ABE S., KARAMATSU Y.,
[1] On Fermat's last theorem and the first factor of
the class number of the cyclotomic field, TRU Math.,
4 (1968),
1-9.
Z186.368; M42#4482; R1970,1A138
ABEL N.,
[1] Solution de quelques problèmes à l'aide
d'intégrales définis, Oeuvres compl., 2nd edition,
Vol.I, Grondahl, Christiania, 1881, 11-27.
J13.20
ABOU-TAIR I.,
[1] On a certain class of Dirichlet series,
Kyungpook Math. J., 30 (1990), no.2, 215-225.
Z719.11055; M92b:11062
ABRAMOWITZ M., STEGUN I.A., (eds.)
[1] Handbook of mathematical functions,
National Bureau of Standards, Washington
(1964).
Z171.385; M29#4914; R1965,5A40k
ABRAMSON M.,
[1] Permutations related to secant, tangent and Eulerian numbers,
Canad. Math. Bull., 22 (1979), no.3, 281-291.
Z437.05002; M81c:05007; R1980,9V506
ADACHI N.,
[1] Generalization of Kummer's criterion for
divisibility of class numbers, J. Number Theory, 5
(1973), 253-263.
Z263.12005; M48#11041; R1974,3A267
[2] The Diophantine equation $x^2 \pm ly^2 = z^l$ connected with Fermat's
Last Theorem,
Tokyo J. Math., 11 (1988), 85-94.
Z653.10016; M89g:11023; R1989,2A87
[3] An observation on the first case of Fermat's last theorem,
Tokyo J. Math., 11 (1988), no. 2, 317-321.
Z673.10015; M90a:11035; R1989,10A152
ADAMS J.C.,
[1] On some properties of Bernoulli's numbers, in
particular on Clausen's theorem respecting the fractional
parts of these numbers, Proc. Camb. Phil. Soc.,
2 (1872),
269-270.
J7.132
[2] On the calculation of Bernoulli's numbers up
to $B_62$ by means of Staudt's theorem, Report Brit.
Ass. Advanc. Sci., 1877 (1878), 8-14.
J10.189
[3] Table of the values of the first sixty-two numbers of
Bernoulli, J. Reine Angew. Math., 85 (1878), 269-272.
J10.192
[4] On the calculation of the sums of the reciprocals
of the first thousand integers and on the value of Euler's
constant to 260 places of decimals, Report Brit. Ass.
Advanc. Sci., 1877 (1878), 14-15.
J9.189
[5] Note on the value of Euler's constant,
likewise on the values of the Napierian logarithms of 2,
3, 5, 7 and 10, and of modulus of common logarithms, all
carried to 260 places of decimals, Proc. Roy. Soc. London,
27 (1878), 88-94.
J10.191
ADAMS J.F.,
[1] On the groups $J(X)$, II, Topology,
3 (1965), 137-171.
Z137.168; M33#6626; R1967,7A358
[2] On the group $J(X)$, IV, Topology,
5 (1966), no. 1, 21-71.
Z145.199; M33#6628; R1967,1A341
ADELBERG A.,
[1] Irreducible factors and p-adic poles of higher order Bernoulli polynomials,
C. R. Math. Rep. Acad. Sci. Canada, 14 (1992), no.4, 173-178.
Z771.11014; M93e:11029; R1993,4A267
[2] On the degrees of irreducible factors of higher order Bernoulli polynomials,
Acta Arith., 62 (1992), no.4, 329-342.
Z771.11013; M94a:11027; R1993,6A257
[3] A finite difference approach to degenerate Bernoulli and Stirling
polynomials,
Discrete Math., 140 (1995), 1-21.
Z841.11010; M96i:39001 R1996, 11B256
[4] Congruences of $p$-adic integer order Bernoulli numbers.
J. Number Theory, 59 (1996), no.2, 374-388. (Erratum:
J. Number Theory 65 (1997), no. 1, 179.)
Z866.11013; M97e:11028
[5] Higher order Bernoulli polynomials and Newton polygons.
Applications of Fibonacci Numbers, Vol. 7 (Proceedings, Graz, July 15-19,
1996, G.E. Bergum et al., Eds.), 1-8. Kluwer Academic Publishers,
Dordrecht, 1998.
Z990.11930
[6] 2-adic congruences of Nörlund numbers and of Bernoulli numbers of
the second kind,
J. Number Theory, 73 (1998), no. 1, 47-58.
Z926.11010; M99m:11018
[7] Arithmetic properties of the Nörlund polynomial $B_n^{(x)}$, Discrete Math., 204 (1999), no. 1-3, 5-13.
ADIGA C., BERNDT B.C., BHARGAVA S., WATSON G.N.,
[1] Chapter 16 of Ramanujan's second notebook;
Theta-functions and q-series, Mem. Amer. Math. Soc.,
53 (1985),
No. 315, 1-85.
Z565.33002; M86e:33004; R1985,12V38
ADIGA C., BHARGAVA S.,
[1] A simple proof for finite double series
representations for the Bernoulli, Euler and tangent numbers,
Internat. J. Math. Ed. Sci. Tech., 14 (1983),
652-654.
Z516.10006
ADLEMAN L.M., HEATH-BROWN D.R.,
[1] The first case of Fermat's last theorem,
Invent. Math., 79 (1985), no. 2, 409-416.
Z557.10034; M86h:11022; R1985,8A144
ADLER A., WASHINGTON L.C.,
[1] $p$-adic $L$-functions and higher dimensional magic cubes,
J. Number Theory, 52 (1995), no.2, 179-197.
Z849.11093; M96j:11147
ADRIAN P.,
[1] Die Bezeichnungsweise der Bernoullischen
Zahlen, Mitt. Verein. Schweiz.
Versicherungsmath., 59 (1959), 199-206.
Z89.280; M22#5604; R1960,11A802
AGARWAL G.G.,
[1] Bernoulli monosplines and best quadrature formulas,
Ganita, 35 (1984), no. 1-2, 70-80 (1987).
Z638.41010
AGOH T.,
[1] On the Diophantine equation concerning
Fermat's last theorem, TRU Math., 13
(1977), no. 1, 1-8.
Z366.10018; M56#11893; R1978,6A170
[2] On the first case of Fermat's last theorem,
J. Reine Angew. Math., 314 (1980), 21-28.
Z417.10011; M81b:10008; R1980,8A114
[3] On Fermat's last theorem and the Bernoulli numbers,
J. Number Theory, 15 (1982), no. 3,
414-422.
Z504.10008; M84i:10018; R1983,8A115
[4] A note on the Bernoulli numbers and the class number of
real quadratic fields, C.R. Math. Rep. Acad. Sci. Canada,
5 (1983), no. 4, 153-158.
Z517.12002; M85j:11143; R1984,2A94
[5] A note on the first case of Fermat's last theorem,
C.R. Math. Rep. Acad. Sci. Canada, 6 (1984), no. 6,
337-342.
Z563.10015; M86i:11011; R1985,8A145
[6] On the congruences of Voronoi and Kummer for
the Bernoulli numbers, C.R. Math. Rep. Acad. Sci. Canada,
7 (1985), no. 1, 15-20.
Z567.10006; M86f:11019; R1986,1A143
[7] On the criteria of Wieferich and Mirimanoff, C.R.
Math. Rep. Acad. Sci. Canada, 8 (1986), no. 1,
49-52.
Z585.10009; M87c:11025; R1986,8A100
[8] On the Euler numbers and the distribution of E-irregular primes, preprint, Science University of Tokyo (1984).
[9] On the first case of Fermat's last theorem,
II, Manuscripta Math., 56 (1986),no. 4, 465-474.
Z591.10012; 599.10012; M87k:11032; R1987,4A93
[10] On Bernoulli Numbers, I,
C.R. Math. Rep. Acad. Sci. Canada, 10 (1988), 7-12.
Z645.10014; M89c:11034; R1988,10A108
[11] On Bernoulli and Euler numbers,
Manuscr. Math., 61 (1988), 1-10.
Z648.10007; M89i:11030; R1988,10A109
[12] A note on unit and class number of real quadratic fields,
Acta Math. Sinica (N.S.), 5 (1989), no. 3, 281-288.
Z701.11045; M90i:11124; R1990,9A265
[13] On Bernoulli numbers, II,
Sichuan Daxue Xuebao, 26 (1989), Special Issue, 60-65.
Z707.11018; M91g:11018
[14] On Fermat's last theorem,
C.R. Math. Rep. Acad. Sci. Canada, 12 (1990), no. 1, 11-15.
Z703.11015; M91f:11017; R1990.10A91
[15] On the Kummer-Mirimanoff congruences,
Acta Arith., 55 (1990), no. 2, 141-156.
Z(648.10013)688.10014; M91d:11020; R1991,2A102
[16] Some variations and consequences of the Kummer-Mirimanoff
congruences,
Acta Arith. 62 (1992), no.1, 73-96.
Z738.11031;780.11015; M93i:11035; R1993,4A130
[17] On the Kummer system of congruences and the Fermat quotients,
Exposition. Math., 12 (1994), no. 3, 243-253.
Z813.11009; M95g:11020
[18] On Giuga's conjecture,
Manuscripta Math., 87 (1995), no. 4, 501-510.
Z845.11004; M96f:11005
[19] On Fermat and Wilson quotients,
Exposition. Math., 14 (1996), no. 2, 145-170.
Z857.11001; M97e:11008
[20] Stickelberger subideals for a prime modulus related to Kummer-type
congruences, J. Number Theory, 67 (1997), no. 2, 203-214.
Z898.11042; M98k:11171
[21] Stickelberger subideals related to Kummer-type congruences,
Math. Slovaca 48 (1998), no. 4, 347-364.
M2000c:11180
AGOH T., DILCHER K., SKULA L.,
[1] Fermat quotients for composite moduli,
J. Number Theory 66 (1997), no. 1, 29-50.
Z884.11003; M98h:11002
[2] Wilson quotients for composite moduli,
Math. Comp. 67 (1998), no. 222, 843-861.
Z980.13202; M98h:11003
AGOH T., MORI K.,
[1] Kummer type systems of congruences and bases of Stickelberger subideals,
Arch. Math. (Brno), 32 (1996), no. 3, 211-232.
Z903.11007; M98h:11132; R1998,4A230
AGOH T., SHOJI T.,
[1] Quadratic equations over finite fields and class numbers of real
quadratic fields, Monatsh. Math. 125 (1998), no. 4, 279-292.
Z898.11043; M99b:11120
AGOH T., SKULA L.,
[1] Kummer type congruences and Stickelberger subideals,
Acta Arith., 75 (1996), no. 3, 235-250.
Z841.11012; M97j:11052; R1997,8A241
AGRAWAL B.D., PRASAD J.,
[1] Extension of the Bernoulli numbers and
polynomials, Bull. Math. Soc. Sci. Math. R.S. Roumaine
(N.S.) (1982), 26 (74), no. 3, 211-215.
Z499.33010; M83k:33026; R1983,3V465
AINSWORTH O.R.,
[1] On generating functions,
Fibonacci Quart., 15 (1977), no. 2, 161-163.
Z362.40003; M56#2840; R1978,3B37
AINSWORTH O.R., NEGGERS J.,
[1] A family of polynomials and powers of the secant,
Fibonacci Quart. 21 (1983), no. 2, 132-138.
Z541.10011; M84k:33001
AKHIEZER N.I.: see STIEIRMAN I.JA., AKHIEZER N.I.
ALBADA P.J. van,
[1] The Bernoulli numerators, EUT Report-WSK,
Eindhoven 84-WSK-03, (1984), 1-5.
Z557.10012; R1985,4V489
ALLENBY R.B.J.T., REDFERN E.J.,
[1] Introduction to number theory with computing,
Edward Arnold, London-Melbourne-
Auckland, 1989. x + 310 pp.
Z681.10001; M90k:11001
ALMKVIST G.,
[1] Wilf's conjecture and a generalization,
In: The Rademacher legacy to mathematics (University Park, PA, 1992),
211-233,
Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
Z809.11026; M95g:11032
ALMKVIST G., GRANVILLE A.,
[1] Borwein and Bradley's Apéry-like formulae for $\zeta(4n+3)$,
Experiment. Math. 8 (1999), no. 2, 197-203.
ALMKVIST G., MEURMAN A.,
[1] Values of Bernoulli polynomials and Hurwitz's zeta function
at rational points,
C. R. Math. Rep. Acad. Sci. Canada, 13 (1991), no. 2-3, 104-
108.
Z731.11014; M92g:11023; R1992,4A62
ALONSO J.,
[1] Arithmetic sequences of higher order, Fibonacci
Quart., 14 (1976), no. 2, 147-152.
Z361.10014; M53#5455
AL-SALAM W.A., CARLITZ L.,
[1] Bessel polynomials and Bernoulli numbers, Arch.
Math., 9 (1958), 412-415.
Z82.286; M21#3597; R1960,3182
[2] Bernoulli numbers and Bessel polynomials,
Duke Math. J., 26 (1959), no. 3, 437-445.
Z92.292; M21#4256; R1960,9112
[3] Some determinants of Bernoulli, Euler and
related numbers, Portugal. Math., 18 (1959),
91-99.
Z93.15; M23#A848; R1961,1B348
ALVARADO R., PEDRO,
[1] Sums of powers and Bernoulli numbers (Spanish),
Rev. Mat. Dominicana, No. 1-2 (1986), 29-36.
M93f:11018
ALZER H.,
[1] Ein Duplikationstheorem für die Bernoullischen Polynome,
Mitteilungen Math. Ges. Hamburg, 11 (1987), no. 4, 469-471.
Z632.10008; M88m:11009; R1988,7B20
[2] Inequalities for non-decreasing sequences,
Proc. Royal Soc. Edinburgh, Sect. A, 123 (1993), no. 6, 1017-
1020.
Z799.26018; M95b:26021
[3] On some inequalities for the Gamma and psi functions,
Math. Comp. 66 (1997), no. 217, 373-389.
Z854.33001; M97e:33004; R1997,4B94
[4] Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel) 74 (2000), no. 3, 207-211.
AMICE Y.,
[1] Sur une conjecture de Leopoldt, Colloq.
Algèbre, Ecole norm. supér. jeunes filles (1967),
Paris (1968) 9/01-9/08.
R1969,7A294
[2] Une démonstration analytique p-adique du
théorème de Ferrero-Washington, d'après Daniel
Barsky, Séminaire de théorie des nombres, Paris
(1982/83), Birkhäuser Boston, Boston, Mass., 1984, 1-20.
Z546.12010; M87b:11108; R1985,8A203
AMICE Y., FRESNEL J.,
[1] Fonctions zeta p-adiques des corps de
nombres abeliens réels, Acta Arith.,
20 (1972), 353-384.
Z217,43(237.12010); M49#2667; R1973,2A328
AMSLER R.,
[1] Sur les polynomes de Bernoulli,
Bull. Soc. Math. France, 56 (1928), II, 36-41.
J54.485
ANASTASSIADIS J.,
[1] Définition fonctionnelle des polynômes de
Bernoulli et d'Euler, C.R. Acad. Sci. Paris, 258 (1964),
1971-1973.
Z124,34; M28#4162; R1964,11B48
ANDO TETSUYA,
[1] The Riemann-Roch theorem and Bernoulli polynomials,
Proc. Japan. Acad., A 61 (1985), no. 6, 161-163.
Z607.14008; M87a:14017; R1985,12A416
ANDRÉ D.,
[1] Développements de $\sec x$ et de $\tan x$,
C.R. Acad. Sci. Paris, 88 (1879), 965-967.
ANDREWS G., FOATA D.,
[1] Congruences for the $q$-secant numbers,
European J. Combin., 1 (1980), no. 4, 283-287.
Z455.10006; M82d:05018
ANDREWS G., GESSEL I.,
[1] Divisibility properties of the q-tangent numbers,
Proc. Amer. Math. Soc., 68 (1978), no. 3, 380-384.
Z401.10020; M57#2925; R1978,12A131
ANKENY N.C., ARTIN E., CHOWLA S.,
[1] The class-numbers of real quadratic fields,
Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 524-527.
Z43,40; M13-212c
[2] The class-numbers of real quadratic number
fields, Ann. of Math., 56 (1952), 479-493.
Z49,306; M14-251h
ANKENY N.C., CHOWLA S.,
[1] Note on the class-number of real quadratic
fields, Acta Arith., 6 (1960), 145-147.
Z93,43; M22#6780; R1961,7A125
[2] A further note on the class-number of real
quadratic fields, Acta Arith., 7 (1962),
271-272.
Z214,308; M25#1147; R1963,1A137
AOKI N.,
[1] On the Stickelberger ideal of a composite field of some quadratic fields,
Max-Planck-Institut für Math. Bonn, MPI/90-16, 24 pp., 1990.
[2] On the Stickelberger ideal of a composite field of quadratic fields,
Comm. Math. Univ. St. Paul., 39 (1990), no. 2, 195-209.
Z728.11055; M91m:11091
APOSTOL T.M.,
[1] Generalized Dedekind sums and transformation
formulae of certain Lambert series, Duke Math. J., 17
(1950), no. 2, 147-157.
Z39,038; M11-641g
[2] On the Lerch zeta function,
Pacific J. Math., 1 (1951), 161-167.
Z43,71; M13-328b
[3] Theorems on generalized Dedekind sums, Pacific J.
Math., 2 (1952), no. 1, 1-19.
Z47,45; M13-725c
[4] Quadratic residues and Bernoulli numbers,
Delta (Waukesha), 1 (1968/1970), no. 4, 21-31.
Z249.10006; M42#188
[5] Dirichlet $L$-functions and character power sums,
J. Number Theory 2 (1970), 223-234.
Z198.37502; M41#3412; R1970,12A85
[6] Another elementary proof of Euler's formula for $\zeta(2n)$,
Amer. Math. Monthly, 80 (1973), 425-431.
Z267.10050; M47#3330
[7] Introduction to analytic number theory,
Springer-Verlag, New York, 1976. xii + 338 pp.
Z335.10001; M55#7892; R1977,1A98K
[8] Modular functions and Dirichlet series in number theory,
Springer-Verlag, New York, 1976. x + 198 pp.
[9] An elementary view of Euler's summation formula,
Amer. Math. Monthly, 106 (1999), no. 5, 409--418.
Z332.10017; M54#10149; R1977,5A73K
APOSTOL T.M., VU THIENNU H.,
[1] Dirichlet series related to the Riemann zeta
function, J. Number Theory, 19 (1984), no.
1, 85-102.
Z539.10032; M85j:11106; R1985,1A165
APPELL P.,
[1] Sur les fonctions de Bernoulli à deux
variables, Arch. Math. und Phys. (3), 4 (1902),
292-293.
J34.484
[2] Sur les polynômes qui expriment la somme des puissances $p^ièmes$ des $n$ premiers nombres entiers, Nouvelles Ann. Math. (3), 6 (1887), 312-321.
[3] Sur les valeurs approchées des polynômes de Bernoulli,
Nouv. Ann. Math. (3), 6 (1887), 547-554.
J19.240
ARAKAWA T.,
[1] Dirichlet series $\sum_{n=1^\infty cot(\pi n \alpha)/n^j$,
Dedekind sums, and Hecke L-functions for quadratic fields,
Comm. Math. Univ. St. Paul., 37 (1988), 209-235.
Z667.12006; M89i:11124
[2] Special values of L-functions associated with the space of quadratic
forms and the representations of $S_p(2n, F_p)$ in the space of Siegel cusp
forms. In: Automorphic forms and geometry of arithmetic varieties, 99-169,
Adv. Stud. Pure Math., 15 , Academic Press, Boston, MA, 1989.
Z701.11018; M91f:11037
[3] Minkowski-Siegel's formula for certain orthogonal groups of odd degree
and unimodular lattices,
Comment. Math. Univ. St. Paul. 45 (1996), no. 2, 213-227.
Z873.11030; M97i:11075
ARAKAWA T., KANEKO M.,
[1] Multiple zeta values, poly-Bernoulli numbers, and related zeta functions,
Nagoya Math. J. 153 (1999), 189-209.
M2000e:11113
[2] On poly-Bernoulli numbers, Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 159-167.
ARAMBURU J.M. ORTEGA: see ORTEGA ARAMBURU J.M.
ARFWEDSON G.,
[1] Om Bernoullis tal och teorem,
Elementa matem. fysik kemi, 71 (1988), 83-88.
R1988.12A84
ARKIN J., HOGGATT V.E.,
[1] The generalized Fibonacci numbers and its relation
to Wilson's theorem, Fibonacci Quart., 13 (1975), no. 2,
107-110.
Z303.10011; M50#12900; R1975,10V247
ARLETTAZ D.,
[1] Die Bernoulli-Zahlen: eine Beziehung zwischen Topologie und Gruppentheorie.
(German) [The Bernoulli numbers: a relation between topology and group theory],
Math. Semesterber. 45 (1998), no. 1, 61-75.
Z892.55001; M99e:55012
ARNDT F.,
[1] Über bestimmte Integrale, Arch. Math. und Phys.
(1), 6 (1845), 434-439.
[2] Entwicklung der Summen der n-ten Potenzen der natürlichen Zahlen nach den Potenzen des Index mittels des Taylor'schen Lehrsatzes, J. Reine Angew. Math., 31 (1846), 249-252.
[3] Über die Summirung der beiden Reihen (a) $\gamma_0 - n_1 \gamma_1 + n_2 \gamma_2 -$ etc. $ + (-1)^n \gamma_n$, (b) $\gamma_0 + n_1 \gamma_1 + n_2 \gamma_2 +$ etc. $ + \gamma_n$, in welchen die Grössen $\gamma$ willkührlich und die Coefficienten Binomialcoefficienten des ganzen Exponenten $n$ sind, mittels höherer Differenzen und Summen, J. Reine Angew. Math., 31 (1846), 235-245.
[4] Über die Bernoulli'sche Methode, summirbare Reihen zu finden, J. Reine Angew. Math., 31 (1846), 253-258.
ARNOL'D V.I.,
[1] Bernoulli-Euler updown numbers associated with function
singularities, their combinatorics and arithmetic,
Duke Math. J., 63 (1991), no. 2, 537-555.
Z755.58015; M93b:58020
[2] Congruences for Euler, Bernoulli and Springer numbers of Coxeter groups.
(Russian), Izv. Ross. Akad. Nauk Ser. Mat., 56 (1992), no. 5, 1129-1133.
Engl. Transl. in: Russian Acad. Sci. Izv. Math., 41 (1993), no.2,
389-393.
Z801.11012; M94a:11024; R1993,5A167
[3] Snake calculus and the combinatorics of the Bernoulli, Euler
and Springer numbers of Coxeter groups. (Russian), Uspekhi Mat. Nauk,
47 (1992), no. 1(283), 3-45. Translation in Russian Math. Surveys
47 (1992), no. 1, 1-51.
Z791.05001, 801.11012; M93h:20042
ARTIN E.: see ANKENY N.C., ARTIN E., CHOWLA S.
ATKINSON M.D.,
[1] How to compute the series expansions of $\sec x$ and $\tan x$,
Amer. Math. Monthly 93 (1986), 387-389
Z603.65013; R1988,1G67
AUCOIN A.A.,
[1] On harmonic series and Bernoulli numbers, Tex. J.
Sci., 27 (1976), no. 4, 411-414.
R1977,12V596
AYOUB R.,
[1] Euler and the zeta function,
Amer. Math. Monthly, 81 (1974), 1067-1086.
Z293.10001; M50#12566; R1975,8A17
[2] K istorii odnogo funktsional'nogo uravneniya Ejlera (Russian)
[On the history of a functional equation of Euler].
Leningr. Gos. Pedagog. In-t., Leningrad, 1986, 6 str.
R1986,7A19DEP
BABBAGE CH.,
[1] On some new methods of investigating the sums of
several classes of infinite series, Philos. Trans. Roy. Soc. London,
(1819), 249-282.
BABINI J.,
[1] Polinomios generalizades de Bernoulli y sus correlativos,
Boletiín Sem. mat. Argentino, 4 (1934), 23-25.
and Rev. mat. hisp-amer. (2), 10 (1934), 23-25.
J60.II.1041, 61.II.1166; Z11,213
[2] Generalización de los polinomios de Bernoulli,
Rev. Acad. Sci. Madrid, 32 (1935), 491-500.
J61.I.378; Z13,167
BACHMANN P.,
[1] Niedere Zahlentheorie, Additive Zahlentheorie,
Leipzig, 1910 / New York: Chelsea, 1968, Part 1: x+402p; Part II: x+480p.
J41.221 ; Z253.10001* ; M39#25
[2] Das Fermatproblem in seiner bisherigen
Entwicklung, Walter de Gruyter & Co., Berlin-Leipzig, 1916, 160pp.
J47.105
[3] Ein Satz von den Tangentenkoeffizienten,
Arch. der Math. u. Physik (3), 16 (1910), 363-365.
J41.223
BAILEY D.H., BORWEIN J.M., CRANDALL R.E.,
[1] On the Khintchine constant.
Math. Comp., 66 (1997), no. 217, 417-431.
Z854.11078; M97c:11119
BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.,
[1] Experimental evaluation of Euler sums.
Experiment. Math., 3 (1994), no. 1, 17-30.
Z810.11076; M96e:11168
BAKER Alan,
[1] A Concise Introduction to the Theory of Numbers, Cambridge
University Press, Cambridge, 1984. xiii + 95 pp.
Z554.10001; M86f:11001
BAKER A.J., CLARKE F., RAY N., SCHWARTZ L.,
[1] On the Kummer congruences and the stable homotopy of BU,
Trans. Amer. Math. Soc., 316 (1989), no. 2, 385-432.
Z709.55012; M90c:55003; R1990,12A606
BAKER Andrew,
[1] A supersingular congruence for modular forms,
Acta Arith. 86 (1998), no. 1, 91-100.
