Back to Index Back to J On to L
KAIRIES H.H.: see also DICKEY L.J., KAIRIES H.H., SHANK H.S.
KALLIES J.,
[1] Verallgemeinerte Dedekindsche Summen und ein Gitterpunktproblem im
n-dimensionalen Raum,
J. Reine Angew. Math., 344 (1983), 22-37.
Z508.10007; M86d:11004; R1984,1A98
[2] Ein Beitrag zur Arithmetik der Bernoullischen Zahlen
imaginär-quadratischer Zahlkörper,
J. Reine Angew. Math., 361 (1985), 73-94.
Z561.12001; M87g:11031; R1986,4A399
KALLIES J., SNYDER C.,
[1] On the values of partial zeta functions of real quadratic fields at
nonpositive integers,
Math. Nachr., 175 (1995), 159-191.
Z856.11053; M96k:11137
KALYUZHNYI V.N.,
[1] A $p$-adic analogue of the Hurwitz zeta function.(Russian)
Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 40 (1983),
74-79.
Z555.12007; M85h:11078; R1984,2A321
[2] The power moment problem on a $p$-adic disk.
Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 39 (1983),
56-61.
Z561.12005; M85b:11077; R1984,1B135
[3] On certain sums with Stirling and Bernoulli numbers. (Russian)
Vestnik Kharkov. Gos. Univ., no. 286 (1986), 87-94.
Z626.10011; M88g:05018
KAMIENNY S.,
[1] Modular curves and unramified extensions of
number fields, Compositio Math., 47 (1982), no. 2, 223-225.
Z501.12011; M84e:12011; R1983,4A370
[2] Points of order $p$ on elliptic curves over
$ Q(\sqrt p)$, Math. Ann., 262 (1982), no. 4, 413-424.
Z489.14010; M84g:14047; R1983,5A390
[3] Rational points on modular curves and abelian varieties,
J. Reine Angew. Math., 359 (1985), 174-187.
Z569.14002; M86j:11061; R1986,4A589
[4] p-torsion in elliptic curves over subfields of $ Q(\mu_p)$,
Math. Ann., 280 (1988), no. 3, 513-519.
Z626.14024; M90a:11061
[5] On $J_1(p)$ and the kernel of the Eisenstein ideal,
J. Reine Angew. Math., 404 (1990), 203-208.
Z705.14025; M90m:11171; R1990,9A341
KAMIENNY S., STEVENS G.,
[1] Special values of L-functions attached to $X_1(N)$,
Composito Math., 49 (1983), no. 1, 121-142.
Z519.14018; M84g:14021; R1983,11A588
KAMNITZER J.: see BORWEIN J.M., BROADHURST D.J., KAMNITZER J.
KANEKO M.,
[1] A recurrence formula for the Bernoulli numbers,
Proc. Japan Acad. Ser. A, 71 (1995), 192-193.
Z854.11012; M96i:11022; R1996,4V266
[2] Poly-Bernoulli numbers,
J. Théor. Nombres Bordeaux 9 (1997), no. 1, 221-228.
Z887.11011; M98k:11013; R1998,4A85
[3] Multiple zeta values and poly-Bernoulli numbers (Japanese), Seminar Reports of the Department of Mathematics, Tokyo Metropolitan University, 1997, 42 pp.
[4] The Akiyama-Tanigawa algorithm for Bernoulli numbers.
J. Integer Seq. 3 (2000), no. 2, Article 00.2.9, 6 pp. (electronic).
Z0982.11009; M2001k:11026
KANEKO M., KUROKAWA N., WAKAYAMA M.,
[1] A variation of Euler's approach to values of the Riemann zeta-function.
Kyushu J. Math. 57 (2003), no. 1, 175-192.
KANEKO M., ZAGIER D.,
[1] Supersingular $j$-invariants, hypergeometric series, and Atkin's orthogonal
polynomials. Computational perspectives on number theory (Chicago, IL, 1995),
97-126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.
Z0955.11018; M99b:11064; R01.11-13A418
KANEKO M.: see also ARAKAWA T., KANEKO M.,
KANEKO M.: see also ARAKAWA T., IBUKIYAMA T., KANEKO M.
KANELLOS S.G.,
[1] On Bernoulli's numbers, Bull. Soc. Math. Grèce,
28 (1954); 101-106. (Greek, English summary.)
Z57.01002; M15-855d; R1956,2755
KANEMITSU S.,
[1] On some bounds for values of Dirichlet's
L-function $L(s, \chi)$ at the point $s=1$, Mem. Fac. Sci.
Kyushu Univ., Ser. A, 31 (1977), no. 1, 15-23.
Z351.10024; M55#12655; R1977,12A103
[2] Omega theorems for divisor functions,
Tokyo J. Math., 7 (1984), no. 2, 399-419.
Z556.10031; M87c:11085; R1985,10A141
KANEMITSU S., KUZUMAKI T.,
[1] On a generalization of the Maillet determinant.
Number theory (Eger, 1996), 271-287, de Gruyter, Berlin, 1998.
Z920.11071; M99h:11122
[2] On a generalization of the Maillet determinant. II.
Acta Arith. 99 (2001), no. 4, 343-361.
Z0984.11056; M2002h:11115
KANEMITSU S., SHIRATANI K.,
[1] An application of the Bernoulli functions to character sums,
Mem. Fac. Sci. Kyushu Univ., Ser. A, 30 (1976), no. 1, 65-73.
Z336.10031; M54#249; R1976,9A151
[2] Applications of Bernoulli functions to Dirichlet character sums. (Japanese).
Characteristics of arithmetic functions (Proc. Sympos., Res. Inst. Math. Sci.,
Kyoto Univ., Kyoto, 1975). Sûrikaisekikenkyûsho Kôkyûroku,
No. 274, (1976), 148-151.
Z336.10033; M56#15578
KANEMITSU S., SITARAMACHANDRA RAO R.,
[1] On a conjecture of P. Chowla and of S. Chowla and H. Walum, I,
J. Number Theory, 20 (1985), no. 3, 255-261.
Z467.10031; M87d:11072a; R1986,1A110
[2] On a conjecture of S. Chowla and Walum, II,
J. Number Theory, 20 (1985), no. 2, 103-120.
Z467.10032; M87d:11072b; R1986,1A111
KANEMITSU S.: see also ISHIBASHI M., KANEMITSU S.
KANO H.,
[1] On the equation $s(1^k+s^k+ \cdots +x^k)+r = by^z$,
Tokyo J. Math., 13 (1990), no. 2, 441-448.
Z722.11022; M91m:11022; R1991,9A121
KANOU N.,
[1] Transcendency of zeros of Eisenstein series.
Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 5, 51-54.
Z0973.11051; M2001k:11068; R01.03-13A.173
KAPTEYN J.C., KAPTEYN W.,
[1] Die Höheren Sinus.
Sitzungsber. d. Kais. Akad. d. Wiss. in Wien, 93 (1886), 807-868.
