Back to Index Back to U On to W
VALETTE A.,
[1] Le point sur la conjecture de Fermat,
Bull. Soc. Math. Belgique, Ser. A, 39 (1987), 23-47.
Z636.10013; M89c:11049; R1988,12A448
VAN DEN BERG F.J.: see van den BERG F.J.
VAN DER POORTEN A.: see van der POORTEN A.
VAN DER WAALL R.W.: see van der WAAL R.W.
VANDIVER H.S.,
[1] On Bernoulli's numbers, Fermat's quotient and last theorem,
Bull. Amer. Math. Soc. (2), 21 (1914), 68.
J45.0290.02
[2] Symmetric functions of systems of elements in finite
algebra and their connection with Fermat's quotient and Bernoulli's
numbers (second paper), Bull. Amer. Math. Soc., 22 (1916), 380-381.
J46.0191.01
[3] Symmetric functions formed by systems of elements of a finite
algebra and their connection with Fermat's quotient and Bernoulli numbers,
Ann. of Math., 18 (1917), no. 3, 105-114.
J46.1444.03
[4] A property of cyclotomic integers and its relation to Fermat's
last theorem (third paper), Bull. Amer. Math. Soc., 24, (1918),
472-473.
J46.0255.01
[5] On the first factor of the class number of a cyclotomic field,
Bull. Amer. Math. Soc., 25 (1919), 458-461.
J47.0151.05
[6] On Kummer's memoir of 1857 concerning Fermat's last theorem,
Proc. Nat. Acad. Sci. U.S.A., 6 (1920), no. 5, 266-269.
J47.0151.01
[7] On the class-number of the field $\Omega (e {{2 \pi i}\over{p^n}})$
and the second case of Fermat's last theorem, Proc. Nat.
Acad. Sci. USA, 6 (1920), no. 7, 416-421.
J47.0151.02
[8] Note on some results concerning Fermat's last theorem, Bull.
Amer. Math. Soc., 28 (1922), 258-260.
J48.1172.02
[9] On Kummer's memoir of 1857, concerning Fermat's last
theorem, Bull. Amer. Math. Soc., 28 (1922), 400-407.
J48.1172.03
[10] A property of cyclotomic integers and its relations to Fermat's
last theorem, 2, Ann. of Math. (2), 26 (1925), 217-232.
J51.0136.01
[11] Note on trinomial congruences and the first case of Fermat's
last theorem, Ann. of Math. (2), 27 (1925), 54-56.
J51.0136.02
[12] Transformation of the Kummer criteria in connection with
Fermat's last theorem, Ann. of Math., 27 (1926), 171-176.
J52.0160.01
[13] Application of the theory of relative cyclic fields to both cases
of Fermat's last theorem, Trans. Amer. Math. Soc., 28 (1926), 554-560.
J52.0159.04
[14] Summary of results and proofs concerning Fermat's last
theorem, Proc. Nat. Acad. Sci. USA, 12 (1926), 106-109.
J52.0159.03
[15] Summary of results and proofs concerning Fermat's last
theorem, 2, Proc. Nat. Acad. Sci. USA, 12 (1926), 767-773.
J52.0161.11
[16] Application of the theory of relative cyclic fields to both cases
of Fermat's last theorem,
Trans. Amer. Math. Soc., 29 (1927), 154-162.
J53.0147.07
[17] Transformation of the Kummer criteria in connection with
Fermat's last theorem, Ann. of Math. (2), 28 (1927),
451-458 (second paper).
J53.0148.01
[18] On Fermat's last theorem,
Trans. Amer. Math. Soc., 31 (1929), no. 4, 613-642.
J55.0701.04
[19] An extension of the Bernoulli summation formula,
Amer. Math. Monthly, 36 (1929), 36-37.
J55.0060.08
[20] Summary of results and proofs concerning Fermat's last
theorem, 3, Proc. Nat. Acad. Sci. USA, 15 (1929), no. 1, 43-48.
J55.0099.05
[21] Summary of results and proofs concerning Fermat's last
theorem, 4, Proc. Nat. Acad. Sci. USA, 15 (1929), no. 2, 108-109.
J55.0099.06
[22] Summary of results and proofs on Fermat's last
theorem, Proc. Nat. Acad. Sci. USA, 16 (1930), no. 4, 298-304.