M99j:11066
BAKHMUTSKAYA E.Ya.,
[1] Dzhon Blissard i ego simvolicheskoye ischisleniye [John Blissard and
his symbolic calculus],
Trudy XIII mezhdunarodnogo kongressa po istorii nauki, sek. 5, 1971,
121-124. Nauka, Moskva, 1974.
Z296.01015; R1975,1A44
BALAN G.,
[1] Group of unit of cyclotomic field, In: Proc. Conference on Algebra.
Univ. of Cluj-Napoca, Faculty of Math., Research Seminars. Preprint No. 9,
1986, 3-6.
Z691.12001; R1987,5A317
BALATONI F.,
[1] On the class number of quadratic number fields
(Hungarian), Math. Lapok, (1973), 107-112.
Z326.12004 ; M53#5527; R1976,6A179
BALAZS N.L., SCHMIT C., VOROS A.,
[1] Spectral fluctuations and zeta functions,
J. Statistical Physics, 46 (1987), no. 5/6, 1067-1090.
Z692.58027; M89b:58171
BALK M.B.,
[1] A property of the Bernoulli numbers. (Russian),
Moskov. Oblast. Pedagog. Inst. Uch. Zap., 57 (1957), 55-59.
Z90,279 ; M20#5892; R1958,7462
BALOG A., DARMON H., ONO K.,
[1] Congruence for Fourier coefficients of half-integral weight modular
forms and special values of $L$-functions.
Analytic number theory, Vol. 1 (Allerton Park, IL, 1995),
105-128, Progr. Math., 138, Birkhduser Boston, Boston, MA, 1996.
Z863.11031; M97e:11056
BANASZAK G., GAJDA W.,
[1] On the arithmetic of cyclotomic fields and the $K$-theory of ${\bf Q}$,
Algebraic $K$-theory Poznan, 1995), 7-18, Contemp. Math., 199, Amer. Math.
Soc., Providence, RI, 1996.
Z866.19004; M97h:11146
BANERJEE D.P.,
[1] On some arithmetical properties of Bernoulli's
and Euler's generalized polynomials, Proc. Indian Nat. Sci. Acad. Part A,
34 (1964), 92-96.
Z171.32601; M36#2851; R1965,6V50
BANUELOS A., DEPINE R.A.,
[1] A program for computing the Riemann zeta
function for complex argument, Comput. Phys. Comm., 20
(1980), 441-445.
Z457.10001; R1981,5V1033
BARANIECKI M.A.,
[1] O funkcyjach Bernoulliego.
Kraków, Ak. (Mat.-Przyrod.) Rozpr. 13 (1886), 183-195.
J1885,416
BARNER K.,
[1] Über die Werte der Ringklassen-L-Funktionen
reell-quadratischer Zahlkörper an natürlichen Argumentstellen,
J. Number Theory, 1 (1969), no. 1, 28-64.
Z174,86; M39#139; R1970,2A127
BARNES E. W.,
[1] The theory of the gamma function,
Messenger Math. (2), 29 (1899/1900), 64-128.
J30.389
[2] The theory of the double gamma function,
Philos. Trans. London, 196A (1901), 271-285.
J32.442
[3] On the theory of the multiple gamma function,
Trans. Cambr. Philos. Soc., 19 (1904), 374-425.
J35.462
BARNIVILLE J.J., DICKSON J.D.H., LAMPE E.,
[1] Solution of question 9977, Math. questions etc.,
edited by W.J.C. Miller, London, 52 (1890),
41-44.
J22.268
BARSKY D.,
[1] Analyse p-adique et nombres de Bernoulli, C.R.
Acad. Sci. Paris, 283 (1976), no. 16, A1069-A1072.
Z359.12018 ; M55#2855; R1977,7A339
[2] Congruences de coefficients de séries de Taylor
(Application aux nombres de Bernoulli-Hurwitz), Groupe d'étude
d'analyse ultramétrique, no. 17, (1975-76), 9pp.
Z355.12016; M58#5496; R1978,3A300
[3] Fonction génératrice et congruences
(Application aux nombres de Bernoulli), Sém.
Délange-Pisot-Poitou (Théorie de nombres), 1975-76 (1977),
17, fasc. 1, exp. 21, 16pp.
Z336.12012 ; M57#5967; R1978,3A235
[4] Analyse p-adique et nombres de Bernoulli-Hurwitz,
C.R. Acad. Sci. Paris, 284 (1977), no. 3, A137-A140.
Z343.12007; M55#12705; R1977,10A208
BARSKY D., DUMONT D.,
[1] Congruences pour les nombres de Genocchi de deuxième espèce,
Seminaire du groupe d'étude d'analyse ultramétrique,
34 (1980-81), 1-13.
Z474.10011; M82m:10021; R1982,1V747
BARTZ K.,
[1] On Carlitz theorem for Bernoulli polynomials. Number theory (Cieszyn, 1998).
Ann. Math. Sil. No. 12 (1998), 9-13.
Z924.11009; M2000a:11030
BARTZ K., RUTKOWSKI J.,
[1] On the von Staudt-Clausen theorem,
C. R. Math. Rep. Acad. Sci. Canada, 15 (1993), no. 1,
46-48.
Z769.11011; M94b:11017; R1993,11A101
BASKOV B.M.,
[1] Svyaz' dzeta-funktsii Rimana s mnogochlenami Bernulli (Russian)
[Connection between the Riemann zeta function and the Bernoulli polynomials].
Trudy Uzbeksk. Gos. Universiteta, novaya ser., fiz.-mat. fakul't., Samarkand,
(1958), no. 78, 163-183.
R1962,5A127
[2] Novoe dokazatel'stvo teoremy Shtaudta (Russian)
[A new proof of Staudt's theorem].
Materialy 3-i ob'ed. nauch. konf. uchenykh Samarkanda, ser. gumanit. i
estest. nauk, Samarkand, (1961), 260-262.
R1963,3A140
BATEN W. D.,
[1] A remainder for the Euler-Maclaurin summation formula
in two independent variables,
Amer. J. Math., 54 (1932), 265-275.
J58.II.1044; Z4.250
BAUER G.,
[1] Von den Gamma-functionen und einer besonderen Art
unendlicher Producte, J. Reine Angew. Math.,
57 (1860) ,
256-272.
[2] Von einigen Summen-und Differenzenformeln und den Bernoullischen Zahlen, J. Reine Angew. Math., 58 (1861), 292-300.
BAYAT M.,
[1] A generalization of Wolstenholme's theorem,
Amer. Math. Monthly 104 (1997), no. 6, 557-560.
Z970.65389; M98e:11007
BÁYER P.,
[1] Value of the Iwasawa L-function at point $s=1$,
Arch. Math., 32 (1979), no. 1, 38-54.
Z403.12022; M80h:12016
; R1980,2A374
[2] Sobre el indice de irregularidad de los numeros primos,
Collect. Math., 30 (1979), no. 1, 11-20, (Spanish).
Z499.12003; M81h:12003
[3] Variae observationes circa series infinititas,
Butlleti Soc. Catalana Ciénc. Fis., Quimiques i Matem., 2 (1984), no. 4,
429-481.
Z598.10002; M86i:01026
BEACH B., WILLIAMS H., ZARNKE C.,
[1] Some computer results on units in quadratic and cubic
fields, Proc. of the Twenty-Fifth Summer Meeting of the
Canad. Math. Congress, Lakehead Univ., (1971),
609-648.
M49#2656
BEARDON A. F.,
[1] Sums of powers of integers.
Amer. Math. Monthly, 103 (1996), no. 3,201-213 .
Z851.11012; M97f:11020; R1996,10B189
BEEBEE J.,
[1] Bernoulli numbers and exact covering systems,
Amer. Math. Monthly, 99 (1992), no. 10, 946-948.
Z776.11008; M93i:11025; R1993,8A109
BEEGER N.W.G.H.,
[1] Quelques remarques sur les congruences $\tau^{p-1
\equiv 1 (\bmod p^2)$ et $(p - 1)! \equiv (\bmod p^2)$,
Messeng. Math. (2), 43 (1913), 72-84.
J44.227
[2] On some new congruences in the theory of Bernoulli
numbers, Bull. Amer. Math. Soc., 44 (1938), 684-688.
J64.II.96; Z19.292
[3] Report on some calculations of prime
numbers, Nieuw Arch. Wisk., 20 (1939), 48-50.
J65.161; Z20.105; M1-65g
BEESLEY E.M.,
[1] An integral representation for the Euler numbers,
Amer. Math. Monthly, 76 (1969), 389-391.
Z185,30; M39#4330; R1970,3V274
BELL E.T.,
[1] The Bernoullian functions occuring in the arithmetical
applications of elliptic functions,
Messeng. Math. (2), 50 (1921), 177-186.
= Bull Amer. Math. Soc., 27 (1921), 413.
J48.444, 48.1245
[2] Note on the prime divisors of the numerator of Bernoulli's numbers,
Amer. Math. Monthly, 28 (1921), 258-259.
= Bull. Amer. Math. Soc., 27 (1921), 414.
J48.137, 48.255
[3] Anharmonic polynomial generalizations of the numbers of
Bernoulli and Euler,
Bull. Amer. Math. Soc., 27 (1921), 414.
J48.255
[4] Anharmonic polynomial generalizations of the numbers of
Bernoulli and Euler, Trans. Amer. Math. Soc., 24 (1922), no. 2,
89-112.
J(49.708)
[5] A revision of the Bernoullian and Eulerian functions,
Bull. Amer. Math. Soc., 28 (1922), 443-450.
J48.1194
[6] Relations between the numbers of Bernoulli, Euler, Genocchi, and Lucas,
Messeng. Math., 52 (1923), 56-68.
J49.328
[7] Umbral symmetric functions and algebraic analogues of the
Bernoullian and Eulerian numbers and functions,
Bull. Amer. Math. Soc., 29 (1923), 11.
= Math. Z., 19 (1924), 35-49.
J49.78, 49.250
[8] An algebra of sequences of functions with an application to
the Bernoulli functions, Trans. Amer. Math. Soc., 28 (1926),
no. 1, 129-148.
J52.372
[9] General relations between Bernoulli, Euler and allied
polynomials, Trans. Amer. Math. Soc., 38 (1935), 493-500.
J61.I.377; Z13.5
[10] The history of Blissard's symbolic method, with a sketch of
its inventor's life,
Amer. Math. Monthly, 45 (1938), 414-421.
Z19,389
[11] Trigonometry and the numbers B, E, G, R of Bernoulli, Euler,
Genocchi and Lucas (Abstract),
Bull. Amer. Math. Soc., 28 (1922), 283.
J(48.256)
[12] The modular Bernoullian and Eulerian functions (Abstract
),
Bull. Amer. Math. Soc., 32 (1926), 417-418.
J(52.373)
[13] On generalizations of the Bernoullian functions and numbers,
Amer. J. Math., 47 (1926), 277-288.
J51.289
[14] B, E polynomials and their related integrals,
Tôhoku Math. J, 26 (1926), 391-405.
J53.354
[15] Modular Bernoullian and Eulerian functions,
Univ. of Washington Publ. in Math., 1 (1926), no. 1, 1-7.
J57.II.1369
BELL J.L.,
[1] Chains of congruences for the numerators and denominators of the Bernoulli
numbers, Ann. of Math. (2), 29 (1927), 106-112.
J53.137
BELLAVITIS G.,
[1] Sulle serie di numeri che comprendono i Bernoulliani,
Annali. sci. mat. e fis. Roma, 4 (1853), 108-127.
BENDERSKI L.,
[1] Sur la fonction gamma géneralisée,
Acta Math. 61 (1933), 263-322.
BENNETON G.,
[1] Sur le dernier théorème de Fermat, Ann. Sci. Univ.
Besançon, Math. (3), fasc. 7 (1974), 15pp.
Z348.10010; M54#7368
BENTSEN S., MADSEN I.,
[1] Trace maps in algebraic $K$-theory and the Coates-Wiles homomorphism,
J. Reine Angew. Math., 411 (1990), 171-195.
Z716.11055; M91i:19002
BERG F.J. van den,
[1] Over periodieke terugloopende betrekkingen tusschen
de Coëfficiënten in de ontwikkeling van functiën, meer in het
byzonder tusschen de Bernoulliaansche en ook tusschen eenige
daarmede verwante Coëfficiënten, Versl. Meed. Kon. Ak. Weten.,
(2), 16 (1881), 74-176 = Arch. Néerl. Sci. Ex. Nat.
Soc. Holland., 16 (1881), 387-443.
J13.193
[2] Eenige formulen voor de berekening van de
Bernoulliaansche en van de tangenten-coëfficiënten, Verhand. Kgl.
Akad. Wetensch. Amsterdam, (3), 5 (1889), 358-397;
6 (1889), 265-276.
J20.265
[3] Quelques formules pour le calcul des nombres de
Bernoulli et des coefficients des tangentes, Arch.
Néerl. Sci. Exactes et Natur. Soc. Hollandaise, 24
(1891), 99-141.
J22.268
BERGER A.,
[1] Elementära bevis för några formler i differenskalkylen,
Handl. Kgl. Svenska Vetens. Akad., Stockholm, 37
(1882), 39-53.
J14.192
[2] De Bernoulli'ska talens och funktionernas teori, baserad
på ett system af funktionaleqvationer, Öfversigt af Kgl.
Svenska Vetens. Akad. Förhand., Stockholm, 45 (1888),
433-461.
J20.424
[3] Härledning af några independenta uttryck för de
Bernoulli'ska talen, Öfversigt af Kgl. Svenska Vetens. Akad.
Förhand., Stockholm, 46 (1889), 129-138.
J21.247
[4] Sur une généralisation des nombres et des fonctions
de Bernoulli, Bihang Kgl. Svenska Vetens. Akad. handl.,
Stockholm, 13 (1890), no. 9, 1-43.
J22.266
[5] Recherches sur les nombres et les fonctions de
Bernoulli, Acta Math., 14 (1890/91), 249-304.
J23.267
[6] Om en användning af de Bernoulliska funktionerna
vid några serienutvecklingar, Öfversigt af Kgl. Svenska
Vetens. Akad. Förhandl., Stockholm, 48 (1891),
523-540.
J23.274
BERGER E.R.,
[1] Bernoullische Zahlen, Potenzsummen und Stirlingsche
Reihe, Z. Angew. Math. Mech., 35 (1955),
70-71.
Z64,13; M16-1014e; R1956,2302
BERGGREN B.,
[1] Summierung der Reihe $1^n + 2^n + 3^n + \cdots + \nu^n$ (Swedish),
Elementa, Stockholm, 22 (1939), 209-212.
J65.1190
BERGMANN H.,
[1] Eine explizite Darstellung der Bernoullischen Zahlen,
Math. Nachr., 34 (1967), 377-378.
Z307.10018 ; M36#4030; R1968,6V311
BERNDT B.C.,
[1] Character transformation formulae similar to those for the
Dedekind eta-function. In:
Analytic number theory (Proc. Sympos. Pure Math., Vol. 24, St. Louis Univ.,
St. Louis, Mo., 1972), pp. 9-30. Amer. Math. Soc., Providence, R. I.,
1973.
Z265.10016; M49#2556
[2] Periodic Bernoulli numbers, summation formulas and applications.
In: Theory and application of special functions (Proc. Advanced Sem., Math.
Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143-189. Math. Res.
Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975.
Z326.10016; M52#10560; R1978,7B39
[3] Elementary evaluation of $\zeta(2n)$,
Math. Mag., 48 (1975), 148-154.
Z303.10038; M51#3078; R1976,5A98
[4] Character analogues of the Poisson and Euler-Maclaurin summation
formulas with applications,
J. Number Theory, 7 (1975), no. 4, 413-445.
Z316.10023; M52#3075; R1976,6A131
[5] On Eisenstein series with characters and the values of Dirichlet L-functions,
Acta Arith., 28 (1975), no. 3, 299-320.
Z279.10023; M52#10601; R1976,8A177
[6] Dedekind sums and a paper of G.H. Hardy,
J. London Math. Soc., 13 (1976), 129-137.
Z319.10006; M53#7918; R1976,12A127
[7] Chapter 8 of Ramanujan's second notebook, J. Reine Angew.
Math., 338 (1983), 1-55.
Z491.33003; M84g:01080; R1983,7B13
[8] Chapter 11 of Ramanujan's second notebook,
Bull. London Math. Soc., 15 (1983), no. 4, 273-320.
Z(494.33002),506.33002; M85a:01043; R1983,12B35
[9] Ramanujan's quarterly reports, Bull.
London Math. Soc., 16 (1983), no. 5, 449-489.
Z(511.01007),539.01012; M85j:01021; R1985,4A101
[10] Remarks on some of Ramanujan's number theoretical discoveries found in
his second notebook. Number Theory. Proc. 4th Matscience Conf. held at
Ootacamund, India, January 5-10, 1984. Lect. Notes Math. No. 1122,
Springer-Verlag Berlin-New York, 1985, 47-55.
Z555.10002; M87b:11013; R1985,11A121
[11] Ramanujan's Notebooks. Part I. Springer-Verlag, New York-Berlin,
1985, x + 357 pp.
Z555.10001; M86c:01062; R1986,2B1K
[12] Ramanujan's notebooks. Part IV. Springer-Verlag, New York,
1994. xii+451pp.
Z785.11001; M95e:11028
[13] Ramanujan's notebooks. Part V. Springer-Verlag, New York,
1998. xiv+624pp.
Z886.11001; M99f:11024
BERNDT B.C., BIALEK P.,
[1] Five formulas of Ramanujan arising from Eisenstein series.
In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number
Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15,
67-86. Amer. Math. Soc., Providence, 1995.
Z838.40001; M97f:11028; R1997,9A122
BERNDT B.C., EVANS R.J.,
[1] Chapter 7 of Ramanujan's second notebook,
Proc. Indian Acad. Sci. Math. Sci., 92 (1983), no. 2, 67-96.
Z537.10002; M86d:11020; R1985,3A95
[2] Extensions of asymptotic expansions from Chapter 15 of
Ramanujan's second notebook, J. Reine Angew. Math.,
361 (1985), 118-134.
Z571.41027; M87b:41031; R1986,4A125
[3] Chapter 15 of Ramanujan's second notebook. Part II. Modular forms.
Acta Arith., 47 (1986), no. 2, 123-142.
Z571.10025; M88d:11039; R1987,5A96
[4] Asymptotic expansion of a series of Ramanujan,
Proc. Edinburgh Math. Soc.(2), 35 (1992), no. 2, 189-199.
Z741.41025; M93i:41020
BERNDT B.C., EVANS R.J., WILSON B.M.,
[1] Chapter 3 of Ramanujan's second notebook, Advances
in Math., 49 (1983), no. 2, 123-169.
Z524.41017; M85c:11020; R1984,2B41
BERNDT B.C., SCHOENFELD L.,
[1] Periodic analogues of the Euler-Maclaurin and Poisson summation formulas
with applications to number theory, Acta Arith., 28 (1975), 23-68.
Correction: Acta Arith., 38 (1980/81), 328.
Z(268.10008),311.10018; M52#5586; R1976,5A106
BERNDT B.C., WILSON B.M.,
[1] Chapter 5 of Ramanujan's second notebook. In: Analytic
number theory, Lecture Notes in Math., no. 899, Springer-Verlag, 1981,
49-78.
Z477.10003; M83i:10011
BERNDT B.C.: see also ADIGA C., BERNDT B.C., et al.
BERNOULLI J.,
[1] Ars Conjectandi, Basel, (1713). (Reprinted on pp. 106-286
in Vol. 3 of "Die Werke von Jakob Bernoulli", Birkhäuser Verlag,
Basel, 1975. See also SMITH D.E. [1, pp. 85-90]).
[2] Wahrscheinlichkeitsrechnung, Leipzig, 1899.
BERNSTEIN F.,
[1] Über den zweiten Fall des letzten Fermatschen Lehrsatzes,
Nachr. Akad. Wiss. Göttingen Math.-phys. Kl., (1910), 507-616.
J41.237
BERNSTEIN M., SLOANE N.J.A.,
[1] Some canonical sequences of integers,
Linear Algebra Appl., 226-228 (1995), 57-72.
Z832.05002; M96i:05004
BERTRAND J.,
[1] Traité de calcul différentiel et de calcul intégral,
Paris, 1 (1864), Ch. 6; 2 (1870), Ch. 7. 507-616.
J2.298
BESSEL R.,
[1] Über die Summation der Progressionen, Astronom.
Nachr., 16 (1839), no. 361, 4-6.
BEUKERS F., KOLK J.A.C., CALABI E.,
[1] Sums of generalized harmonic series and volumes,
Nieuw Arch. Wisk. (4), 11 (1993), no. 3, 217-224.
Z797.40001; M94j:11022
BEZERRA V.B., CHABA A.N.,
[1] The generalised Euler formula from Poisson's summation formula and some
applications, J. Phys. A 18 (1985), no. 17, 3381-3387.
Z596.40002; M87h:65013; R1986,6B17
BHARGAVA S.: see ADIGA C., BERNDT, B.C. et al.
BHARGAVA S.: see ADIGA C., BHARGAVA S.
BHATTACHARJEE N.R.,
[1] Extension of Bernoulli and Euler numbers (Bengali summary),
Chittagong Univ. Stud. Part II Sci., 10 (1986), no. 1-2, 13-17.
M90d:11030
BHATTACHARJEE N.R., BHATTACHARJEE T.,
[1] Extension of zeta function $\zeta(2m)$,
Indian J. Pure Appl. Math., 21 (1990), no. 11, 977-980.
Z721.11032; M92d:11091
[2] On the evaluation of zeta function $\zeta(2s)$,
Indian J. Pure Appl. Math., 23 (1992), no. 1, 15-19.
Z742.11043; M93b:11105; R1992,9A144
BHIMASENA RAO M.: see KRISHNAMACHARY C., BHIMASENA RAO M.
BIALEK P.: see BERNDT B.C., BIALEK P.
BINET M.J.,
[1] Mémoires sur les intégrales définies Euleriennes,
Journ. de l'Ecole Polytechn., 16 (1839), 124-343.
[2] Mémoire sur l'application de la théorie des suites à la série des nombres premiers à un nombre composé, C.R. Acad. Sci. Paris, 32 (1851), 918-921.
BIRCH B.J.,
[1] $K_2$ of Global fields, Proc. Sympos. Pure Math.,
20 (1971), 87-95.
Z218.83; M48#11052
BISHT C.S.: see SRIVASTAVA H.M., JOSHI J.M.C., BISHT C.S.
BJÖRLING E.G.,
[1] Om de Bernoulliska talen, Öfversigt Kgl. Vetens. Akad.
Förhandl., Stockholm, 14 (1857), 107-108.
BLIND A.,
[1] Ueber die Potenzsummen der unter einer Zahl m
liegenden und zu ihr primen Zahlen, Dissertation, Bonn 1876 .
BLISSARD J.,
[1] Theory of generic equations, Quart. J. Math., 4 (1861), 279-305;
5 (1862), 58-75, 185-208.
[2] Examples of the use and application of representative notation, Quart. J. Math., 6 (1863), 49-64.
[3] Researches in analysis. I. On the sums of reciprocals, Quart. J. Math., 6 (1864), 242-257.
[4] Researches in analysis. II. On the unlimited variety of result capable of being obtained, by use of Representative Notation, from a single Formula, Quart. J. Pure Appl. Math., 7 (1866), 155-170, 223-226.
[5] On the properties of the $\bigtriangleup^m \bigcirc^n$ class of numbers and of others analogous to them, as investigated by means of representative notation, Quart. J. Math., 8 (1867), 85-110.
[6] Note on a certain formula, Quart. J. Pure Appl. Math. 9 (1868), 71-76.
[7] On the properties of the $\bigtriangleup^m \bigcirc^n$ class of numbers, Quart. J. Pure Appl. Math., 9 (1868), 82-94, 154--171.
BLOOM D. M.,
[1] An old algorithm for the sums of integer powers.
Math. Magazine, 66 (1993), no. 5, 304-305.
M94j:11017
BOCK W.,
[1] Eine Beziehung zwischen den Bernoullischen Zahlen und dem
Produkt $\Pi (1-1/p^{2n})$ über alle Primzahlen,
Mitt. Math. Ges. Hamburg, 5 (1920), 304-307.
J47.219
BÖCHERER S.,
[1] Über die Fourierkoeffizienten der Siegelschen
Eisensteinreihen, Manuscripta Math., 45 (1984), no. 3, 273-288.
Z533.10023; M86b:11037; R1984,9A445
BÖHMER P.,
[1] Über die Bernoullischen Functionen, Math.
Ann., 68 (1910), no. 3, 338-360.
J41.371
BÖLLING R.,
[1] Bemerkungen über Klassenzahlen und Summen von
Jacobi-Symbolen, Math. Nachr., 90 (1979), 159-172.
Z415.12003; M81g:12008; R1980,5A149
BOOLE G.,
[1] Die Grundlehren der endlichen Differenzen- und Summenrechnung.
Leibrock, Braunschweig, 1867.
[2] Finite differences, Chapters V-VIII, (1872).
[3] A treatise of the calculus of finite differences, London, (1880), 3rd. ed., Ch. 5-8.
BOREVICH Z.I., SHAFAREVICH I.R.,
[1] Number Theory. Academic Press, New York, 1966. x + 435 pp.
Z121,42; M33#4001
[2] Teoriya chisel [Number Theory], 3rd ed., Nauka, Moscow, 1985, 504 pp.
Z592.12001*; M88f:11001; R1986,1A533K
BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.,
[1] Giuga's conjecture on primality,
Amer. Math. Monthly 103 (1996), no. 1, 40-50.
Z860.11003; M97b:11004; R1997,12A58
BORWEIN J.M., BORWEIN P.B.,
[1] Pi and the AGM. A study in analytic number theory and computational
complexity. John Wiley & Sons, Inc., New York, 1987.