J18.0371.02
KAPTEYN W.,
[1] Expansion of functions in terms of Bernoulli polynomials,
Proc. Intern. Math. Congress, Toronto, (1924), Reprinted v.1 (1967), 605-609.
J54.0323.02
KARAMATSU Y.,
[1] On Fermat's last theorem and the first factor of
the class number of the cyclotomic field, 2, TRU Math.,
16 (1980), no. 1, 23-29.
Z465.10010; M82a:10020; R1981,4A113
[2] Ribenboim's criteria and some criteria for the first case
of Fermat's last theorem,
TRU Math., 17 (1981), no.1, 25-38.
Z472.10021; M83a:10023; R1982,3A143
[3] A note on the first case of Fermat's last theorem.
Prospects of mathematical science (Tokyo, 1986), pp. 73-77.
World Sci. Publishing, Singapore, 1988.
Z654.10017; M89i:11043
KARAMATSU Y.:see also ABE S., KARAMATSU Y.
KARANDE B.K., THAKARE N.K.,
[1] On the unification of Bernoulli and Euler
polynomials, Indian J. Pure Appl. Math., 6 (1975), no. 1, 98-107.
Z343.33010; M54#110; R1977,6V412
KAREL M.L.,
[1] Fourier coefficients of certain Eisenstein series.
Bull. Amer. Math. Soc., 78 (1972), 828-830.
Z255.10030; M45#6760; R1973,4A560
[2] Fourier coefficients of certain Eisenstein series.
Ann. Math. (2), 99 (1974), no.1, 176-202.
Z279.10024; M49#8935; R1974,7A749
KARPENKOV O.N.,
[1] Combinatorics of multiboundary singularities of the series $B\sp l\sb n$
and the Bernoulli-Euler numbers. (Russian)
Funktsional. Anal. i Prilozhen. 36 (2002), no. 1, 78-81;
translation in Funct. Anal. Appl. 36 (2002), no. 1, 65-67.
M2003e:58058
KARST E.,
[1] On the coefficients of $\sum_{x=1}^n x^k/\sum_{x=1}^n x^m$, written in
terms of n, Pi Mu Epsilon J. 4 (1964), 11-14.
KASUBE H.: see GANDHI J.M., KASUBE H., SURYANARAYANA D.
KATAYAMA K.,
[1] On Ramanujan's formula for values of Riemann zeta function
at positive odd integers,
Acta Arith., 22 (1973), 149-155.
Z248.10032; M48#252; R1973,9A139
[2] On the values of Eisenstein series,
Tokyo J. Math., 1 (1978), no. 1, 157-188.
Z391.10022; M80f:10029; R1979,1A148
[3] Corrections to: "On the values of Eisenstein series",
Tokyo J. Math., 5 (1982), no. 1, 115-116.
M83j:10025
[4] Barnes' multiple zeta function and Apostol's generalized Dedekind sum.
Tokyo J. Math. 27 (2004), no. 1, 57-74.
M2005e:11050
[1] On a theorem of Shintani,
Tokyo J. Math., 16 (1993), no. 1, 155-170.
Z802.11015; M94e:11042
KATO K., KUROKAWA N., SAITO T.,
[1] Number theory. 1. Fermat's dream.
Translations of Mathematical Monographs, 186. Iwanami Series in Modern
Mathematics. American Mathematical Society, Providence, RI, 2000. xvi+154 pp.
M2000i:11002
KATSURADA H.,
[1] An explicit formula for the Fourier coefficients of Siegel-Eisenstein series
of degree $3$,
Nagoya Math. J. 146 (1997), 199-223.
Z882.11026; M98g:11051; R1999,7A484
[2] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue, Acta Arith. 90 (1999), no. 1, 79-89.
KATSURADA M.,
[1] Power series and asymptotic series associated with the Lerch zeta-function.
Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 10, 167-170.
Z937.11035; M99m:11098; R1999,7B23
[2] Rapidly convergent series representations for $\zeta(2n+1)$ and their
$\chi$-analogue. Acta Arith. 90 (1999), no. 1, 79-89.
Z933.11042; M2000f:11101
KATSURADA M., MATSUMOTO K.,
[1] The mean values of Dirichlet $L$-functions at integer points and
class numbers of cyclotomic fields.
Nagoya Math. J., 134 (1994), 151-172.
Z806.11036; M95d:11108; R1995,6A292
[2] Explicit formulas and asymptotic expansions for certain mean square of
Hurwitz zeta-functions. II. New trends in probability and statistics,
Vol. 4 (Palanga, 1996), 119-134, VSP, Utrecht, 1997.
Z929.11027; M2000c:11145
KATZ N.M.,
[1] p-adic L-functions via moduli of elliptic curves,
Proc. Symp. Pure Math., 29 (1975),
479-506.
Z317.14009; M55#5635
[2] The congruences of Clausen - von Staudt and
Kummer for Bernoulli-Hurwitz numbers, Math. Ann.,
216 (1975), 1-4.
Z303.10028; M52#8136; R1976,2A539
[3] Higher congruences between modular forms,
Ann. of Math. (2), 101 (1975), no. 2, 332-367.
Z356.10020; M54#5120; R1976,1A516
[4] p-adic L-functions for CM-fields, Invent. Math.,
49 (1978), no. 3, 199-297.
Z439.12010; M80h:10039; R1979,7A400
[5] Divisibilities, congruences and Cartier duality,
J. Fac. Sci. Univ. Tokyo, Ser. IA, 28 (1981), no. 3, 667-678.
Z559.14032; M83h:10067; R1982,11A355
KAWASAKI T.,
[1] On the class number of real quadratic fields,
Mem. Fac. Sci. Kyushu Univ., Ser. A, 35 (1981), no. 1, 159-171.
Z459.12003; M82g:12006; R1981,9A275
KAZANDZIDIS G.S.,
[1] On sums of like powers of the numbers less than
$N$ and prime to $N$, Prakt. Akad. Athenon,
44 (1969), (1970), 148-158.
Z264.10009; M46#5230
[2] On the Bernoulli polynomials, Bull. Soc. Math.
Grèce, 10 (1969), 151-182.
Z197.31901; M43#4756
KELISKY R.P.,
[1] Congruences involving combinations of the Bernoulli and Fibonacci numbers,
Proc. Nat. Acad. Sci. U.S.A., 43 (1957), no. 12, 1066-1069.
Z84.27004; M19-941d; R1960,4A589
[2] On formulas involving both the Bernoulli and Fibonacci numbers,
Scripta Math., 23 (1957), no. 1-4, 27-35.
Z84.06605; M20#5300; R1960,3784
KELLER W., LÖH G.,
[1] The criteria of Kummer and Mirimanoff extended
to include 22 consecutive irregular pairs, Tokyo J.
Math., 6 (1983), no. 2, 397-402.
Z553.10009; M85h:11014; R1984,10A93
KELLNER B.,
[1] Über irreguläre Paare höherer Ordnungen.
Diplomarbeit, Göttingen, 2002.
[2] On irregular prime power divisors of the Bernoulli numbers. Math. Comp. 76 (2007), no. 257, 405-441.