J56.0170.02
[23] On the second factor of the class number of a cyclotomic field,
Proc. Nat. Acad. Sci. USA, 16 (1930), no. 11, 743-749.
J56.0887.02
[24] Note on the divisors of the numerators of Bernoulli's numbers,
Proc. Nat. Acad. Sci. USA, 18 (1932), 594-597.
J58.0180.03; Z5.34402
[25] Fermat's last theorem and the second factor in the cyclotomic
class number, Bull. Amer. Math. Soc., 40 (1934), 118-126.
J60.0128.03; Z9.00701
[26] A note on units in super-cyclic fields, Bull. Amer. Math. Soc.,
40 (1934), 855-858.
J60.0932.02; Z10.29103
[27] On Bernoulli numbers and Fermat's last theorem, Miscellanea Amer. Philos. Soc. (1936).
[28] Note on a certain ring-congruence, Bull. Amer. Math. Soc., 43
(1937), 418-423.
J63.0106.06; Z17.10002
[29] On generalizations of the numbers of Bernoulli and Euler,
Proc. Nat. Acad. Sci. USA, 23 (1937), 555-559.
J63.0107.01; Z17.34101
[30] On Bernoulli's numbers and Fermat's last theorem, Duke
Math. J., 3 (1937), 569-584.
J63.0895.01; Z18.00505
[31] On analogues of the Bernoulli and allied numbers,
Proc. Nat. Acad. Sci. USA, 25 (1939), 197-201.
J65.0126.02; Z21.10205
[32] On basis systems for groups of ideal classes in a properly
irregular cyclotomic field,
Proc. Nat. Acad. Sci. U.S.A., 25 (1939), no. 11, 586-591.
J65.0109.01; Z22.11001; M1-68d
[33] On Bernoulli's numbers and Fermat's last theorem (second
paper), Duke Math. J., 5 (1939), 418-427.
J65.0143.02; Z21.10506
[34] On the composition of the group of ideal classes in a properly
irregular cyclotomic field, Monatsh. Math., 48 (1939), 369-380.
J65.0107.04; Z22.10903; M1-68e
[35] Certain congruences involving the Bernoulli numbers,
Duke Math J., 5 (1939), 548-551.
J65.0126.01; Z21.39003; M1-4d
[36] On general methods for obtaining congruences involving
Bernoulli numbers, Bull. Amer. Math. Soc., 46 (1940), 121-123.
J66.0139.02; Z23.00702; M1-200a
[37] Simple explicit expressions for generalized Bernoulli numbers
of the first order, Duke Math J., 8 (1941), 575-584.
J67.0995.01; M3-67a
[38] On improperly irregular cyclotomic fields,
Proc. Nat. Acad. Sci. U.S.A., 27 (1941), no. 1, 77-83.
M2-146h
[39] Certain congruence criteria connected with Fermat's theorem,
Proc. Nat. Acad. Sci. USA, 28 (1942), no. 4, 144-150.
M3-269f
[40] General congruences involving the Bernoulli numbers,
Proc. Nat. Acad. Sci. USA, 28 (1942), 324-328.
M4-34f
[41] An arithmetical theory of the Bernoulli numbers,
Trans. Amer. Math. Soc., 51 (1942), 502-531.
M4-34e
[42] Bernoulli's numbers and certain arithmetic quotient functions,
Proc. Nat. Acad. Sci. USA, 31 (1945), 310-314.
Z63.07964; M7-145f
[43] Fermat's quotient and related arithmetical functions,
Proc. Nat. Acad. Sci. USA, 31 (1945), 55-60.
M6-170g
[44] Fermat's last theorem. Its history and the nature of the known
results concerning it, Amer. Math. Monthly, 53 (1946), 555-578.
M8-313e
[45] New types of congruences involving Bernoulli numbers and
Fermat's quotient, Proc. Nat. Acad. Sci. USA, 34 (1948), 103-110.
Z30.11103; M9-412d
[46] On congruences which relate the Fermat and Wilson quotients
to Bernouli numbers, Proc. Nat. Acad. Sci. USA, 35 (1949), 332-337.
Z33.35103; M11-11d
[47] A supplementary note to a 1946 article on Fermat's
last theorem, Amer. Math. Monthly, 60 (1953), 164-167.
Z51.28002; M14-725a; R1953,54
[48] Les travaux mathématiques de Dimitry Mirimanoff,
Enseign. Math., 39 (1953), 169-179.
