Back to Index       Back to newest additions
Chang, Ching-Hua; Ha, Chung-Wei,
[3] On identities involving Bernoulli and Euler polynomials.
Fibonacci Quart. 44 (2006), no. 1, 39--45.
Luo, Qiu-Ming; Srivastava, H. M.,
[2] Some relationships between the Apostol-Bernoulli and Apostol-Euler
polynomials.
Comput. Math. Appl. 51 (2006), no. 3-4, 631--642.
Chang, Ching-Hua; Ha, Chung-Wei,
[4] A multiplication theorem for the Lerch zeta function and explicit
representations of the Bernoulli and Euler polynomials.
J. Math. Anal. Appl. 315 (2006), no. 2, 758--767.
Pan, Hao; Sun, Zhi-Wei,
[1] New identities involving Bernoulli and Euler polynomials.
J. Combin. Theory Ser. A 113 (2006), no. 1, 156--175.
Ryoo, Cheon Seoung; Kim, Taekyun; Park, Dal-Won; Rim, Seog-Hoon,
[1] On the real roots of the Changhee-Barnes' $q$-Bernoulli polynomials.
JP J. Algebra Number Theory Appl. 5 (2005), no. 2, 293--305.
Ryoo, Cheon Seoung,
[2] Distribution of the zeros of $q$-Bernoulli polynomials.
Int. Rev. Pure Appl. Math. 1 (2005), no. 1, 135--141.
Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.,
[1] Exploring the $q$-Riemann zeta function and $q$-Bernoulli polynomials.
Discrete Dyn. Nat. Soc. 2005, no. 2, 171--181.
Crabb, M. C.,
[1] The Miki-Gessel Bernoulli number identity.
Glasg. Math. J. 47 (2005), no. 2, 327--328.
Srivastava, H. M.; Kim, T.; Simsek, Y.,
[1] $q$-Bernoulli numbers and polynomials associated with multiple $q$-zeta
functions and basic $L$-series.
Russ. J. Math. Phys. 12 (2005), no. 2, 241--268.
Maroni, Pascal; Mejri, Manoubi,
[1] Generalized Bernoulli polynomials revisited and some other Appell sequences.
Georgian Math. J. 12 (2005), no. 4, 697--716.
Ryoo, C. S.; Kim, T.; Agarwal, R. P.,
[2] The structure of the zeros of the generalized Bernoulli polynomials.
Neural Parallel Sci. Comput. 13 (2005), no. 3-4, 371--379.
Mihailescu, Preda,
[1] Reflection, Bernoulli numbers and the proof of Catalan's conjecture.
European Congress of Mathematics, 325--340, Eur. Math. Soc., Zürich, 2005.
Luo, Qiu Ming; Ma, Yun Xin; Qi, Feng,
[1] Relations between higher-order Bernoulli polynomials and higher-order
Euler polynomials. (Chinese)
J. Math. (Wuhan) 25 (2005), no. 6, 631--636.
Back to Index       New in 2004       New in 2003       New in 2002       New in 2001       New in 2000       New in 1999