Z84.06605; MMR2261029
KERVAIRE M.A., MILNOR J.W.,
[1] Bernoulli numbers, homotopy groups, and a
theorem of Rohlin, Proc. Intern. Congress of Math.,
Edinburgh 1958, Cambridge Univ. Press, 1960, 454-458.
Z119.38503; M22#12531; R1961,8A349
[2] Groups of homotopy spheres, I,
Ann. of Math., 77 (1963), no. 3, 504-537.
Z115.40505; M26#5584; R1964,10A305
KHAN R.A.,
[1] A simple derivation of a formula for $\sum_{k=1}^n k^r$,
Fibonacci Quart., 19 (1981), no. 2, 177-180.
M82e:05010; R1981,9V438
KHANNA I.K.,
[1] A new type of generalization of Bernoulli and Euler numbers
and its applications,
Progr. Math. (Varanasi), 20 (1986), no. 2, 83-89.
Z699.10022; M88g:11008
KHANNA I.K., PANDAY P.,
[1] Extended Bernoulli numbers and its applications,
Ganita, 35 (1984), no. 1-2, 26-34 (1987).
Z632.10009
KHOVANSKII A.N.,
[1] Some identities connected with Bernoulli numbers. (Russian),
Izvestiya Kazan. Filial. Akad. Nauka. SSSR. Ser. Fiz.-Mat. Tehn. Nauk.,
1 (1948), 93-94.
M14-138c
KIDA M.,
[1] Kummer's criterion for totally real number fields.
Tokyo J. Math., 14 (1991), no.2, 309-317.
Z758.11031; M92j:11135
KIM DAE SAN: see JANG YOUNGHO, KIM DAE SAN.
KIM E.E., TOOLE B.A.,
[1] Ada and the first computer.
Scientific American, May 1999, 76-81.
KIM EUN-SUP: see CHO HAE-SOOK, KIM EUN-SUP.
KIM HAN SOO, KIM TAEKYUN,
[1] On a $q$-analogue of the $p$-adic log gamma functions and related integrals.
Number theory and related topics (Masan, 1994; Pusan, 1994), 67--75,
Pyungsan Inst. Math. Sci., Seoul, 1995.
M97h:11013
[2] Remark on $q$-analogues of $p$-adic $L$-functions.
Number theory and related topics (Masan, 1994; Pusan, 1994), 76--83,
Pyungsan Inst. Math. Sci., Seoul, 1995.
M97g:11016
[3] On certain values of $p$-adic $q$-$L$-functions.
Rep. Fac. Sci. Engrg. Saga Univ. Math. 23 (1995), no. 1-2, 1-7.
Z820.11071; M96f:11153; R1997,4A262
[4] Some congruences for Bernoulli numbers. II.
Rep. Fac. Sci. Engrg. Saga Univ. Math. 24 (1996), no. 2, 5 pp.
Z869.11016; M98g:11018; R1996,12A142
[5] On $q$-$\log$-gamma-functions.
Bull. Korean Math. Soc. 33 (1996), no. 1, 111-118.
Z865.11059; M97b:11025
[6] Remark on $p$-adic $q$-Bernoulli numbers. Algebraic number theory
(Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. 1 (1999), 127-136.
M2000g:11112
KIM HAN SOO, LIM PIL-SANG, KIM TAEKYUN,
[1] A remark on $p$-adic $q$-Bernoulli measure. Bull. Korean
Math. Soc. 33 (1996), no. 1, 39--44.
Z855.11062; M97b:11145
KIM HOIL: see JANG YOUNGHO, KIM HOIL.
KIM J.H.: see JANG L.C., KIM J.H., KIM T., LEE D.H., PARK D.W., RYOO C.S.
KIM JAE MOON,
[1] Class numbers of certain real abelian fields,
Acta Arith., 72 (1995), no. 4, 335-345.
Z841.11056; M96j:11152; R1996,10A248
[2] Class numbers of real quadratic fields,
Bull. Austral. Math. Soc., 57 (1998), no. 2, 261-274.
Z980.47404; M98m:11117; R01.03-13A173
[3] Units and cyclotomic units in ${Z}\sb p$-extensions,
Nagoya Math. J. 140 (1995), 101-116.
Z848.11055; M96m:11100
KIM MIN-SOO, KIM TAEKYUN
[1] An explicit formula on the generalized Bernoulli number with order $n$.
Indian J. Pure Appl. Math. 31 (2000), no. 11, 1455-1461.
Z0966.11014; M2002c:11017
KIM MIN-SOO, SON JIN-WOO
[1] On Bernoulli numbers.
J. Korean Math. Soc. 37 (2000), no. 3, 391-410.
Z971.11057; M2001g:11020
[2] On a multidimensional Volkenborn integral and higher order Bernoulli
numbers. Bull. Austral. Math. Soc. 65 (2002), no. 1, 59-71.
Z0996.11017; M2003d:11029
[3] Some remarks on a $q$-analogue of Bernoulli numbers.
J. Korean Math. Soc. 39 (2002), no. 2, 221-236.
M2002j:11011
[4] A $q$-analogue of the Dirichlet $L$-function.
Algebra Colloq. 9 (2002), no. 4, 469-480.
M2003h:11024
[5] Bernoulli numbers in $p$-adic analysis.
Appl. Math. Comput. 146 (2003), no. 1, 289-297.
M2004i:11012
KIM MIN-SOO: see also JANG YOUNGHO, KIM MIN-SOO, SON JIN-WOO
KIM T.
[1] Non-Archimedean $q$-integrals associated with multiple Changhee
$q$-Bernoulli polynomials.
Russ. J. Math. Phys. 10 (2003), no. 1, 91-98.
M2004h:33034
KIM T.
[2] $p$-adic $q$-integrals associated with the Changhee-Barnes' $q$-Bernoulli
polynomials. Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420.
KIM T., JANG L.C., RYOO C.S., PARK D.-W.,
[1] The real zeros of $q$-Bernoulli polynomials.
Far East J. Appl. Math. 16 (2004), no. 2, 233-248.
KIM T.: see also JANG L.C., KIM J.H., KIM T., LEE D.H., PARK D.W., RYOO C.S.
KIM TAEKYUN,
[1] An analogue of Bernoulli numbers and their congruences.
Rep. Fac. Sci. Engrg. Saga Univ. Math., 22 (1994), no. 2, 21-26.
Z802.11007; M94m:11024
[2] On explicit formulas of $p$-adic $q$-$L$-functions.
Kyushu J. Math., 48 (1994), no.1, 78-86.
Z817.11054; M95c:11140; R1996,8A219
[3] On a $q$-analogue of the $p$-adic log gamma functions and related integrals.
J. Number Theory 76 (1999), no. 2, 320-329.
Z941.11048; M 2000c:11195
[4] On $p$-adic $q$-Bernoulli numbers.
J. Korean Math. Soc. 37 (2000), no. 1, 21-30.
M2001a:11193; R00.03-13A113
[5] Sums of products of $q$-Bernoulli numbers.
