primes, Math. Comp., 32 (1978), 617-629; corrig. Math. Comp., 33 (1979), 433.
Z381.12002; Z398.12002; M80c:12004a,b; R1978,587

[2] A method for computing the Iwasawa $\lambda$-invariant, Math. Comp., 49 (1987), no. 179, 281-284.
Z601.12010; M88i:11080

[3] Cyclotomic invariants for primes between 125000 and 150000, Math. Comp., 56 (1991), no. 194, 851-858.
Z724.11052; M91h:11157

[4] Computations of the zeros of $p$-adic $L$-functions, Math. Comp., 58 (1992), no. 198, 815-830; S37-S53.
Z760.11021; M92j:11121; R1993,11A285; [5] Cyclotomic invariants for primes to one million, Math. Comp., 59 (1992), no. 199, 249-250.
Z760.11029; M93a:11108; R1993,10A296

[6] On the $p$-divisibility of Fermat quotients, Math. Comp. 66 (1997), no. 219, 1353-1365.
Z 970.26846; M97i:11003; R1998,5A91

ERNVALL R.: see also BUHLER J.P. et al

ESTANAVE E.,
[1] Sur les coefficients des développements en série de tang $x$, sec$x$ et d'autres fonctions, Bull. Soc. Math. France, 30 (1902), 220-226.
J33.0290.02

ESTERMANN T.,
[1] Elementary evaluation of $\zeta(2k)$, J. London Math. Soc., 22 (1947), no. 1, 10-13.
Z29.39403; M9-234d

ETTINGSHAUSEN A.,
[1] Vorlesungen über die höhere Mathematik Bd. 1, Carl Gerold, Wien, 1829.

EULER L.,
[1] Methodus generalis summandi progressiones, Comment. Acad. Sci. Petropol., 6 (1732/33), (1738), 68-97.

[2] De summis serierum reciprocarum, Comment. Acad. Sci. Petropol., 7 (1734/35), (1740), 123-134.

[3] Inventio summae cujusque seriei ex dato termino generali, Comment. Acad. Sci. Petropol., 8 (1736), (1741), 9-22.

[4] Consideratio progressiones cujusdam ad circuli quadraturam inveniendam idoneae, Comment. Acad. Sci. Petropol., 11 (1739), (1750), 116-127.

[5] De seriebus quibusdam considerationes, Comment. Acad. Sci. Petropol., 12 (1740), (1750), 53-96.

[6] Introductio in analysin infinitorum, Lausannae, 1748.

[7] Institutiones Calculi Differentialis, Petersburg, 1755.

[8] De curva hypergeometrica hac aequatione expressa $y = 1.2 \cdots x$, Novi Comment. Acad. Sci. Petropol., 13 (1768), (1769), 3-66.

[9] De summis serierum numeros Bernoullianos involventium, Novi Comment. Acad. Sci. Petropol., 14 (1769), (1770), 129-167.

[10] De numero memorabili in summatione progressionis harmonicae naturalis occurrente, Acta. Acad. Petropol., p.2 (1781), (1785), 458-75.

[11] De seriebus potestatum reciprocis methodo nova et facillima summandis. Opuscula analytica, 2 (1785), 257-274 = Opera Omnia, I.15, Teubner, Leipzig-Berlin, 1927, 701-722.

EVANS R.J.: see BERNDT B.C., EVANS R.J.

EVANS R.J.: see BERNDT B.C., EVANS R.J., WILSON B.M.

Everest, G.; van der Poorten, A. J.; Puri, Y.; Ward, T.,
[1] Integer sequences and periodic points. J. Integer Seq. 5 (2002), no. 2, Article 02.2.3, 10 pp. (electronic).
M2003j:11014

EWELL J.A.,
[1] On values of the Riemann zeta function at integral arguments, Canad. Math. Bull., 34 (1991), no. 1, 60-66.
Z731.11048; M92c:11087

EYTELWEIN J.A.,
[1] Ueber die Vergleichung der Differenz-Coefficienten mit den Bernoulli'schen Zahlen, Abhandl. Kgl. Preuss. Akad. Wiss., Math. Kl., (1816/17) (1819), 28-41.

[2] Grundlehren der höheren Analysis, Berlin, Bd. 2, 1824.

EZHOV I.I.,
[1] Bernoulli numbers and some of their applications. (Russian), Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976, 109-115
M58#27735; R1977,11V539

[2] Bernoulli numbers and Chebyshev problems for primes. (Ukrainian), Dokl. Akad. Nauk. Ukrain. SSSR Ser. A, (1981), no.6, 12-15.
Z459.10003; M83f:10047; R1981,11A81


Back to Index       Back to D       On to F