Z611.10001; M89a:11134
BORWEIN J.M., BORWEIN P.B., DILCHER K.,
[1] Pi, Euler numbers, and asymptotic expansions,
Amer. Math. Monthly, 96 (1989), no.8, 681-687.
Z711.11009; M91c:40002
[2] Boole summation and asymptotic expansions of some special series. Conference report of the 9th Czechoslovak Colloquium on Number Theory held at Rackova Dolina, Sept. 1989, pp. 11-18. Masaryk University, Brno, 1990.
BORWEIN J.M., WONG E.,
[1] A survey of results relating to Giuga's conjecture on primality.
Advances in mathematical sciences: CRM's 25 years
Montreal, PQ, 1994), 13--27, CRM Proc. Lecture Notes, 11, Amer. Math. Soc.,
rovidence, RI, 1997.
Z980.15140; M98i:11005
BORWEIN J.M.: see also BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.
BORWEIN J.M.: see also BAILEY D.H., BORWEIN J.M., CRANDALL R.E.
BORWEIN J.M.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.
BORWEIN P.B.: see BORWEIN J.M., BORWEIN P.B.
BORWEIN P.B.: see BORWEIN J.M., BORWEIN P.B., DILCHER K.
BORWEIN P.B.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., G IRGENSOHN R.
BOYD, D.W.,
[1] A $p$-adic study of the partial sums of the harmonic series,
Experiment. Math. 3 (1994), no. 4, 287-302.
Z838.11015; M96e:11157
BOYER C. B.,
[1] Pascal's formula for the sum of powers of the integers,
Scripta Math., 9 (1943), 237-244.
Z60.009; M6-85d
BRADLEY D.,
[1] A sieve auxiliary function. Analytic number theory, Vol. 1
(Allerton Park, IL, 1995), 173-210, Progr. Math., 138, Birkhduser
Boston, Boston, MA, 1996.
Z856.11045; M97h:11099
BREMEKAMP H.,
[1] Vraagstuk CXIII,
Wiskundige Opgaven, 14 (1928), 238-240.
J54.186
BRENEV E.E.,
[1] O nekotorykh sootnosheniyakh svyazyvayushchikh dzeta-funktsiyu Rimana s
polinomami Bernulli [On some relations between the Riemann zeta function
and Bernoulli polynomials].
Trudy Moskovsk. instituta inzhenerov zh.-d. transporta, (1966), no. 230, 77-98.<
br>
R1967,11A141
BRENT B.,
[1] Quadratic minima and modular forms,
Experiment. Math. 7 (1998), no. 3, 257-274.
BRILLHART J.,
[1] On the Euler and Bernoulli polynomials, J. Reine Angew.
Math., 234 (1969), 45-64.
Z167,354 ; M39#4117; R1969,8B176
[2] Some modular results on the Euler and Bernoulli
polynomials, Acta Arith., 21 (1972),
173-181.
Z(213,55),241.10008; M46#3433; R1973,4A194
[3] On the Euler and Bernoulli polynomials.
Dissertation, Univ. of California, Berkeley, 1967.
R1986,7V288D
BRINDZA B.,
[1] On some generalizations of the Diophantine equation
$1^k+2^k+ \cdots +x^k = y^z$, Acta Arith., 44 (1984), no. 2, 99-107.
Z(497.10010)544.10013; M86j:11029; R1985,7A188
[2] Power values of sums $1^k+2^k+ \cdots +x^k$,
Number Theory, Vol. II (Budapest, 1987), 595-611, Colloq. Math. Soc. Jànos
Bolyai, 51, Noth-Holland, Amsterdam-New York, 1990.
Z705.11013; M91g:11027; R1992,6A143
BRINDZA B., PINTÉR Á.,
[1] On equal values of power sums,
Acta Arith., 77 (1996), no. 1, 97-101.
Z960.51219; M97e:11040; R1997,3A54
BRINKLEY J.,
[1] An investigation on the general term of an important
series in the inverse method of finite differences, Phil. Trans.
Royal Soc. London, (1807), part 1, 114-132.
BROCARD H.,
[1] Solutions des questions proposées (138, 139),
Nouv. Corres. Math., 5 (1879), 282-285.
BRÖDEL W.,
[1] Zum von-Staudtschen Primzahlsatz, Wiss. Z.
Friedrich-Schiller-Univ. Jena, Math.-Nat. Reihe, 10
(1960-61), no. 1-2, 21-23.
M23#A3701; R1962,1A143
BRUCKMAN P.S.,
[1] The generalized totient function (Problem #6446, solution by
O.P. Lossers),
Amer. Math. Monthly, 92 (1985), no. 6, 434-435.
Z679.10011; R1987,11A91
BRÜCKNER H.,
[1] Explizites Reziprozitätsgesetz und Anwendungen,
Vorlesungen Fachbereich Math.
Univ. Essen,
Heft 2, (1979), 83pp.
Z437.12001; M80m:12015
BRUGGEMAN R.W.,
[1] Automorphic forms. In: Elementary and analytic theory of numbers
(Warsaw, 1982), 31-74, Banach Center Publ., 17, PWN, Warsaw, 1985.
Z589.10028; M87h:11037
BRUMER A.,
[1] Travaux récent D'Iwasawa et de Leopoldt, Séminaire
Bourbaki, 19e année, 325 (1966/67) (1968),
1-14.
Z191,335
BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.,
[1] En brevveksling om et polynom som er i slekt med Riemanns zetafunksjon
[Correspondence about a polynomial which is related to Riemann's zeta function],
Norsk Mat. Tidsskr. 28, (1946). 65-71.
Z063.00643; M87h:11037
DE BRUYN G.F.C.,
[1] Formulas for $a+a^2 2^p+a^3 3^p+\cdots+a^n n^p$.
Fibonacci Quart. 33 (1995), no. 2, 98-103.
Z827.05003; M96e:11026
DE BRUYN G.F.C., DE VILLIERS J.M.,
[1] Formulas for $1+2^p+3^p+\ldots +n^p$.
Fibonacci Quart., 32 (1994), no.3, 271-276.
Z803.11017; M95f:11012
BUCHHEIM A.,
[1] Some applications of symbolic methods. [Sect. (3): Staudt's Theorem on
Bernoulli's numbers].
Messenger of Math. 11 (1882), 143-145.
BUCKHOLTZ T.J.: see KNUTH D.E., BUCKHOLTZ T.J.
BUDMAMI P.,
[1] Über die Bernoullischen Zahlen (Croatian),
Arbeiten der südslavischen Akademie von Agram,
Kroatien, 183 (1910), 177-199.
J(41.302)
BUGAEV N.V.,
[1] Uchenie o chislovykh proizvodnykh [Studies on numerical derivatives](Russian).
Mat. Sbornik, I, 5 (1870), 1-63; 6 (1872/73), 133-180,
201-254, 309-360.
J3.75
[2] Svojstvo odnogo chislovogo integrala po delitelyam i ego razlichnye
primeneniya, logarifmicheskie chislovye funktsii [A property of a numerical
integral with regard to divisors and its various applications] (Russian).
Mat. Sbornik, I, 13 (1888), 757-777.
J20.186
BUHLER J.P., CRANDALL R.E., ERNVALL R., METSÄNKYLÄ T.,
[1] Irregular primes and cyclotomic invariants to four million.
Math. Comp., 61 (1993), no. 203, 151-153.
Z789.11020; M93k:11014
BUHLER J.P., CRANDALL R.E., SOMPOLSKI R.W.,
[1] Irregular primes to one million. Math. Comp. 59 (1992),
no. 200, 717-722.
Z768.11009; M93a:11106; R1994,2A84
BUHLER J.P., GROSS B.H.,
[1] Arithmetic on elliptic curves with complex
multiplication, II, Invent. Math., 79 (1985), no. 1,
11-29.
Z584.14027; M86j#11066; R1985,7A478
BUHLER J.P.: see also CRANDALL R.E., BUHLER J.P.
BUKHSHTABER V.M.,
[1] The $J$-functor on cellular complexes. (Russian),
Dokl. Akad. Nauk SSSR., 170 (1966), 17-20.
Z153.251; M36#3346; R1967,1A341
BURAU W.,
[1] Staudt, K. G. Ch. In: Dictionary of Scientific Biography (Ch. C.
Gillespie, Edit. in Chief), Council of Learned Societies, Ch. Scribner's Son,
New York, 1976. Vol. 13, 4-6.
BURROWS B.L., TALBOT R.F.,
[1] Sums of powers of integers,
Amer. Math. Monthly, 91 (1984), no. 7, 394-403.
Z553.05006; M85j:11018; R1985,5A116
BURSTALL F.W.,
[1] Congrunces se rapportant aux nombres de Bernoulli et
d'Euler au module $p^{i+1}$, J. Math. Pures Appl. (7), 3
(1917), 247-261.
J46.189
BUSK Th.,
[1] On some general types of polynomials in one, two or n variables,
Ejnar Munksgaard, Copenhagen, 1955, 228p.
BUTZER P.L., FLOCKE S., HAUSS M.,
[1] Euler functions $E_\alpha(z)$ with complex $\alpha$ and
applications. In: Approximation, probability and related fields
(Santa Barbara, CA, 1993), 127-150, Plenum, New York, 1994.
M96b:33013
BUTZER P.L., HAUSS M.,
[1] On Stirling functions of the second kind,
Stud. Appl. Math., 84 (1991), no. 1, 71-91.
Z738.11025; M92k:11023
BUTZER P.L., HAUSS M., LECLERC M.,
[1] Bernoulli numbers and polynomials of arbitrary complex indices,
Appl. Math. Lett., 5 (1992), no. 6, 83-88.
Z768.11010; M96c:11023
[2] Extensions of Euler polynomials to Euler functions $E_\alpha(z)$ with complex indices. Pre-print, Lehrstuhl A für Mathematik, RWTH Aachen, 1992.
BUTZER P.L., MARKETT C., SCHMIDT M.,
[1] Stirling numbers, central factorial numbers, and
representations of the Riemann zeta-function,
Resultate Math., 19 (1991), no. 3-4, 257-274.
Z724.11038; M92a:11095
BUTZER P.L., SCHMIDT M.,
[1] Central factorial numbers and their role in finite
difference calculus and approximation,
In: Colloq. Math. Soc. János Bolyai, 58 (1990),
(Proc. Conf. on Approximation Theory, Kecskemét,
Hungary, Aug. 5-11, 1990), 127-150.
Z784.41028; M94c:41007; R1997,2A84
BUTZER P.L., SCHMIDT M., STARK E.L., VOGT L.,
[1] Central factorial numbers; their main properties and
some applications,
Numer. Funct. Anal. Optim., 10 (1989), no. 5-6, 419-488.
Z659.10012; M90d:05007; R1990,2V334
BYRD P.F.,
[1] New relations between Fibonacci and Bernoulli
numbers, Fibonacci Quart., 13 (1975), 59-69.
Z297.10007
; M51#12684; R1975,10V245
[2] Relations between Euler and Lucas numbers,
Fibonacci Quart., 13 (1975), no. 2, 111-114.
Z301.10013; M50#9771; R1975,11V322
CALLAN D.,
[1] Letter to the editor: "A new approach to Bernoulli polynomials"
by D.H. Lehmer,
Amer. Math. Monthly, 96 (1989), no.6, 510.
M90g:11024
CALLANDREAU O.,
[1] Sur la formule sommatoire de Maclaurin, C.R. Acad.
Sci., Paris, 86 (1878), 589-592.
J10.178
ÇALLIALP F.,
[1] On the class number of real quadratic fields and the
Riemann hypothesis (Turkish, English summary),
Doga Math., 14 (1990), no. 2, 114-119.
M91h:11121
CAMERON D.,
[1] Euler and Maclaurin made easy,
Math. Sci., 12 (1987), no. 1, 3-20.
Z649.41021; M89g:41021; R1988,1B4
CAMPBELL R.,
[1] Les intégrales eulériennes et leurs applications.
Étude approfondie de la fonction gamma. Collection Universitaire de
Mathématiques, XX. Dunod, Paris 1966 xxv+268 pp.
Z174.36201; M34#6161; R1967,9B132K
CANDELPERGHER B., COPPO M.A., DELABAERE E.,
[1] La sommation de Ramanujan,
Enseign. Math. (2) 43 (1997), no. 1-2, 93-132.
Z884.40008; M99a:11149
CANTERZANI S.,
[1] Lettera a Torquato Vareno, sopra una maniera di
cavare i numeri Bernoulliani, Mem. Mat. e Fis. Soc. Ital., Modena,
11, (1804), 173-180.
CAO ZHEN FU,
[1] On the Diophantine equation $x^4-py\sp 2=z\sp p$
C. R. Math. Rep. Acad. Sci. Canada 17 (1995), no. 2-3, 61-66.
Corrig.: C. R. Math. Rep. Acad. Sci. Canada 18 (1996), no. 5, 233-234.
Z857.11011; M96h:11020, 97i:11026
CARDA K.,
[1] Zur Theorie der Bernoullischen Zahlen, Monatsh.
Math. und Phys., 5 (1894), 185-192.
J25.412
[2] Darstellung der Bernoullischen Zahlen durch
bestimmte Integrale, Monatsh. Math. und Phys., 5 (1894),
321-324.
J25.413
[3] Über eine Beziehung zwischen bestimmten
Integralen, Monatsh. Math. und Phys., 6 (1895),
121-126.
J26.317
CARLITZ L.,
[1] An analogue of the von Staudt-Clausen theorem,
Duke Math. J., 3 (1937), 503-517.
J63.II.879; Z17.195
[2] An analogue of the von Staudt-Clausen theorem,
Duke Math. J., 7 (1940), 62-67.
J66,562; Z24.244; M2-146e
[3] An analogue of the Bernoulli polynomials,
Duke Math. J., 8 (1941), 405-412.
Z25,96; M2-342e
[4] Generalized Bernoulli and Euler numbers,
Duke Math. J., 8 (1941), 585-589.
Z63/I; M3-67b
[5] The coefficients of the reciprocal of a series,
Duke Math. J., 8 (1941), no. 3, 689-700.
Z63/I; M3-147j
[6] q-Bernoulli numbers and polynomials,
Duke Math. J., 15 (1948), 987-1000.
Z32,003; M10-283g
[7] Some properties of Hurwitz series,
Duke Math. J., 16 (1949), no. 2, 285-295.
Z41,174; M10-593e
[8] Congruences for the coefficients of the Jacobi elliptic
functions, Duke Math. J., 16 (1949), no. 2, 297-302.
Z38,179; M10-593f
[9] Congruences for the coefficients of hyperelliptic and
related functions, Duke Math. J., 19 (1952), no. 2,
329-337.
Z48,30; M13-913j
[10] Note on irreducibility of the Bernoulli and Euler
polynomials, Duke Math. J., 19 (1952),
475-481.
Z47,257; M14-163h
[11] Some theorems on Bernoulli numbers of higher order,
Pacific J. Math., 2 (1952), 127-139.
Z46,40; M14-138d
[12] A divisibility property of the Bernoulli polynomials,
Proc. Amer. Math. Soc. 3 (1952), 604-607.
Z49,163; M14-539d
[13] A note on Bernoulli numbers and polynomials of
higher order, Proc. Amer. Math. Soc., 3 (1952), 608-613.
Z49,163; M14-539e
[14] Some congruences for the Bernoulli numbers,
Amer. J. Math., 75 (1953), 163-172.
Z50,39; M14-539c; R1954,2861
[15] Some congruences of Vandiver,
Amer. J. Math., 75 (1953), 707-712.
Z51,276; M15-201a; R1954,4340
[16] Some sums containing Bernoulli functions,
Amer. Math. Monthly, 60 (1953), 475-476.
Z51,7; M15-104h; R1954,3209
[17] A theorem of Glaisher, Canad. J. Math.,
5 (1953), 306-316.
Z52,38; M14-1064b; R1954,3216
[18] Note on the class number of real quadratic fields,
Proc. Amer. Math. Soc., 4 (1953), 535-537.
M15-104g; R1954,3214
[19] Some sums connected with quadratic residues,
Proc. Amer. Math. Soc., 4 (1953), 12-15.
Z50,267; M14-621e; R1953,565
[20] A note on Bernoulli and Euler numbers of order
$\pm p$, Proc. Amer. Math. Soc., 4 (1953), 178-183.
Z51,276; M14-1064d; R1954,1051
[21] Remark on a formula for the Bernoulli numbers, Proc.
Amer. Math. Soc., 4 (1953), 400-401.
Z50,9; M14-973h; R1954,2518
[22] A note on the multiplication formulas for the
Bernoulli and Euler polynomials, Proc. Amer. Math. Soc., 4 (1953),
184-188.
Z51,250; M14-640h; R1953,1052
[23] A special congruence, Proc. Amer. Math. Soc., 4 (1953),
933-936.
Z52,38; M15-400h; R1955,55
[24] The class number of an imaginary quadratic field,
Comm. Math. Helv., 27 (1953), 338-345.
Z52,34; M15-404d; R1955,2540
[25] Some theorems on Kummer's congruences, Duke
Math. J., 20 (1953), 423-431.
Z51,276; M15-10f; R1954,3614
[26] The multiplication formulas for the Bernoulli and
Euler polynomials, Math. Mag., 27 (1953),
59-64.
Z51,307; M15-308g; R1955,1813
[27] Some theorems on the Schur derivative, Pacific J.
Math., 3 (1953), 321-332.
Z50,38; M14-951e; R1954,3217
[28] Some theorems on generalized Dedekind sums, Pacific
J. Math., 3 (1953), 513-522.
Z57,37; M15-12b; R1954,3219
[29] Some congruences of Bernoulli numbers of higher
order, Quarter. J. Math. Oxford Ser.(2), 4 (1953),
112-116.
Z50,267; M14-1064c; R1954,1976
[30] Note on a theorem of Glaisher, J. London Math.
Soc., 28 (1953), 245-246.
Z50,267; M14-726b; R1953,566
[31] The first factor of the class number of a
cyclic field, Canad. J. Math., 6
(1954), 23-26.
Z55,34; M15-686b; R1954,5046
[32] A theorem of Ljunggren and Jacobsthal on
Bernoulli numbers, Proc. Amer. Math. Soc., 5
(1954), 34-37.
Z55,35; M15-507a; R1955,611
[33] Note on irregular primes, Proc. Amer. Math. Soc., 5
(1954), 329-331.
Z58,37; M15-778b; R1955,2090
[34] $q$-Bernoulli and Eulerian numbers,
Trans. Amer. Math. Soc., 76 (1954), 332-350.
Z58,12; M15-686a; R1956,180
[35] Hankel determinants and Bernoulli
numbers, Tôhoku Math. J. (2), 5 (1954),
272-276.
Z55,270; M15-777d; R1955,3052
[36] Note on the cyclotomic polynomial,
Amer. Math. Monthly, 61 (1954),
106-108.
Z55,35; M15-508d; R1955,612
[37] A note on generalized Dedekind sums,
Duke Math. J., 21 (1954),
399-403.
Z57,37; M16-14f; R1955,3603
[38] Dedekind sums and Lambert series,
Proc. Amer. Math. Soc., 5 (1954), 580-584.
Z57,38; M16-14d; R1955,4853
[39] Extension of a theorem of Glaisher and some
related results, Bull. Calcutta Math. Soc., 46
(1954), no. 2, 77-80.
Z56,268; M16-570b; R1955,4853
[40] A note on power residues,
Duke Math. J., 22 (1955), no. 4, 583-587.
M17-713d; R1959,9743
[41] Note on the class number of quadratic fields,
Duke Math. J., 22 (1955), 589-593.
Z66,27; M17-713e; R1959,9743
[42] A degenerate Staudt-Clausen theorem, Arch.
Math. und Phys., 7 (1956), 28-33.
Z70,40; M17-586a; R1956,7091
[43] Arithmetic properties of elliptic functions, Math. Z.,
64 (1956), no. 4, 425-432.
Z72,33; M17-1057e; R1958,8953
[44] A note on Bernoulli numbers of higher
order, Scripta Math., 22 (1956),
217-221.
Z78,32; M19-941c; R1958,4477
[45] The coefficients of $\sinh x/ \sin x$,
Math. Mag., 29 (1956), 193-197.
Z70,273; M17-944e; R1957,83
[46] A note on Kummer's congruences, Arch.
Math., 7 (1957), 441-445.
Z77,51; M19-120a; R1957,8427
[47] A note on the Staudt-Clausen theorem, Amer.
Math. Monthly, 64 (1957), 19-21.
Z77,51; M18-560c; R1957,7620
[48] Some polynomials of Touchard connected with the Bernoulli
numbers, Canadian J. Math., 9 (1957), no. 2, 188-190.
Z77,281; M19-27e; R1959,534
[49] Expansion of q-Bernoulli numbers, Duke
Math. J., 25 (1958), 355-364.
Z102,32; M20#2480; R1959,4425
[50] Bernoulli and Euler numbers and
orthogonal polynomials, Duke Math. J., 26
(1959), 1-15.
Z85,287; M21#2761; R1960,1287
[51] Multiplication formulas for products of Bernoulli and Euler
polynomials, Pacific J. Math., 9 (1959), no. 3, 661-666.
Z89,280; M21#7317; R1961,4B458
[52] Some congruences involving binomial
coefficients, Elem. Math., 14 (1959), no. 1,
11-13.
Z85,28; M20#6384; R1959,9762
[53] Composition of sequences satisfying Kummer's congruences,
Memoria publicada en Collectanea Mathematica (Barcelona), XI
(1959), 137-152.
Z96,27; M22#4671; R1961,2A97
[54] Note on the coefficients of $\cosh x / \cos x$, Math.
Mag., 32 (1959), 132-136.
Z95,262; M21#2754; R1960,1316
[55] Eulerian numbers and polynomials,
Math. Mag., 32 (1959), no. 5, 247-260.
Z92,66; M21#3596; R1961,1B349
[56] Some finite summation formulas of arithmetic character,
Publ. Math. Debrecen, 6 (1959), 262-268.
Z97,264; M22#1549; R1962,2A142
[57] A property of the Bernoulli numbers, Amer.
Math. Monthly, 66 (1959), 714-715.
R1960,8581
[58] Arithmetic properties of generalized
Bernoulli numbers, J. Reine Angew. Math., 202
(1959), 174-182.
Z125,22; M22#20; R1960,8580
[59] Some arithmetic properties of generalized
Bernoulli numbers, Bull. Amer. Math. Soc., 65
(1959), 68-69.
Z82,32; M21#3383; R1960,6167
[60] Note on the integral of the product of
several Bernoulli polynomials, J. London Math. Soc.,
34 (1959), 361-363.
Z86,58; M21#5750; R1960,10534
[61] Kummer's congruences $\pmod{2^r}$,
Monatsh. Math., 63 (1959), 394-400.
Z103,26; M21#6350; R1960,6145
[62] A special case of Kummer's congruences
$\pmod{2^e}$, Enseigment Math. (2), 5 (1959),
171-175 (1960).
Z104,267; M23#A1587; R1960,12480
[63] Note on Nörlund's polynomial $B_n^{(z)}$,
Proc. Amer. Math. Soc., 11 (1960),
452-455.
Z100,17; M22#5587; R1961,3B61
[64] Eulerian numbers and polynomials of higher order,
Duke Math. J., 27 (1960), no. 3, 401-423.
Z104,290; M23#A1588; R1961,6A139
[65] Multiplication formulas for generalized Bernoulli and Euler
polynomials, Duke Math. J., 27 (1960), no. 4, 537-545.
Z132,55; M22#9636; R1961,12B314
[66] A property of the Bernoulli numbers,
Amer. Math. Monthly, 67 (1960), no. 10,
1011-1012.
R1961,9A148
[67] Kummer's congruences for the Bernoulli
numbers, Portug. Math., 19 (1960),
203-210.
Z95,30; M23#A2361; R1961,9A153
[68] A note on Bernoulli and Euler polynomials of the second kind,
Scripta Math., 25 (1961), no. 4, 323-330.
Z118,65; M25#4138; R1963,3B44
[69] Criteria for Kummer's congruences,
Acta Arith., 6 (1961), 375-391.
Z99,28; M27#4786; R1952,3A104
[70] The Staudt-Clausen theorem,
Math. Mag., 34 (1961), 131-146.
Z122,47; M24#A258; R1961,12A212
[71] A generalization of Maillet's determinant
and a bound for the first factor of the class-number,
Proc. Amer. Math. Soc., 12 (1961), 256-261.
Z131,36; M22#12093; R1962,1A139
[72] Some generalized multiplication formulas for the Bernoulli
polynomials and related functions, Monatsh. Math., 66
(1962), no. 1, 1-8.
Z102,55; M25#2244; R1963,3B44
[73] A note on sums of powers of integers, Amer. Math. Monthly, 69 (1962), 290-291.
[74] A conjecture concerning the Euler numbers,
Amer. Math. Monthly, 69 (1962), no.6, 538-540.
Z105,264; R1963,4B55
[75] A note on Eulerian numbers,
Arch. Math., 14 (1963), 383-390.
Z116,251; M28#3960
[76] Some formulas for the Bernoulli and Euler
polynomials, Math. Nachr., 25
(1963), 223-231.
Z112,45; M27#2663; R1964,1B53
[77] Generalized Dedekind sums, Math. Z., 85
(1964), no. 1, 83-90.
Z122,47; M29#3427; R1965,3A135
[78] Summation of certain series,
Amer. Math. Monthly, 71 (1964), 41-44.
Z129,46; R1964,12B33
[79] Recurrences for the Bernoulli and Euler
numbers, J. Reine Angew. Math., 214/215 (1964),
184-191.
Z126,262; M28#3961; R1965,3A136
[80] Extended Bernoulli and Eulerian numbers,
Duke Math. J., 31 (1964), 667-689.