Z50.00213; M14-833f; R1955,2064
[49] The relation of some data obtained from rapid computing machines
to the theory of cyclotomic fields,
Proc. Nat. Acad. Sci. U.S.A., 40 (1954), no. 6, 474-480.
Z56.04102; M15-937c; R1955,1619
[50] Examination of methods of attack on the second case of Fermat's Last
Theorem, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), no.8, 732-735.
Z56.04103; M16-13f; R1955,1639
[51] On the divisors of the second factor of the class number of a
cyclotomic field, Proc. Nat. Acad. Sci. USA, 41 (1955), 780-783.
M17-464a; R1956,4300
[52] Is there an infinity of regular primes?,
Scripta Math., 21 (1955) (1956), 306-309.
Z71.04402; R1957,2879
[53] On distribution problems involving the numbers of solutions
of certain trinomial congruences, Proc. Nat. Acad. Sci. USA, 45
(1959), no. 11, 1635-1641.
Z90.25901; M22#4669; R1960,8579
[54] On developments in an arithmetic theory of the Bernoulli and
allied numbers, Scripta Math., 25 (1961), 273-303.
Z100.26901; M26#66; R1962,6A107
[55] Note on Euler number criteria for the first case of
Fermat's Last Theorem. Amer. J. Math., 62 (1940), 79-82.
J66.0152.03; Z22.30703; M1-200d
[56] Bibliography of Articles on Bernoulli and Euler Numbers for the Years 1869-1940. 22 pp., Center for American History, University of Texas at Austin (unpublished).
VANDIVER H.S., WAHLIN G.E.,
[1] Algebraic numbers, 2, Report of the Comm. Alg. Numbers, Bull.
Nat. Research Council, 1928, No. 62, 1-111.
J54.0188.01
VANDIVER H.S.: see also LEHMER D.H., LEHMER E., VANDIVER H.S.
VANDIVER H.S.: see also SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.
VANDIVER H.S.: see also STAFFORD E.T., VANDIVER H.S.
VAN VEEN S.C.: see van VEEN S.C.
VAN WAMELEN P.: see SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.
VASAK J.T.,
[1] Periodic Bernoulli numbers and polynomials, Ph. D.
Thesis, University of Illinois at Urbana-Champaign, 1979.
VASILEV M.V.,
[1] Relations between Bernoulli numbers and Euler numbers,
Bull. Number Theory Related Topics, 11 (1987), no. 1-3, 93-95.
Z669.10021; M90g:11027
van VEEN S.C.,
[1] Asymptotic expansion of the generalized Bernoulli numbers
$B\sb n\sp {(n-1)}$ for large values of $n(n$ integer),
Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13
(1951), 335-341.
Z043.28503; M13,549a
VENKOV A.B.,
[1] Spectral theory for automorphic functions and
its applications.
Kluwer Acad. Publ., 1990, xvi+176pp.
Z719.11030; M93a:11046
VENKOV B.A.,
[1] Elementarnaya teoriya chisel [Elementary Number Theory].
Moskva-Leningrad, 1937, Ch. 2.7.
M42#178
[2] K rabote "O chislakh Bernulli" [On the paper "On Bernoulli numbers"].
In: Voronoi, G.F., Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. I, Kiev, 1952, 392-393.
Z49.02804; M16-2d; R1954,3228K
VERHEUL E.R.,
[1] A simple relation between Bernoulli sums.
Nieuw Arch. Wisk. (4), 9 (1991), no. 3, 301-302.
Z769.11012; M93e:11031
VERLINDEN P.,
[1] $p$-adic Euler-Maclaurin expansions.
Indag. Math. (N.S.) 7 (1996), no. 2, 257-270.
Z867.65024; M99d:41052; R1996,12A327
Veselov, A. P.; Ward, J. P.
[1] On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials.
J. Math. Anal. Appl. 305 (2005), no. 2, 712-721.
M2005k:11182
VIENNOT G.,
[1] Interprétations combinatoires des nombres d'Euler et de
Genocchi. Séminaire de Théorie des nombres, Univ. Bordeaux I,
année 1981-82, 1982, exp. no. 11, 94 pp.
Z505.05006; M84i:10013
VIENNOT G.: see also FRANÇON J., VIENNOT G.
VIENNOT G.: see also DUMONT D., VIENNOT G.
