YAGER R.I.,
YAGISHITA K.,
[1] On the Diophantine equation $\alpha^l + \beta^l = c
\gamma^l$, TRU Math., 7 (1971), 5-10.
Z256.10014; M46#7161; R1973,5A149
YALAVIGI C.C.,
[1] Bernoulli and Lucas numbers,
Math. Education, 5 (1971), A99-A102.
M46#131
YAMADA M.,
[1] An experimental theory of numbers (The prime factors of the
numerators of Bernoulli numbers),
J. Fac. Eng. Ibaraki Univ., 35 (1987), 159-170.
R1988.10A111
[2] An approach to Wieferich's condition,
C. R. Math. Rep. Acad. Sci. Canada, 13 (1991), no. 2-3, 87-92.
Z731.11019; M92f:11052
YAMAGUCHI I.,
[1] On Fermat's last theorem, TRU Math., 3
(1967), 13-18.
Z167.31603; M36#6350; R1968,10A91
[2] On generalized Fermat's last theorem,
TRU Math., 6 (1970), 29-32.
Z242.10009; M46#8974; R1973,11A168
[3] On a property of the irregular class group in a properly $l$-th
cyclotomic field, TRU Math., 7 (1971), 21-24.
Z252.12004; M47#3352; R1973,5A357
[4] On a Bernoulli numbers conjecture, J. Reine Angew. Math.,
288 (1976), 168-175.
Z333.10005; M54#12628; R1977,6A100
[5] On the units in a $l^\nu$-th cyclotomic field,
TRU Math., 13 (1977), no. 2, 1-12.
Z379.12003; M58#584; R1978,10A250
[6] Sympathetic Number Theory - The beautiful cyclotomic fields theory and Bernoulli numbers (Japanese), Sangyotosho Co. Ltd., 1994.
YAMAMOTO S.: see SHIRATANI K., YAMAMOTO S.
YANG BI CHENG,
[1] Formulas for sums of homogeneous powers of natural numbers related
to the Bernoulli numbers (Chinese).
Math. Practice Theory, 1994, no. 4, 52-56, 74.
M96c:11026
YANG BI CHENG, ZHU YUN HUA,
[1] Inequalities for the Hurwitz zeta-function on the real axis (Chinese),
Acta Sci. Natur. Univ. Sunyatseni 36 (1997), no. 3, 30-35.
M99h:11101
YANG BI CHENG: see also ZHU YUN HUA, YANG BI CHENG,
YANG HUI,
[1] The operator l and its applications. I. A generalization of the
Bernoulli polynomials,
J. Math. (Wuhan), 1 (1981), no. 2, 195-206.
(Chinese. English summary.)
Z519.33010; M83k:39004
Yang, Qian Li,
[1] On a congruence of the Euler numbers. (Chinese)
J. Northwest Univ. 36 (2006), no. 3, 351-352.
Yang, Sheng Liang; Qiao, Zhan Ke; Ma, Cheng Ye,
[1] Relationship between Bernoulli polynomials and power sum polynomials.
(Chinese) J. Lanzhou Univ. Technol. 32 (2006), no. 4, 130--132.
YAU STEPHEN S.-T.: see LIN KE-PAO, YAU STEPHEN S.-T.
Yi, Yuan,
[1] Some identities involving Bernoulli numbers and Euler numbers.
Sci. Magna 2 (2006), no. 1, 102--107.
M2007c:11023
YOKOI H.,
[1] On the distribution of irregular primes, J. Number
Theory, 7 (1975), 71-76.
Z297.10034; M51#385; R1976,7A180
YOKOYAMA S.: see SHIRATANI K., YOKOYAMA S.
YOR M.: see PITMAN J., YOR M.
YOSHIDA H.,
[1] On absolute CM-periods. II,
Amer. J. Math. 120 (1998), no. 6, 1199-1236.
Z0919.11077; M2000a:11093
[2] Absolute CM-periods.
Mathematical Surveys and Monographs, 106.
American Mathematical Society, Providence, RI, 2003. x+282 pp.
ISBN 0-8218-3453-3.
M2004j:11057
YOSHIDA M.,
[1] A representation of the Bernoulli numbers
$B_n$ and the tangent numbers $T_n$.
SUT J. Math., 26 (1990), no. 2, 207-219.
Z746.11013; M92k:11021; R1991,11V421
YOUNG N.E.: see MILLAR J., SLOANE N.J.A., YOUNG N.E.
YOUNG P.T.,
[1] Congruences for Bernoulli, Euler, and Stirling numbers.
