Bernoulli Bibliography

N


Back to Index       Back to M       On to O


NAGAOKA S.,
[1] $p$-adic properties of Siegel modular forms of degree $2$, Nagoya Math. J. 71 (1978), 43-60.
Z393.10029; M80g:10027

[2] Some congruence property of modular forms, Manuscripta Math. 94 (1997), no. 2, 253-265.
Z980.18769; M98g:11054

[3] A remark on Serre's example of $p$-adic Eisenstein series. Math. Z. 235 (2000), no. 2, 227-250.
Z0982.11021; M2001m:11068

NAGASAKA CH.,
[1] Eichler integrals and generalized Dedekind sums, Mém. Fac. Sci., Kyushu Univ., Ser. A, 37 (1983), no. 1, 35-43.
Z512.10030; M84f:10032; R1983,10A96

[2] On generalized Dedekind sums attached to Dirichlet characters, J. Number Theory, 19 (1984), no. 3, 374-385.
Z551.10022; M86f:11035; R1985,5A329

[3] Dedekind type sums and Hecke operators. Acta Arith. 44 (1984), no. 3, 207-214.
Z512.10007, 543.10013; M86i:11020; R1985,7A158

NAGASAKA Y., OTA K., SEKINE C.,
[1] Generalizations of Dedekind sums and their reciprocity laws. Acta Arith. 106 (2003), no. 4, 355-378.
M2004b:11050; R03.10 - 13A.130

NAGEL T.,
[1] Note sur l'application d'une formule d'inversion de la théorie des nombres. Norsk Matem. Tidsskr. 1 (1919), 40-44.
J47.0120.01

NÄGELSBACH H.,
[1] Zur independenten Darstellung der Bernoulli'schen Zahlen, Zeit. für Math. und Phys., 19 (1874), 219-234.
J06.0140.02

NAKAGOSHI N.,
[1] On the unramified extension of the prime cyclotomic number field and its quadratic extension, Nagoya Math. J., 115 (1989), 151-164.
Z673.12002; M90m:11159; R1990,6A301

[2] On the unramified Kummer extensions of quadratic extensions of the prime cyclotomic number field, Arch. Math. 57 (1991), no. 6, 566-570.
Z728.11056; M93b:11139

NAKAJIMA MASUMI,
[1] The Taylor coefficients of ${\zeta}(s)$, $(s-1){\zeta}(s)$ and $(z/(1-z)){\zeta}(1/(1-z))$, Math. J. Okayama Univ., 29 (1987), 207-219 (1988).
Z641.10030; M89f:11120; R1988,10A116

NAKAJIMA SHOICHI,
[1] On Gauss sum characters of finite groups and generalized Bernoulli numbers. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). J. Théor. Nombres Bordeaux 7 (1995), no. 1, 143-154.
Z848.11052; M97g:11087

Nakamura, Takashi,
[1] Bernoulli numbers and multiple zeta values. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 2, 21-22.
M2005m:11032

NAKAZATO H.,
[1] A remark on Ribet's theorem, Proc. Japan Acad., Ser. A, 56 (1980), no. 4, 192-195.
Z453.12001; M81g:12007

[2] The q-analogue of the p-adic gamma-function, Kotai Math. J., 11 (1988), no. 1, 141-153.
Z664.12015; M89e:11075; R1988,10A314

NAMIAS V.,
[1] A simple derivation of Stirling's asymptotic series, Amer. Math. Monthly, 93 (1986), no. 1, 25-29.
Z615.05010; M87i:05018; R1986,8B20

NARISHKINA E.A.,
[1] On the analogue of Bernoulli numbers in quadratic fields, Proc. Intern. Math. Congress, Toronto 1924, Reprinted 1967, v.1, 299-307. (This report at the Congress was read by V.A.Steklov.)
J54.0209.03

[2] O chislakh analogichnykh chislam Bernulli, v odnoklassovykh kvadratichnykh oblastyakh otritsatel'nogo diskriminanta [On numbers analogous to Bernoulli numbers in one-classed quadratic fields of a negative discriminant]. Izv. Rossijsk. Akad. Nauk, Ser. VI, 19 (1925), 145-176, 287-314.
J51.0154.01

NARKIEWICZ W.,
[1] Class number and factorization in quadratic number fields, Colloq. Math., 17 (1967), 167-190.
Z153.07701; M36#3750; R1968,8A339

[2] Elementary and analytic theory of algebraic numbers, Warszawa, 1974. (Second edition: PWN-Polish Scientific Publishers, Warszawa, 1990. xiii + 746 pp.)
Z276.12002; M50#268; R1974,10A321K

[3] The development of prime number theory. From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin, 2000. xii+448 pp.
Z0942.11002; M2001c:11098

NATALINI P., BERNARDINI A.,
[1] A generalization of the Bernoulli polynomials. J. Appl. Math. 2003, no. 3, 155-163.
Z1019.33011; M2004g:33023

NATALINI P.: see also BRETTI G., NATALINI P., RICCI P.E.

