Bernoulli Bibliography

M


Back to Index       Back to L       On to N


MA WU YU: see WANG YUN KUI, MA WU YU

Ma, Yuan Kui; Zhang, Tian Ping,
[1] An identity involving the first-kind Chebyshev polynomials and the Euler numbers. (Chinese) J. Ningxia Univ. Nat. Sci. Ed. 27 (2006), no. 1, 13-14, 17.

MACLAURIN C.,
[1] A treatise of fluxions, Edinburgh, 1742.

MACLEOD R.A.,
[1] Fractional part sums and divisor functions, J. Number Theory 14 (1982), no. 2, 185-227.
Z481.10044; M83m:10080

[2] A curious identity for the Möbius function, Utilitas Math., 46 (1994), 91-95.
Z821.11053; M95g:11002

MACLEOD R.A.: see LEEMING D.J., MACLEOD R.A.

MADHEKAR H.C.,
[1] Some results in unified form for classes of generalized Bernoulli, Euler, and related polynomials, J. Indian Acad. Math., 4 (1982), no. 2, 104-112.
Z516.33010; M84e:33021

MADSEN I.: see BENTSEN S., MADSEN I.

MAEDA Y.,
[1] Generalized Bernoulli numbers and congruence of modular forms, Duke Math. J., 57 (1988), no. 2, 673-696.
Z664.10012; M89m:11042; R1989,6A92

MAESS G.,
[1] Vorlesungen über numerische Mathematik. II. Analysis. Akademie-Verlag, Berlin, 1988, and Birkhäuser Verlag Basel-Boston, 1988, 327 pp.
Z644.65001; M91a:65003; R1989.6G14K

MAGNUS W.: see ERDÉLYI A., MAGNUS W., OBERHETTINGER F., TRICOMI F.

MAHON BR. J.M., HORADAM A.F.,
[1] Infinite series summation involving reciprocals of Pell polynomials. In: Fibonacci Numbers and Their Applications (A.N. Philippou et al., Eds.), D. Reidel Publ. Co., Dordrecht, 1986, 163-180.
Z592.10010; M88b:11011

MAIER W.,
[1] Euler-Bernoullische Reihen, Math. Z., 30 (1929), 53-78.
J55.0782.02

[2] Bernoullische Polynome und elliptische Funktionen. J. Reine Angew. Math., 164 (1931), 85-111.
J57.0441.03; Z1.28203

MAINZER K.: see EBBINGHAUS H.-D. et al.

MALAISE J.,
[1] Sur une formule d'approximation pour les nombres de Bernoulli très grands, Nouv. Ann. Math. (4), 14 (1914), 174-179.
J45.0677.01

MALLET C.-A.,
[1] Calcul des dalles encastrées. Application des polynomes de Bernoulli, C. R. Acad. Sci. Paris A, 268 (1969), 974-977.
Z181.52605

MALLOCH L.,
[1] Bernoulli-Padé numbers and polynomials. M.Sc. thesis, Dalhousie University, Halifax, Nova Scotia, 1996. 80pp.

MALLOCH L.: see also DILCHER K., MALLOCH L.

MALMSTÉN C.J.,
[1] Note sur l'integrale finite $\Sigma e^x y$, Arch. Math. und Physik, 6 (1845), 41-45.

[2] Sur la formule $hU^{\prime}_x = \Delta U_x - {h\over 2} {\Delta} U^{\prime}_x + B_1{h^2\over 2} {\Delta} U^{\prime \prime}_x$ etc., J. Reine Angew. Math., 35 (1847), 55-82.

MAMBRIANI A.,
[1] Sugli sviluppi, dati dallo Schwatt, di $\sec^p x$ e $\tg^p x$. (Italian) Boll. Unione Mat. Ital. 10 (1931), 17-20.
Z001.13501

[2] Saggio di una nuova trattazione dei numeri i dei polinomi di Bernoulli e di Euler. Mem. R. Accad. Italia Mat., 3 (1932), no.4, 1-36.
J58.0376.05; Z6.05103

MANDL M.,
[1] Ueber die Summirung einiger Reihen. Sitzungsber. Math.-Natur. Kl. Akad. Wiss., Wien, 94 (1886), 947-955.
J18.0231.01

MANGEOT S.,
[1] Sur les nombres de Bernoulli, Ann. Fac. Sci., Marseille, 2 (1892), 63-65.