Z127,295; M29#5796; R1965,7B39
[81] Recurrences for the Bernoulli and Euler
numbers II, Math. Nachr., 29 (1965),
151-160.
Z151,15; M31#5825; R1967,8V221
[82] The coefficients of $\cosh x/ \cos x$,
Monatsh. Math., 69 (1965), 129-135.
Z141,41; M31#1222; R1965,11A151
[83] Linear relations among generalized
Dedekind sums, J. Reine Angew. Math., 220
(1965), 154-162.
Z148,273; M32#88; R1966,10A79
[84] A theorem on generalized Dedekind sums, Acta Arith.,
11 (1965), no. 2, 253-260.
Z131,288; M32#87; R1966,5A110
[85] The irreducibility of the Bernoulli
polynomial $B_{14}(x)$, Math. Comp., 19
(1965), 667-670.
Z135,17; M33#117; R1966,9A128
[86] Some properties of the Nörlund polynomial
$B_n^{(x)}$, Math. Nachr., 33 (1967), 297-311.
Z154,293; M36#129; R1967,12V280
[87] Bernoulli numbers, Fibonacci Quart.,
6 (1968), no.3, 71-85.
Z159,56; M38#1071; R1970,6V335
[88] Some unusual congruences for the Bernoulli
and Genocchi numbers, Duke Math. J., 35
(1968), 563-566.
Z169,368; M37#2672; R1969,6V225
[89] A conjecture concerning Genocchi numbers,
K. Norske Vidensk. Selsk. Sk., (1971), No. 9, 1-4.
Z245.05004; M45#6749; R1972,4B73
[90] A note on Bernoulli numbers and
polynomials, Elemente Math., 29 (1974),
90-92.
Z283.10003; M50#4604; R1975,2V454
[91] Note on some convolved power sums, SIAM J. Math. Anal.,
8 (1977), no. 4, 701-709.
Z363.10008; M56#3384; R1978,2V417
[92] Generalized Stirling and related numbers,
Revista Mat. Univ. Parma (4), 4 (1978), 79-99.
Z402.10017; M80h:10017; R1980,7V487
[93] A characterization of the Bernoulli and
Euler polynomials, Rend. Sem. Mat. Univ. Padova,
62 (1980), 309-318.
Z443.33020; M81k:10020; R1981,8V590
[94] Some polynomials related to the Bernoulli
and Euler polynomials, Util. Math., 19 (1981),
81-127.
Z474.10012; M82j:10023; R1981,12B38
[95] Some remarks on the multiplication
theorems for the Bernoulli and Euler polynomials,
Glas. Math. (3), 16 (36) (1981), no. 1,
3-23, (Serbo-Croatian Summary).
Z474.10013; M83b:10009; R1982,3B34
[96] The reciprocity theorem for Dedekind sums,
Pacific J. Math., 3 (1953), 523-527.
R1954,2515
[97] A note on Euler numbers and polynomials,
Nagoya Math. J., 7 (1954), 35-43.
R1956,179
[98] Note on a formula of Hermite,
Math. Mag., 33 (1959/60), 7-11.
M21#5602; R1960,9983
[99] A recurrence formula for $\zeta(2n)$.
Proc. Amer. Math. Soc., 12 (1961), no. 6, 991-992.
Z101,39; M24#A3140; R1962,7B42
[100] Some arithmetic properties of a special sequence of integers,
Canad. Math. Bull., 19 (1976), no. 4, 425-429.
M56#239
[101] Degenerate Stirling, Bernoulli and Eulerian numbers,
Utilitas Math., 15 (1979), 51-88.
Z404.05004; M80i:05014; R1979,11V408
[102] Explicit formulas for the Dumont-Foata polynomials,
Discrete Math., 30 (1980), no. 3, 211-225.
M81f:05007; R1980,10V450
[103] Some restricted multiple sums,
Fibonacci Quart. 18 (1980), no. 1, 58-65.
Z426.10014; M84c:05012; R1980,9A119
[104] Some arithmetic properties of the Olivier functions,
Math. Ann., 128 (1955), 412-419.
Z065.27203; M16,677b; R1956,181
[105] Generating functions,
Fibonacci Quart. 7 (1969), no. 4, 359-393.
Z194.00701; M41 #8254; R1970,10V210
CARLITZ L., LEVINE J.,
[1] Some problems concerning Kummer's congruences for the
Euler numbers and polynomials, Trans. Amer. Math. Soc.,
96 (1960), 23-37.
Z99,29; M22#6768; R1961,5A150
CARLITZ L., OLSON F.R.,
[1] Some theorems on Bernoulli and Euler
numbers of higher order, Duke Math. J., 21
(1954), 405-421.
Z56,36; M15-934b; R1955,4216
CARLITZ L., RIORDAN J.,
[1] Congruences for Eulerian numbers,
Duke Math. J., 20 (1953), no. 3, 339-343.
Z51,276; M15-10e; R1954,4341
[2] The divided central difference of zero,
Canad. J. Math., 15 (1963), 94-100.
Z108,251; M26#48
CARLITZ L., SCOVILLE R.,
[1] The sign of the Bernoulli and Euler numbers,
Amer. Math. Monthly, 80 (1973), 548-549.
Z273.10012; M47#4917
[2] Tangent numbers and operators,
Duke Math. J., 39 (1972), 413-429.
Z243.05009; M46#1968; R1973,5V422
[3] Enumeration of up-down permutations by upper records,
Monatsh. Math., 79 (1975), 3-12.
Z315.05004; M50#12748; R1975,10V259
[4] Enumeration of rises and falls by position,
Discrete Math., 5 (1973), 45-59.
Z259.05008; M47#1626; R1973,11B434
[5] Generating functions for certain types of permutations,
J. Combinatorial Theory Ser. A, 18 (1975), no. 3, 262-275.
Z303.05007; M51#7890; R1975,11B334
CARLITZ L., STEVENS H.,
[1] Criteria for generalized Kummer's congruences,
J. Reine Angew. Math., 207 (1961),
203-220.
Z99,29; M23#A1585; R1962,3A105
CARLITZ L.: see also AL-SALAM W.A., CARLITZ L.
CARMICHAEL R.D.,
[1] The theory of numbers and diophantine
analysis, New York, 1915.
J42.283
CARR G.S.,
[1] A synopsis of elementary results in pure mathematics containing
propositions, formulae, and methods of analysis, with abridged demonstrations.
Macmillan and Bowes, Cambridge, 1886. xxxvi + 936 pp.
J17.1154
CARTIER P.,
[1] An introduction to zeta functions. From number theory to physics
(Les Houches, 1989), 1-63. Springer, Berlin, 1992.
Z790.11061; M94b:11081
CARTIER P., ROY Y.,
[1] Certains calculs numériques relatifs à l'interpolation
p-adique des séries de Dirichlet. In: Modular functions of one variable III,
pp. 269-349. Lecture Notes in Math., Vol. 350, Springer-Verlag,
Berlin, 1973.
Z265.10021; M48#8451; R1974,6A447
CASSELS J.W.S.,
[1] Local Fields. London Math. Soc. Student Texts, 3. Cambridge Univ.
Press, Cambridge-New York, 1986. xiv + 360 pp.
Z595.12006; M87i:11172; R1987,8A307
CASSOU-NOGUÈS PH., TAYLOR M.J.,
[1] Un élément de Stickelberger quadratique,
J. Number Theory, 37 (1991), no. 3, 307-342.
Z719.11075; M92e:11125
CASSOU-NOGUÈS P.,
[1] Formes linéaires p-adiques et prolongement analytique.
Sémin. Théor. Nombres, 1970-71 (Univ. Bordeaux I, Talence), Exp. No. 14,
7 pp., Talence, 1971.
Z227.12005; M53#2904
[2] Formes linéaires p-adiques et prolongement analytique,
C.R. Acad. Sci. Paris, A 274 (1972), 5-8.
Z227.12005; M45#5092; R1972,6A348
[3] Formes linéaires p-adiques et
prolongement analytique, Bull. Soc. Math. France,
(1974), Suppl., no. 39/40, 23-26.
Z301.12004; M50#12985; R1975,7A475
[4] Analogues p-adiques de certaines fonctions arithmétiques.
Sémin. Théor. Nombres, 1974-75 (Univ. Bordeaux I, Talence), Exp. No. 24,
12 pp., Talence, 1975.
Z386.12011; M53#363; R1976,7A434
[5] Prolongement analytique et valeurs aux entiers négatifs de
certaines séries arithmétiques relatives à des formes
quadratiques.
Sémin. Théor. Nombres, 1975-76 (Univ. Bordeaux I, Talence), Exp. No. 4,
34 pp., Talence, 1976.
Z227.12005; M55#12696
[6] Valeurs aux entiers négatifs des fonctions zêta et des
fonctions zêta p-adiques,
Invent. Math., 51 (1979), no. 1, 29-59.
Z408.12015; M80h:12009b; R1979,9A328
[7] Séries de Dirichlet. Séminaire de théorie des nombres.
Univ. Bordeaux I, Année 1980-81, Exposé no. 22, 14 pp. (1981).
Z507.12007; M84b:12017
[8] Applications arithmétiques de l'étude des
valeurs aux entiers négatifs des séries de Dirichlet
associées à un polynôme, Ann. Inst. Fourier,
31 (1981), Suppl., fasc. 4, 1-36.
Z496.12009; M83e:12011; R1982,6A114
[9] Valeurs aux entiers négatifs des séries de
Dirichlet associées à un polynôme, 1, J.
Number Theory, 14 (1982), no. 1,
32-64.
Z496.12008; M83e:12012; R1982,8A359
CASTELLANOS D.,
[1] The ubiquitous $\pi$. I.
Math. Mag., 61 (1988), no. 2, 67-98.
Z654.10001; M89c:01025; R1989,3A7
[2] The ubiquitous $\pi$. II.
Math. Mag., 61 (1988), no. 3, 148-163.
M89c:11184
[3] A generalization of Binet's formula and some of its consequences.
Fibonacci Quart., 27 (1989), no. 5, 424-438.
Z689.10020, 723.11006; M91e:11018
[4] A note on Bernoulli polynomials,
Fibonacci Quart., 29 (1991), no. 2, 98-102.
Z725.11010; M92h:11018
CATALAN E.,
[1] Sur les différences de $1^p$ et sur le calcul des nombres de
Bernoulli, Annali sci. mat. e fis., Roma, 2 (1859), 195-199,
Annali di Matematica Pura et Applicata, (1) 2 (1859), 239-243.
[2] Sur les nombres de Bernoulli et sur quelques formules qui en dépendent, C.R. Acad. Sci. Paris, 54 (1862), 1030-1033, 1059-1062.
[3] Remarques sur une note de M. Le Besgue (relative aux nombres de Bernoulli), C.R. Acad. Sci. Paris, 58 (1864), 902-904.
[4] Sur les calcul des nombres de Bernoulli, C.R. Acad. Sci. Paris, 58 (1864), 1105-1108.
[5] Sur les nombres d'Euler, C.R. Acad. Sci. Paris, 66 (1868), 415-416.
[6] Sur les nombres de Bernoulli et d'Euler et sur quelques intégrales
définies, Brux. Acad. Sci. Mém., 37 (1869), 1-19.
J2.155
[7] Recherches sur le développement de la fonction $\Gamma$,
Bull. de l'Acad., Bruxelles, 36 (1873), 4-16.
J5.169
[8] Note sur les nombres de Bernoulli, Bull. de
l'Acad., Bruxelles, 81 (1875), 441-443.
J7.160
[9] Rapport sur la note de Mr. Le Paige, Bull. Acad. Royal Sci. Belgiques (2), 61 (1876), 935-939.
[10] Note sur la communication de
précédente, Bull. Acad. Royal Sci., Belgiques (2),
41 (1876), 1018-1019.
J8.147
[11] Extrait d'une lettre de M. Catalan à M. G. de Longchamps
(Sur les nombres de Bernoulli), Nouv. Corres. Math.,
4 (1878), 119.
J8.193
[12] Sur les manières contradictoires de définir les nombres de Bernoulli, Nouv. Corres. Math., 5 (1879), 196-198.
[13] Extraits d'une lettre à M. Hermite, Nouv.
Corres. Math., 6 (1880), 320-321.
J12.122
[14] Théorème de Staudt et de Clausen, Bull.
Sci. Math. et Astr. (2), 4 (1880), 77-82.
J12.128
[15] Mélanges mathématiques, Mém. Soc.
Royal. Sci., Liège (2), 12 (1885),
1-407.
J17.22
[16] Mémoires de la Sociétée Royale des Sciences, XII (1885), Chapters: XXXII, XXXIII, XXXIV, XXXV, LXXVI, 86-119, 320-327.
CATALAN E.: see also LUCAS E., CATALAN E.
CATTABIANCHI L.T.,
[1] Numeri e polinomi di Bernoulli parametrizzati,
Riv. Mat. Univ. Parma (2), 4 (1963), 281-291.
Z149,44; M32#1378
CAUCHY A.L.,
[1] Sur la théorie des nombres,
Bull. Sci. Math., Phys. et Chim., Paris, 15
(1831), 137-139.
[2] Mémoire sur la théorie des nombres, Mémoires Acad. Sci., Paris, 17 (1840), 249-269, 435-455.
CAYLEY A.,
[1] A dissertation on Bernoulli's numbers,
Messeng. Math., 4 (1875), 157-160.
J7.132
CELÉRIER C.,
[1] Démonstration d'un théorème
fondamental relatif aux facteurs primitifs des nombres
premiers, Applications au théorème de Fermat et à
la recherche des facteurs primitifs, Mém. Soc. de
Phys. et d'Hist. Nat. de Genève, 32 (1896), partie
2, no. 7, 1-61.
J28.188
CELKO M.,
[1] On the sums of some infinite series using the Bernoulli numbers (Slovak).
In: Kovácik, O. (Ed.), Proceedings of the seminar on orthogonal
polynomials and other applications, held in Zilina, Slovakia. Univ. of
Transport and Communications, Dept. of Math., Zilina, 1993. pp. 3-6.
Z793.40002
CESÀRO E.,
[1] Quelques formules, Nouv. Corres. Math., 6 (1880), 450-452.
[2] Principes du calcul symbolique, Mathesis,
3 (1883), 10-17.
J15.206
[3] Sull' inversione delle indentità arithmetiche,
Giorn. Mat., 23 (1885), 168-174.
J17.138
[4] Sur les nombres de Bernoulli et d'Euler,
Nouv. Ann. Math. (3), 5 (1886), 305-327, 496.
J18.227
[5] Sur un théorème de M. Lipschitz, et sur la
partie fractionnaire des nombres de Bernoulli,
Annali Mat., Milano (2), 14 (1886), 221-226.
J18.226
[6] Sur les démonstrations du théorème de
Staudt et de Clausen, Bull. Acad. Royale Sci. Belgique
(3), 20 (1890), 280-289.
J22.267
[7] A proposito d'una generalizzazione della
funzione $\varphi$ de Gauss, Periodico de Mat., 7
(1892), 1-6.
J24.167
[8] Elementares Lehrbuch der algebraischen
Analysis und der Infinitesimalrechnung mit zahlreichen
Übungsbeispielen. Nach einem Manuskript des
Verfassers deutsch herausgegeben von G. Kowalewski,
Leipzig, 1904.
J35.294
CHABA A.N.: see BEZERRA V.B., CHABA A.N.
CHANG KU-YOUNG, KWON SOUN-HI,
[1] Class number problem for imaginary cyclic number fields,
J. Number Theory 73 (1998), no. 2, 318-338.
CHARALAMBIDES CH.A.,
[1] Bernoulli related polynomials and numbers,
Math. Comp., 33
(1979), no. 146, 794-804.
Z402.10009; M80h:10018; R1980,2V594
CHARKANI EL HASSANI M.,
[1] Involution de Leopoldt et unités elliptiques.
Thèse doct. 3ème cycle, math. pure, Univ. Sci. et Méd.
Grenoble,
1984, 47 pp.
R1987,5A310D
CHARKANI EL HASSANI M., GILLARD R.,
[1] Unités elliptiques et groupes de classes,
Ann. Inst. Fourier, 36 (1986), no. 3, 29-41.
Z597.12005; M88f:11056; R1987,5A311
CHEBYSHEV P.L.,
[1] Note sur différentes séries,
J. de Math. (1), 16 (1851), 337-346.
CHELLALI M.,
[1] Nombres de Bernoulli modulo $p^m$ et nombres premiers
irréguliers, Thèse Doct. 3ème cycle, math. pure, Univ. Sci. et Méd.
Grenoble, (1982), Var. pag.
R1986,9A652
[2] Accélération de calcul de nombres de Bernoulli,
J. Number Theory, 28 (1988), no. 3, 347-362.
Z644.10010; M89h:05002; R1988,10A112
[3] Congruences entre nombres de Bernoulli-Hurwitz dans le cas supersingulier,
J. Number Theory, 35 (1990), no. 2, 157-179.
Z705.11008; M92f:11079
CHEN JING RUN, LI JIAN YU,
[1] On the sums of powers of natural numbers,
Chinese Quart. J. Math., 2 (1987), no. 1, 1-17.
Z636.10008; M90i:11108
CHEN KWANG-WU: see EIE M., CHEN KWANG-WU
CHEN MING-PO, SRIVASTAVA H.M.,
[1] Some families of series representations for the Riemann $\zeta(3)$,
Result. Math., 33 (1998), no.3-4, 179-197.
Z980.45948
CHEN TIAN PING,
[1] Asymptotic expansions for splines,
Approx. Theory Appl., 2 (1986), no.2, 1-9.
Z608.41006; M88e:41026
CHEN XUMING,
[1] Recursive formulas for $\zeta(2k)$ and $L(2k-1)$,
College Math. J., 26 (1995), no. 5, 372-376.
CHEN ZHI MING,
[1] Some identities for Euler numbers and Bernoulli numbers (Chinese),
Pure Appl. Math., 10 (1994), no. 1, 7-10.
Z841.11009; M95h:11015
CHILDRESS N., GOLD R.,
[1] Zeros of p-adic L-functions,
Acta Arith., 48 (1987), no. 1, 63-71.
Z565.12009; M88i:11091; R1987,12A272
CHISTYAKOV I.I.,
[1] Bernullievy chisla [Bernoulli numbers]. Moscow, 1895.
J26,283
CHOI JUNESANG,
[1] Explicit formulas for Bernoulli polynomials of order $n$,
Indian J. Pure Appl. Math., 27 (1996), no. 7, 667-674.
Z860.11009; M97e:11029
CHOLEWINSKI F.M.,
[1] The Finite Calculus Associated With Bessel Functions.
Contemporary Mathematics, Vol. 75. Amer. Math. Soc., Providence, R.I.,
1988.
Z691.05007; M89m:05013
CHOWLA P., CHOWLA S.,
[1] A note on Bernoulli numbers, J.
Number Theory, 12 (1980), 445-446.
Z445.10014; M82c:10013; R1981,6A327
[2] On Bernoulli numbers, II, J.
Number Theory, 14 (1982), no. 1, 65-66.
Z485.10010; M82m:10022; R1982,7A101
[3] Criterion for the class number of some real quadratic
fields to be 1,
Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 1.
Z617.12002; R1987,12A288
[4] Criteria for the class number of quadratic fields to be 1,
Norske Vid. Selsk.Skr. (Trondheim), 1986, no. 2, 2-3.
Z617.12003; R1987,12A289
[5] Some unsolved problems,
Norske Vid. Selsk. Skr. (Trondheim), 1986, no. 2, 7.
Z617.12008; R1987,12A290
CHOWLA S.,
[1] A new proof of Von Staudt's theorem,
J. Indian Math. Soc., 16 (1926), 145-146.
J62.140
[2] Some properties of Eulerian and prepared Bernoullian numbers,
Messenger Math., 57 (1927), 121-126.
J54.182
[3] On a conjecture of Ramanujan,
Tôhoku Math. J., 33 (1930), 1-2.
J56.II.875
[4] A note on Bernoulli's numbers. In: Proc. Number Theory, Conf. at Calif. Inst. of Tech., Summer, 1955.
[5] On the signs of certain generalized
Bernoulli numbers, Kgl. Norske Vid. Selskabs Forhandl.,
(1961), 34 (1962), no. 21, 102-104.
Z105,25; M25#2043; R1962,10A96
[6] Leopoldt's criterion for real quadratic
fields with class-number 1, Abhandl. Math. Sem.
Univ. Hamburg, 35 (1970), 32.
Z222.12002; M43#3232; R1971,5A373
[7] On some formulae resembling the Euler-Maclaurin sum formula,
Kgl. Norske Vid. Selskabs Forhandl., 34 (1961/62), no.23, 107-109.
M25#2044; R1962,10A94
CHOWLA S., HARTUNG P.,
[1] An "exact" formula for the m-th Bernoulli
number, Acta. Arith., 22
(1972), 113-115.
Z244.10008; M46#7151; R1973,3V334
CHOWLA S.: see also ANKENY N.C., ARTIN E., CHOWLA S.
CHOWLA S.: see also ANKENY N.C., CHOWLA S.
CHOWLA S.: see also CHOWLA P., CHOWLA S.
CHU W.: see HSU L.C., CHU W.
CHU WEI PAN: see DANG SI SHAN, CHU WEI PAN
CIBRARIO M.,
[1] Sui numeri di Bernoulli e di Eulero, Rendic.
Accad. d. Lincei, Cl. Sci., Roma (6), 18 (1933), 110-118.
J59.I.171; Z7,413
[2] Sui polinomii di Bernoulli e di Eulero,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 207-214.
J59.II.1050; Z8.162
[3] Su alcune generalizzazioni dei numeri e dei
polinomii de Bernoulli e di Eulero,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 275-279.
Z8.162
[4] Proprietà dei numeri e dei polinomii di
Bernoulli e di Eulero generalizzati,
Rendiconti Accad. d. L. Roma (6), 18 (1933), 365-369.
J59.II.1050; Z8.261
CIKÁNEK P.,
[1] Matrices of the Stickelberger ideals $\pmod l$ for all primes up to 125000,
Arch. Math. (Brno), 27a (1991), 3-6.
Z760.11028; M93i:11149; R1992,10A239
[2] A special extension of Wieferich's criterion.
Math. Comp., 62 (1994), no. 206, 923-930.
Z805.11027; M94g:11023
CLARKE F.,
[1] The universal von Staudt theorems,
Trans. Amer. Math. Soc., 315 (1989), no. 2, 591-603.
Z683.10013; M90a:11026; R1990,9A97
[2] On Dibag's generalization of von Staudt's theorem,
J. Algebra, 141 (1991), no. 2, 420-421.
Z734.11019; M92k:11020
[3] On Vandiver's generalised Bernoulli numbers, Preprint, 1990.
CLARKE F., SLAVUTSKII I.SH.,
[1] The integrality of the values of Bernoulli polynomials and of generalised
Bernoulli numbers. Bull. London Math. Soc. 29 (1997), no. 1, 22-24.
Z865.11021; M97k:11022
CLARKE F.: see also BAKER A.J., CLARKE F., et al.
CLAUSEN T.,
[1] Lehrsatz aus einer Abhandlung über die
Bernoullischen Zahlen, Astr. Nachr., 17 (1840),
351-352.
COATES J.,
[1] p-adic L-functions and Iwasawa's theory,
Algebraic Number Fields, ed. Fröhlich A., London,
1977, 269-353.
Z393.12027; M57#276; R1979,5A288
[2] The work of Mazur and Wiles on cyclotomic
fields, Lect. Notes in Math., 901 (1981),
220-242.
Z506.12001; M83i:12005; R1982,8A362
COATES J., POITOU G.,
[1] Du nouveau sur les racines de l'unité, Gaz.
Math., 15 (1980),
5-26.
Z476.12007
COATES J., SINNOTT W.,
[1] On p-adic L-functions over real quadratic
fields, Invent. Math., 25 (1974), no. 3/4,
253-279.
Z305.12008; M50#7093; R1975,2A401
COEN L.E.S.,
[1] Sums of Powers and the Bernoulli Numbers.
M.A. thesis, Eastern Illinois University, Charleston, Illinois, 1996. 54pp.
COHEN H., OLIVIER M.,
[1] Calcul des valeurs de la fonction zêta de Riemann en
multiprécision.
C. R. Acad. Sci. Paris Ser. I Math., 314 (1992), no. 6, 427-430.
Z751.11057; M93g:11134
COHEN S.P.,
[1] Heights of torsion points on commutative group varieties,
Proc London Math. Soc. (3), 52 (1986), no. 3, 427-444.
Z585.14032; M87i:14038; R1987,6A469
COHN H.,
[1] Introduction to the construction of class fields.
Cambridge Studies in Advanced Math., 6. Cambridge Univ. Press,
Cambridge-New York, 1985. x + 213 pp.
Z571.12001; M87i:11165; R1986,11A423
COLEMAN R.,
[1] Local units modulo circular units, Proc.
Amer. Math. Soc., 89 (1983), no. 1, 1-7.
Z528.12005; M85b:11088; R1984,4A367
COMRIE L.J.: see FLETCHER A. et al.
COMTET L.,
[1] Analyse combinatoire. Tomes I, II. Presses Universitaires de France,
Paris, 1970. 192 pp., 190 pp.
Z221.05001-2; M41#6697
[2] Advanced combinatorics. The art of finite and infinite expansions.
Revised and enlarged edition. D. Reidel Publ. Co., Dordrecht-Boston, 1974.
x + 343 pp.
Z283.05001; M57#124
CONWAY J.H., SLOANE N.J.A.,
[1] On enumeration of lattices of determinant
one, J. Number Theory, 15 (1982), no. 1,
83-94.
