Back to Index Back to T On to V
[2] Bernoulli numbers in real quadratic fields (A remark on
a work of H. Lang), Rep. Fac. Sci. Eng. Saga Univ., Math. 4
(1976), 1-5.
Z333.12006; M53#8017; R1976,11A195
[3] Fermat's conjecture and Bernoulli numbers, Rep. Fac. Sci.
Eng. Saga Univ., Math., No. 6, (1978), 9-14.
Z379.10014; M80a:12008; R1978,12A179
[4] On p-adic continuous functions determined by the Euler
numbers, Rep. Fac. Sci. Eng. Saga Univ., Math., No. 8, (1980), 1-8.
Z426.10015; M81e:12020; R1980,10A270;
[5] On the Bernoulli numbers and the circular units of cyclotomic
fields, Number Theory, Proc. Sympos., Koyoto, (1980), 47-60.
[6] On some congruences for generalized Bernoulli
numbers, Rep. Fac. Sci. Eng. Saga Univ., Math., (1982), No. 10, 1-8.
Z493.12008; M83m:12014; R1982,10A306;
[7] On cyclotomic units connected with p-adic characters,
J. Math. Soc. Japan, 37 (1985), no. 1, 65-77.
Z547.12002; M87a:11110; R1985,8A399
[8] A certain congruence relation between Jacobi sums and cyclotomic
units. Class numbers and fundamental units of algebraic number fields,
Proc. Int. Conf. (Katata, 1986), pp. 33-52, Nagoya Univ., Nagoya, 1986.
Z615.12006; M88m:11088
[9] On a congruence relation between Jacobi sums and cyclotomic units,
J. Reine Angew. Math., 382 (1987), 199-214.
Z646.12002; M89a:11113; R1988,6A304
[10] On the first generalized Bernoulli number,
Rep. Fac. Sci. Engrg. Saga Univ. Math., 24 (1995), no. 1, 11-21.
Z838.11017; M96j:11021; R1996,4A271
UENO K., NISHIZAWA M.,
[1] Multiple gamma functions and multiple $q$-gamma functions,
Publ. Res. Inst. Math. Sci., 33 (1997), no. 5, 813-838.
Z907.33001; M99b:33003; R1999,4B9
UGRIN-SPARAC D.,
[1] Some number theoretic applications of certain polynomials
related to Bernoulli polynomials (Romanian summary), An. Sti. Univ. "Al.
I. Cuza" Iasi Sec. I a Mat. (N.S.), 14 (1968), 259-276.
Z199.36402; M41#1664; R1970,2A86
[2] Lower bounds for sums of powers of different natural numbers
expressed as functions of the sum of these numbers,
J. Reine Angew. Math., 245 (1970), 74-80.
Z206.05503; M43#3228; R1971,5A105
[3] One particular class of Eulerian numbers of higher order and
some allied sequences of numbers,
Publ. Math. Debrecen, 18 (1971), 23-35.
Z267.10010; M54#10135; R1973,6V304
[4] Some properties of numbers M, N and L,
Glasnik Mat., 14 (34) (1979), no. 2, 201-211.
Z429.10006; M83c:10019; R1980,8A85
UHLER H.S.,
[1] The coefficients of Stirling's series for $\log \Gamma(x)$.
Proc. Nat. Acad. Sci., 28 (1942), 59-62.
M3-275g
ULLOM S.V.,
[1] Upper bounds for p-divisibility of sets of Bernoulli numbers,
J. Number Theory, 12 (1980), 197-200.
Z449.10009; M81h:10019; R1981,2A127
UNDERWOOD R.S.,
[1] An expression for the summation $\sum_{m=1}^n m^p$,
Amer. Math. Monthly, 35 (1928), 424-428.
J54.0104.01
URBANOWICZ J.,
[1] On the divisibility of generalized Bernoulli numbers. Applications
of algebraic K-theory to algebraic geometry and number theory, Part I, II
(Boulder, Colo., 1983), pp. 711-728, Contemp. Math., 55, Amer. Math. Soc.,
Providence, R.I., 1986.