J. Number Theory, 78 (1999), no. 2, 204-227.
Z939.11014; M2000i:11038
[2] Kummer congruences for values of Bernoulli and Euler polynomials.
Acta Arith. 99 (2001), no. 3, 277-288.
Z0982.11008; M2002g:11021; R02.04-13A.117
[3] On the behavior of some two-variable $p$-adic $L$-functions. J. Number Theory 98 (2003), no. 1, 67-88.
[4] Degenerate and $n$-adic versions of Kummer's congruences for values of Bernoulli polynomials. Discrete Math. 285 (2004), no. 1-3, 289-296.
YOUNG R.M.: see NUNEMACHER J., YOUNG R.M.
YU JING,
[1] A cuspidal class number formula for the modular curves
$X_1(N)$, Math. Ann., 252 (1980), no. 3, 197-216.
Z426.12003;
Z426.12003;436.12002; M82b:10030; R1981,6A377
[2] Transcendence and special zeta values in characteristic $p$.
Ann. Math. (2), 134 (1991), no. 1, 1-23.
Z734.11040; M92g:11075
YU JING, YU JIU-KANG,
[1] A note on a geometric analogue of Ankeny-Artin-Chowla's conjecture,
Number theory (Tiruchirapalli, 1996), 101-105, Contemp. Math., 210, Amer. Math.
Soc., Providence, RI, 1998.
Z896.11047; M98g:11131
YÜ WÊN CH'ING: see EIE MINKING
Yuan, Pingzhi,
[1] A conjecture on Euler numbers.
Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 9, 180-181.
M2005f:11030
[1] Valeurs des fonctions zêta des corps quadratiques réels aux
entiers négatifs. Journées Arithmétiques de Caen (Univ. Caen, 1976),
pp. 135-151. Astérisque No. 41-42, Soc. Math. France, Paris, 1977.
Z359.12012; M56#316; R1977,12A140
[2] Zetafunktionen und quadratische Körper. Eine Einführung in
die höhere Zahlentheorie. Springer-Verlag, Berlin, 1981. viii + 144 pp.
Z459.10001; M82m:10002; R1982,3A107
[3] Hyperbolic manifolds and special values of Dedekind zeta-functions, Sonderforschungsbereich 40 Theor. Math., Univ. Bonn, 1984.
[4] Hyperbolic manifolds and special values of Dedekind zeta-functions,
Invent. Math., 83 (1986), no. 2, 285-301.
Z591.12014; M87e:11069; R1986,6A500
[5] Periods of modular forms and Jacobi theta functions. Max-Planck-Institut für Math. Bonn, MPI/89-56, 15 pp.
[6] Periods of modular forms and Jacobi theta functions,
Invent. Math., 104 (1991), no. 3, 449-465.
Z742.11029; M92e:11052
[7] On the values at negative integers of the zeta-function
of a real quadratic field.
Enseignement Math. (2), 22 (1976), 55-95.
Z334.12021; M53#10742; R1976/77,12A163
[8] Polylogarithms, Dedekind zeta functions, and
the algebraic $K$-theory of fields.
Arithmetic algebraic geometry, Proc. Conf., Texel/Neth.
1989, Prog. Math., 89 (1991), 391-430.
Z728.11062; M92f:11161
[9] Elementary aspects of the Verlinde formula and of the Harder- Narasimhan-Atiyah-Bott formula. Max-Planck-Institut für Math., Bonn, 1994, no.5, 16 pp.
[10] A modified Bernoulli number,
Nieuw Arch. Wisk. (4), 16 (1998), no. 1-2, 63-72.
Z0964.11015; M99i:11013; R1999,2V229
ZAGIER D.: see also KANEKO M., ZAGIER D.
ZAGIER D.: see also KOHNEN W., ZAGIER D.
ZAGIER D.: see also HALL R.R., WILSON J.C., ZAGIER D.
ZAGIER D.: see also SZMIDT J., URBANOWICZ J., ZAGIER D.
ZARNKE C.: see BEACH B., WILLIAMS H., ZARNKE C.
ZECH TH.,
[1] Potenzsummen und Bernoullische Zahlen, Z. Angew. Math.
Mech., 34 (1954), 119-120.
Z56.01307; M15-855e; R1955,838
ZEITLIN D.,
[1] Remarks on a formula for preferential arrangements,
Amer. Math. Monthly, 70 (1963), 183-187.