MANIN Yu.I.,
[1] Non-archimedean integration and p-adic Jaquet-Langlands L-functions. (Russian) Uspehi. Mat. Nauk., 31 (1976), no. 1(187), 5-54.
Z348.12016; M54#5194; R1976,8A478

MANIN Yu.I., PANCHISHKIN A.A.,
[1] An introduction to the theory of numbers. (Russian) Current problems in mathematics. Fundamental directions, Vol. 49, Itogi Nauki i Tekhniki., Akad. Nauk. SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform, Moscow, 1990, 5-348.
Z732.11002; M91j:11001b

MARKETT C.: see BUTZER P.L., MARKEETT C., SCHMIDT M.

MARKOV A.A.,
[1] Ischislenie konechnykh raznostej, Otdel 2, Uravnenie v konechnykh raznostyakh i summirovanie [The calculus of finite differences. The equation in finite differences and summation]. Sankt-Peterburg, 1891.
J23.0347.02

[3] (A.A. Markoff) Differenzenrechnung. Teubner, Leipzig, 1896.
J27.0261.02

Maroni, Pascal; Mejri, Manoubi,
[1] Generalized Bernoulli polynomials revisited and some other Appell sequences.Georgian Math. J. 12 (2005), no. 4, 697--716.
M2006j:42036

MARSAGLIA G., MARSAGLIA J.C.W.,
[1] A new derivation of Stirling's approximation to $n!$, Amer. Math. Monthly, 97 (1990), no. 9, 826-829. (See also: N. Grossman, Letter to the Editor, Amer. Math. Monthly, 98 (1991), no. 3, 233.)
Z786.05007; M92b:41049

MARTINET J.,
[1] Sur l'ouvrage de Hasse "Über die Klassenzahl Abelscher Zahlkörper". Séminaire de Théorie des nombres. Univ. Bordeaux I, année 1982-83 (1983), exp. no. 4, 15 pp.
Z526.12003; M85m:11071

MATHAI A.M., PEDERZOLI G.,
[1] A direct statistical technique of obtaining some summation formulae for Bernoulli polynomials and representations of certain algebraic functions, Metron, 43 (1985), no. 3-4, 157-166.
Z598.33001; M87j:33001

MATIYASEVICH Yu.V.,
[1] Hilbert's tenth problem. Foundations of Computing Series. MIT Press, Cambridge, MA, 1993. xxiv+264pp.
Z790.03009; M94m:03002b

[2] A Diophantine representation of Bernoulli numbers and its applications. (Russian) Dedicated to the 100th birthday of Academician Petr Sergeevich Novikov (Russian). Tr. Mat. Inst. Steklova 242 (2003), Mat. Logika i Algebra, 98-102.
R04.04 - 13A.122

MATSUMOTO K.: see KATSURADA M., MATSUMOTO K.

MATSUOKA Y.,
[1] On the values of the Riemann zeta function at half integers. Tokyo J. Math. 2 (1979), no. 2, 371-377.
Z421.10026; M81m:10077; R1980,6A130

[2] On the values of a certain Dirichlet series at rational integers, Tokyo J. Math., 5 (1982), no. 2, 399-403.
Z505.10020; M84d:10046; R1983,8A117

[3] A table of the explicit formulas for the sums of powers $S_p(n) = \sum_{k=1}^n k^p$ for $p=62(1)99$. Rep. Fac. Sci. Kogashima Univ. Math. Phys. Chem., 22 (1990), 73-132.
Z682.10012; M91k:11021

[4]A table of the explicit formulas for the sums of powers $S_p(n) = \sum_{k=1}^n k^p$ for $p=100(1)119$. Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., 23 (1990), 41-100.
Z731.11013

MATSUOKA Y.: see also ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.

MATTER K.,
[1] Die den Bernoullischen Zahlen analogen Zahlen im Körper der 3. Einheitswurzeln, Diss., Zürch, 1900. Zürch. Naturf. Ges., 45, 238-269.
J31.0204.03

MATTICS L.E.: see GESSEL I., MATTICS L.E.