DE VILLIERS J.M.: see DE BRUYN G.F.C., DE VILLIERS J.M.
VLADIMIROV V.S.,
[1] Left factorials, Bernoulli numbers, and the Kurepa conjecture. (Russian)
Publ. Inst. Math. (Beograd) (N.S.) 72(86) (2002), 11-22.
M2004f:11017
VLADIMIROV V.S., VOLOVICH I.V., ZELENOV E.I.,
[1] Spectral theory in p-adic quantum mechanics and the theory of
representations, (Russian) Izv. Akad. Nauk. SSSR Ser. Mat.
54 (1990), no. 2, 275-302.
Z715.22029; M91f:81051
VOINOV V., NIKULIN M.,
[1] Generating functions, problems of additive number theory, and some
statistical applications.
Rev. Roumaine Math. Pures Appl., 40 (1995), no. 2, 107-147.
Z881.05011; R1997,3V214
VOLKENBORN A.,
[1] Ein p-adisches Integral und seine Anwendungen, Köln,
Dissert., 1971.
Z245.10044
[2] Ein p-adisches Integral und seine Anwendungen, I, Manuscr.
Math., 7 (1972), 341-473.
Z245.10045; M49#2670; R1973,3B205
[3] Ein p-adisches Integral und seine Anwendungen, II, Manuscr. Math.
12 (1974), 17-46.
Z276.12018; M48#11064
VOLOVICH I.V.: see VLADIMIROV V.S., VOLOVICH I.V., ZELENOV E.I.
VON RANDOW R.: see MEYER W., VON RANDOW R.
VOORHOEVE M.: see GYÖRY K., TIJDEMAN R., VOORHOEVE M.
VORONOI G.F.,
[1] O chislakh Bernulli [On Bernoulli numbers].
Soobshcheniya Khar'kovsk. Mat. obshch. (2), 2 (1889), 129-148.
Also in: Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. I, Kiev, 1952, 7-23.
Z49.02804; M16-2d; R1954,3228K
[2] Ob opredelenii summy kvadratichnykh vychetov prostogo $p$ vida $4m+3$ pri
pomoshchi chisel Bernulli [On the determination of the sum of quadratic
residues of a prime $p$ of the form $4m+3$ by means of Bernoulli numbers].
Protokoly Sankt Petersb. mat. obshch, 5 (1899). Also in:
Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. III, Kiev, 1953, 203-204.
Z49.02804; M16-2d; R1954,3228K
VORONOI G.F.: see also KISELEV A.A. [4]
VOROS A.,
[1] Spectral functions, special functions and the Selberg zeta function.
Commun. Math. Phys., 110 (1987), no. 3, 439-465.
Z631.10025; M89b:58173; R1987,11A535
[2] Spectral zeta functions. In: Zeta functions in geometry
(Tokyo, 1990), 327-358, Adv. Studies in Pure Math., 21,
Kinokuniya, Tokyo, 1992.
Z819.11033; M94h:58176; R1994,9A386
[3] Zeta functions for the Riemann zeros. Ann. Inst. Fourier (Grenoble) 53 (2003), no. 3, 665-699.
VOROS A.: see also BALAZS N.L., SCHMIT C., VOROS A.
VOSE M.D.,
[1] The distribution of divisors of $N!$,
Acta Arith., 50 (1988), no. 2, 203-209.
Z647.10038; M89j:11082; R1988,11A97
VOSKRESENSKII V.E.,
[1] Calculation of local volumes in the Siegel-Tamagawa formula.
Engl. Transl. in: Math. USSR-Sb., 66 (1990), no. 2, 447-460.
Z691.10014; M90h:11055
VOSTOKOV S.V.,
[1] A remark on the space of cyclotomic units. Engl. Transl. in:
Vestnik Leningrad Univ. Math., 21 (1988), no. 1, 16-20.
Z649.12013; M89f:11150; R1988,7A356
[2] Artin-Hasse exponentials and Bernoulli numbers. (Russian)
Trudy S.-Peterburg. Mat. Obshch. 3 (1995), 185--193, 324.
English translation:
Amer. Math. Soc. Transl. (2), 166 (1995), 149-156.
Z855.11059; M97c:11110; R1987,8A241
VU THEINNU H.: see APOSTOL T.M., VU THEINNU H.
Back to Index Back to U On to W