Z116.01102; M26#4928; R1964,12A143
[2] On the sums $\sum_{k=0}^nk^p$ and $\sum_{k=0}^n(-1)^kk^p$,
Proc. Amer. Math. Soc., 15 (1964), 642-647.
Z123.00102; M29#5010; R1967,1V164
ZELENOV E.I.: see VLADIMIROV V.S. et al.
ZELLER CHR.,
[1] De numeris Bernoulli eorumque compositione ex numeris
integritis et reciprocis primis, Bull. sci. math. et astr., 5 (1881),
195-215.
J13.0190.02
ZENG JIANG,
[1] Sur quelques propriétés de symétrie des nombres de Genocchi.
(French) [On some symmetry properties of Genocchi numbers] Proceedings of the
5th Conference on Formal Power Series and Algebraic Combinatorics
(Florence, 1993). Discrete Math. 153 (1996), no. 1-3, 319-333.
Z870.05002; M97k:05015
[2] The Akiyama-Tanigawa algorithm for Carlitz's $q$-Bernoulli numbers.
Integers 6 (2006), A5, 10 pp. (electronic).
M2007a:11026
^M
Zeng, Jiang; Zhou, Jin,
[1] A $q$-analog of the Seidel generation of Genocchi numbers.
European J. Combin. 27 (2006), no. 3, 364-381.
M2006k:05023
^M ZENG J.: see also DUMONT D., ZENG J.
ZENG J.: see also HAN GUO-NIU, ZENG JIANG
ZENG J.: see also HAN G.-N.; RANDRIANARIVONY A.; ZENG J.
ZHANG JIAN KANG: see XIN XIAO LONG, ZHANG JIAN KANG
ZHANG J.-M.: see WONG R., ZHANG J.-M.
ZHANG JING, FANG JIAN PING,
[1] A generalization of Wolstenholme's theorem. (Chinese. English, Chinese summary)
J. Nanjing Norm. Univ. Nat. Sci. Ed. 23 (2000), no. 1, 19-20.
Z1020.11004; M2001m:11012
ZHANG N.Y.,
[1] A representation of Riemann's zeta-function (Chinese), J. Math. Res.
Exposition (1982), no. 4, 119-120.
Z506.10033; M84c:10037
[2] The Euler constant and some sums associated with the zeta
function. (Chinese).
Math. Practice Theory, (1990), no. 4, 62-70.
M92a:11098
ZHANG N.Y.: see also WILLIAMS K.S., ZHANG N.Y.
ZHANG PING: see SAGAN B.E., ZHANG PING
ZHANG R.: see GOSPER R.W., ISMAIL M.E.H., ZHANG R.
ZHANG SHANJIE, JIN JIANMING,
[1] Computation of special functions.
John Wiley & Sons, Inc., New York, 1996. xxvi+717 pp. ISBN 0-471-11963-6
Z0865.33001; M97m:65001
Zhang, Tianping; Ma, Yuankui,
[1] On generalized Fibonacci polynomials and Bernoulli numbers.
J. Integer Seq. 8 (2005), no. 5, Article 05.5.3, 6 pp. (electronic).
M2006h:11015
ZHANG WEI RONG,
[1] Using a Newtonian formula to prove a theorem of Euler. (Chinese.)
J. Nanjing Norm. Univ. Nat. Sci. Ed. 22 (1999), no. 1, 16-17.
M2000h:11021
ZHANG WENPENG,
[1] On the several identities of Riemann zeta-function,
Chinese Sci. Bull., 36 (1991), no. 22, 1852-1856.
Z755.11026; M92m:11086
[2] Some identities for Euler numbers (Chinese),
J. Northwest Univ., 22 (1992), no. 1, 17-20.
Z886.11011; M93h:11024
[3] Some identities involving the Euler and the central factorial numbers, Fibonacci Quart. 36 (1998), no. 2, 154-157.
[4] On the general Dedekind sums and one kind identities of Dirichlet
$L$-functions. (Chinese. English, Chinese summary)
Acta Math. Sinica 44 (2001), no. 2, 269-272.
M2002c:11106
ZHANG WENPENG: see also LIU HUANING, ZHANG WENPENG.
ZHANG XIANG DE: see WANG TIAN MING, ZHANG XIANG DE
ZHANG XIAN KE,
[1] A congruence formula for the class number of a general fourth degree
cyclic field,
Kexue Tongbao (Chinese), 32 (1987), no. 23, 1761-1763.
M89g:11101
[2] Congruences of class numbers of general cubic cyclic number
fields (Chinese. English summary).