MAYER D.H.: see CHANG CHENG-HUNG, MAYER D.H.

MAZUR B.,
[1] Review of Kummer's Collected Papers, Vols. I and II, ed. by A. Weil, Bull. Amer. Math. Soc., 83 (1977), no. 5, 976-988.

MAZUR B., WILES A.,
[1] Analogues between function fields and number fields, Amer. J. Math., 105 (1983), no. 2, 507-521.
Z531.12015; M84g:12003

[2] Class fields of abelian extensions of Q, Invent. Math., 76 (1984), no. 2, 179-330.
Z545.12005; M85m:11069; R1985,2A351

McCALLUM W.G.,
[1] On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. Math., 93 (1988), no. 3, 637-666.
Z661.14033; M90b:11059

[2] The arithmetic of Fermat curves. Math. Ann., 294 (1992), no.3, 503-511.
Z766.14013; M93j:11037

McCARTHY P.J.,
[1] Some irreducibility theorems for Bernoulli polynomials of higher order, Duke Math. J., 27 (1960), 313-318.
Z178.37302; M22#5613; R1961,6A137

[2] Irreducibility of certain Bernoulli polynomials, Amer. Math. Monthly, 68 (1961), 352-353.
Z98.24803; M23#A1625; R1962,5A161

[3] Irreducibility of Bernoulli polynomials of higher order, Canad. J. Math., 14 (1962), 565-567.
Z118.26001; M25#4150; R1963,7B63

McCLENON R.B.,
[1] Bernoulli numbers, Proc. Iowa Acad. Sci., 57 (1950), 315-319.
M13-13f

McINTOSH R.J.,
[1] A necessary and sufficient condition for the primality of Fermat numbers, Amer. Math. Monthly, 90 (1983), no. 2, 98-99.
Z513.10012; M85c:11022; R1983,3A111

[2] On the converse of Wolstenholme's theorem. Acta Arith. 71 (1995), no. 4, 381-389.
Z829.11003; M96h:11002; R1996,5A120

[3] Franel integrals of order four, J. Austral. Math. Soc. Ser. A, 60 (1996), no. 2, 192-203.
Z855.11020; M96j:11055; R1997,5A35

MELHAM R.S., SHANNON A.G.,
[1] Some infinite series summations using power series evaluated at a matrix. Fibonacci Quart., 33 (1995), no. 1, 13-20.
Z826.11007; M95k:11025

MERCIER A.,
[1] Sums containing the fractional parts of numbers, Rocky Mountain J. Math., 15 (1985), no. 2, 513-520.
Z588.10044; M87e:11011

MESSICK C.A.,
[1] A new method of determining Bernoulli's numbers, Amer. Math. Monthly, 33 (1926), 214-217.
J52.0355.02

METSÄNKYLÄ T.,
[1] A congruence for the class number of a cyclic field, Ann. Acad. Sci. Fennicae, Ser. AI, Math., (1970), no. 472, 1-11.
Z194.35202; M42#3057; R1971,4A319

[2] Note on the distribution of irregular primes, Ann. Acad. Sci. Fennicae, Ser. AI, Math., (1971), no. 492, 1-7.
Z208.05502; M43#168; R1971,9A100

[3] A class number congruence for cyclotomic fields and their subfields, Acta Arith., 23 (1973), 107-116.
Z233.12004; M48#11046; R1974,1A176

[4] On the cyclotomic invariants of Iwasawa, Math. Scand., 37 (1975), 61-75.
Z314.12004; M52#10677; R1976,11A432

[5] On the Iwasawa invariants of imaginary abelian fields, Ann. Acad. Sci. Fennicae, Ser. AI, 1 (1975), 343-353.
Z323.12010; M53#347; R1976,11A426

[6] Distribution of irregular prime numbers, J. Reine Angew. Math., 282 (1976), 126-130.
Z327.10041; M53#2865; R1976,10A99

[7] Note on certain congruences for generalized Bernoulli numbers, Arch. Math. (Basel), 30 (1978), 595-598.
Z371.12003; M58#16602; R1978,12A180

[8] Iwasawa invariants and Kummer congruences, J. Number Theory, 10 (1978), 501-522.
Z388.12006; M80d:12007; R1978,6A302