Arch. Math. (Basel) 76 (2001), no. 3, 190-195.
M2001k:11251
[6] Remark on $p$-adic $q$-$L$-functions and sums of powers.
Proc. Jangjeon Math. Soc. 1 (2000), 161-169.
M2001i:11138
[7] Remark on $p$-adic proofs for $q$-Bernoulli and Eulerian numbers of
higher order. Proc. Jangjeon Math. Soc. 2 (2001), 9-15.
R03.11 - 13A.324
[8] Some $q$-Bernoulli numbers of higher order associated with the $p$-adic
$q$-integers. Proc. Jangjeon Math. Soc. 2 (2001), 23-28.
R03.11 - 13A.323
[9] A note on $p$-adic $q$-Dedekind sums.
Proc. Jangjeon Math. Soc. 2 (2001), 29-34.
R03.11 - 13A.322
[10] A note on $p$-adic $q$-Dedekind sums.
C. R. Acad. Bulgare Sci. 54 (2001), no. 10, 37-42.
M2002i:11120
[11] A note on the solutions for exercise problems of $p$-adic $q$-integrals.
Proc. Jangjeon Math. Soc. 2 (2001), 45-49.
R03.11 - 13A.321.
[12] Some formulae for the $q$-Bernoulli and Euler polynomials of higher order.
J. Math. Anal. Appl. 273 (2002), no. 1, 236-242.
Z1008.11005
[13] On $p$-adic $q$-$L$-functions and sums of powers.
Discrete Math. 252 (2002), no. 1-3, 179-187.
Z1007.11073; M2003g:11137
Kim, Taekyun,
[14] $q$-Volkenborn integration.
Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
M2004f:11138
[15] Remark on the multiple Bernoulli numbers.
Proc. Jangjeon Math. Soc. 6 (2003), no. 2, 185-192.
M2005a:11023
[16] A note on $q$-Bernoulli numbers and polynomials. J. Nonlinear Math. Phys. 13 (2006), no. 3, 315--322.
[17] $q$-generalized Euler numbers and polynomials. Russ. J. Math. Phys. 13 (2006), no. 3, 293-298.
KIM TAEKYUN, ADIGA C.,
[1] Sums of products of generalized Bernoulli numbers.
Int. Math. J. 5 (2004), no. 1, 1-7.
M2004m:11020
KIM TAEKYUN, JANG LEE-CHAE, PAK HONG KYUNG,
[1] A note on $q$-Euler and Genocchi numbers.
Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 8, 139-141.
M2002h:11018
KIM TAEKYUN, JANG LEE CHAE, RIM SEOG-HOON, PAK HONG-KYUNG,
[1] On the twisted $q$-zeta functions and $q$-Bernoulli polynomials.
Far East J. Appl. Math. 13 (2003), no. 1, 13-21.
KIM TAEKYUN, RIM SEOG-HOON,
[1] A note on $p$-adic Carlitz's $q$-Bernoulli numbers.
Bull. Austral. Math. Soc. 62 (2000), no. 2, 227-234.
Z0959.11012; M2001g:11021
[2] Generalized Carlitz's $q$-Bernoulli numbers in the $p$-adic number field.
Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
M2001j:11118
[3] Explicit formulas for the $q$-Bernoulli numbers of higher order. Proc. Jangjeon Math. Soc. 1 (2000), 97-107.
[4] Some $q$-Bernoulli numbers of higher order associated with the $p$-adic
$q$-integrals. Indian J. Pure Appl. Math. 32 (2001), no. 10, 1565-1570.
M2002m:11101
[5] On Changhee-Barnes' $q$-Euler numbers and polynomials.
Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), no. 2, 81-86.
Z1065.11010;
M2005f:11028
M2005g:11
025
[1] Kummer congruences for the Euler numbers of higher order.
JP J. Algebra Number Theory Appl. 4 (2004), no. 2, 301-310.
Z1064.11078;
M2005g:11239
[1] Exploring the $q$-Riemann zeta function and $q$-Bernoulli polynomials.
Discrete Dyn. Nat. Soc. 2005, no. 2, 171--181.
M2006k:11032
KIM TAEKYUN: see also JANG LEECHAE, KIM TAEKYUN, PARK DAL-WON.
KIM TAEKYUN: see also JANG LEECHAE, KIM TAEKYUN, RIM SEOG-HOON.
KIM TAEKYUN: see also JANG LEE-CHAE, KIM TAEKYUN, RIM SEOGHOON, SON JIN-WOO
KIM TAEKYUN: see also KIM HAN SOO, KIM TAEKYUN
KIM TAEKYUN: see also KIM MIN-SOO, KIM TAEKYUN
KIM TAEKYUN: see also RYOO CHEON SEOUNG, KIM TAEKYUN
KIM YUNG-HWAN, PARK DAL-WON, JANG LEE-CHAE,
[1] A note on $q$-analogue of Volkenborn integral.
Adv. Stud. Contemp. Math. (Kyungshang) 4 (2002), no. 2, 159-163.
M2003a:11016
KIMBALL B.F.,
[1] The application of Bernoulli polynomials of negative order to differencing,
Amer. J. Math., 55 (1933), 399-416.
J59.0367.02; Z7.21101
[2] The application of Bernoulli polynomials of negative order
to differencing. II,
Amer. J. Math., 56 (1934), 147-152.
J60.1041.03; Z8.26005
[3] A generalization of the Bernoulli polynomial of
order one, Bull. Amer. Math. Soc., 41 (1935), 894-900.
J61.0377.03; Z13.16701
[4] The generalized Bernoulli polynomial and its relation
to the Riemann zeta function (Abstract).
Bull. Amer. Math. Soc., 39 (1933), 510-511.
J59.0375.03
KIMURA N.,
[1] Kummersche Kongruenzen für die verallgemeinerten
Bernoullischen Zahlen,
J. Number Theory, 11 (1979), no. 2, 171-187.
Z406.10011; M81d:10008; R1980,1A112
[2] Über die Nullstellen der von Potenzsummen der
natürlichen Zahlen definierten Polynome, Proc. Japan Acad.
Ser. A, 58 (1982), no. 7, 326-328.
Z515.10012; M84k:10043; R1983,4A129
[3] On the degree of an irreducible factor of the Bernoulli polynomials,
Acta Arith., 50 (1988), no. 3, 243-249.
Z655.10008; M89j:11019; R1989,3A251
KIMURA N., SIEBERT H.,
[1] Über die rationalen Nullstellen der von Potenzsummen
der natürlichen Zahlen definierten Polynome.
Proc. Japan. Acad. Ser. A, 56 (1980), no.7, 354-356.
Z462.10007; M82e:10013; R1981,3A96
KING, AUGUSTA ADA,
[1] Notes by the translator. (On L. F. Menabrea, "Sketch of the Analytical
Engine Invented by Charles Babbage Esq.").
In Richard Taylor (Ed.), Scientific Memoirs, Vol. III, Richard and
John E. Taylor, London, 1843.