J. China Univ. Sci. Tech., 17 (1987), no. 2, 141-145.
Z631.12003; M88i:11076; R1987,12A291
[3] Congruences for class numbers of general cyclic quartic fields, Kexue Tongbao (Science Bulletin), 33 (1988), no. 22, 1845-1848.
[4] Congruences modulo 8 for class numbers of general quadratic fields
$ Q(\sqrt{m})$ and $ Q(\sqrt{-m})$,
J. Number Theory, 32 (1989), no. 3, 332-338.
Z693.12005; M90k:11137
[5] Ten formulae of type Ankeny-Artin-Chowla for class numbers of
general cyclic quartic fields,
Sci. China Ser. A, 32 (1989), no. 4, 417-428.
Z669.12005; M91b:11112
ZHANG ZHIZHENG,
[1] Relation between two kinds of numbers and its applications,
Gongcheng Shuxue Xuebao 13 (1996), no. 1, 114-116.
M97g:11017; R1997,3V221
ZHANG ZHIZHENG, GUO LIZHOU,
[1] Recurrence sequences and Bernoulli polynomials of higher order,
Fibonacci Quart., 33 (1995), no. 4, 359-362.
Z831.11023; M96c:11027; R1996,5A119
ZHANG ZHIZHENG, JIN JINGYU,
[1] Some identities involving generalized Genocchi polynomials and generalized
Fibonacci-Lucas sequences,
Fibonacci Quart., 36 (1998), no. 4, 329-334.
Z0973.11018; R1999,4V225
Zhang, Zhizheng; Wang, Jun,
[1] Bernoulli matrix and its algebraic properties.
Discrete Appl. Math. 154 (2006), no. 11, 1622--1632.
ZHANG ZHIZHENG: see also WANG TIANMING, ZHANG ZHIZHENG
ZHANG ZHIZHENG: see also LIU MAI XUE, ZHANG ZHI ZHENG
ZHENG YU MIN, LUO QIU MING,
[1] The recursion formulas of higher-order Bernoulli numbers. (Chinese)
Math. Practice Theory 33 (2003), no. 8, 116-119.
Zhao, Feng-Zhen; Wang, Tianming,
[1] Values of Nörlund Euler polynomials and Nörlund Bernoulli
polynomials.
C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 4, 97-101.
M2005h:11041
[1] The Petersson-Knopp identity fo the homogeneous Dedekind sums,
J. Number Theory, 57 (1996), no. 2, 223-230.
Z847.11021; M97c:11050
ZHBIKOVSKII A.K.,
[1] Teorema Silvestra otnositel'no bernullievykh chisel [Sylvester's theorem
concerning Bernoulli numbers].
Vestnik matem. nauk, 1 (1862), no. 13, 109-110.
[2] K teorii chisel Bernulli [On the theory of Bernoulli numbers]. Mat. Sbornik, 10 (1882), no. 2, 127-166.
ZHU WEI YI,
[1] An identical relation between the Bernoulli numbers and the Euler numbers.
(Chinese) J. Ningxia Univ. Nat. Sci. Ed. 22 (2001), no. 4, 370-371.
Z1021.11004
ZHU YUN HUA, YANG BI CHENG,
[1] An improvement of Euler's summation formula and some
inequalities for sums of powers (Chinese),
Acta Sci. Natur. Univ. Sunyatseni 36 (1997), no. 4, 21-26.
Z902.40002; M99i:40003
ZHU YUN HUA: see also YANG BI CHENG, ZHU YUN HUA
ZIA-UD-DIN M.,
[1] Recurrence formulae for Bernoulli's numbers, Math. Student,
3 (1935), 141-151.
J61.0985.02; Z14.10202
[2] Some more formulae for the Bernoullian mumbers.
Math. Student 15 (1938), 81-157.
Z019.10402
ZIMMER H.G.,
[1] Computational problems, methods and results in algebraic
number theory, New York, Lecture Notes in Math., No. 262, 1972.
Z231.12001; M48#2107; R1972,10A225
ZUBER M.,
[1] Propriétés de congruence de certaines familles classiques de
polynômes,
C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 8, 869-872.
Z762.11005; M94b:11025
[2] Propriétés $p$-adiques de polynômes classiques, Thèse, Université de Neuchatel, 1992.
[3] Suites de Honda,
Ann. Math. Blaise Pascal 2 (1995), no. 1, 307-314.
Z833.46062; M96k:11143
ZUDILIN W.,
[1] Algebraic relations for multiple zeta values.
Russian Math. Surveys 58 (2003), no. 1, 1-20