[9] An upper bound for the $\lambda$-invariant of imaginary abelian fields, Math. Ann., 264 (1983), 5-8.
Z497.12002; M85a:11019; R1984,1A283

[10] Maillet's matrix and irregular primes, Ann. Univ. Turku., Ser. AI, (1984), no. 186, 72-79.
Z531.12003; M85j:11145; R1985,1A213

[11] The Voronoi congruence for Bernoulli numbers. The Very Knowledge of Coding. Studies in honour of Aimo Tietäväinen, Turun yliopiston offsetpaino-Turku, 1987, 112-119.
Z632.10006; M88m:11010; R1988,3A414

[12] The index of irregularity of primes, Expositiones Math., 5 (1987), 143-156.
Z608.12004; M88f:11011; R1987,9A80

[13] A simple method for estimating the Iwasawa $\lambda$-invariant, J. Number Theory, 27 (1987), no. 1, 1-6.
Z612.12005; M88m:11091; R1988,3A414

[14] Cyclotomic fields, irregular primes, and supercomputing (Finnish). Arkhimedes, 45 (1993), no. 2, 116-128.
Z776.14013; M94g:11094; R1994,2A15

[15] An application of the $p$-adic class number formula, Manuscr. Math., 93 (1997), no. 4,481-498.
Z886.11061; M98m:11118

[16] Some divisibility results for the cyclotomic class numbers, Tatra Mountains Math. Publ. 11 (1997), 56-68.
Z0978.11060; M98i:11093

[17] Letter to the editor. Comment on: "On Demjanenko's matrix and Maillet's determinant for imaginary abelian number fields" [J. Number Theory 60 (1996), no. 1, 70-79] by H. Tsumura. J. Number Theory 64 (1997), no. 1, 162-163.

METSÄNKYLÄ T.: see also ERNVALL R., METSÄNKYLÄ T.

METSÄNKYLÄ T.: see also BUHLER J.P. et al

MEURMAN A.: see ALMKVIST G., MEURMAN A.

MEYER C.,
[1] Über die Bildung von elementar-arithmetischen Klasseninvarianten in reell-quadratischen Zahlkörpern. Algebraische Zahlentheorie (Ber. Tagung Math. Forschungsinst. Oberwolfach, 1964) Bibliographisches Institut, Mannheim, 1967, 165-215.
Z207.36301; M38#2121; R1965,5A146

MEYER G.F.,
[1] Über Bernoulli'sche Zahlen, Diss. Göttingen, 1859, 56pp.

[2] Einige Beiträge zur Theorie der Bernoullischen Zahlen und der Secantencoefficienten, Arch. für Math. und Phys., 35 (1860), 449-474.

[3] Verschiedene arithmetische Sätze, Arch. für Math. und Phys., 38 (1862), 241-246.

[4] Vorlessungen über die Theorie der bestimmten Integrale zwischen reellen Grenzen, Leipzig, 1871, sects. 53, 54.
J03.0125.03

MEYER J.L.,
[1] Character analogues of Dedekind sums and transformations of analytic Eisenstein series. Pacific J. Math. 194 (2000), no. 1, 137-164.
M2002b:11059; R01.01-13A.132

MEYER J.R.,
[1] Une conjecture de Chowla et Walum, J. Number Theory, 21 (1985), no. 3, 245-255.
Z568.10023; M87a:11089; R1986,5A137

MEYER W., VON RANDOW R.,
[1] Ein Würfelschnittproblem und Bernoullische Zahlen, Math. Ann., 193 (1971), 315-321.
Z209.34402; M45#2569; R1972,4V308

Mihailescu, Preda,
[1] Reflection, Bernoulli numbers and the proof of Catalan's conjecture. European Congress of Mathematics, 325--340, Eur. Math. Soc., Zürich, 2005.
M2006j:11147

MIKELADZE SH. E.,
[1] Numerical integration. (Russian) Uspekhi Matem. Nauk (N.S.), 3 (1948), 3-88.
Z41.44416; M10-575g

[2] Numerical methods of mathematical analysis. (Russian) Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow, 1953, 527 pp.
Z52.34901; M16-627c; R1955,1974K