NATH B.,
[1] A generalization of Bernoulli numbers and polynomials, Ganita, 19 (1968), no. 1, 9-12.
Z226.10015; M45#3812

L.M. Navas, F.J. Ruiz, J.L. Varona,
The Lerch transcendent from the point of view of Fourier analysis.
J. Math. Anal. Appl. 431 (2015), no. 1, 186-201.
M3357582

NEGGERS J.: see AINSWORTH O.R., NEGGERS J.

NEKOVÁR J.,
[1] Iwasawa's main conjecture (A survey). Acta Math. Univ. Comenian., 50/51 (1987), 203-215.
Z675.12001; M90d:11119; R1989,10A322

NEUKIRCH J.,
[1] The Beilinson conjecture for algebraic number fields. In: Beilinson's conjecture on special values of L-functions, pp. 193-247, Perspect. Math., 4, Academic Press, Boston, 1988.
Z651.12009; M90f:11042; R1989,10A322

NEUKIRCH J.: see also EBBINGHAUS H.-D. et al.

NEUMAN C.P., SCHONBACH D.I.,
[1] Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Review, 19 (1977), no. 1, 90-99.
Z355.65002; M55#1698; R1977,9B13

NGUYEN THI TINH: see TUAN VU KIM, NGUYEN THI TINH

NICOL C.A.: see SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.

NIEDERHAUSEN H.,
[1] Factorials and Stirling numbers in the algebra of formal Laurent series. Discrete Math., 90 (1991), no.1, 53-62.
Z751.11013; M92j:05012; R1991,10V243

[2] Factorials and Stirling numbers in the algebra of formal Laurent series. II. $z^a-z^b=t$. Discrete Math., 132 (1994), no. 1-3, 197-213.
Z805.05006; M95k:05014

NIELAND L.W.,
[1] Over $\sum_{n=1}^m {1\over n^{2h}}$ en $\sum_{n=1}^\infty {1 \over n^{2h}} = \zeta(2h).$ Nieuw. Arch. Wisk (2), 16 (1929/30), no. 1, 1-13.
J55.0130.06

NIELSEN N.,
[1] Note sur les séries de fonctions bernoulliennes. Math. Ann. 59 (1904), 103-109.
J35.0448.03

[2] Handbuch der Theorie der Gammafunktion, Leipzig, 1906.
J37.0450.01

[3] Note sur les fonctions de Bernoulli (Extrait d'une lettre à F.G. Teixeira), Ann. Ac. Pol. Porto, 6 (1911), 5-11.
J42.0460.01

[4] Note sur les polynômes parfaits, Nieuw Arch. Wisk. (2), 10 (1912), 100-106.
J43.0242.03

[5] Sur les transcendentes élémentaires et les nombres de Bernoulli et d'Euler, Annali di Mat. (3), 19 (1912), 179-204.
J43.0532.01

[6] Recherches sur les nombres de Bernoulli, Kgl. Danske Videnskab. Selskabs Skrifter, Nat. og Mathem. Afdeling, 10 (1913), 283-362.
J44.0398.02

[7] Recherches sur les suites régulières et les nombres de Bernoulli et d'Euler, Annali di Mat. (3), 22 (1913), 71-115.
J44.0319.03

[8] Verkürzte Rekursionsformeln für Bernoullische und Eulersche Zahlen, Abh. Königl. Sächs. Ges. Wiss. Leipzig, 65 (1913), 3-26.
J44.0514.01

[9] Sur les fonctions de Bernoulli et des sommes de puissances numériques, Nieuw. Arch. Wisk. (2), 10 (1913), 396-415.
J44.0514.02

[10] Elementære Beviser for Sætninger af v. Staudt og Stern verdrørende de Bernoulliske Tal, Nyt Tidskr. Mat., 25 (1914), 19-23.
J45.1257.07

[11] Sur le théorème de v. Staudt et de Clausen relatif aux nombres de Bernoulli, Annali di Mat. (3), Milano, 22 (1914), 249-261.
J45.0302.04

[12] Recherches sur les résidus quadratiques et sur quotients de Fermat, Ann. de l'Ecole Normale (3), 31 (1914), 161-204.
J45.0323.02

[13] Note sur une théorie élémentaire des nombres de Bernoulli et Euler, Ark. för Math., Astr. och Fys., 9 (1914), no. 24, 1-15.
J45.0677.03

[14] Über die von A. v. Ettingshausen entdeckten verkürzten Rekursionsformeln für die Bernoullischen Zahlen, Monatsh. Math., 25 (1914), 152-162.
J45.0678.01

[15] Über die Verallgemeinerungen der von A. v. Ettingshausen entdeckten verkürzten Rekursionsformeln für die Bernoullischen Zahlen, Monatsh. Math., 25 (1914), 328-336.
J45.0679.01