KINKELIN H.,
[1] Ueber eine mit der Gammafunction verwandte Transcendente
und deren Anwendung auf die Integralrechnung.
J. Reine Angew. Math., 57 (1860), 122-138.
KIRIYAMA H.: see ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.
KIRSCHENHOFER P., PRODINGER H.,
[1] On some applications of formulae of Ramanujan
in the analysis of algorithms.
Mathematika, 38 (1991), no. 1, 14-33.
Z707.68024; M92h:68025
KIRSCHENHOFER P.:see also BILU Yu. F., BRINDZA B., KIRSCHENHOFER P., PINTÈR Á., TICHY R. F.
KIRSTEN K.,
[1] Inhomogeneous multidimensional Epstein zeta functions.
J. Math. Phys., 32 (1991), no. 11, 3008-3014.
Z753.11032; M93a:11028
KISELEV A.A.,
[1] An expression for the number of classes of ideals of real quadratic fields
by means of Bernoulli numbers.
(Russian) Doklady Akad. Nauk. SSSR(N.S.), 61 (1948), 777-779.
Z35.02201; M10-236h
[2] Vyrazhenie chisla klassov kvadratichnykh polej cherez chisla Bernulli [An expression for the number of classes of ideals of quadratic fields by means of Bernoulli numbers]. Nauchn. sessiya Leningradsk. Gos. Universiteta, Tezisy dokladov po sektsii Mat. Nauk, (1948), 37-39.
[3] O nekotorykh sravneniyakh chisla klassov idealov veshchestvennykh polej [On some congruences for the numbers of classes of ideals of real quadratic fields]. Uch. zap., Leningradsk. Gos. Universiteta, ser. mat. nauk, (1949), no. 16, 20-31.
[4] On the commumication "On the determination of the sum of
quadratic residues of a prime $p= 4m+3$ by means of Bernoulli numbers" (Russian)
In: Voronoi, G.F., Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. III, Kiev, 1953, 203-204.
Z49.02804; M16-2d; R1954,3228K
KISELEV A.A., SLAVUTSKII I.SH.,
[1] On the number of classes of ideals of a quadratic
field and its rings. (Russian) Dokl. Akad. Nauk. SSSR, 126 (1959),
1191-1194.
Z92.27401; M23#A141; R1960,4872
[2] Some congruences for the number of
representations as sums of an odd number of squares. (Russian) Dokl. Akad.
Nauk. SSSR, 143 (1962), 272-274.
Z121.28404; M26#3687; R1962,10A73
[3] The transformation of Dirichlet's formulas
and the arithmetical computation of the class number of
quadratic fields. (Russian) 1964 Proc. Fourth All-Union Math. Congr.
(Leningrad, 1961), Vol.II, pp. 105-112, Izdat. "Nauka", Leningrad.
Z201.37803; M36#3748; R1964,11A108
[4] Rol' teorii chisel i mnogochlenov Bernulli v teorii chisel [The role of the theory of Bernoulli numbers and polynomials in number theory]. Tezisy dokl. konf. Leningradsk. otdeleniya Sovetsk. nats. ob'edineniya istorikov estestvoznaniya i tekhniki, Leningrad, (1966), 9.
[5] Chislo klassov idealov kvadratichnogo polya i chisla Bernulli [The number of classes of ideals of a quadratic field and Bernoulli numbers]. Tezisy sektsyii No. 3 Mezhdunarodn. kongressa matematikov, Moskva, (1966), 15-16.
KISHORE N.,
[1] The Rayleigh function,
Proc. Amer. Math. Soc., 14 (1963), 527-533.
Z117.29904; M27#1633; R1964,5B48
[2] A representation of the Bernoulli number $B_n$,
Pacific J. Math., 14 (1964), 1297-1304.
Z132.29903; M30#1082; R1966,2B61
[3] Congruence properties of the Rayleigh functions and polynomials,
Duke Math. J., 35 (1968), 557-562.
Z182.06604; M37#3995; R1969,6B90
KLAMKIN M.S.,
[1] On a generalization of the geometric series. Amer. Math. Monthly 64
(1957), no. 2, 91-93.
Z080.04303; M18,478b; R1957,7979
KLEBOTH H.,
[1] Untersuchung über Klassenzahl und Reziprozitätsgesetz im
Körper der 6l-ten Einheitswurzeln und die Diophantische Gleichung
$x^{2l}+3ly^{2l}=z^{2l}$ für eine Primzahl $l$ grösser als 3,
Dissertation, Univ. Zürich, 1955, 37 pp.
M20#4537; R1962,11A123D
KLEINER I.,
[1] From Fermat to Wiles: Fermat's last theorem becomes a theorem.
Elem. Math. 55 (2000), no. 1, 19-37.
KLINE M.,
[1] Euler and infinite series, Math. Mag., 56
(1983), no. 5, 301-315.
Z526.01015; M86a:01020; R1984,7A11
KLINOWSKI J.: see CVIJOVIC D., KLINOWSKI J.
KLUYVER J.C.,
[1] Der Staudt-Clausen'sche Satz., Math. Ann.,
53 (1900), 591-592.
J31.0198.02
[2] Ontwikkelingscoëfficiënten, die eenige
overeenkomst met de getallen van Bernoulli vertoonen, Nieuw
Arch. Wisk. (2), 5 (1901), 249-254.
J32.0282.02
[3] An analytical expression for the greatest common divisor of two integers, Proc. Royal Acad. Amsterdam, 5 (1903), 658-662.
[4] Über die Summen der gleich hohen inversen
Potenzen der ganzen Zahlen, Handl. Neder. Nat. en Geneesk.
Congr., 10 (1905), 181-184 . (original title:
Over de sommen van gelijknamige machten der
omgekeerden van de geheele getallen).
J36.0341.01
[5] Verallgemeinerung einer bekannten Formel,
Nieuw Arch. Wisk. (2), 4 (1899/1900), 284-291.
J31.0437.02
[6] Over eenige getallenreeksen van Euler.
Versl. Meed. Kon. Ak. Weten., Amsterdam 24 (1916), 1816-1822.
J46.0360.01
KNAR J.,
[1] Entwicklung der vorzüglichsten Eigenschaften
einiger mit den goniometrischen zunächst verwandten
Functionen, Arch. Math. und Phys., 27 (1856), 365-470.
KNOLL, F.,
[1] Die zyklischen Funktionen und die damit zusammenhängenden linearen
Operationen. Verallgemeinerte Bernoullische Polynome.
Deutsche Math. 1 (1936), 156-162.
J62.0408.02; Z0014.06201
KNOPFMACHER A., ROBBINS N.,
[1] Some arithmetic properties of Eulerian numbers.
J. Combin. Math. Combin. Comput. 36 (2001), 31-42.
M2001k:11028
KNOPP K.,
[1] Theorie und Anwendung der unendlichen Reihen, 4-te Auflage,
Springer-Verlag, Berlin-Heidelberg, 1947, xii + 583 pp.