Z596.12002; M88b:11012; R1987,3A136
[2] On the divisibility of $w_{m+1}(F^+){\zeta}_{F^+}(-m)$
for cyclotomic fields F,
Comm. Algebra, 16 (1988), no.7, 1315-1323.
Z661.12001; M89k:11100; R1988,11A366
[3] On the equation $f(1)1^k+f(2)2^k+ \cdots +f(x)x^k+R(x)=By^2$,
Acta Arith., 51 (1988), no. 4, 349-368.
Z661.10026; M90b:11025; R1989,8A106
[4] Remarks on the equation $1^k+2^k+ \cdots +(x-1)^k=x^k$,
Nederl. Akad. Wetensch. Indag. Math., 50 (1988), no. 3, 343-348.
Z661.10025; M90b:11026; R1989,2A89
[5] Connections between $B_{2,\chi}$ for even quadratic Dirichlet
characters $\chi$ and class numbers of appropriate imaginary quadratic
fields. I, II.
Compositio Math., 75 (1990), no.3, 247-270, 271-285.
Corrig.: Compositio Math., 77 (1991), no. 1, 119-125.
Z706.11058; M92a:11134a; R1991,3A215
Z706.11059; M92a:11134b; R1991,8A433
[6] On the $2$-primary part of a conjecture of Birch-Tate.
Acta Arith., 43 (1983),no. 1, 69-81.
Z529.12008; M85f:11080; R1984,8A297
[7] A generalization of the Lerch-Mordell formulas for
positive discriminants.
Colloq. Math., 59 (1990), no. 2, 197-202.
Z729.11050; M91m:11103
[8] On some new congruences between generalized Bernoulli numbers, I.
Publ. Math. Fac. Sci. Besançon, Théorie des Nombres,
Années 1989/90-1990/91, No.4, 23pp., (1991).
Z748.11017; M93m:11111
[9] On some new congruences between generalized Bernoulli numbers, II.
Publ. Math. Fac. Sci. Besançon, Théorie des Nombres,
1989/90-1990/91, No.5, 24pp., (1991).
Corrigendum ibid., 1992/93-1993/94, 3 pp.
Z748.11018; M93m:11111
[10] Remarks on the Stickelberger ideals of order 2. Algebraic $K$-theory,
commutative algebra, and algebraic geometry. Proc. Joint US-Italy Seminar,
Santa Margherita Ligure/Italy 1989, Contemp. Math.,
126 (1992), 179-192.
Z756.11040; M93e:11139; R1993,7A290
[11] On Diophantine equations involving sums of powers with
quadratic characters as coefficients, I.
Compositio Math. 92 (1994), no. 3, 249-271.
Z810.11017; M96f:11054
[12] On Diophantine equations involving sums of powers with quadratic
characters as coefficients. II.
Compositio Math. 102 (1996), no. 2, 125-140.
Z960.35749; M97m:11047; R1997,10A186
URBANOWICZ J., WILLIAMS K.S.,
[1] Congruences for $L$-functions. Mathematics and its Applications, 511.
Kluwer Academic Publishers, Dordrecht, 2000. xii+256 pp. ISBN: 0-7923-6379-5
Z0972.11001; M2001k:11209
URBANOWICZ J.: see also FOX G.J., URBANOWICZ J., WILLIAMS K.S.
URBANOWICZ J.: see also MOREE P., TE RIELE H.J.J., URBANOWICZ J.
URBANOWICZ J.: see also SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.
URBANOWICZ J.: see also SZMIDT J., URBANOWICZ J.
URBANOWICZ J.: see also SZMIDT J., URBANOWICZ J., ZAGIER D.
USPENSKY J.V. (OUSPENSKY),
[1] Sur une série asymtotique d'Euler, Arch. Math. und Phys.
(3), 19 (1912), 370-371.
J43.0343.02
USPENSKY J.V., HEASLET M.A.,
[1] Elementary number theory, New York, 1939, Ch. 9.
J65.1141.02; Z24.24702; M1-38d
USTINOV A.V.,
[1] A discrete analogue of Euler's summation formula. (Russian)
Mat. Zametki 71 (2002), no. 6, 931-936; translation in
Math. Notes 71 (2002), no. 5-6, 851-856.
M2003f:39049
Back to Index Back to T On to V