Z496.10023; M84b:10047; R1982,12V585
COPPO M.A.: see CANDELPERGHER B., COPPO M.A., DELABAE RE E.,
CORNELISSEN G.,
[1] Zeros of Eisenstein series, quadratic class numbers and supersingularity
for rational function fields,
Math. Ann. 314 (1999), no. 1, 175-196.
COSTA PEREIRA N.: see PEREIRA N.C.
COSTABILE F.,
[1] Expansions of real functions in Bernoulli polynomials and applications.
Conf. Semin. Mat. Univ. Bari No. 273, (1999), 13 pp.
COTLAR M.,
[1] Estudio de una classe de polinomios de Bernoulli, Math. Notae
(Boletin Inst. Math.), Rosario, Argentina, 7
(1946), no. 2, 69-95.
Z61,140; M9-30f
[2] Un método para obtener congruencias de numeros de Bernoulli
[A method for obtaining congruences of Bernoulli numbers],
Math. Notae (Boletin Inst. Math.), Rosario, Argentina, 7
(1947), no. 1, 1-29.
Z30,014; M9-175c
COX D.A.,
[1] Introduction to Fermat's Last Theorem.
Amer. Math. Monthly, 101 (1994), no. 1, 3-14.
Z849.11002; M94i:11022; R1994,10A246
CRANDALL R.E.,
[1] Topics in Advanced Scientific Computation.
TELOS/Springer-Verlag, Santa Clara, CA, 1996.
M97g:65005
CRANDALL R.E., BUHLER J.P.,
[1] On the evaluation of Euler sums.
Experiment. Math., 3 (1994), no. 4, 275-285.
Z833.11045; M96e:11113
CRANDALL R.E., DILCHER K., POMERANCE C.,
[1] A search for Wieferich and Wilson primes,
Math. Comp., 66 (1997), no. 217, 433-449.
Z854.11002; M97c:11004; R1997,10A129
CRANDALL R.E.: see also BUHLER J.P. et al.
CRANDALL R.E.: see also BAILEY D.H., BORWEIN J.M., CRANDALL R.E.
CROMBEZ G.,
[1] On a generalization of the Bernoulli and Euler polynomials,
Ganita, 22 (1971), no. 1, 131-141.
Z222.30019; M45#3810
CSORBA G.,
[1] Über die Partitionen der ganzen Zahlen,
Math. Ann., 75 (1914), 545-568.
J45.285
CVIJOVIC D., KLINOWSKI J.,
[1] New formulae for the Bernoulli and Euler polynomials at rational
arguments,
Proc. Amer. Math. Soc., 123 (1995), no. 5, 1527-1535.
Z827.11012; M95g:11085
[2] New rapidly convergent series representations for $\zeta(2n+1)$,
Proc. Amer. Math. Soc. 125 (1997), no. 5, 1263-1271.
Z863.11055; M97g:11090
[3] Values of the Legendre chi and Hurwitz zeta functions at rational arguments. Math. Comp. 68 (1999), no. 228, 1623-1630.
DAMAMME G.,
[1] Transcendence properties of Carlitz zeta-values.
The Arithmetic of Function Fields (Proceedings, Ohio State Univ., 1991),
303-311. Walter deGruyter, Berlin - New York 1992.
Z788.11021; M94a:11109
DANG SI SHAN, CHU WEI PAN,
[1] Some identities involving Euler numbers, Bernoulli numbers, and
eneralized Stirling numbers of the first kind. (Chinese),
Pure Appl. Math. 13 (1997), no. 2, 109-113, 117.
Z899.11007; M99d:11018
D'ANIELLO C.,
[1] On some inequalities for the Bernoulli numbers,
Rend. Circ. Mat. Palermo (2), 43 (1994), no. 3, 329-332.
Z830.11108; M96f:11030
DARBOUX G.,
[1] Sur les développements en série des
fonctions d'une seule variable, J. Math. Pures
Appl. (3), 2 (1876), 291-312.
J8.124
DARMON H.: see BALOG A., DARMON H., ONO K.
DAVID E.,
[1] Applications de la dérivation d'Arbogast à
la solution de la partition des nombres et à d'autres
problèmes, J. Math. Pures Appl., 8,
(1882), 61-72.
J14.129
DAVIS B.: see SITARAMACHANDRA RAO R., DAVIS B.
DAVIS H.T.,
[1] Tables of the Higher Mathematical Functions,
v.2, Bloomington, Indiana: Principia Press, 1935, xiii
+ 391pp.
Z13,216
DEEBA E.Y., RODRIGUEZ D.M.,
[1] Stirling's series and Bernoulli numbers,
Amer. Math. Monthly, 98 (1991), no.5, 423-426.
Z743.11012; M92g:11025; R1992,453
DELABAERE E.: see CANDELPERGHER B., COPPO M.A., DELABAERE E.,
DELANGE H.,
[1] Sur les zéros réels des polynômes de Bernoulli,
C.R. Acad. Sci. Paris, 303, Série I, (1986), no. 12, 539-542.
Z607.10006; M88a:11020; R1987,3B31
[2] Sur les zéros imaginaires des polynômes de Bernoulli,
C.R. Acad.Sci. Paris, 304, Série I, (1987), no. 6, 147-150.
Z607.10007; M88d:30009; R1987,7B20
[3] On the real roots of Euler polynomials,
Monatsh. Math., 106 (1988), no. 2, 115-138.
Z653.10010; M89k:11009; R1989,3A250
[4] Sur les zéros réels des polynômes de Bernoulli,
Ann. Inst. Fourier, Grenoble, 41 (1991), no. 2, 267-309.
Z739.11006 (725.11011); M93h:11023; R1992,6B16
DELIGNE P., RIBET K.A.,
[1] Values of Abelian L-functions at negative
integers over totally real fields, Invent. Math., 59
(1980), no. 3, 227-286.
Z434.12009; M81m:12019; R1982,3A341
DELVOS F.J.,
[1] Bernoulli functions and periodic B-splines,
Computing, 38 (1987), no. 1, 23-31.
Z616.65147; M88f:41017; R1987,11B1272
DEMAILLY J.P.,
[1] Sur le calcul numérique de la constante
d'Euler, Gaz. Math.,
no. 27 (1985), 113-126.
M86m:11105
DE MOIVRE A.,
[1] Miscellanea analytica de seriebus et quadraturis, London, 1730.
DE MORGAN A.,
[1] Differential and Integral Calculus, Chapters XIII and XX,
1842.
DENCE J.B.,
[1] A development of Euler numbers,
Missouri J. Math. Sci. 9 (1997), no. 3, 148-155.
M98h:11023
DENCE J.B., DENCE Th. P.,
[1] Elements of the theory of numbers.
Harcourt/Academic Press, San Diego, CA, 1999. xviii+517 pp. ISBN 0-12-209130-2
M99k:11001
DÉNES P.,
[1] An extension of Legendre's criterion in
connection with the first case of Fermat's last theorem,
Publ. Math. Debrecen, 2
(1951), 115-120.
Z43,273; M13-822h
[2] Über die Diophantische Gleichung $x^{np
+ y^{np} = p^mz^{np}$, Czechoslovak Math. J. 1,
76 (1951) (1952), 179-185.
Z48,29; M16-903g
[3] Beweis einer Vandiver'schen Vermutung
bezüglich des zweiten Falles des letzten Fermat'schen
Satzes, Acta Sci. Math. (Szeged), 14 (1952),
197-202.
Z49,310; M14-451e
[4] Über die Diophantische Gleichung
$x^l+y^l = cz^l$, Acta Math., 88 (1952),
241-251.
Z48,275; M16-903h
[5] Über irreguläre Kreiskörper,
Publ. Math. Debrecen, 3 (1953) (1954),
17-23.
Z56,33; M15-686d; R1955,3043
[6] Über Grundeinheitssysteme der
irregulären Kreiskörper von besonderen
Kongruenzeigenschaften, Publ. Math. Debrecen, 3
(1954) (1955), 195-204.
Z58,269; M17-131c; R1957,69
[7] Über den zweiten Faktor der
Klassenzahl und den Irregularitätsgrad der
irregulären Kreiskörper, Publ. Math. Debrecen,
4 (1956), 163-170.
Z71,265; M18-20e; R1959,4421
DENINGER CH.,
[1] On the analogue of the formula of Chowla and
Selberg for real quadratic fields, J. Reine Angew. Math.,
351 (1984), 171-191.
Z527.12009; M86f:11085; R1985,1A215
DENNLER G.,
[1] Bestimmung sämtlicher meromorpher Lösungen
der Funktionalgleichung
$f(z) = {1 \over k} \sum_{h=0}^{k-1}{f({z+h \over k})}$,
Wiss. Z. Friedrich-Schiller-Univ. Jena,
Math.-Natur., 14 (1965), no. 5, 347-350.
Z146,132; M37#5559; R1968,1B202
DE PESLOUAN L.,
[1] Sur une congruence entre les nombres de Bernoulli,
C. R. Acad. Sci. Paris, 170 (1920), 267-269.
J47.131
DEPINE R.A.: see BANUELOS A., DEPINE R.A.
DERR L.: see OUTLAW C., SARAFYAN D., DERR L.
DESBROW D.,
[1] Sums of integer powers, Math. Gaz.,
66 (1982), no. 436, 97-100.
M83j:10054
DESNOUX P.-J.,
[1] Congruences dyadiques entre nombres de classes de corps quadratiques,
Manuscr. Math., 62 (1988), no. 2, 163-179.
Z664.12002; M90c:11079; R1989,4A265
DE TEMPLE D. W., WANG SHUN HWA,
[1] Half-integer approximations for the partial sums of the
harmonic series,
J. Math. Anal. Appl., 160 (1991), no. 1, 149-158.
Z747.40002; M92j:41042
DEVANATHAN V.: see SUBRAMANIAN P.R., DEVANATHAN V.
DIAMOND J.,
[1] The $p$-adic log gamma function and $p$-adic Euler constants,
Trans. Amer. Math. Soc. 233 (1977), 321-337.
Z382.12008; M58 #16610
[2] The p-adic gamma measures, Proc. Amer. Math. Soc.,
75 (1979), no. 2, 211-218.
Z421.12019; M80d:12013; R1980,1A369
[3] On the values of p-adic L-functions at
positive integers, Acta Arith., 35 (1979), no. 3,
223-237.
Z463.12007; M80j:12013; R1980,5A313
DIBAG I.,
[1] An analogue of the von Staudt-Clausen
theorem, J. Algebra, 87 (1984), Suppl., no.
2, 332-341.
Z463.12007; M85j:11028; R1984,10A308
[2] Generalisation of the von Staudt-Clausen theorem,
J. Algebra, 125 (1989), no. 2, 519-523.
Z683.10014; M90g:11025; R1990,5A275
DI CAVE A., RICCI P.E.,
[1] Sui polinomi di Bell ed i numeri di Fibonacci e di Bernoulli,
Matematiche, 35 (1980), no. 1-2, 84-95.
Z534.33008; M84h:05011
DICKEY L.J., KAIRIES H.H., SHANK H.S.,
[1] Analogs of Bernoulli polynomials in
fields $ Z_p$, Aequationes Math., 14 (1976),
no. 3, 401-440.
Z343.12006; M53#13103; R1977,2A117
DICKSON J.D.H.: see BARNIVILLE J.J., DICKSON J.D.H., LAMPE E.
DICKSON L.E.,
[1] Notes on the theory of numbers,
Amer. Math. Monthly, 18 (1911), 109-111.
[2] History of the Theory of Numbers,
Washington, (1919-1923), vol. 1-3.
Reprint: Chelsea Publ. Co., New York, 1966.
J47,100; 49,100; M39#6807a,b,c
DI CRESCENZO A., ROTA G.-C.,
[1] On umbral calculus (Italian. English summary),
Ricerche Mat., 43 (1994), no. 1, 129-162.
M96e:05016
DIENGER J.,
[1] Die Lagrangesche Formel und die Reihensummierung durch dieselbe,
J. Reine Angew. Math., 34 (1847), 75-100.
DIETER U.,
[1] Reciprocity theorems for Dedekind sums,
IX. Mathematikertreffen Zagreb-Graz (Motovun, 1995), 11-24, Grazer Math. Ber.,
328, Karl-Franzens-Univ. Graz, Graz, 1996.
Z880.11041; M98i:11024
DILCHER K.,
[1] Zero-free regions for Bernoulli polynomials,
C.R. Math. Rep. Acad. Sci. Canada, 5 (1983), no. 6, 241-246.
Z532.30005; M85a:30015; R1984,3B30
[2] Irreducibility and zeros of generalized Bernoulli polynomials,
C.R. Math. Rep. Acad. Sci. Canada, 6 (1984), no. 5, 273-278.
Z558.10012; M85k:11010; R1985,7A148
[3] On a Diophantine equation involving quadratic
characters, Compositio Math., 57 (1986), no. 3, 383-403.
Z584.10008; M87e:11046; R1986,8A99
[4] Irreducibility of certain generalized Bernoulli polynomials belonging to
quadratic residue class characters,
J. Number Theory, 25 (1987), no. 1, 72-80.
M88a:11021; R1987,6A98
[5] Asymptotic behaviour of Bernoulli, Euler and generalized Bernoulli
polynomials,
J. Approx. Theory, 49 (1987), no. 4, 321-330.
Z609.10008; M88g:33001; R1987,10A63
[6] Zeros of Bernoulli, generalized Bernoulli and Euler polynomials,
Mem. Amer. Math. Soc., 73 (1988), no. 386, iv + 94 pp.
Z645.10015; M89h:30005; R1988,10B22
[7] Multiplikationstheoreme für die Bernoullischen Polynome und
explizite Darstellungen der Bernoullischen Zahlen,
Abh. Math. Sem. Univ. Hamburg, 59 (1989), 143-156.
Z712.11015; M91h:11012
[8] Sums of products of Bernoulli numbers.
J. Number Theory, 60 (1996), no. 1, 23-41.
Z863.11011; M97h:11014
DILCHER K., SKULA L.,
[1] A new criterion for the first case of Fermat's last theorem.
Math. Comp. 64 (1995), no. 209, 363-392.
Z817.11022; M95c:11034
DILCHER K., SKULA L., SLAVUTSKII I. SH.,
[1] Bernoulli Numbers. Bibliography (1713-1990).
Queen's Papers in Pure and Applied Mathematics, 87, Queen's University,
Kingston, Ont., 1991.
Z741.11001; M92f:11001; R1992,4A54
DILCHER K.: see also BORWEIN J.M., BORWEIN P.B., DILCHER K.
DILCHER K.: see also AGOH T., DILCHER K., SKULA L.
DILCHER K.: see also CRANDALL R.E., DILCHER K., POMERANCE C.
DILLON J.F., ROSELLE D.P.,
[1] Eulerian numbers of higher order,
Duke Math. J., 35 (1968), no. 2, 247-256.
Z185,30; M37#1261; R1969,1V229
DI MARZIO F.,
[1] The very accurate summation of inverse powers and the generation
of Bernoulli and Euler numbers,
Comput. Phys. Comm., 44 (1987), no. 1-2, 57-62.
Z673.10008; M88f:65014; R1988,2B36
DINTZL E.,
[1] Über Zahlen im Körper
$k({\sqrt{-2)$, welche den Bernoullischen Zahlen
analog sind, Sitz. Akad. Wiss., Wien, Math. und natur.
Kl., 2e Abteil., 118 (1909), 173-201.
J40.265
[2] Über einige Eigenschaften der Bernoullischen
und analoger Zahlen,
Jb. k. k. Erzherzog-Rainer-Realgymnasium Wien, (1910), 1-11.
J(41.503)
[3] Über die Entwicklungscoeffizienten der elliptischen
Funktionen, insbesondere im Falle singulärer Moduln,
Monatsh. Math. und Physik, 25 (1914), 125-151.
J45.685
DITTRICH G.,
[1] Die Theorie des Fermat-Quotienten,
Dissertation, Jena, 1924.
DOKOVIC D.,
[1] Formule pour le calcul des puissances
semblables des nombres naturels, (Serbo-Croatian,
French summary), Bull. Soc. Math. Phys. Macédoine
8 (1957), 38-40.
M23#A97
DOKSHITZER T.,
[1] On Wilf's conjecture and generalizations.
In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number
Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15,
133-153. Amer. Math. Soc., Providence, 1995.
Z837.11023; 96h:11031
DOLZE P.,
[1] Über Bernoullische Zahlen und Funktionen, welche zu einer
Fundamentaldiskriminante gehören, und deren Anwendung auf die Summation
unendlicher Reihen. Inaugurationsdissertation, Rostock, 44p. Dresden, 1907.
J37.500; 38.466
DONAGHEY R.,
[1] Binomial self-inverse sequences and tangent coefficients,
J. Combin. Theory A, 21 (1976), no. 2, 155-163.
Z345.05002; M54#2475; R1977,3V372
DÖRFLER P.,
[1] A Markov type inequality for higher derivatives of polynomials,
Monatsh. Math., 109 (1990), no. 2, 113-122.
Z713.41006; M91h:26017
DOWLING J.P.,
[1] The mathematics of the Casimir effect,
Math. Magazine, 62 (1989), no. 5, 324-333.
M91a:81229
DRYANOV D., KOUNCHEV O.,
[1] Polyharmonically exact formula of Euler-Maclaurin,
multivariate Bernoulli functions, and Poisson type formula,
C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), no. 5, 515-520.
Z908.65003; M99j:65003
DUCCI E.,
[1] Somma della potenze simili dei termini di
una progressione per differenza, Giorn. Matem., Napoli,
23 (1894), 348-352.
J25.411
DUKE W., IMAMOGLU Ö.,
[1] Siegel modular forms of small weight,
Math. Ann. 310 (1998), no. 1, 73-82.
Z892.11017; M98m:11037
DUMAS P., FLAJOLET P.,
[1] Asymptotique des récurrences mahlériennes: le cas
cyclotomique, J. Théor. Nombres Bordeaux 8 (1996), no. 1, 1-30.
Z869.11080; M97f:39029
DUMONT D.,
[1] Sur une conjecture de Gandhi concernant les nombres de Genocchi,
Discrete Math., 1 (1972), no. 4, 321-327.
Z263.10005; M45#5073; R1974,7B461
[2] Propriétés géométriques des nombres de Genocchi, Thèse, Strasbourg, 1973.
[3] Interprétations combinatoires des nombres de Genocchi,
Duke Math. J., 41 (1974), 305-318.
Z297.05004; M49#2412; R1985,3V437
[4] Conjectures sur des symétries ternaires liées aux nombres
de Genocchi,
Discrete Math., 139 (1995), no. 1-3, 469-472.
Z823.05003; M96e:05007
[5] Further triangles of Seidel-Arnold type and continued fractions related to
Euler and Springer numbers.
Adv. in Appl. Math. 16 (1995), no. 3, 275-296.
Z834.05004; M96i:11021
DUMONT D., FOATA D.,
[1] Une propriété de symétrie des nombres de Genocchi,
Bull. Soc. Math. France, 104 (1976), no. 4, 433-451.
Z362.05018; M55#7794
DUMONT D., RANDRIANARIVONY A.,
[1] Dérangements et nombres de Genocchi,
Discrete Math., 132 (1994), no. 1-3, 37-49.
Z807.05001; M95h:05015
[2] Sur une extension des nombres de Genocchi,
European J. Combin., 16 (1995), no. 2, 147-151.
Z823.05004; M96k:11015
DUMONT D., VIENNOT G.,
[1] A combinatorial interpretation of the Seidel generation of Genocchi numbers.
Ann. Discrete Math., 6 (1980), 77-87.
Z449.10011; M82j:10024; R1981,8V588
DUMONT D., ZENG J.,
[1] Further results on the Euler and Genocchi numbers.
Aequationes Math., 47 (1994), no. 1, 31-42.
Z805.11024; M95b:11021
[2] Polynômes d'Euler et fractions continues de Stieltjes-Rogers,
Ramanujan J. 2 (1998), no. 3, 387-410.
M99i:05008
DUMONT D.: see also BARSKY D., DUMONT D.
DUPARC H.J.A., PEREMANS W.,
[1] On certain representations of positive
integers, Nieuw. Arch. Wisk., 1 (1953), no. 2,
92-98.
Z50,269; M15-288e; R1954,2853
DUPUIS N.F.,
[1] Cruces mathematicae [Sect. 4: Expression of the general Bernoullian number
as a combinational determinant].
Royal Society of Canada, Proc. and Trans. 7 (1889), Sect. 3, 15-22.
DUTKA J.,
[1] On the summation of some divergent series of Euler and the zeta functions.
Arch. Hist. Exact Sci. 50 (1996), no. 2, 187-200.
Z858.01018; M98a:11112; R1997,5A6
EDWARDS A.W.F.,
[1] Sums of powers of integers: a little of the history,
Math. Gaz., 66 (1982), no. 435, 22-28.
Z493.10004; M83e:10013
EDWARDS H.M.,
[1] Riemann's zeta function,
Academic Press, New York-London, 1974. xiii + 315 pp.
Z315.10035*; M57#5922; R1975,12A133K
[2] The background of Kummer's proof of
Fermat's last theorem for regular primes, Arch. Hist.
Exact. Sci., 14 (1975), no. 3, 219-236.
Z323.01022; M57#12066a; R1976,8A15
[3] Fermat's last theorem. A genetic
introduction to algebraic number theory, Springer-Verlag, New
York-Berlin, 1977. xv + 410 pp.
Z355.12001*; M83b:12001a; R1978,4A94K
[4] Postscript to:"The background of Kummer's proof of Fermat's last
theorem for regular primes",
Arch. History Exact Sci., 17 (1977), no. 4, 381-394.
Z364.01004; M57#12066b; R1978,6A15
[5] Fermat's last theorem, Sci. Amer., 239 (1978), no. 4, 104-122.
[6] Fermat's last theorem. (Bulgarian).
Fiz.-Mat. Spis. B"lgar. Akad. Nauk., 22 (55)(1979), no. 4, 290-300
(1980).
Z462.10001; M82d:10002
EGORYCHEV G.P.,
[1] Integral representation and computation of combinatorical
sums. (Russian) Izdat. "Nauka" Sibirsk. Otdel, Novosibirsk, 1977, 283 pp.
Z453.05001; M58#10474; R1978,3V444K
EIE MINKING [YÜ WÊN CH'ING],
[1] On the values at nonpositive integers of the Dedekind zeta
function of a real quadratic field,
Chinese J. Math., 15 (1987), no. 4, 215-226.
Z661.10031; M90e:11177
[2] On the values at negative half-integers of the Dedekind zeta
function of a real quadratic field,
Proc. Amer. Math. Soc., 105 (1989), no. 2, 273-280.
Z667.10013; M90a:11137; R1990,1A151
[3] On a Dirichlet series associated with a polynomial,
Proc. Amer. Math. Soc., 110 (1990), no. 3, 583-590.
Z708.11040; M91m:11071; R1991,105139
[4] On the values at negative integers of zeta-functions
associated with polynomials,
Soochow J. Math., 16 (1990), no. 1, 53-61.
Z701.11030; M91k:11076
[5] The Maass space for Cayley numbers,
Math. Z., 207 (1991), no. 4, 645-655.
Z737.11012; M92k:11053
[6] The special values at negative integers of Dirichlet series
associated with polynomials of several variables,
Proc. Amer. Math. Soc., 119 (1993), no.1, 51-61.
Z789.11052; M93k:11082
[7] A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials.
Trans. Amer. Math. Soc. 348 (1996), no. 3, 1117-1136.
Z864.11043; M96h:11011; M1996,8V251
EIE M., CHEN KWANG-WU
[1] A theorem on zeta functions associated with polynomials,
Trans. Amer. Math. Soc. 351 (1999), no. 8, 3217-3228.
Z928.11038; M99m:11099
EIE M., KRIEG A.,
[1] The Maass space on the half-plane of Cayley numbers of degree two,
Math. Z., 210 (1992), no.1, 113-128.
Z(729.11022); 757.11015; M93e:11063
EIE M., LAI K.F.,
[1] On Bernoulli identities and applications,
Rev. Mat. Iberoamericana, 14 (1998), no. 1, 167-213.
M99h:11017
EIE M., ONG Y.L.,
[1] A generalization of Kummer's congruences,
Abh. Math. Sem. Univ. Hamburg 67 (1997), 149-157.
Z896.11035; M98h:11024
EIE M.: see also FANG C.-H., EIE M.
EIGEL E.G., Jr.,
[1] Sums of powers of integers,
Pi Mu Epsilon J., 4 (1964), 7-10.
EISENLOHE O.,
[1] Entwicklung der Functionsweise der
Bernoullischen Zahlen, J. Reine Angew. Math., 28
(1844), 193-212.
ELIZALDE E.,
[1] An asymptotic expansion for the first derivative of the generalized
Riemann zeta function, Math. Comp., 47 (1986), no. 175, 347-350.
Z603.10040; M87h:11081; R1987,2A95
[2] A simple recurrence for the higher derivatives of the Hurwitz
zeta function.
J. Math. Phys., 34 (1993), no. 7, 3222-3226.
Z779.11037; M94h:11078
ELY G.S.,
[1] Bibliography of Bernoulli's numbers, Amer.
J. Math., 5 (1882), 228-235.
J15.21
[2] Some notes on the numbers of Bernoulli and
Euler, Amer. J. Math., 5 (1883), 337-341.
J15.200
[3] On the numbers $a_{n,m}$, which occur in connection with the proof of
Staudt's theorem concerning Bernoulli numbers, Johns Hopkins Univ.
Circulars, 2 (1883), 47-48.
J15.204
ENDÔ A.,
[1] The relative class number of certain imaginary abelian fields,
Abh. Math. Sem. Univ. Hamburg, 58 (1988), 237-243.