MIKI H.,
[1] A relation between Bernoulli numbers, J. Number Theory, 10 (1978), no. 3, 297-302.
Z379.10007; M80a:10024; R1979,2A109

[2] On the congruence for Gauss sums and its applications. Théorie des nombres (Quebec, PQ, 1987), 633-641, deGruyter, Berlin, 1989.
Z715.11041; M91h:11083

[3] On the conductor of the Jacobi sum Hecke character. Comp. Math., 92 (1994), no. 1, 23-41.
Z798.11049; M95i:11131

MIKOLÁS M.,
[1] Sur une extension de la formule d'Euler-Maclaurin, se rapportant à des intégrales curvilignes complexes. C. R. du I Congr. Math. Hongr., (1950), 519-538, 541-550. Akadémiai Kiadó, Budapest, 1952.
Z49.05302; M14-1073g

[2] Über die Beziehung zwischen der Gammafunktion und den trigonometrischen Funktionen. Acta Math. Acad. Sci. Hungar., 4 (1953), no. 1-2, 143-157.
Z51.05202; M15-525d; R1954,2989

[3] Zur Theorie der Gammafunktion, der Riemannschen Zetafunktion und verwandter Funktionen, I. Acta Math. Acad. Sci. Hungar., 6 (1955), no. 3-4, 381-438.
Z68.28303; M19-132e; R1957,1568

[4] Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz. Publ. Math., Debrecen, 5 (1957), no. 1-2, 44-53.
Z81.27403; M19-731; R1958,6429

[5] Über gewisse Lambertsche Reihen. I. Verallgemeinerung der Modulfunktion $\eta(\tau)$ und ihrer Dedekindschen Transformationsformel. Math. Z., 68 (1957), no. 1, 100-110.
Z78.07003; M19-943b; R1959,2305

[6] Über die Charakterisierung der Hurwitzschen Zetafunktion mittels Funktionalgleichungen, Acta Sci. Math. Szeged, 19 (1958), no. 3-4, 247-250.
Z87.07401; M21#1953; R1960,93

[7] On a problem of Hardy and Littlewood in the theory of Diophantine approximations. Publ. Math., Debrecen, 7 (1960), no. 4, 158-180.
Z96.26105; M22#10978; R1961,10A135

[8] Einige neuere Aspekte und analytische-technische Anwendungen Diophantischer Approximationen. Result. Math., 18 (1990), no. 3/4, 298-305.
Z716.11032; M92e:11072

MILAS A.: see DOYON B., LEPOWSKY J., MILAS A.

MILLAR J., SLOANE N.J.A., YOUNG N.E.,
[1] A new operation on sequences: the boustrophedon transform, J. Combin. Theory Ser. A 76 (1996), no. 1, 44--54.
Z858.05007; M97e:05020

MILLER H.,
[1] Universal Bernoulli numbers and the $S^1$-transfer. Current Trends in Algebraic Topology, Part 2 (London, Ont., 1981), Canad. Math. Soc. Conf. Proc., Vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 437-449.
Z544.55005; M85b:55029

MILLER J.B.,
[1] The Euler-Maclaurin sum formula for an inner derivation, Aequationes Math., 25 (1982), no. 1, 42-51.
Z519.47022; M85b:46057; R1984,2B1093

[2] Series like Taylor's series, Aequationes Math., 26 (1983), no. 2-3, 208-220.
Z562.40001; M86a:30081; R1985,2B915

[3] The Euler-Maclaurin formula generated by a summation operator, Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), no. 3-4, 285-300.
Z527.47024; M85f:47018; R1984,6B1042

[4] The Euler-Maclaurin sum formula for a closed derivation, J. Austral. Math. Soc. Ser. A, 37 (1984), no. 1, 128-138.
Z545.47022; M86d:47043; R1985,3B1003

[5] The standard summation operator, The Euler-Maclaurin sum formula, and the Laplace transformation, J. Austr. Math. Soc. Ser. A, 39 (1985), no. 3, 367-390.
Z589.65003; M86j:65011; R1986,6B1218

[6] The operator remainder in the Euler-Maclaurin formula, Aequationes Math., 28 (1985), no. 1-2, 64-68.
Z558.41031; M86m:41040; R1985,7B948

MILLER J.C.P.: see FLETCHER A. et al.