Z31.11801; M10-446a
KNUTH D.E.,
[1] Johann Faulhaber and sums of powers.
Math. Comp., 61 (1993), no. 203, 277-294.
Z797.11026; M94a:11030
KNUTH D.E., BUCKHOLTZ T.J.,
[1] Computation of tangent, Euler and Bernoulli numbers,
Math. Comp., 21 (1967), 663-688.
Z178.04401; M36#4787; R1968,6B856
KNUTH D.E.: see also GRAHAM R.L., KNUTH D.E., PATASHNIK O.
KOBELEV V.V.,
[1] A proof of Fermat's theorem for all prime exponents less than 5500.
(Russian) Dokl. Akad. Nauk. SSSR, 190 (1970), 767-768.
Z205.06501; M41#3363; R1970,7A149
KOBLITZ N.,
[1] p-adic numbers, p-adic analysis and
zeta-functions, Springer-Verlag, New York, 1977. (Russk. perevod 83i:12013).
Z364.12015; M57#5964; R1978,8A366K
[2] Interpretation of the p-adic log gamma functions
and Euler constant using the Bernoulli measure,
Trans. Amer. Math. Soc., 242 (1978), 261-269.
Z358.12010; M58#10836; R1979,2A255
[3] A new proof of certain formulas for p-adic
L-functions, Duke Math. J., 46 (1979), 455-468.
Z409.12028; M80f:12011; R1980,2A355
[4] p-adic analysis: a short course on recent works,
London Math Soc. Lecture Note Series, No. 46, 1980.
Z439.12011; M82c:12014; R1981,5A374
[5] On Carlitz's q-Bernoulli numbers, J.
Number Theory, 14 (1982), no. 3, 332-339.
Z501.12020; M83k:12017; R1982,12A354
[6] q-extension of the p-adic gamma function, II,
Trans. Amer. Math. Soc., 273 (1982), no. 1, 111-129.
Z508.12016; M84a:12024; R1983,4A364
[7] Introduction to elliptic curves and modular
forms, Graduate Texts in Mathematics No. 97. Springer-Verlag, New York-
Berlin, 1984. viii + 248pp.
Z553.10019; M86c:11040; R1985,5A394K
[8] p-adic congruences and modular forms of half integer weight,
Math. Ann., 274 (1986), no. 2, 199-220.
Z571.10030; M88a:11043; R1986,11A576
[9] Congruences for periods of modular forms,
Duke Math. J., 54 (1987), no. 2, 361-373.
Z628.10032; M88k:11030; R1988,5A434
[10] Jacobi sums, irreducible zeta-polynomials and cryptography.
Canad. Math. Bull., 34 (1991), no. 2, 229-235.
Z686.12011; M92e:11067
KOCH H.,
[1] Algebraic number theory. (Russian) Itogi Nauki i Tekhniki, Number Theory,
2 (1990), 5-308.
Z722.11001; M92a:11118b
[2] Introduction to classical mathematics. I. From the quadratic
reciprocity law to the uniformization theorem. Mathematics and its
Applications, 70. Kluwer Akademic Publ., Dordrecht, 1991. xviii+453pp.
Z733.00001; M92k:00010
KOECHER M.: see EBBINGHAUS H.-D. et al.
KOEPF W.,
[1] On two conjectures of M.S. Robertson.
Complex Variables, Theory and Appl., 16 (1991), no. 2/3, 127-130.
Z745.30004; M92f:30004
KÖHLER G.,
[1] Observations on Hecke eigenforms on the Hecke groups $G(\sqrt{2})$
and $G(\sqrt{3})$,
Abh. Math. Sem. Univ. Hamburg, 55 (1985), 75-89.
Z565.10022, 575.10018; M87e:11067; R1986,8A536
KOHNEN W.,
[1] On the proportion of quadratic character twists of $L$-functions attached to
cusp forms not vanishing at the central point,
J. Reine Angew. Math. 508 (1999), 179-187.
Z0968.11023; M2000e:11070
KOHNEN W., ZAGIER D.,
[1] Modular forms with rational periods. Modular
forms (Durham, 1983), 197-249, Horwood, Chichester, 1984.
Z618.10019; M87h:11043; R1987,5A440
KOLK J.A.C.: see BEUKERS F., KOLK J.A.C., CALABI E.
KOLSCHER M.,
[1] Die Potenzsummen der natürlichen Zahlen,
Math. Naturwiss. Unterricht, 6 (1954), 307-310.
M15-684f
KOLSTER M.,
[1] On the Birch-Tate conjecture for maximal real subfields of cyclotomic fields,
Lecture Notes Math., 1046 (1984), 229-234.
Z528.12009; M86b:11079; R1984,9A305
[2] Remarks on étale $K$-theory and Leopoldt's conjecture.
Séminaire de théorie des nombres, Paris, 1991-92, 37-62,
Progr. Math., 116, Birkhäuser, Boston, MA, 1993.
M95i:19006
KOLYVAGIN V.A.,
[1] Euler systems. In: The Grothendieck Festschrift Vol. II, Progr. Math.,
87, Birkhäuser Boston, Boston, MA, 1990, 435-483.
Z742.14017; M92g:11109
[2] Fermat equations over cyclotomic fields,
Proc. Steklov Inst. Math., 208 (1995), 146-165; translation from
Tr. Mat. Inst. Steklova, 208 (1995), 163-185.
Z881.11037; R1996,4A272
KORTEWEG D.J.,
[1] Over benaderings-formelen voor de som von
reeksen welke uit een groot aantal termen bestaan, Nieuw
Arch. Wiskunde, 2 (1876),
161-176.
J08.0134.01
KOSEKI H.: see HASHIMOTO K., KOSEKI H.
KOSHLYAKOV N.S.,
[1] Ob odnom obobshchenii polinomov Bernulli [An extension of Bernoulli's
polynomials]. Mat. Sbornik 42 (1935), no. 4, 425-434.
J61.0378.02; Z13.16702
[2] Remarks on the paper of I.J. Schwatt "The sum of like powers
of a series of numbers forming an arithmetical progression and the Bernoulli
numbers." (Russian),
Mat. Sb., 40 (1933), 528.
J59.0895.01; Z59.0895.01
KOTIAH T.C.T.,
[1] Sums of powers of integers - a review.
Internat. J. Math. Ed. Sci. Tech., 24 (1993), no. 6, 863-874.
Z806.11015; M94g:11016
KOUNCHEV O.: see DRYANOV D., KOUNCHEV O.
KOUTSKY K.,
[1] K Lerchovym pracim o Fermatove kvotientu [On Lerch's work on the Fermat
quotient], Prace Moravske Prirodovedecke Spolecnosti, 18 (1947), 1-7.
KOZUKA K.,
[1] On abelian extensions over cyclotomic
$Z_{p_1}\times \cdots \times Z_{p_t}$-extension,
Mem. Fac. Sci., Kyushu Univ., Ser A, 38 (1984), no. 2, 141-149.