Z699.12015; M90m:11169; R1990,5A283
[2] The relative class number of certain imaginary abelian number
fields and determinants,
J. Number Theory, 34 (1990), no. 1, 13-20.
Z695.12004; M91b:11121
[3] On an index formula for the relative class number of a
cyclotomic number field,
J. Number Theory, 36 (1990), no. 3, 332-338.
Z715.11062; M91m:11092
[4] On the Stickelberger ideal of (2,...,2)-extensions of a
cyclotomic number field,
Manuscr. Math., 69 (1990), no. 2, 107-132.
Z715.11061; M91i:11144
[5] The relative class number of certain imaginary abelian number fields of odd
conductors. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 3, 64-68.
Z862.11062; M97e:11137; R1996,10A251
ENTRINGER R.C.,
[1] A combinatorial interpretation of the Euler and Bernoulli numbers,
Nieuw Arch. Wisk. (3), 14 (1966), 241-246.
Z145,14; M34#5692; R1967,10V246
ERDÉLYI A., MAGNUS W., OBERHETTINGER F., TRICOMI F.,
[1] Higher transcendental functions. Vol. III.,
McGraw-Hill, New York, 1955. xvii + 292 pp.
Z64,63; M16-586c; R1957,3259K
ERDÖS P., WAGSTAFF S.,
[1] The fractional parts of the Bernoulli
numbers, Illinois J. Math., 24 (1980), no. 1, 104-112.
Z(405.10011),449.10010; M81c:10064; R1980,11A108
ERNVALL R.,
[1] On the distribution $\pmod 8$ of the
E-irregular primes, Ann. Acad. Sci. Fenniae, Ser. A1,
Math., 1 (1975), no. 1, 195-198.
Z313.10010; M52#5594; R1976,10A98
[2] E-irregular primes and related tables, Math. Comp., 32 (1978), 656-657.
[3] Generalized Bernoulli numbers, generalized
irregular primes, and class number, Ann. Univ.
Turku., Ser. A1, (1979), no. 178, 1-72.
Z403.12010; M80m:12002; R1980,2A352
[4] Irregular primes (A lecture given in Finnish at the meeting of the Finnish Mathematical Society), Helsinki University of Technology Report Mat-C3, (1983), 7-14.
[5] Generalized irregular primes,
Mathematika, 30 (1983), no. 1, 67-73.
Z(506,12007),514.12006; M85g:11022; R1984,5A126
[6] An upper bound for the index of $\chi$-irregularity,
Mathematika, 32 (1985), no. 1, 39-44.
Z(555.12003),567.12007; M87e:11024
[7] A generalization of Herbrand's theorem,
Ann. Univ. Turku. Ser. AI, 1989, no. 193, 15 pp.
Z658.12003; M90e:11159; R1989,10A319
[8] A note on the cyclotomic units,
Comm. Math. Univ. St. Paul., 40 (1991), no. 1, 1-6.
Z742.11052; M92c:11118; R1992,5A266
[9] A congruence on Euler numbers (solution to a problem), Amer. Math. Monthly, 89 (1982), no. 6, 431.
ERNVALL R., METSÄNKYLÄ T.,
[1] Cyclotomic invariants and E-irregular primes,
Math. Comp., 32 (1978), 617-629; corrig. Math. Comp., 33
(1979), 433.
Z(381.12002),398.12002; M80c:12004a,b; R1978,587
[2] A method for computing the Iwasawa $\lambda$-invariant,
Math. Comp., 49 (1987), no. 179, 281-284.
Z(601.12010)616.12012; M88i:11080
[3] Cyclotomic invariants for primes between 125000 and 150000,
Math. Comp., 56 (1991), no. 194, 851-858.
Z724.11052; M91h:11157
[4] Computations of the zeros of $p$-adic $L$-functions,
Math. Comp., 58 (1992), no. 198, 815-830; S37-S53.
Z760.11021; M92j:11121; R1993,11A285; 1995,2A278
[5] Cyclotomic invariants for primes to one million,
Math. Comp., 59 (1992), no. 199, 249-250.
Z760.11029; M93a:11108; R1993,10A296
[6] On the $p$-divisibility of Fermat quotients,
Math. Comp. 66 (1997), no. 219, 1353-1365.
Z 970.26846; M97i:11003; R1998,5A91
ERNVALL R.: see also BUHLER J.P. et al
ESTANAVE E.,
[1] Sur les coefficients des développements en
série de tang $x$, sec$x$ et d'autres fonctions, Bull.
Soc. Math. France, 30 (1902), 220-226.
J33.290
ESTERMANN T.,
[1] Elementary evaluation of $\zeta(2k)$,
J. London Math. Soc., 22 (1947), no. 1, 10-13.
Z29.394; M9-234d
ETTINGSHAUSEN A.,
[1] Vorlesungen über die höhere Mathematik Bd. 1, Vienne, (1827).
EULER L.,
[1] Methodus generalis summandi progressiones,
Comment. Acad. Sci. Petropol., 6 (1732/33), (1738), 68-97.
[2] De summis serierum reciprocarum, Comment. Acad. Sci. Petropol., 7 (1734/35), (1740), 123-134.
[3] Inventio summae cujusque seriei ex dato termino generali, Comment. Acad. Sci. Petropol., 8 (1736), (1741), 9-22.
[4] Consideratio progressiones cujusdam ad circuli quadraturam inveniendam idoneae, Comment. Acad. Sci. Petropol., 11 (1739), (1750), 116-127.
[5] De seriebus quibusdam considerationes, Comment. Acad. Sci. Petropol., 12 (1740), (1750), 53-96.
[6] Introductio in analysin infinitorum, Lausannae, 1748.
[7] Institutiones Calculi Differentialis, Petersburg, 1755.
[8] De curva hypergeometrica hac aequatione expressa $y = 1.2 \cdots x$, Novi Comment. Acad. Sci. Petropol., 13 (1768), (1769), 3-66.
[9] De summis serierum numeros Bernoullianos involventium, Novi Comment. Acad. Sci. Petropol., 14 (1769), (1770), 129-167.
[10] De numero memorabili in summatione progressionis harmonicae naturalis occurrente, Acta. Acad. Petropol., p.2 (1781), (1785), 458-75.
[11] De seriebus potestatum reciprocis methodo nova et facillima summandis. Opuscula analytica, 2 (1785), 257-274 = Opera Omnia, I.15, Teubner, Leipzig-Berlin, 1927, 701-722.
EVANS R.J.: see BERNDT B.C., EVANS R.J.
EVANS R.J.: see BERNDT B.C., EVANS R.J., WILSON B.M.
EWELL J.A.,
[1] On values of the Riemann zeta function at integral arguments,
Canad. Math. Bull., 34 (1991), no. 1, 60-66.
Z731.11048; M92c:11087
EYTELWEIN J.A.,
[1] Ueber die Vergleichung der Differenz-Coefficienten mit den Bernoulli'schen
Zahlen,
Abhandl. Kgl. Preuss. Akad. Wiss., Math. Kl., (1816/17) (1819), 28-41.
[2] Grundlehren der höheren Analysis, Berlin, Bd. 2, 1824.
EZHOV I.I.,
[1] Bernoulli numbers and some of their
applications. (Russian), Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976, 109-115
M58#27735; R1977,11V539
[2] Bernoulli numbers and Chebyshev
problems for primes. (Russian), Dokl. Akad. Nauk. Ukrain. SSSR Ser. A,
(1981), no.6, 12-15.
Z459.10003; M83f:10047; R1981,11A81
FEINLER F.J.,
[1] A new method for calculating the Bernoulli numbers,
Mess. Math., 55 (1925), 40-44.
J(51.77)
[2] Recurrence formulas for the Bernoulli numbers derived
from zero differences (Abstract),
Bull. Amer. Math. Soc., 32 (1926), 126.
J(52.361)
FENDER W.,
[1] Zur Theorie von verallgemeinerten Bernoullischen und Eulerschen Zahlen,
Dissertation, Universität Jena, (1911), 58p.
J42.458
FENG KE QIN,
[1] The Ankeny-Artin-Chowla formula for cubic
number field (Chinese, English summary), J. China
Univ. Sci. Tech., 12 (1982), no. 1, 20-27.
M85a:11018
[2] A note on irregular prime polynomials in cyclotomic functional
field theory, J. Number Theory, 22 (1986), no.2, 240-245.
Z578.12012; M87g:11156; R1986,8A325
FENG KE QIN, GAO W.Y.,
[1] Bernoulli-Goss polynomial and class number of cyclotomic
function fields,
Sci. China Ser. A, 33 (1990), no. 6, 654-662.
Z708.11064; M91m:11099
FERGOLA E.,
[1] Sopra la sviluppo della funzione
$1\over{ce^x-1$ e sopra una nuovo expressione dei
numeri di Bernoulli, Mem. Accad. Sci., Napola, 2,
(1855/57), 315-324.
FERGUSON H.R.P.,
[1] Bernoulli numbers and non-standard differentiable structures on
$(4k-1$)-spheres, Fibonacci Quart., 11 (1973), no. 1, 1-14.
Z225.10012; M46#7134; R1973,9A537
FERRERO B.,
[1] Iwasawa invariants of abelian number fields,
Thesis, Princeton Univ., 1975.
[2] An explicit bound for Iwasawa's
$\lambda$-invariant, Acta Arith., 33 (1977), no. 4, 405-408.
Z(323.12004)355.12002; M56#15605; R1978,7A460
FERRERO B., GREENBERG R.,
[1] On the behaviour of p-adic L-functions at
$s=0$, Invent. Math., 50 (1978), no. 1, 91-102.
Z441.12003; M80f:12016; R1979,7A402
FERRERO B., WASHINGTON L.C.,
[1] The Iwasawa invariant $\mu_p$ vanishes for abelian number fields,
Ann. of Math. (2), 109 (1979), no. 2, 377-395.
Z443.12001; M81a:12005; R1979,12A379
FIELDS J.C.,
[1] Related expressions for Bernoulli's and
Euler's numbers, Amer. J. Math., 13 (1891), 191-192.
J22.266
FIKHTENGOLTS G.M.,
[1] Kurs differentsial'nogo i integral'nogo ischisleniya [A course in
differential and integral calculus], Vol. 2, Ch. 12.
Moscow, 1948.
Z33.107
FILLEBROWN S.,
[1] Faster computation of Bernoulli numbers,
J. Algorithms, 13 (1992), no. 3, 431-445.
Z755.11006; M94d:68044
FLAJOLET P.,
[1] On congruences and continued fractions for some classical
combinatorial quantities,
Discrete Math., 41 (1982), no. 2, 145-153.
M84f:05005; R1983,2A58
FLAJOLET P., PRODINGER H.,
[1] On Stirling numbers for complex arguments and Hankel contours.
SIAM J. Discrete Math. 12 (1999), no. 2, 155-159.
R921.05001
FLAJOLET P.: see DUMAS P., FLAJOLET P.
FLETCHER A., MILLER J.C.P., ROSENHEAD L., COMRIE L.J.,
[1] An Index of Mathematical Tables, Vol. I, II, 2nd ed.
Addison Wesley Publ. Co., Inc., Reading, Mass., 1962. xi + pp. 1-608;
iv + pp. 609-994.
M26#365a,b; R1963,7V44K
FLOCKE S.: see BUTZER P.L., FLOCKE S., HAUSS M.
FOATA D.,
[1] Propriétés arithmétiques des polynômes d'Euler.
Séminaire Delange-Pisot-Poitou, No. 20 (1967/68).
Z272.05006; R1969,9A79
[2] Groupes de réarrangements et nombres d'Euler,
C.R. Acad. Sci. Paris Sér. A, 275 (1972), 1147-1150.
Z269.20006; M47#8320; R1973,11V421
[3] Réarrangements d'applications associées aux nombres
de Genocchi,
C. R. des Journées Mathématiques de la Société
Math. de France, pp. 113-121. Cahiers Math. Montpellier,
no. 3, U. E. R. de Math., Univ. Sci. Tech. Languedoc,
Montpellier, 1974.
M51#12542
FOATA D., SCHÜTZENBERGER M.-P.,
[1] Théorie Géométrique des Polynômes Eulériens.
Lecture Notes in Mathematics, No. 138. Springer-Verlag, Berlin-Heidelberg-
New York, 1970.
Z214,262; M42#7523; R1971,1V267
[2] Nombres d'Euler et permutations alternantes.
In: A Survey of Combinatorial Theory, 173-187. North-Holland, Amsterdam,
1973.
Z271.05005; M50#6870; R1974,4V272
FOATA D., STREHL V.,
[1] Rearrangements of the symmetric group and enumerative properties
of the tangent and secant numbers,
Math. Z., 137 (1974), 257-264.
Z274.05007; M50#450; R1975,3V447
[2] Euler numbers and variations of permutations,
Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo I,
119-131. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Roma, 1976.
Z361.05010; M55#7795
FOATA D.: see also ANDREWS G., FOATA D.
FOATA D.: see also DUMONT D., FOATA D.
FORDER H.G.,
[1] Euler numbers, Math. Gazette, 14 (1928/29), 233.
J54.182
FORRESTER P.J.,
[1] Extensions of several summation formulae
of Ramanujan using the calculus of residues, Rocky Mountain
J. Math., 13 (1983), no. 4, 557-572.
Z537.10007; M85i:40004
FORT T.,
[1] Generalizations of the Bernoulli polynomials
and numbers and corresponding summation formulas,
Bull. Amer. Math. Soc., 48 (1942), no. 8, 567-574.
Z61,199; M4-79f
[2] An addition to "Generalizations of the Bernoulli polynomials and
numbers and corresponding summation formulas",
Bull. Amer. Math. Soc., 48 (1942), 949.
M4-79g
FOUCHÉ W.,
[1] A reciprocity law for polynomials with Bernoulli coefficients,
Trans. Amer. Math. Soc., 288 (1985), no. 1, 59-67.
Z558.10013; M86d:11085; R1986,1A387
[2] On the p-adic zeros of polynomials with Bernoulli coefficients,
Arch. Math., 45 (1985), no. 6, 534-537.
Z(563.10013)573.10012; M87b:11019; R1986,6A193
[3] On the Kummer-Mirimanoff congruences,
Quart. J. Math. (Oxford)(2), 37 (1986), no. 147, 257-261.
Z604.10007; M88a:11022; R1987,12A73
[4] The distribution of Bernoulli numbers modulo primes,
Arch. Math., 50 (1988), no. 2, 139-144.
Z644.10011; M89d:11011; R1988,8A101
FOULKES H.O.,
[1] Tangent and secant numbers and representations of symmetric groups,
Discrete Math., 15 (1976), no. 4, 311-324.
M53#10596; R1976/77,2V444
FOX, G.J.,
[1] A $p$-adic $L$-function of two variables,
Ph.D. thesis, University of Georgia, Athens, Georgia, 1997, 156pp.
[2] Euler polynomials at rational numbers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 3, 87-90.
FRAENKEL A.S.,
[1] A characterization of exactly covering
congruences, Discrete Math., 4 (1973), no. 4, 359-366.
Z257.10003; M47#4906; R1973,11A101
[2] Further characterizations and properties of
exactly covering congruences, Discrete Math.,
12 (1975), no. 1, 93-100.
Z306.10002; M51#10276; R1975,11V357
FRAME J.S.,
[1] Euler and tangent numbers and the exponential shift,
Amer. Math. Monthly, 67 (1960), 1016-1019.
R1961,10A151
[2] Bernoulli numbers modulo 27000, Amer.
Math. Monthly, 68 (1961), 87-95.
Z134,274; M23#A1586; R1962,1A146
[3] The Hankel power sum matrix inverse and the Bernoulli continued fraction,
Math. Comp., 33 (1979), no. 146, 815-826.
Z419.65029; M80f:65044; R1980,1A406
[4] Primes, ratios, and Bernoulli numbers (problem), Amer. Math. Monthly, 90 (1983), no. 9, 645-646.
[5] More like $\zeta(2[n/2])$ than $\zeta(2n)$ (problem), Amer. Math. Monthly, 93 (1986), 744-745.
FRANÇON J., VIENNOT G.,
[1] Permutations selon leurs pics, creux, doubles montées et doubles
descentes, nombres d'Euler et nombres de Genocchi,
Discrete Math., 28 (1979), no. 1, 21-35.
Z409.05003; M81a:05002; R1980,5V425
FRANSÉN A.,
[1] Properties of Stirling polynomials and a disproof
of Robertson's conjecture,
J. Math. Anal. Appl., 154 (1991), no. 2, 446-451.
Z729.30002; M92d:11016
FRAPPIER C.,
[1] Representation formulas for entire functions of exponential type and
generalized Bernoulli polynomials,
J. Austral. Math. Soc. Ser. A, 64 (1998), no. 3, 307-316.
Z909.30018; M99i:30045
FRESNEL J.,
[1] Congruences entre les nombres de Bernoulli,
Sémin. théor. nombres Delange-Pisot-Poitou, Fac.
Sci., Paris, 6 (1964/65), (1967), no. 14, 1-12.
Z206,336; M35#6505; R1968,5A206
[2] Nombres de Bernoulli et fonctions L
p-adiques, Sémin. théor. nombres Delange-Pisot-Poitou, Fac.
Sci., Paris, 7 (1965/66), (1967), no. 14, 1-15.
Z247.12013; M35#6507; R1968,5A189
[3] Les fonctions p-adiques L de Dirichlet,
Sémin. théor. nombres Delange-Pisot-Poitou, Fac.
Sci., Paris, 7 (1965/66), (1967), no. 17, 1-8.
Z222.12017; M35#6505; R1968,5A190
[4] Nombres de Bernoulli généralisés et
fonctions L p-adiques, C.R. Acad. Sci., Paris, 263 (1966), 337-340.
Z147,22; M34#1304; R1968,4V272
[5] Applications arithmétiques de la formule
p-adique des résidus, Sémin. théor. nombres
Delange-Pisot-Poitou, Fac. Sci., Paris, 8
(1966/67), (1968), no. 18, 1-8.
Z162,70; R1969,3A277
[6] Nombres de Bernoulli et fonctions L
p-adiques, Ann. Inst. Fourier, 17
(1967), (1968), 281-333.
Z157,103; M37#169; R1968,9A121
[7] Fonctions zêta p-adiques des corps de nombres abéliens réels,
Bull. Soc. Math. France, Mém. No. 25, 1971, pp. 83-89.
Z242.12009; M52#3121; R1972,3A321
FRESNEL J.: see also AMICE Y., FRESNEL J.
FRICKE A.,
[1] Die Potenzsummenformel und ihre Struktur,
Prax. Math., 29 (1987), no. 8, 462-470.
M89k:40008; R1988,7A103
FRIEDMAN E.C.,
[1] Ideal class group in basic
$ Z_{p_1 \times \cdots \times Z_{p_t}$-extension of abelian
number fields, Invent. Math., 65 (1982), no. 3, 425-440.
Z495.12007; M83i:12007; R1982,6A322
FRIEDMAN E., SANDS J. W.,
[1] On the $l$-adic Iwasawa $\lambda$-invariant in a $p$-extension.
With an appendix by Lawrence C. Washington.
Math. Comp. 64 (1995), no. 212, 1659-1674.
Z854.11055; M96a:11116; R1996,4A268
FRIEDMANN A.A., TAMARKINE J.,
[1] Sur les congruences du second degré et les
nombres de Bernoulli, Math. Ann., 62 (1906), no. 3, 409-412.
J37.228
[2] Quelques formules concernant la théorie
de la fonction $[x]$ et des nombres de Bernoulli, J.
Reine Angew. Math., 135 (1908), 146-156.
J39.262
FROBENIUS G.,
[1] Über den Fermatschen Satz, Sitzungsber. Preuss. Akad. Wiss. Berlin
(1909), 1222-1224. = J. Reine Angew. Math., 137 (1910), 314-316.
= Gesammelte Abhandlungen, Springer, Berlin, Bd. 3, 1968, 428-430.
J41.236
[2] Über den Fermatschen Satz, II, Sitzungsber. Preuss. Akad. Wiss.
Berlin, (1910), 200-208.
= Gesammelte Abhandlungen, Springer, Berlin, Bd. 3, 1968, 431-439.
J41.236
[3] Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungsber. Preuss. Akad. Wiss., (1910), no. 2, 809-847; Ges. Abhandlungen, Berlin: Springer, Bd. 3, 1968, 440-478.
[4] Über den Fermatschen Satz, III, Sitzungsber. Preuss. Akad. Wiss.,
(1914), N 22, 653-681; Ges. Abhandlungen, Berlin
e.a.: Springer, Bd. 3, 1968, 648-676.
J45.290
FUETER R.,
[1] Kummers Kriterium zum letzten Theorem von Fermat,
Math. Ann., 85 (1922), 11-20.
J48.130
FUJII A.,
[1] Some problems of Diophantine approximation in the theory of the
Riemann zeta function.
Proc. Japan Acad. Ser. A Math. Sci., 68 (1992), no. 6, 131-136.
Z795.11034; M93g:11093
[2] Some problems of Diophantine approximation in the theory of the
Riemann zeta function. II.
Proc. Japan Acad. Ser. A Math. Sci., 69 (1993), no. 4, 85-90.
Z804.11049; M94b:11084
[3] Some problems of Diophantine approximation in the theory of the
Riemann zeta function. III.
Comment. Math. Univ. St. Paul., 42 (1993), no. 2, 161-187.
Z805.11058; M94i:11065
[4] On the zeros of the Epstein zeta functions,
J. Math. Kyoto Univ. 36 (1996), no. 4, 697--770.
Z970.52672; M98e:11049
FUJISAKI G.,
[1] A generalization of Carlitz's determinant,
Sci. Pap. College Arts Sci. Univ. Tokoyo, 40 (1991), no. 2, 63-68.
Z722.11014; M91m:11012; R191,10A220
FUJIWARA M.,
[1] Sur les nouveaux nombres de M. Pascal,
Rom. Acc. L. Rend. (5), 17 (1908), 401-405.
J39.264
FUKUHARA S.,
[1] The space of period polynomials,
Acta Arith. 82 (1997), no. 1, 77-93.
Z881.11046; M99i:11027
[2] Generalized Dedekind symbols associated with the Eisenstein series.
Proc. Amer. Math. Soc. 127 (1999), no. 9, 2561-2568.
Z924.11030; M2000a:11061
FUNG. G., GRANVILLE A., WILLIAMS H.C.,
[1] Computation of the first factor of the class
number of cyclotomic fields,
J. Number Theory, 42 (1992), no. 3, 297-312.
Z762.11039; M93k:11097
GAJDA W.: see BANASZAK G., GAJDA W.
GAMBIOLLI D.,
[1] Memoria bibliografica sull'ultimo theorema
di Fermat, Periodico di Mat. (2), 3
(1901), 145-192.
J32.45
[2] Appendice alla mia memoria bibliografica
sull'ultimo theorema di Piotro Fermat, Periodico di Mat.,
4 (1901), 48-50.
J32.196
GANDHI J.M.,
[1] The coefficients of $cosh x/cos x$ and a note on Carlitz's
coefficients of $sinh x/sin x$,
Math. Mag., 31 (1958), no. 4, 185-191.
Z99,264; M20#5301; R1959,2326
[2] Some integrals for Genocchi numbers,
Math. Mag., 33 (1959), no. 1, 21-23.
Z92,57; M21#5751; R1960,13047
[3] A new formula for Genocchi Numbers,
Math. Student, 28 (1960), (1962), 83-85.
Z115,29; M26-45; R1962,11A109
[4] Generalized Fermat's last theorem and
regular primes, Proc. Japan Acad., 46 (1970), 626-629.
Z225.10016; M44#2701; R1971,9A94
[5] The coefficients of $sinh x/cos x$,
Can. Math. Bull., 13 (1970), no. 3, 305-310.
Z207,24; M42#7588; R1971,4A83
[6] A conjectured representation of Genocchi numbers,
Amer. Math. Monthly, 77 (1970), no. 5, 505-506.
Z198,370; R1971,1A100
[7] On generalized Fermat's last theorem. II.
J. Reine Angew. Math., 256 (1972), 163-167.
Z248.10028; M47#8426; R1973,3A177
[8] Euler's numbers and the Diophantine equation
$x^l + y^l = z^lc$, Acta Arith., 24 (1973), 21-26.
Z227.10009; M47#1736; R1973,11A134
[9] Congruences for Genocchi numbers,
Duke Math. J., 31 (1964), 519-527.
M29#2210; R1965,6A127
GANDHI J.M., GADIA S.K.,
[1] A simple proof of the infinity of irregular primes.
Proc. 7th Manitoba Conf. on Numer. Math. and Comp., Congress. Numer., XX,
Utilitas Math., Winnipeg, 1978, pp. 379-382.
Z482.10012; M80h:10010
GANDHI J.M., KASUBE H., SURYANARAYANA D.,
[1] Congruences for Bernoulli numbers modulo
$p^3$, Boll. Union. Mat. Ital., (1978), A 15, no. 3, 517-525.
Z391.10015; M80j:10017; R1979,7A134
GANDHI J.M., SINGH A.,
[1] Fourth interval formulae for the coefficients of $cosh x/cos x$,
Monatsh. Math., 70 (1966), no. 4, 327-329.
Z141,259; M33#5504; R1967,4B6
GANDHI J.M., TANEJA V.S.,
[1] The coefficients of $cosh x/cos x$,
Fibonacci Quart., 10 (1972), no. 4, 349-353.
Z248.10012; M46#7140; R1973,4V385
GAO W.Y.: see FENG KE QIN, GAO W.Y.
GARABEDIAN H.L.,
[1] A new formula for the Bernoulli numbers,
Bull. Amer. Math. Soc., 46 (1940), 531-533.
J66.319; Z63.I.309; M2-88e
GARDINER A.,
[1] Four problems in prime power divisibility,
Amer. Math. Monthly, 95 (1988), 926-931.
Z663.10002; R1989,10A105
GAWRILOWISCH A.,
[1] Über die Bernoullischen und Eulerschen
Zahlen, Veröffentl. Kgl. Serbischen Akad., Belgrad,
63 (1902), 113-142 (serb.).