MILLS S.,
[1] The independent derivations by Leonhard Euler and Colin MacLaurin of the Euler-Maclaurin summation formula, Arch. Hist. Exact Sci., 33 (1985), no. 1-3, 1-13.
Z607.01013; M86i:01025; R1985,12A8

MILNE-THOMSON L.M.,
[1] The Calculus of Finite Differences. Macmillan, London, 1933, xix + 558 pp.
Z8.01801; J59.1111.01

MILNOR J.,
[1] On polylogarithms, Hurwitz zeta functions, and the Kubert identities. L'Enseign. Math., 29 (1983), no. 3-4, 281-322.
Z557.10031; M86d:11007; R1984,5A117

MILNOR J.W., STACHEFF J.,
[1] Characteristic classes. Annals of Math. Stud., No. 76, Princeton University Press, Princeton, 1974.
Z298.57008; M55#13428; R1975,3A611K

MILNOR J.W.: see also KERVAIRE M.A., MILNOR J.W.

MILOSEVIC-RAKOCEVIC K.,
[1] Staudt-Clausenova teorema, Mat. Bibl., 22 (1962), 71-79.
R1964,2A176

[2] Prilozi teoriji i praksi Bernoullievih polinoma i brojeva, (Serbo-Croatian), [Applications of the theory and practice of Bernoulli polynomials and numbers], Matematicki Institut u Beogradu, Belgrade, 1963, 143 pp.
Z193.36301; M31#3635; R1964,2A176

MINÁC J.,
[1] A remark on the values of the Riemann zeta function, Exposition. Math., 12 (1994), no. 5, 459-462.
Z812.11051; M96a:11082

MINH HOANG N.,
[1] Finite polyzetas, poly-Bernoulli numbers, identities of polyzetas and noncommutative rational power series. Proceedings of WORDS'03, 232--250, TUCS Gen. Publ., 27, Turku Cent. Comput. Sci., Turku, 2003.

MINOLI D.,
[1] Asymptotic form for generalized factorial, Rev. Colombiana Mat., 11 (1977), no. 1-4, 59-75.
Z445.05007; M58#27853; R1979,4B1

[2] Some results for modified Bernoulli polynomials, Notices Amer. Math. Soc., 26 (1979), A-613.

[3] Inductive formulae for general sum operations, Math. Comp., 34 (1980), no. 150, 543-545.
Z424.40003; M81g:65002; R191980,11A65

MIRIMANOFF D.,
[1] L'equation indéterminée $x^l+y^l+z^l=0$ et le critérium de Kummer, J. Reine Angew. Math., 128 (1905), 45-68.
J35.0216.03

[2] Sur le dernier théorème de Fermat et le critérium de M. A. Wieferich, Enseign. Math., 11 (1909), 455-459.
J40.0257.01

[3] Sur le dernier théorème de Fermat, J. Reine Angew. Math., 139 (1910), 309-324.
J41.0236.03

[4] Sur les nombres de Bernoulli, Enseign. Math., 36 (1937), 228-235.
J63.0106.04; Z17.06202

MISHRA S.S.: see SHUKLA R.N., MISHRA S.S.

MISHRA S.S.: see SINGH S.N., MISHRA S.S.

MISON K.,
[1] Stanoveni Bernoulliho cisel. Soucet posloupnosti bez uziti diferencnich posloupnosti [Definition of the Bernoulli numbers. Sum of an arithmetic series without use of difference series], (Czech), Casopis Pest. Mat., 76 (1951), 199-200.
M14-4786

MISRA S.S., SHUKLA R.N.,
[1] Some properties of multivariate Bernoulli polynomials of the second kind (Hindi. English and Hindi summaries). Vijnana Parishad Anusandhan Patrika, 37 (1994), no. 2, 77-85.
M96b:11019

MITRINOVIC D.S.,
[1] Sur les nombres de Bernoulli d'ordre supérieur, Bull. Soc. Math. Phys. Serbie, 11 (1959), 23-26.
Z135.09102; M32#299

[2] Sur une relation de récurrence relative aux nombres de Bernoulli d'ordre supérieur, C.R. Acad. Sci., Paris, 250 (1960), 4266-4267.
Z99.28102; M22#12049; R1961,6A138

[3] Sur une formule concernant les nombres de Bernoulli d'ordre supérieur, Bull. Soc. Math. Phys. Serbie, 12 (1960), 21-23.
Z135.09103; M32#1474

MITRINOVIC D.S., MITRINOVIC R.S.,
[1] Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Publ. electr. fak. Univ. Beogradu, ser. mat. i fiz., (1960), no. 43, 1-63.
Z106.03203; M23#A1547; R1962,8V199

MITRINOVIC R.S.: see MITRINOVIC D.S., MITRINOVIC R.S.