Z528.12009; M85i:11095; R1985,6A294
[2] On a p-adic interpolating power series of the generalized Euler numbers,
J. Math. Soc. Japan, 42 (1990), no. 1, 113-125.
Z706.11068; M90j:11020; R1990,8A87
[3] On the values of the p-adic valuation of the generalized Euler numbers,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 37-53.
Z705.11007; M91a:11062a; R1990,7A292
[4] On the $\ mu$-invariant of an interpolating power series of the
generalized Euler numbers,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 43-53.
Z706.11069; M91a:11062b; R1990,7A293
[5] On the $\mu$-invariants of certain $p$-adic $L$-functions attached to
the formal multiplicative group.
Res. Rep. Miyakonojo Nat. Coll. Technol., 1994, no. 28, 1-10.
R1994,8A372
[6] On linear combinations of $p$-adic interpolating functions for the Euler
numbers. Kyushu J. Math. 54 (2000), no. 2, 403-421.
M2002b:11171
[7] Dedekind type sums attached to Dirichlet characters. Kyushu J. Math. 58 (2004), no. 1, 1-24.
KRAFT J. S.,
[1] Class numbers and Iwasawa invariants of quadratic fields.
Proc. Amer. Math. Soc. 124 (1996), no. 1, 31-34.
Z846.11059; M96d:11112; R1996,7A228
KRALL H.L.,
[1] Self-adjoint differential expressions,
Amer. Math. Monthly, 67 (1960), no. 9, 876-878.
Z145.32501; M24#A270; R1961,12B123
KRAMER D.,
[1] Spherical polynomials and periods of a certain modular form,
Trans. Amer. Math. Soc., 294 (1986), no. 2, 595-605.
Z592.10017; M87e:11061; R1986,12A587
[2] On the values at integers of the Dedekind zeta function of a
real quadratic field,
Trans. Amer. Math. Soc., 299 (1987), no. 1, 59-79.
Z606.12007; M88a:11123; R1987,7A113
KRASNER M.,
[1] Sur le premier cas du théorème de Fermat, C.R.
Acad. Sci., Paris 199 (1934), 256-258.
J60.0129.01; Z10.00702
KRAUSE M.,
[1] Zur Theorie der ultra-Bernoullischen Zahlen und
Funktionen, Berichte Verh. Kgl. Gesells. Wiss., Leipzig,
54 (1902), 139-205.
J33.0971.03
[2] Über Bernoulische Zahlen und Funktionen im
Gebiete der Funktionen zweier veränderlicher Grössen,
Berichte Verh. Kgl. Gesells. Wiss., Leipzig, 55 (1903),
39-62.
J34.0485.02
[3] Zur Theorie der Eulerschen und Bernoullischen
Zahlen, Monatsh. Math. Phys., 14 (1903),
305-324.
J34.0483.02
[4] Über die Bernoullische Funktion zweier
veränderlicher Grössen, Arch. Math. und Phys. (3),
4 (1903), 293-295.
J34.0485.01
KREWERAS G.,
[1] An additive generation for the Genocchi numbers and two of its enumerative
meanings.
Bull. Inst. Combin. Appl. 20 (1997), 99-103.
Z879.05001; M98d:05010
[2] Sur les permutations comptées par les nombres de Genocchi de
1-ière et 2-ième espèce. [Permutations enumerated
by Genocchi numbers of the first and the second kind]
European J. Combin. 18 (1997), no. 1, 49-58.
Z869.05002; M97k:05010
KRICK M.S.,
[1] On the coefficients of $cosh x/cos x$,
Math. Mag., 34 (1960), no. 1, 37-40.
Z105.26404; R1961,6B334
KRIEG A.: see EIE M., KRIEG A.
KRISHNAMACHARY C., BHIMASENA RAO M.,
[1] On a table for calculating Eulerian numbers based on a new method.
Proc. London Math. Soc. (2), 22 (1923), 73-80.
J49.0167.02
KRISHNAPRIYAN H.K.,
[1] Eulerian Polynomials and Faulhaber's Result on Sums of Powers of Integers. College Math. J. 26 (1995), no. 2, 118-123.
KRONECKER L.,
[1] Sur quelques fonctions symmetriques et sur les
nombres de Bernoulli, J. Math. Pure Appl. (2), 1
(1856), 385-391.
[2] Démonstration d'un Théorème de Kummer, J. Math. Pure Appl., (2), 1 (1856), 396-398.
[3] Über die Bernoullischen Zahlen (Bermerkungen
zu der Abhandl. des Herrn Worpitzky), J. Reine Angew. Math.,
94 (1883), 268-269.
J15.0201.02
[4] Über eine bei Anwendung partieller
Integration nützliche Formel, Sitz. Kgl. Preuss. Akad. Wiss.,
Berlin, (1885), 841-862.
J17.0251.02
KROUKOVSKI B.V.,
[1] Sur les nombres semblables aux nombres Bernouilliens et
Eulériens. Les nombres pseudo-cotangentiels (Ukrainian; French summary).
J. Inst. Math. Kiev., (1934-35), no. 1, 43-62.
J61.0985.03; Z12.15102
KUBERT D.S.,
[1] The universal ordinary distribution,
Bull. Soc. Math. France, 107 (1979), no. 2, 179-202.
Z409.12021; M81b:12004; R1980,2A357
[2] The 2-divisibility of the class number of cyclotomic fields
and the Stickelberger ideal,
J. Reine Angew. Math., 369 (1986), 192-218.
Z584.12003; M88a:11108
KUBERT D., LANG S.,
[1] Cartan-Bernoulli numbers as values of L-series,
Math. Ann., 240 (1979), no. 1, 21-26.
Z377.12010; M81b:10027; R1979,7A404
[2] Modular units inside cyclotomic units,
Bull. Soc. Math. France, 107 (1979), fasc. 2, 161-178.
Z409.12007; M81k:12006; R1980,2A356
[3] Modular units, Springer-Verlag, New York-Berlin,
1981, xiii + 358pp. (Grundl. Math. Wiss., No. 244.)
Z492.12002; M84h:12009; R1982,3A406,7A382
KUCERA R.,
[1] Formulae for the relative class number of an imaginary abelian field in
the form of a determinant. Nagoya Math. J. 163 (2001), 167-191.
Z1002.11079; M2002j:11129
KUBOTA T., LEOPOLDT H.W.,
[1] Eine p-adische Theorie der Zetawerte, Teil 1:
Einführung der p-adischen Dirichletschen L-Funktionen,
J. Reine Angew. Math., 214/215 (1964), 328-339.
Z186.09103; M29#1199; R1965,4A90
KUDO A.,
[1] On a class number relation of imaginary abelian
fields, J. Math. Soc. Japan, 27 (1975), 150-159.
Z294.12004; M50#12968; R1975,9A292
[2] On generalization of a theorem of Kummer, Mém
Fac. Sci. Kyushu Univ., Ser. A, 29 (1975), no. 2, 255-261.
Z314.12011; M53#8010; R1976,3A369
[3] Generalized Bernoulli numbers and the basic
$ Z_p$-extensions of imaginary quadratic fields, Mém. Fac.