J33.291
GEGENBAUER L.,
[1] Arithmetische Note, Sitzungsber. Math.-Natur.
Kl. Akad. Wiss., Wien, 96 (1887),
491-496.
[2] Notiz über die zu einer
Fundamentaldiscriminante gehörigen Bernoullischen
Zahlen, Sitzungsber. Math.-Natur. Kl. Akad. Wiss., Wien,
102 (1893), 1059-1069.
J15.416
GEKELER E.-U.,
[1] Some new identities for Bernoulli-Carlitz numbers,
J. Number Theory, 33 (1989), no. 2, 209-219.
Z697.12012; M90j:11128; R1990,5A284
[2] On regularity of small primes in function fields,
J. Number Theory, 34 (1990), no. 1, 114-127.
Z695.12008; M91a:11060; R1990,5A284
GELFAND M.B.,
[1] A note on a certain relation among Bernoulli
numbers. (Russian), Bashkir. Gos. Univ. Uchen. Zap., 31
(1968), Ser. Mat., no. 3, 215-216.
M43#7399; R1968,7V286
GELFOND A.O.,
[1] The calculus of finite differences. (Russian).
Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, (1952), 479 pp.
Z96,282; M14-759d; R1961,1B322K
[2] Residues and its applications. (Russian).
Izdat. "Nauka", Moscow, (1966), 112 pp.
Z152,59; M36#5310; R1968,5B158K
GENG JI,
[1] Bernoulli numbers and Euler numbers - a discussion
on two properties of power series (Chinese),
Math. Practice Theory 1991, no.3, 85-92.
GENOCCHI A.,
[1] Intorno all'espressione generale
de'numeri Bernoulliani, Annali sci. mat. e fis., Roma,
3 (1852), 395-405.
[2] Sulla formula sommatoria di Eulero, e sulla teorica de' residui quadratici, Annali sci. mat. e fis., Roma, 3 (1852), 406-436.
[3] Sur la formule sommatoire de Maclaurin et
les fonctions interpolaires, C.R. Acad. Sci., Paris,
86 (1878), 466-469.
J10.178
[4] Sur les nombres de Bernoulli (extrait d'une
lettre à M. Kronecker), J. Reine Angew. Math., 99
(1886), 315-316.
J18.228
GERONIMUS J.,
[1] On a class of Appell polynomials,
Commun. Soc. Math. Kharkoff et Inst. Sci.
Math. et Mécan., Univ. Kharkoff (4), 8 (1934), 13-23.
J60.I.292; Z10,261
GERTSCH A.,
[1] Nombres harmoniques généralisés,
C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), no. 1, 7-10.
Z877.11010; M98a:11007; R1997,10A128
GESSEL I.,
[1] Congruences for Bell and tangent numbers,
Fibonacci Quart., 19 (1981), no. 2, 137-143.
Z451.10008; M82f:10014; R1981,11V490
[2] Some congruences for generalized Euler numbers,
Can. J. Math., 35 (1983), no. 4, 687-709.
Z493.10014; M85f:11013; R1984,10A69
[3] A Bernoulli recurrence (Solution to Problem E3237, proposed by J.G.F. Belinfante), Amer. Math. Monthly, 96 (1989), no. 4, 364-365.
[4] Generating functions and generalized Dedekind sums,
Electron. J. Combin. 4 (1997), no. 2, Research Paper 11, approx. 17 pp. (electronic).
M98f:11032
GESSEL I., MATTICS L.E.,
[1] Numerators and denominators of Bernoulli numbers (solution to problem),
Amer. Math. Monthly, 90 (1983), no. 8, 568-569.
GESSEL I.: see also ANDREWS G., GESSEL I.
GILBERT Ph.,
[1] Observations sur deux notes de M. Genocchi,
relatives au développement de la fonction
$\log{\Gamma (x)$, Bull. Acad.
Sci. Bruxelles, 36 (1873), 541-545.
J5.167
GILLARD R.,
[1] $ Z_l$-extensions, fonctions L $l$-adiques et unités
cyclotomiques. Séminaire de Théorie des Nombres (1976-77), Exp. No. 24,
19 pp., CNRS, Talence, 1977.
Z392.12006; M80k:12016
GILLARD R.: see also CHARKANI EL HASSANI M., GILLARD R.
GILLESPIE F.S.,
[1] A generalization of Kummer's congruences and related results,
Fibonacci Quart., 30 (1992), no. 4, 349-367.
Z762.11004; M93i:11026
GIRGENSOHN R.: see BAILEY D.H., BORWEIN J.M., GIRGENSOHN R.
GIRGENSOHN R.: see also BORWEIN D., BORWEIN J.M., BORWEIN P.B., GIRGENSOHN R.
GIRSTMAIR K.,
[1] Ein v. Staudt-Clausenscher Satz für periodische Bernoulli-Zahlen,
Monatsh. Math., 104 (1987), no. 2, 109-118.
Z626.12001; M89a:11026; R1988,4A79
[2] Character coordinates and annihilators of cyclotomic numbers,
Manuscr. Math., 59 (1987), no. 3, 375-389.
Z624.12006; M89a:11071; R1988,3A418
[3] An index formula for the relative class number of an abelian number field,
J. Number Theory, 32 (1989), no. 1, 100-110.
Z675.12002; M91d:11132; R1990,2A333
[4] A theorem on the numerators of the Bernoulli numbers,
Amer. Math. Monthly, 97 (1990), no. 2, 136-138.
Z738.11023; M91a:11015; R1990,11A83
[5] Dirichlet convolution of cotangent numbers and relative class number
formulas,
Monatsh. Math., 110 (1990), no. 3/4, 231-256.
Z717.11048; M92b:11076; R1991,7A291
[6] Eine Verbindung zwischen den arithmetischen Eigenschaften
verallgemeinerter Bernoullizahlen,
Expos. Math., 11 (1993), 47-63.
Z773.11013; M94f:11011
[7] On the factorization of the relative class number in terms of
Frobenius divisions.
Monatsh. Math., 116 (1993), no. 3-4, 231-236.
Z802.11044; M95b:11105
[8] The relative class numbers of imaginary cyclic fields of
degrees 4, 6, 8 and 10.
Math. Comp., 61 (1993), no. 204, 881-887.
Z787.11046; M94a:11170
[9] Class number factors and distribution of residues,
Abh. Math. Sem. Univ. Hamburg, 67 (1997), 65-104.
Z889.11032
GLAISHER J.W.L.,
[1] On the constants that occur in certain
summations by Bernoulli's numbers, Proc. Lond. Math.
Soc., 4 (1872), 48-56.
J4.109
[2] On a deduction from Von Staudt's property
of Bernoulli's numbers, Proc. Lond. Math Soc., 4
(1872), 212-214.
J4.109
[3] On the function which stands in the same
relation to Bernoulli's numbers that the gamma function
does to factorials, Report Brit. Assoc., 42 (1872),
17-19.
J4.72
[4] On semi-convergent series, Quart. J.
Math., 12 (1872), 52-58.
J4.102
[5] Tables of the first 250 Bernoulli's numbers
(to nine figures) and their logarithms (to ten figures),
Trans. Camb. Phil. Soc., 12 (1873), 384-391.
J5.144
[6] Simple proof of a known property of
Bernoulli's numbers, Messeng. Math. (2), 2
(1873), 190-191.
J5.144
[7] Arithmetical proof of Clausen's Identity,
Messeng. Math. (2), 6 (1875), 83.
J7.132
[8] Expressions for Laplace's coefficients, Bernoullian and Eulerian
numbers, etc., as determinants,
Mess. Math., 6 (1877), 49-63; 7 (1878), 160-165;
8 (1879), 158-167.
J8.306
[9] On the numerical value of a certain series,
Proc. London Math. Soc., 8 (1877), 200-204.
J9.181
[10] Theorem relating to sums of even powers of
the natural numbers, Messeng. Math., 20
(1890), 120-128.
J22.269
[11] Note on series whose coefficients involve
powers of the Bernoullian numbers, Messeng. Math.,
19 (1890), 138-146.
J22.269
[12] Recurring relations involving sums of
powers of divisors, Messeng. Math., 20 (1891),
129-135; 177--181; 21, 49-64.
J23.177
[13] Note on the sums of even and uneven
numbers, Messeng. Math., 20 (1891),
172-176.
J23.269
[14] On the sums of inverse powers of the prime
numbers, Quart. J. Math., 25 (1891),
347-362.
J23.275
[15] Calculation of the hyperbolic logarithm of $\pi$ to thirty decimal
places, Quart. J. Math., 25 (1891), 362-368, 384.
J23.277
[16] On the series $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+ \frac{1}{11}+\&c.$, Quart. J. Math., 25 (1891), 369-383.
[17] Relations between the divisors of the first
$n$ numbers, Proc. London Math. Soc., 22 (1891),
359-410.
J23.177
[18] On the definite integrals connected with the Bernoullian function, Mess. Math., 26 (1897), 152-182; 27 (1898), 20-98.
[19] On the Bernoullian function,
Quart. J. Pure Appl. Math., 29 (1898), 1-168.
J28.375
[20] Note on a theorem relating to sums of even
powers of the natural numbers, Messeng. Math. (2),
28 (1899), 29-32.
J29.220
[21] Classes of recurring formulae involving
Bernoullian numbers, Messeng. Math., 28
(1899), 36-79.
J29.220
[22] On the values of the series $x^n +
(x-q)^n+(x-2q)^n+...+r^n$ and
$x^n-(x-q)^n+(x-2q)^n -...\pmr^n$, Quart.
J. Math., 31 (1899), 193-227.
J30.254
[23] On
$1^n(x-1)^n+2^n(x-2)^n+...+(x-1)^n1^n$ and
other similar series, Quart. J. Math., 31
(1899), 241-247.
J30.254
[24] On the residues of the sums of the inverse powers of numbers in
arithmetical progression,
Quarterly J. Math., 32 (1900), 271-288.
J31.186
[25] Fundamental theorem relating to the
Bernoullian numbers, Messeng. Math., 29
(1900), 49-63; 129-142.
J30.182; 31.287
[26] On the residues of the sums of products of
the first $p-1$ numbers and their powers, to modulus
$p^2$ or $p^3$, Quart. J. Math., 31
(1900), 321-353.
J31.195
[27] A congruence theorem relating to the
Bernoullian numbers, Quart. J. Math., 31
(1900), 253-263.
J30.180
[28] Note on the residues of the ratios of certain series of inverse powers of numbers in arithmetical progression, Mess. Math., 30 (1901), 154-162.
J30.200
[29] On the residue to modulus p, of $1+1/3^{2n}+1/5^{2n}+...+1/(p-2)^{2n}$, Mess. Math., 30 (1901), 26-31.
[30] A general congruence theorem relating to the Bernoullian function,
Proc. London Math. Soc., 33 (1901), 27-56.
J32.199
[31] On the residues of Bernoullian functions for a prime modulus, including as
special cases the residues of Bernoullian, Eulerian and J-Numbers,
Proc. London Math. Soc., 33 (1901), 56-87.
J32.199
[32] On a class of relations connecting any n consecutive Bernoullian
functions, Part III. Quart. J. Pure Appl. Math., 42 (1911), 86-157.
J41.495
[33] On $1^n(x-1)^m+...+(x-1)^n1^m$ and other similar series,
Quart. Journ. Math., 43 (1912), 101-122.
J43.340
[34] A congruence theorem relating to Eulerian numbers and other coefficients, Proc. London Math. Soc., 32 (1901), 171-198.
[35] Expansion of $(e^x-a)^{-1}$ and derived formulae; also values of
$(d/d\theta)^n\tan \theta$,
Mess. Math. (2), 39 (1910), 154-173.
J41.497
[36] Bernoullian numbers and other coefficients expressed in
terms of numbers of the form $\Delta^n 0^n$,
Quart. J. Pure Appl. Math., 41 (1910), 265-301.
J41.495
[37] On the last two figures in certain coefficients
analogous to the Eulerian numbers,
Quart. J. Pure Appl. Math., 44 (1913), 105-112.
J44.320
[38] On Eulerian numbers (formulae, residues, endfigures) with
the values of the first twenty-seven,
Quart. J. Pure Appl. Math., 45 (1913), 1-51.
J44.320
[39] Numerical values of the series $1-\frac{1}{3^n}+\frac{1}{5^n}- \frac{1}{7^n}+\frac{1}{9^n}-$ \&c., Mess. Math. (2), 42 (1913), 35-58.
GOHIERRE DE LONGCHAMPS: see LONGCHAMPS G.
GOLD R.: see CHILDRESS N., GOLD R.
GOLDSTEIN L.J., RAZAR M.J.,
[1] Ramanujan type formulae for
$\zeta (2k-1)$, J. Pure Appl. Algebra, 13 (1978), no. 1, 13-17.
Z391.10023; M80f:10048; R1979,3A100
[2] The theory of zeta functions of several
complex variables, I, J. Number Theory,
19 (1984), no. 2, 148-175.
Z549.12007; M86b:11078; R1985,6A94
GOLOVINSKII I.A.
[1] The Euler-Boole summation formula. (Russian),
Istor.-Mat. Issled., no. 26, (1982), 52-91.
Z518.01004; M84k:01029; R1985,7A10
GOMES TEIXEIRA F.: see TEIXEIRA F.G.
GÖPEL A.,
[1] Einige Bermerkungen zu der Abhandlung Nr. IV in diesem Hefte über
Recursionsformeln für die Bernoullischen Zahlen,
Archiv d. Math. u. Physik, 3 (1843), 64-67.
GOSPER R.W., ISMAIL M.E.H., ZHANG R.,
[1] On some strange summation formulas.
Illinois J. Math., 37 (1993), no. 2, 240-277.
Z793.33016; M95g:33025
GOSS D.,
[1] Von Staudt for $F_q(T)$, Duke Math. J.,
45 (1978), no. 4, 887-910.
Z404.12013; M80a:12019; R1979,9A338
[2] The $\Gamma$-ideal and special zeta-values,
Duke Math. J., 47 (1980), no. 2, 345-364.
Z441.12002; M81k:12015; R1981,3A338
[3] A simple approach to the analytic
continuation and values at negative integers for
Riemann's zeta function, Proc. Amer. Math. Soc.,
81 (1981), no. 4, 513-517.
Z(427.30005),448.10032; M82e:10069; R1982,1B51
[4] Kummer and Herbrand criteria in the
theory of function fields, Duke Math. J., 49
(1982), no. 2, 377-384.
Z(473.12013),485.12010; M83k:12012; R1983,2A275
[5] Units and class-groups in the arithmetic theory of function fields,
Bull. Amer. Math. Soc. (N.S.), 13 (1985), no. 2, 131-132.
Z573.12003; M86j:11120; R1986,6A502
GOSSET Th.,
[1] Sylvester's theorem relating to Bernoullian
numbers, Messeng. Math. (2), 40 (1911), 145-149.
J42.208
GOTO K.,
[1] A twisted adjoint $L$-value of an elliptic modular form,
J. Number Theory 73 (1998), no. 1, 34-46.
Z924.11036; M99j:11052
GOULD H.W.,
[1] Generating functions for products of powers of Fibonacci numbers,
Fibonacci Quart. 1 (1963), no. 2, 1-16.
Z147.02106; M33 #93
[2] Note on recurrence relations for Stirling numbers,
Publ. Inst. Math. (Beograd) (N.S.), 6 (20) (1966), 115-119.
Z145,14; M34#4190; R1967,4V194
[3] Explicit formulas for Bernoulli numbers,
Amer. Math. Monthly, 79 (1972), 44-51.
Z227.10010; M46#5229; R1972,7V249
[4] Bibliography of aritcles on the special number sequences of Bernoulli, Stirling, Euler, Worpitzky, etc., unpublished cardfile, 1971.
[5] Comment on Problem 67-5, "up-down" permutations, SIAM Review, 10 (1968), 225-226.
GOULD H.W., SQUIRE W.,
[1] Maclaurin's second formula and its generalization,
Amer. Math. Monthly, 70 (1963), no. 1, 44-52.
Z116,92; M26#4073; R1963,12B27
GRAF J. H.,
[1] Praktische Integration von L. Schläfli,
Mitt. der Naturforschenden Gesellschaft Bern, 1900.
GRAHAM R.L., KNUTH D.E., PATASHNIK O.,
[1] Concrete Mathematics. Addison-Wesley Publ. Co.,
Reading, MA, 1989. xiv + 625 pp.
Z668.00003; M91f:00001
GRANVILLE A.,
[1] On Krasner's criteria for the first case of Fermat's Last Theorem,
Manuscr. Math., 56 (1986), no. 1, 67-70.
Z599.12013; M87i:11037; R1986,12A160
[2] The Kummer-Wieferich-Skula approach to the first case
of Fermat's Last Theorem,
In: F. Q. Gouvêa and N. Yui (Eds.), Advances in Number
Theory (Proc., Third Conference of the Canadian Number
Theory Assoc., Aug. 18-24, 1991, Queen's University
at Kingston), 479-497 . Clarendon Press, Oxford, 1993.
Z790.11020; M96m:11020
[3] Arithmetic properties of binomial coefficients. I. Binomial coefficients
modulo prime powers. Organic mathematics (Burnaby, BC, 1995), 253--276,
CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
Z980.06321; M99h:11016
GRANVILLE A., MONAGAN M.B.,
[1] The first case of Fermat's last theorem is true for all prime
exponents up to 714,591,416,091,389,
Trans. Amer. Math. Soc., 306 (1988), no. 1, 329-359.
Z645.10018; M89g:11025; R1988,12A119
[2] The status of Fermat's last theorem - mid 1994. Maple Tech. Newsletter, special Issue, 1994, 2-9.
GRANVILLE A., SHANK H.S.,
[1] Defining Bernoulli polynomials in Z/pZ (a generic
regularity condition),
Proc. Amer. Math. Soc., 108 (1990), no. 3, 637-640.
Z645.10018; M90f:11015; R1990,12A92
GRANVILLE A., SUN ZHI-WEI,
[1] Values of Bernoulli polynomials.
Pacific J. Math. 172 (1996), no. 1, 117-137.
Z856.11008; M98b:11018; R1997,11A142
GRANVILLE A.: see also ALMKVIST G., GRANVILLE A.
GRANVILLE A.: see also FUNG G., GRANVILLE A., WILLIAMS H.C.
GRAS G.,
[1] Classes d'idéaux des corps abéliens et
nombres de Bernoulli généralisés, Ann. Inst.
Fourier, 27 (1977), no. 1, 1-68.
Z(336.12004)343.12003; M56#8534; R1978,1A328
[2] Canonical divisibilities of values of p-adic L-functions,
London Math. Soc., Lecture Notes Series, No. 56, (1982), 291-299.
Z494.12006; R1983,2A271
[3] Pseudo-mesures p-adiques associées aux fonctions L de Q,
Manuscr. Math., 57 (1987), no. 4, 373-415.
Z658.12008(599.12016); M89d:11109; R1987,9A373
[4] Relations congruentielles linéaires entre nombres de classes de
corps quadratiques,
Acta Arith., 52 (1989), no. 2, 147-162.
Z618.12004; M90i:11127; R1990,1A332
[5] Sur la structure des groupes de classes relatives.
Avex un appendice d'exemples numériques (par T. Berthier).
Ann. Inst. Fourier, 43 (1993), no. 1, 1-20.
Z786.11065; M94i:11091
[6] Étude d'invariants relatifs aux groupes des classes des corps
abéliens, Journées Arithmétiques de Caen (Univ. Caen,
Caen, 1976), pp. 35-53. Asterisque No. 41-42, Soc. Math. France, Paris, 1977.
Z445.12002; M56 #5489
GRAS G., JAULENT J.-F.,
[1] Sur le corps de nombres réguliers,
Math. Z., 202 (1989), no. 3, 343-365.
Z704.11040; M90i:11128
GRASSL R. M.,
[1] Euler numbers and skew-hooks,
Math. Mag., 66 (1993), no. 3, 181-188.
Z801.05008; M94e:11016; R1996,6A76
GRAVE D.A.
[1] Elementarnyi kurs teorii chisel [Elementary handbook on number theory],
2nd edition. Kiev, (1913).
J44.207
GREENBERG R.,
[1] A generalization of Kummer's criterion,
Invent. Math., 21 (1973), 247-254.
Z269.12005; M48#11056; R1974,3A268
[2] On p-adic L-functions and cyclotomic fields,
Nagoya Math. J., 56 (1974), 61-77.
Z315.12008; M50#12984; R1975,9A297
[3] On the Jacobian variety of some algebraic curves,
Compositio Math. 42 (1980/81), no. 3, 345-359.
Z475.14026; M82j:14036
GREENBERG R.: see also FERRERO B., GREENBERG R.
GREITHER C.,
[1] Class group of abelian fields, and the main conjecture,
Ann. Inst. Fourier, 42 (1992), no. 3, 449-499.
Z729.11053; M93j:11071; R1993,5A335
GRENSING D., GRENSING G.,
[1] Generalized Campbell-Baker-Hausdorff formula, path-ordering and
Bernoulli numbers.
Z. Phys. C, 33 (1986), no. 2, 307-317.
M88c:22008; R1987,8B842
GRIGOREV E.I.,
[1] Bernullievy chisla vysshikh poryadkov [Bernoullian numbers of higher orders].
Izv. fiz.-mat. obshch. Kazansk. Univ. (2) 7(1898), 146-202.
J20.221
GROSJEAN C.C.,
[1] Approximations for the sum function of the Fourier series
$\sum_{n=1}^\infty sin(nx)/n^2$,
Simon Stevin, 39 (1966), 93-116.
Z241.65015; M33#5089; R1967,3B58
[2] An infinite set of recurrence formulae for the
divisor sums. I, II,
Bull. Soc. Math. Belg. Sér. A, 29 (1977), no. 1, 3-49;
no. 2, 95-138.
Z442.10044; M83d:10005a,b
GROSS B.H.,
[1] On the Factorization of p-adic L-series,
Invent. Math., 57 (1980), no. 1, 83-95.
Z472.12011; M82a:12010; R1980,9A339
[2] Arithmetic on elliptic curves with complex
multiplication, Lecture Notes in Math., No. 776,
Berlin, (1980), 95pp.
Z433.14032*; M81f:10041; R1981,2A432K
[3] Representation theory and the cuspidal group of $ X(p)$,
Duke Math. J., 54 (1987), no. 1, 67-75.
Z629.14021; M89b:11052; R1987,11A546
[4] On the value of abelian L-functions at s=0,
J. Fac. Sci. Univ. Tokyo, IA, 35 (1988), no. 1, 177-197.
Z681.12005; M89h:11071; R1988,10A317
GROSS B.H.: see also BUHLER J.P., GROSS B.H.
GROSSWALD E.,
[1] Comments on some formulae of Ramanujan,
Acta Arith., 21 (1972), no. 1, 25-34.
Z246.10024; M46#1744; R1973,4A192
[2] Representations of integers as sums of squares,
Springer-Verlag, New York-Berlin, 1985. xi+251 pp.
Z574.10045; M87g:11002; R1986,4A143K
[3] Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen,
Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1970), 9-13.
Z206,59; M42#7606; R1972,10A87
[4] Relations between the values of zeta and L-functions at
integral arguments,
Acta Arith., 24 (1973), 369-378.
Z242.12008; M48#11005
GROSSWALD E.: see also RADEMACHER H., GROSSWALD E.
GRUDER, O.,
[1] Über die Potenzsummen komplexer Zahlen und die
entsprechende Bernoulli'sche Funktion,
Sitzungsber. Kaiserl. Akad. der Wiss. Wien,
Math.-naturw. Klasse, Abt. IIa, 125 (1916), no. 6, 613-657.
J46.359
[2] Über die Entwicklungskoeffizienten elliptischer Funktionen,
Sitzungsber. Kaiserl. Akad. der Wiss. Wien,
Math.- naturw. Klasse, Abt. IIa,, 126 (1917), 125-183.
J46.I.603
[3] Über teilerfremde Zahlen und deren Potenzsummen,
Sitzungsber. Kaiserl. Akad. der Wiss. Wien, Abt. IIa,
137 (1928), 381-407.
J54.181
[4] Über symmetrische Grundfunktionen natürlicher
Zahlen,
J. Reine Angew. Math., 161 (1929), 152-178.
J55.I.94
GRÜN O.,
[1] Zur Fermatschen Vermutung,
J. Reine Angew. Math., 170 (1934),
231-234.
J60.I.128; Z8,242
[2] Eine Kongruenz für Bernoullische Zahlen,
Jahresber. Deutsch. Math.-Verein., 50 (1940), 111-112.
J66.139; Z23,203; M2-34d
[3] Beziehungen zwischen Bernoullischen Zahlen,
Math. Ann., 135 (1958), 417-419.
Z102,50; M20#2478; R1959,4424
GRUNDMAN H.G.,
[1] The arithmetic genus of Hilbert modular varieties over non-Galois
cubic fields,
J. Number Theory, 37 (1991), no. 3, 343-365.
Z715.11023; M92d:11047
GRUNERT J.A.,
[1] "Bernoulli'sche Zahlen" in Supplemente zu Georg Simon Klügel's
Wörterbuche, Erste Abtheilung. Leipzig, 1833.
GUARESCHI G.,
[1] Espressione dei numeri di Bernoulli mediante funzioni
simmetriche complete,
Boll. Mat., Genova (4), 1 (1940), 17-19.
J66.319; M2-88f
GUINAND A.P.,
[1] The umbral method: a survey of elementary mnemonic and manipulative uses,
Amer. Math. Monthly, 86 (1979), no. 3, 187-195.
Z406.10013; M80e:05001; R1980,1V1291
GUNARATNE H.S.,
[1] A new generalisation of the Kummer congruence.
In: Computational algebra and number theory (Sydney, 1992), 255-265.