[16] Note sur les polynômes réguliers et sur leur application dans la théorie des nombres, Overs. Danske vidensk. Selsk. Förh., (1915), 171-180.
J45.0326.02

[17] Sur les nombres de Bernoulli et leur application dans la théorie des nombres, Overs. Danske Vidensk. Selsk. Förh., (1915), no. 6, 509-524.
J45.0303.01

[18] Recherches sur les fonctions de Bernoulli, Mém. Acad. R. Copenhagen (7), 12 (1915), 55-102.
J45.0677.04

[19] Note sur une généralisation des nombres d'Euler. Nyt Tidskr. Mat., 27 B (1916), 21-27.
J46.0568.01

[20] Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923.
J49.0099.03

[21] Note sur les séries de fonctions bernoulliens. Math. Ann., 59 (1904), no. 1/2, 103-109.
J35.0448.03

[22] Sur les séries de fonctions de Stirling. Annali di. Mat. pura ed appl. (3), 12 (1905), 101-112.
J36.0500.02

[23] Note sur les fonctions de Bernoulli et leur analogie aux factorielles ordinaires. Oversigt Kongl. Dansk. Vidensk. Selsk. Forhandl., no. 4, 1916, 191-201.
J46.0567.03

[24] Note sur les nombres de Bernoulli et d'Euler. Nyt Tidskr. Mat., B28 (1917), 1-7.
J46.0568.02

[25] Recherches sur les polynômes de Stirling. Copenhagen, 1920, 106pp.

NIEMEYER H.,
[1] Bernoullische Zahlen in imaginär-quadratischen Zahlkörpen. Staatsexamensarbeit, Hamburg 1966.

NIKULIN M.: see VOINOV V., NIKULIN M.

NIRENBERG M.,
[1] Cuspidal groups, ordinary Eisenstein series, and Kubota-Leopoldt $p$-adic $L$-functions. Acta Arith. 97 (2001), no. 1, 1-40.
M2002c:11048

NISHIZAWA M.: see UENO K., NISHIZAWA M.

NÖRLUND N.E.,
[1] Sur les polynômes de Bernoulli, C.R. Acad. Sci., Paris, 169 (1919), 521-524.
J47.0216.03

[2] Mémoire sur les polynômes de Bernoulli, Acta Math., 43 (1922), 121-196.
J47.0216.05

[3] Remarques diverses sur le calcul aux différences finies, J. de Math. Pures Appl. (9), 2 (1923), 193-214.
J49.0324.02

[4] Sur certaines équations aux différences finies, Trans. Amer. Math. Soc., 25 (1923), 13-48.
J49.0324.01

[5] Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
J50.0315.02; J50.0318.04

[6] Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli, C.R. Acad. Sci., Paris, 251 (1960), 2269-2270.
Z96.26902; M23#A1078; R1962,5B44

[7] Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli, Rend. Circ. Mat. Palermo, 10 (1961), no. 1, 27-44.
Z187.31801; M29#295; R1963,2B41

[8] De Bernoulli'ske Polynomier. Nyt Tidskr. Mat. B (1919), 33-41.

[9] De Euler'ske Polynomier. Nyt Tidskr. Mat. B (1919), 49-55.

[10] Sur les polynomes d'Euler. C. R. Acad. Sci., Paris, 169 (1919), 166-168.
J47.0216.02

[11] Sur une extension des polynomes de Bernoulli. C. R. Acad. Sci., Paris, 169 (1919), 608-610.
J47.0216.04

NOHMI M.,
[1] On a convolution on the space of p-adic functions, Bull. Kyushu Inst. Tech. Math. Natur. Sci., 1989, no. 36, 11-20.
M90k:11159; R1990,2A328

NOVIKOV A.P.,
[1] The regularity of prime divisors of the first degree of an imaginary quadratic field. (Russian) Izv. Akad. Nauk. SSSR Ser. Mat., 33 (1969), 1059-1079.
Z188.35202; M40#4239; R1970,3A387

NOWAK W.G.,
[1] On a problem of S. Chowla and H. Walum, Bull. Number Theory Related Topics, 7 (1982), no. 1, 1-10.
Z499.10012; M85e:11071; R1985,6A99

[2] An analogue to a conjecture of S. Chowla and H. Walum, J. Number Theory, 19 (1984), no. 2, 254-262.
Z546.10039; M85m:11056; R1985,6A100

NUNEMACHER J.,
[1] On computing Euler's constant, Math. Magazine, 65 (1992), no. 5, 313-322.
Z858.11067; M93j:65042

NUNEMACHER J., YOUNG R.M.,
[1] On the sum of consecutive kth powers, Math. Mag., 60 (1987), no. 4, 237-238.
Z625.10009; R1988,4V494


Back to Index       Back to M       On to O