MITROVIC Z.M.: see JANIC R.R., MITROVIC Z.M.

MIYAKE T.,
[1] Modular forms. Springer-Verlag, Berlin-New York, 1989. x+335 pp.
Z701.11014; M90m:11062

MIYOSHI T.,
[1] On the Diophantine equation $x^l+y^l=cz^l$, 2, TRU Math., 2 (1966), 53-54.
Z149.28806; M36#6349; R1968,4A122

MIZUMOTO S.,
[1] On integrality of certain algebraic numbers associated with modular forms, Math. Ann., 265 (1983), no. 1, 119-135.
Z578.10031; M85i:11047; R1984,3A591

[2] Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two, Math. Ann., 275 (1986), no. 1, 149-161.
Z578.10032; M87k:11054; R1986,12A549

[3] Integrality of critical values of triple product $L$-functions. Analytic number theory (Tokyo, 1988), 188--195, Lecture Notes in Math., 1434, Springer, Berlin, 1990.
M91j:11034

MOIVRE A. DE: see DE MOIVRE A.

MOLLAME V.,
[1] Sulla somma delle potenze simili di numeri qualunque in progressione aritmetica, esopra alcuni coefficienti analoghi ai numeri bernulliani che si presento in tale somma. Catania, Accad. Gioen. Atti 15 (1881), 261-272.

MOLLIN R.A.,
[1] Algebraic number theory. Chapman & Hall/CRC, Boca Raton, FL, 1999. xiv+483 pp.
Z930.11001; M2000e:11130

MOLTENI G.,
[1] Some arithmetical properties of the generating power series for the sequence {z(2k+1)}, Acta Math. Hungar. 90 (2001), no. 1-2, 133-140.
M2003d:11127

MOMIYAMA H.,
[1] A new recurrence formula for Bernoulli numbers. Fibonacci Quart. 39 (2001), no. 3, 285-288.
Z0991.11009; M2002f:11020

MONAGAN M.B.: see GRANVILLE A., MONAGAN M.B.

MONTGOMERY H.L.,
[1] Distribution of irregular primes, Illinois J. Math., 9 (1965), 553-558.
Z131.04501; M31#5861; R1966,8A97

MORDELL L.J.,
[1] Three lectures on Fermat's last theorem. Cambridge Univ. Press, 1921. Also in: Famous problems and other monographs, Chelsea Publ. Co., New York, 1955; and in: L.J. Mordell, Two papers on number theory, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972.
Z237.10016; M50#4453

[2] On the evaluation of some multiple series, J. London Math. Soc., 33 (1958), 368-371.
Z81.27501; M20#6615; R1959,4426R

[3] Integral formulae of arithmetical character, J. London Math. Soc., 33 (1958), 371-375.
Z81.27404; M20#6488; R1960,1286

[4] On a Pellian equation conjecture, Acta Arith., 6 (1960), 137-144.
Z93.04305; M22#9470; R1961,7A121

[5] Recent work in number theory, Scripta Math., 25 (1960), 93-103.
Z109.27004; M22#9471; R1961,5A107

[6] On a Pellian equation conjecture. II. J. London Math. Soc., 36 (1961), 282-288.
Z122.05503; M23#A3707; R1962,5A154

[7] A Pellian equation conjecture, Second Hung. Math. Congress 1960, Budapest, 1 (1961), 1b, 24-27.