Sci. Kyushu Univ., Ser. A, 32 (1978), no. 2, 191-198.
Z425.12007; M80e:12012; R1979,2A260
[4] On $p$-adic Dedekind sums, II.
Mem. Fac. Sci. Kyushu Univ., Ser. A, 45 (1991), no.2, 245-284.
Z751.11031; M93g:11120; R1992,7A355
[5] Reciprocity formulas for $p$-adic Dedekind sums,
Bull. Fac. Liberal Arts Nagasaki Univ., 34 (1994), no. 2, 97-101.
Z813.11065; M95c:11142
[6] On $p$-adic Dedekind sums,
Nagoya Math. J. 144 (1996), 155-170.
Z872.11051; M97m:11143; R1997,11A270
[7] A congruence of generalized Bernoulli number for the character of the
first kind. Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 1-8.
M2001j:11115
KUDRYAVTSEV V.A.,
[1] Summirovanie stepenej natural'nogo ryada i chisla Bernulli [Summation of
powers of natural series and Bernoulli numbers]. Moskva, 1936.
KUHN P.,
[1] Zu den Mittelwerten zahlentheoretischer Funktionen.
Norske Vid. Selsk. Forhdl., Trondheim, 14 (1941), no. 42, 157-160.
J67.0131.03; M8-503d
Kulkarni, Manisha; Sury, B.,
[1] A class of Diophantine equations involving Bernoulli polynomials.
Indag. Math. (N.S.) 16 (2005), no. 1, 51-65.
M2005m:11047
M2005i:11
038
[1] Beweis des Fermat'schen Satzes der Unmöglichkeit von
$x^{\lambda}+y^{\lambda}=z^{\lambda}$ für eine unendliche Anzahl
Primzahlen $\lambda$,
Monatsb. Akad. Wiss. Berlin, (1847), 132-141, 305-319.
[2] Zwei besondere Untersuchungen über die
Classen-Anzahl und über die Einheiten der aus
$\lambda$-ten Wurzeln der Einheit gebildeten complexen
Zahlen, J. Reine Angew. Math., 40 (1850), no. 2,
117-129. / Coll. Papers, v.1., Berlin e.a.:
Springer-Verlag, 1975. viii + 957pp.
Z327.01019; M57#5650a; R1976,1A127K
[3] Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten $\lambda$, welche ungerade Primzahlen sind und in den Zählern der ersten $({\lambda}-3)/2$ Bernoulli'schen Zahlen als Factoren nicht vorkommen, J. Reine Angew. Math., 40 (1850), 131-138.
[4] Mémoire sur la théorie des nombres complexes composés de racines de l'unité et de nombres entiers, J. Math. Pure Appl., 16 (1851), 377-498.
[5] Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math., 41 (1851), 368-372.
[6] Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 44 (1852), no. 2, 93-146.
[7] Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math., 56 (1859), 270-279.
[8] Einige Sätze über die aus den Wurzeln der Gleichung $\alpha^{\lambda} = 1$ gebildeten complexen Zahlen, für den Fall, dass die Klassenzahl durch $\lambda$ theilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermats'chen Lehrsatzes, Abhandl. Akad. Wiss. Berlin, Math., (1857), (1858), 41-74. (See also Auszug, Monatsb. Akad. Wiss. Berlin, (1857), 275-282.)
[9] Über diejenigen Primzahlen $\lambda$, für
welche die Klassenzahl der aus $\lambda$-ten
Einheitswurzeln gebildeten complexen Zahlen durch
$\lambda$ theilbar ist, Monatsb. Akad. Wiss. Berlin, (1874), 239-248.
J06.0117.01
[10]see also HENSEL
Die Briefe an Leopoldt Kronecker, Abhandl. zur
Geschichte der Math. Wiss., Leipzig, (1910), Heft 29.
J41.0015.03
KUNDERT E.G.,
[1] Basis in a certain completion of the s-d-ring over the rational
numbers. I, II.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978),
no. 5, 423-428; no. 6, 543-547.
Z428.13013; M81j:13026a,b; R1980,7A204;
[2] The Bernoullian of a matrix (A generalization of the Bernoulli numbers),
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 72 (1982),
(1983), no. 6, 315-317.
Z523.10005; M85g:05021; R1984,6A87
[3] A von Staudt-Clausen theorem for certain Bernoullian-like numbers
and regular primes of the first and second kind.
Fibonacci Quart., 28 (1990), no. 1, 16-21.
Z694.10013; M91e:11022; R1991,2A107
KUO HUAN-TING,
[1] A recurrence formula for $\zeta(2n)$,
Bull. Amer. Math. Soc., 55 (1949). 573--574.
Z032.34501; M10,683d
Kupershmidt, Boris A.,
[1] Reflection symmetries of $q$-Bernoulli polynomials.
J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 412-422.
M2005k:11040
[1] On the values at non-positive integers of Siegel's zeta functions
of $ Q$-anisotropic quadratic forms with signature $(1, n-1)$.
J. Fac. Sci. Univ. of Tokyo Sect. IA Math., 28 (1981), no.3, 567-584.
Z495.10019; M84a:10021
KURIHARA F.,
[1] On the p-adic expansion of units of cyclotomic fields,
J. Number Theory, 32 (1989), no. 2, 226-253.
Z689.12005; M90k:11138; R1990,2A337
KURIHARA M.,
[1] Some remarks on conjectures about cyclotomic fields and $K$-groups
of $ Z$.
Compositio Math., 81 (1992), no. 2, 223-236.
Z747.11055; M93a:11091
KUROKAWA N.: see KATO K., KUROKAWA N., SAITO T.
KUROKAWA N.: see also KANEKO M., KUROKAWA N., WAKAYAMA M.
KURT V.,
[1] Remarks on higher-dimensional Dedekind sums,
Math. Japon. 45 (1997), no. 2, 297-301.
Z882.11024; M98c:11037
KURT V.: see also CENKCI M., CAN MIMIN, KURT V.
KÜTTNER W.,
[1] Zur Theorie der Bernoullischen Zahlen, Zeits.
für Math. u. Phys., 24 (1879), 250-252.
J11.0188.01
KUZMIN L.V.,
[1] Algebraic number fields. (Russian) Algebra. Topology. Geometry, Vol. 22,
(Itogi. Nauki i Tekhniki, Akad. Nauk. SSSR), Moscow, 1984, 117-204.
Z563.12002; M86f:11076; R1985,1A446
KUZNETSOV A. G., PAK I. M., POSTNIKOV A. E.,
[1] Increasing trees and alternating permutations. (Russian)
Uspekhi Mat. Nauk 49 (1994), no. 6(300), 79-110. Translated in:
Russian Math. Surveys 49 (1994), no. 6, 79-114.
Z842.05025; M96e:05048
KUZUMAKI T.: see KANEMITSU S., KUZUMAKI T.
KWON SOUN-HI: see CHANG KU-YOUNG, KWON SOUN-HI
Back to Index Back to J On to L