[8] Expansion of a function in a series of Bernoulli polynomials, and some other polynomials, J. Math. Anal. Appl., 15 (1966), 132-140.
Z166.07002; M33#6276; R1967,3B57

[9] Expansion of a function in terms of Bernoulli polynomials, J. London Math. Soc., 41 (1966), 526-528.
Z166.07001; M33#6276; R1967,9V207

[10] Diophantine equations. Pure and Appl. Math., Vol. 30, Acad. Press, London-New York, 1969, x + 312 pp., Ch. 8.
Z188.34503; M40#2600; R1970,8A97K

[11] The sign of the Bernoulli numbers, Amer. Math. Monthly, 80 (1973), 547-548.
Z273.10011; M47#4918; R1974,2V418

MOREE P.,
[1] On a theorem of Carlitz - von Staudt. C. R. Math. Rep. Acad. Sci. Canada, 16 (1994), no. 4, 166-170.
Z820.11002; M95i:11002

[2] Primes in arithmetic progression having a prescribed primitive root, MPI für Math., Bonn, Preprint Ser. 1998(57).

MOREE P., TE RIELE H.J.J., URBANOWICZ J.,
[1] Divisibility properties of integers $x$, $k$ satisfying $1^k+\ldots +(x-1)^k=x^k$, Math. Comp., 63 (1994), no. 208, 799-815.
Z816.11024; M94m:11041; R1997,12A101

MORENO C.J.,
[1] The Chowla-Selberg Formula, J. Number Theory, 17 (1983), no. 2, 226-245.
Z525.12012; M85b:11034; R1984,3A569

MORI K.: see AGOH T., MORI K.

MORISHIMA T.,
[1] Über die Fermatsche Vermutung, XI, Japan J. Math., 11 (1935), 241-252.
J61.0174.01; Z11.33804

[2] Über die Fermatsche Vermutung, XII, Proc. Imper. Acad. Tokyo, 11 (1935), no. 8, 307-309.
J61.0174.02; Z13.05202

[3] On Fermat's last theorem (13th paper), Trans. Amer. Math. Soc., 72 (1952), no. 1, 67-81.
Z47.04701; M13-726e

[4] On the second factor of the class number of the cyclotomic fields, J. Math. Anal. Appl., 15 (1966), 141-153.
Z139.28201; M33#5607; R1967,7A146

MORO G.,
[1] L'ultimo teorema di Fermat, Riv. Mat., 1986, Suppl., 86 pp.
R1986,8A101

MOUSSA P.: see WALDSCHMIDT M. et al.

MÜLLER H.,
[1] On some congruences concerning the criteria of Kummer, Expositiones Math., 2 (1984), no. 1, 85-89.
Z525.12012; M86h:11024; R1984,10A94

MUNCH O.J.,
[1] Om Potensproduktsummer, Nordisk Mat. Tidsskrift, 7 (1959), 5-19.
Z084.26902; R1960,3178

MÜNTZ CH.-H.,
[1] Sur une propriété des polynômes de Bernoulli, C.R. Acad. Sci., Paris, 158 (1914), 1864-1866.
J45.0677.02

MURAKAMI JUN: THANG LE THU QUAC, MURAKAMI JUN

MURTY M. RAM,
[1] Problems in analytic number theory. Graduate Texts in Mathematics, 206. Readings in Mathematics. Springer-Verlag, New York, 2001. xvi+452 pp.
M2001k:11002

MURTY M. RAM, REECE M.,
[1] A simple derivation of $\zeta(1-K)=-B\sb K/K$. Funct. Approx. Comment. Math. 28 (2000), 141-154.
M2001m:11154

MUSÈS C.,
[1] A closed expression for the zeta function of odd integer argument, Abstracts Amer. Math. Soc., 4 (1983), no. 5, 339.

[2] Bernoulli numbers of general index, Abstracts Amer. Math. Soc., 8 (1987), no. 1, 17.

[3] Bernoulli numbers of general index, Abstracts Amer. Math. Soc., 15 (1994), no. 1, 23.

[4] Some new considerations on the Bernoulli numbers, the factorial function, and Riemann's zeta function. Appl. Math. Comput. 113 (2000), no. 1, 1-21.
Erratum: Appl. Math. Comput. 113 (2000), no. 2-3, 325-326.
Corrigendum: Appl. Math. Comput. 115 (2000), no. 2-3, 229.
M2001i:11023a,b,c


Back to Index       Back to L       On to N