Math. Appl., 325, Kluwer Acad. Publ., Dordrecht, 1995.
Z833.11005; M96j:11148
[2] Periodicity of Kummer congruences.
In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number
Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15,
209-214. Amer. Math. Soc., Providence, 1995.
Z843.11012; M97b:11024; R1997,2A75
GUNDERSON N.G.,
[1] Derivation of Criteria for the First Case of Fermat's Last Theorem
and the Combination of these Criteria to Produce a New Bound for the Exponent,
Ph.D. Thesis, Cornell University, Ithaca, New York, 1948, 111 pp.
GÜNTHER S.,
[1] Von der expliziten Darstellung der regulären Determinanten aus
Binomialkoeffizienten, Zeits. f. Math. u. Physik 24 (1879), 96-103
GUO D.R.: see WANG Z.X., GUO D.R.
GUO-NIN: see HAN, GUO-NIN
GUO LIZHOU: see ZHANG ZHIZHENG, GUO LIZHOU
GUPTA H.,
[1] Selected Topics in Number Theory, Abacus Press, Turnbridge Wells,
Kent, England, 1980, 394pp.
Z425.10001; M81e:10002
[2] On the numbers of Ward and Bernoulli,
Proc. Indian Acad. Sci. A, 3 (1936), 193-200.
J62.I.51; Z13.293
GUPTA S.: see PRABHAKAR T.R., GUPTA S.
GUT M.,
[1] Eulersche Zahlen und grosser Fermatscher
Satz, Comm. Math. Helv., 24 (1950), 73-99.
Z37,166; M12-243d
[2] Eulersche Zahlen und Klassenzahl des Körpers der 4l-ten
Einheitswurzeln, Comm. Math. Helv., 25 (1951), 43-63.
Z42,36; M12-806f
GUT M., STÜNZI M.,
[1] Kongruenzen zwischen Koeffizienten
trigonometrischer Reihen und Klassenzahlen
quadratisch
imaginärer Körper, Comm. Math. Helv., 41
(1967),
287-302.
Z149,290; M36#2591; R1967,9A97
GYIRES B.,
[1] On a combinatorial identity,
Publ. Math. Debrecen, 31 (1984), no. 3-4, 217-219.
Z567.10008; M86h:05010; R1986,1V719
GYÖRY K., TIJDEMAN R., VOORHOEVE M.,
[1] On the Diophantine equation
$1^k+\cdots+x^k+R(x)=y^z$, Acta Math., 143
(1979), no. 1-2, 1-8.
Z426.10019; M80e:10020; R1980,3A84
[2] On the equation $1^k+\cdots+x^k=y^z$,
Acta Arith., 37 (1980), 233-240.
Z(365.10014)439.10010; M82h:10021; R1981,6A104
HADAMARD J.,
[1] Sur la série de Stirling,
Proc. Fifth Intern. Congress Math., 1 (1913), 303-305.
J44.315
HAIGH C.W.,
[1] Newton's identities, generalised cycle-indices, universal
Bernoulli numbers and truncated Schur-functions,
J. Math. Chem. (to appear).
HALBRITTER U.,
[1] Eine elementare Methode zur Berechnung von Zetafunktionen
reell-quadratischer Zahlkörper,
Math. Ann., 271 (1985), no. 3, 359-379.
Z(541.12008), 556.12002; M86i:11067; R1986,2A460
[2] Berechnung der Werte von verallgemeinerten
Zetafunktionen reell-quadratischer Zahlkörper mittels Dedekindscher Summen,
J. Number Theory, 17 (1983), no. 3, 285-322.
Z522.12013; M85h:11072; R1984,5A115
[3] Anwendung einer Summationsformel auf Dirichletsche
Reihen und verallgemeinerte Dedekindsche Summen,
Acta Arith., 43 (1984), no. 4, 349-359.
Z(492.10008)534.10008; M86b:11032; R1985,1A167
[4] Some new reciprocity formulas for generalized Dedekind sums,
Resultate Math. 8 (1985), no. 1, 21-46.
Z577.10011; M87a:11043
HALL R.R., WILSON J.C.,
[1] On reciprocity formulae for inhomogeneous and homogeneous Dedekind sums.
Math. Proc. Cambridge Philos. Soc., 114 (1993), no. 1, 9-24.
Z783.11021; M94c:11037
HALL R.R., WILSON J.C., ZAGIER D.,
[1] Reciprocity formulae for general Dedekind-Rademacher sums,
Acta Arith., 73 (1995), no. 4, 389-396.
Z847.11020; M96j:11054; R1996,11A182
HALL T.G.,
[1] Art calcul of finite differences, Encycl. Pure Math., (1847), 261-270.
HAMILTON W.R.,
[1] On an expression for the numbers of
Bernoulli, by means of a definite integral, and on some
connected progresses of summation and integration, Phil.
Mag., 23 (1843), 360-367.
HAMMOND J.,
[1] On the relation between Bernoulli's numbers and the binomial coefficients,
Proc. London Math. Soc., 7 (1875), 9-14.
J8.144
HAN GUO-NIU,
[1] Calcul Denertien,
Publ. Inst. Rech. Math. Avan., 1991, no. 476, 1-119.
M93h:05169; R1993,4A121
[2] Symétries trivariés sur les nombres de Genocchi.
European J. Combin. 17 (1996), no. 4, 397--407.
Z852.0500; M97e:05015
HAN GUO-NIU, ZENG JIANG,
[1] On a $q$-sequence that generalizes the median Genocchi numbers.
Ann. Sci. Math. Québec, 23 (1999), no. 1, 63-72.
HAN G.-N.; RANDRIANARIVONY A.; ZENG J.,
[1] Un autre $q$-analogue des nombres d'Euler.
Sém. Lothar. Combin. 42 (1999), Art. B42e, 22 pp. (electronic).
HANSEN E.R.,
[1] A Table of Series and Products,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.
HAO F.H., PARRY C.J.,
[1] Generalized Bernoulli numbers and
m-regular primes, Math. Comp., 43 (1984), no.
167, 273-288.
Z548.12006; M85h:11062; R1985,6A111
HARDER G.,
[1] Über spezielle Werte von L-Funktionen,
Mitt. Math. Ges. Hamburg, 11 (1982), no. 1, 121-127.
Z503.12009; M84b:12019
HARDER G., PINK R.,
[1] Modular konstruierte unverzweigte abelsche $p$-Erweiterungen von
$ Q(\zeta_p)$ und die Struktur ihrer Galoisgruppen.
Math. Nachr., 159 (1992), 83-99.
Z773.11069; M95b:11100
HARDY G.H.,
[1] A formula of Ramanujan,
J. London Math. Soc., 3 (1928), 238-240.
[2] Divergent Series. Oxford University Press, 1949. xvi + 396 pp.
Z32.058*; M11-25a
HARDY G.H., WRIGHT E.M.,
[1] An introduction to the theory of numbers, 5th Ed., Oxford Science
Publications, 1979.
Z423.10001; M81i:10002; R1961,5A162K
HARE D.E.G.,
[1] Computing the principal branch of log-Gamma,
J. Algorithms 25 (1997), no. 2, 221-236.
Z887.68055
HÄRKÖNEN K.,
[1] On the Diophantine equation $x^l+y^l=cz^l$
in the third case, Ann. Univ. Turku., Ser. A1, (1980), no. 180, 1-16.
M81m:10023; R1981,5A134
HARTREE D.R.,
[1] Numerical Analysis, Clarendon Press, Oxford, 1952. xiv +287 pp.
Z49,359; M14-690f; R1953,458PEII
HARTUNG P.: see CHOWLA S., HARTUNG P.
HARUKI H., RASSIAS T.M.,
[1] New integral representations for Bernoulli and Euler polynomials,
J. Math. Anal. Appl., 175 (1993), no. 1, 81-90.
Z776.11009; M94e:39016
HASHIMOTO K., KOSEKI H.,
[1] Class numbers of definite unimodular Hermitian forms over the
rings of imaginary quadratic fields,
Tôhoku Math. J. (2), 41 (1989), no. 1, 1-30.
Z668.10029; M90g:11050; R1990,5A123
HASSE H.,
[1] Ein Summierungsverfahren für die Riemannsche $\xi$-Reihe,
Math. Z., 32 (1930), 458-464.
J56.II.894
[2] Über die gewöhnlichen und verallgemeinerten Bernoullischen Zahlen,
Simposio di Analisi, v. II, (1961), 67-72, "Archimedes
Commemoration in 20th Century", Siracusa.
Z123,39; M30#4712
[3] Sulla generalizzazione di Leopoldt dei numeri di Bernoulli e sua
applicazione alla divisibilità del numero della classi nei corpi numerici
abeliani, Rend. Math. e Applic., 21 (1962), 9-27.
Z111,45; M25#3925; 25, p.1243; R1963,3A168
[4] Über die Bernoullischen Zahlen,
Leopoldina, Reihe 3, 1962/63, 8/9
(1965), 159-167.
Z166,50; R1966,4A95
[5] Vandiver's congruence for the relative
class-number of the p-th cyclotomic field, J. Math.
Anal. Appl., 15 (1966), 87-90.
Z139,281; M33#4040; R1967,8A101
[6] Number Theory, Akademie-Verlag, Berlin, 1979. (A corrected and
enlarged translation of Hasse, Zahlentheorie, 3rd Edition, Akademie-Verlag,
Berlin, 1969.)
Z423.12001; M40#7185; R1970,2A305K
HATADA K.,
[1] On the values at rational integers of the p-adic Dirichlet L-functions,
J. Math. Soc. Japan, 31 (1979), no. 1, 7-27.
Z399.12003; M80f:12010; R1979,9A334
[2] Mod 1 distribution of Fermat and Fibonacci quotients and values
of zeta functions at $2-p$,
Comment. Math. Univ. St. Paul., 36 (1987), no. 1, 41-51.
Z641.12008; M88i:11085; R1988,8A111
[3] Notes on Bernoulli numbers,
Sci. Rep. Fac. Ed. Gifu Univ. Natur. Sci., 19 (1995), no. 2, 157-166.
Z825.11010; M96c:11024
HAUSS M.,
[1] Verallgemeinerte Stirling, Bernoulli und Euler Zahlen, deren Anwendungen
und schnell konvergente Reihen f\"ur Zeta Funktionen. (German) [Generalized
Stirling, Bernoulli and Euler numbers and their applications and fast convergent
series for zeta functions] Dissertation, RWTH Aachen, Aachen, 1995.
Berichte aus der Mathematik. [Reports from Mathematics] Verlag Shaker, Aachen,
1995. iv+209 pp.
Z867.11010; M97c:11029
[2] An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials
and an application to $\zeta(2m+1)$.
Commun. Appl. Anal. 1 (1997), no. 1, 15-32.
Z877.11009; M98b:11019
[3] A Boole-type formula involving conjugate Euler polynomials.
Charlemagne and his heritage. 1200 years of civilization and science in Europe,
Vol. 2 (Aachen, 1995), 361-375, Brepols, Turnhout, 1998.
M99k:11030
HAUSS M.: see BUTZER P.L., FLOCKE S., HAUSS M.
HAUSS M.: see BUTZER P.L. et al
HAUSSNER R.,
[1] Zur Theorie der Bernoull'ischen und
Euler'schen Zahlen, Nachr. Kgl. Gesellsch. Wiss.,
Göttingen, 21 (1893), 777-809.
J25.414
[2] Independente Darstellung der Bernoull'ischen und Euler'schen Zahlen durch
Determinanten, Zeitsch. für Math. und Phys., 39 (1894), 183-188.
J25.413
[3] Über verallgemeinerte Eulersche Zahlen und Tangentenkoeffizienten,
Ber. über die Verhandl. der Königl. Sächs. Ges.
der Wiss. Leipzig, Math.-phys. Kl., 62 (1910), 386-418.
J41.499
[4] Über verallgemeinte Tangenten- und Sekantenkoeffizienten,
Arch. der Math. u. Phys. (3), 17 (1911), 333-337.
J42.208
HEASLET M.A.: see USPENSKY J.V., HEASLET M.A.
HEATH R.,
[1] Euler sums, Tech. Engng. News, 57 (1956), no. 5, 58-60.
R1957,2444
HEATH-BROWN D.R.: see ADLEMAN L.M., HEATH-BROWN D.R.
HENNEBERGER, M.,
[1] Beiträge zur Theorie der Integrale der Bernoullischen Funktionen,
Dissertation, Universität Bern, 1901, 66p.
J(34.492)
HENSEL K.,
[1] Gedächtnisrede auf E.E. Kummer,
Abhandl. zur Geschichte der Math. Wiss., Heft 29 (1910), 18-31.
J41.15
[2] E.E. Kummer und der grosse Fermatsche Satz,
Reden Marburger Akad. No. 23, N.G. Elwertsche Verlagsbuchhandlung, 1910.
J41.16
HERBRAND J.,
[1] Sur les classes des corps circulaires,
J. Math. Pures Appl. (9), 11 (1932), 417-441.
J58.I.180; Z6,008
HERGET W.,
[1] Bernoulli-Polynome in $Z_n$,
Dissertation, TU Braunschweig, 1975.
Z359.10016*
[2] Minimum periods modulo $n$ for Bernoulli
numbers, Fibonacci Quart., 16 (1978), no. 6, 544-548.
Z397.10007; M80f:10011
[3] Bernoulli-Polynome in den Restklassenringen $Z\sb{n}$,
Glas. Mat., Ser. 3, 14 (34)(1979), no. 1, 27-33.
Z402.10008; M80j:10018; R1979,12A88
[4] Minimum periods modulo $n$ for Bernoulli polynomials,
Fibonacci Quart., 20 (1982), 106-110.
Z482.10011; M84b:10018
HERGLOTZ G.,
[1] Über das quadratische Reziprozitätsgesetz
in imaginären quadratischen Zahlkörpern,
Ber. Verh. Sächs. Akad. Wiss. Leipzig, 73 (1921), 303-310.
J48.170
[2] Über die Entwicklungskoeffizienten der Weierstrasschen $\wp$-Funktionen,
Ber. Verh. Sächs. Akad. Wiss. Leipzig, 74 (1922), 269-289.
J48.438
HERMES H.: see EBBINGHAUS H.-D. et al.
HERMITE CH.,
[1] Extrait d'une lettre à M. Borchardt (sur les nombres de Bernoulli),
J. Reine Angew. Math., 81 (1876), 93-95.
J7.131
[2] Sur la formule de Maclaurin, J. Reine Angew.
Math., 84 (1877), 64-70.
J9.182
[3] Extrait d'une lettre, Nouv. Corres. Math., 6 (1880), 121-122.
[4] Lettre à M. Borchardt sur la fonction de Jacob
Bernoulli, J. Reine Angew. Math., 79 (1875), 339-344.
J7.159
[5] Remarque sur les nombres de Bernoulli et
les nombres d'Euler, Sitz. Kgl. Böhmischen Gesells.
Wiss., Prag, (1894), no. 37, 1-4.
J25.411
[6] Sur la fonction $\log \Gamma (x)$, J.
Reine Angew. Math., 115 (1895), 201-208.
J26.474
[7] Sur les nombres de Bernoulli, Mathesis (2),
5 (1895), suppl. 2, 1-7.
J26.285
HERMITE CH.: see also SONIN N.YA., HERMITE CH.
HERSCHEL J.F.W.,
[1] On the development of exponential functions,
together with several new theorems relating to finite
differences, Trans. Phil. Soc., (1814), 440-468; (1816), 25-45.
[2] Collection of examples of the calculus of finite differences, Cambridge, 1820.
HIDA H.,
[1] A p-adic measure attached to the zeta functions associated with
two elliptic modular forms. II.
Ann. Inst. Fourier, 38 (1988), no. 3, 1-84.
Z645.10028; M89k:11120
[2] Elementary theory of $L$-functions and Eisenstein series.
London Mathematical Society Student Texts, 26. Cambridge University Press,
Cambridge, 1993. xii+386 pp.
M94j:11044
HIGGINS J.,
[1] Double series for the Bernoulli and Euler
numbers, J. London Math. Soc., (2) 2
(1970), 722-726.
Z215,330; M43#147; R1972,2V304
HILBERT D.,
[1] Die Theorie der algebraischen Zahlkörper,
Jahresber. Deutsch. Math.-Verein., 4 (1897), 175-546.
J28.157
HILL C.J.D.,
[1] När äro de $n$ forsta termerno af
Bernoullis serie gifven funktion af den i den sista
ingäende derivatan: Öfversigt Kgl. Vetens.-Akad.
Förhandl., Stockholm, 14 (1857), (1858), 259-261.
HINDENBURG C.F.,
[1] Sammlung combinatorisch-analytischer
Abhandlungen, 2-te Sammlung, Leipzig, 1800, S. 337.
HIRZEBRUCH F.: see EBBINGHAUS H.-D. et al.
HLAWKA E., SCHOISSENGEIER J., TASCHNER R.,
[1] Geometric and Analytic Number Theory,
Springer-Verlag, Berlin etc., 1991, x+238 pp..
Z749.11001; M92f:11002
HOFFMAN M. E.,
[1] Multiple harmonic series,
Pacific J. Math., 152 (1992), no. 2, 275-290.
Z763.11037; M92i:11089; R1993,1A103
[2] Derivative polynomials for tangent and secant,
Amer. Math. Monthly 102 (1995), no. 1, 23-30.
Z834.26002; M95m:26003
[3] Derivative polynomials, Euler polynomials, and associated integer sequences,
Electron. J. Combin. 6 (1999), no. 1, Research Paper 21, 13 pp. (electronic)
M 2000c:11027
HOFSTETTER, P.,
[1] Die Bernoullische Funktion und die Gammafunktion,
Dissertation, Universität Bern. Wälchli, Bern, 1912, 76p.
J(43.534)
HOGGATT V.E.: see ARKIN J., HOGGATT V.E.
HOLVORCEM P. R.,
[1] Laurent expansions for certain functions defined by Dirichlet series,
Aequationes Math., 45 (1993), no. 1, 62-69.
Z770.30004; M93k:30005
HOLZAPFEL R.-P.,
[1] Zeta dimension formula for Picard modular cusp forms of neat natural
congruence subgroups,
Abh. Math. Sem. Univ. Hamburg 68 (1998), 169-192.
HONG SHAOFANG,
[1] Notes on Glaisher's congruences,
Chinese Ann. Math. Ser. B 21 (2000), no. 1, 33-38.
HORADAM A. F.,
[1] Genocchi Polynomials,
Proc. of the Fourth International Conference on Fibonacci Numbers and Their
Applications. Kluwer, Dordrecht, 1991, 145-166.
Z749.11019; M93i:11027
[2] Negative Order Genocchi Polynomials,
Fibonacci Quart., 30 (1992), no. 1, 21-34.
Z749.11020; M93a:11016
[3] Generation of Genocchi polynomials of first order by recurrence relations,
Fibonacci Quart., 30 (1992), no. 3, 239-243.
Z770.11015; M94e:05012
HORADAM A.F., SHANNON A.G.,
[1] Ward's Staudt-Clausen problem, Math.
Scand., 39 (1976), no. 2, 239-250 (1977).
Z347.10010; M56#5411; R1978,5A78
HORADAM A.F.: see also MAHON BR. J.M., HORADAM A.F.
HORATA K.,
[1] An explicit formula for Bernoulli numbers,
Rep. Fac. Sci. Technol., Meijo Univ., 29 (1989), no. 1, 1-6.
Z671.10008
[2] On congruences involving Bernoulli numbers and irregular primes, I.
Rep. Fac. Sci. Technol., Meijo Univ., 30 (1990), 1-9.
R1991,2A167
[3] On congruences involving Bernoulli numbers and irregular primes, II.
Rep. Fac. Sci. Technol., Meijo Univ., 31 (1991), 1-8.
Z856.11009; R1991,12A72
[4] On congruences involving Bernoulli numbers and irregular primes. III.
Rep. Fac. Sci. Technol., Meijo Univ., 32 (1992), 15-22.
Z856.11010; R1993,5A168
HORNER J.,
[1] On the forms of $\Delta^{n}0^x$ and their
congeners, Quart. J. Math., 4 (1861), 111-123; 204-220.
HOFSTETTER P.,
[1] Die Bernoullische Funktion und die Gammafunktion,
Dissertation, Bern, 1911, 108 pp.
J43.534
HOWARD F.T.,
[1] A sequence of numbers related to the
exponential function, Duke Math. J., 34 (1967), 599-615.
Z189,42; M36#130; R1968,6V312
[2] Some sequences of rational numbers related
to the exponential function, Duke Math. J., 34 (1967), 701-716.
Z189,42; M36#131
[3] Properties of the van der Pol Numbers and
polynomials, J. Reine Angew. Math., 260 (1973), 35-46.
Z254.10013; M47#6603
[4] Roots of the Euler polynomials,
Pacific J. Math., 64 (1976), no. 1, 181-191.
Z331.10005; M54#5444; R1977,4V445
[5] Numbers generated by the reciprocal of $e^x-x-1$,
Math. Comp., 31 (1977), no. 138, 581-598.
Z351.10010; M55#12627
[6] A theorem relating potential and Bell polynomials,
Discrete Math., 39 (1982), no. 2, 129-143.
Z478.05008; M84e:05015; R1982,10V455
[7] Integers related to the Bessel Function $J_1(z)$,
Fibonacci Quart., 23 (1985), no. 3, 249-259.
Z578.10016; M88b:11010; R1986,4A111
[8] Extensions of congruences of Glaisher and Nielsen concerning
Stirling numbers, Fibonacci Quart., 28 (1990), no. 4, 355-362.
Z726.11012; M92i:11028; R1991,8V320
[9] The van der Pol numbers and a related sequence of rational numbers,
Math. Nachr., 42 (1969), 89-102.
Z208.05401; M41#3385
[10] Generalized van der Pol numbers,
Math. Nachr., 44 (1970), 181-191.
Z194.07302; M45#8600
[11] Polynomials related to the Bessel functions,
Trans. Amer. Math. Soc., 210 (1975), 233-248.
Z308.10008; M52#253; R1976,4B45
[12] Factors and roots of the van der Pol polynomials,
Proc. Amer. Math. Soc., 53 (1975), no. 1, 1-8.
Z313.10011; M52#252; R1976,7V375
[13] A special class of Bell polynomials,
Math. Comp., 35 (1980), no. 151, 977-989 .
Z 438.10012; M82g:10028; R1981,4V377
[14] Nörlund's number $B_n^{(n)}$.
Applications of Fibonacci Numbers, Vol. 5 (G. E. Bergum et al., Eds.),
355-366, Kluwer Acad. Publ., Dordrecht, 1993.
Z805.11023; M95e:11029
[15] Congruences and recurrences for Bernoulli numbers of higher order.
Fibonacci Quart., 32 (1994), no. 4, 316-328.
Z820.11009; M95k:11021
[16] Applications of a recurrence for Bernoulli numbers,
J. Number Theory, 52 (1995), no. 1, 157-172.
Z805.11023; M96e:11027
[17] Formulas of Ramanujan involving Lucas numbers, Pell numbers, and
Bernoulli numbers. In: G.E. Bergum et al. (eds.), Applications of Fibonacci
Numbers, Vol. 6, 257-270. Kluwer Acad. Publ., Dordrecht, 1969.
Z852.11007; M97d:11039
[18] Explicit formulas for degenerate Bernoulli numbers,
Discrete Math., 162 (1996), no. 1-3, 175-185.
Z873.11016; M97m:11024
[19] Sums of powers of integers via generating functions,
Fibonacci Quart., 34 (1996), no. 3, 244-256.
Z859.11016; M98a:11025; R1997,10A200
[20] Lacunary recurrences for sums of powers of integers, Fibonacci Quart., 36 (1998), no. 5, 435-442
HSU L. C. [XU LI ZHI],
[1] Power-type generating functions.
Approximation theory (Kecskemét, 1990), 405-412.
Colloq. Math. Soc. János Bolyai, 58, North-Holland, Amsterdam, 1991.
Z768.41030; M94g:41054
[2] Finding some strange identities via Faa di Bruno's formula,
J. Math. Res. Exposition 13 (1993), no. 2, 159-165.
Z783.05006; M94f:05007
HSU L.C., CHU W.,
[1] A kind of asymptotic expansion using partitions.
Tôhoku Math. J., 43 (1991), no.2, 235-242.
Z747.41030; M92g:41038
HUANG I-CHIAU, HUANG SU-YUN,
[1] Bernoulli numbers and polynomials via residues,
J. Number Theory, 76 (1999), no. 2, 178-193.
M2000d:11027
HURWITZ A.,
[1] Einige Eigenschaften der Dirichlet'schen Functionen
$\Gamma (s) = \sum (D/n){1/n^s}$, die bei der Bestimmung der Classenzahlen
binärer quadratischer Formen auftreten,
Zeitsch. für Math. und Physik, 27 (1882), no. 1, 86-101.
J14.371
[2] Über die Anzahl der Klassen binärer
quadratischer Formen von negativer Determinante,
Acta Math., 19 (1895), 351-384.
J26.226
[3] Über die Entwicklungscoefficienten der
lemniscatischen Functionen, Math. Ann., 51
(1898), 196-226.
J29.385
[4] Über die Entwickelungscoefficienten der
lemniskatischen Functionen.
Nachr. Kgl. Ges. Wiss. Göttingen, (1897), 273-276.
J28.393
HUSSAIN M.A., SINGH S.N.,
[1] On generalized polynomial set $D_n(x;a,k)$,
Indian J. Pure Appl. Math., 9 (1978), no. 11, 1158-1162.
Z402.33007; M80b:10018; R1979,4B52
HUTCHINSON J.I.,
[1] On the roots of the Riemann zeta function,
Trans. Amer. Math. Soc., 27 (1925), 49-60.
J51.267,271
[2] The value of the Dirichlet L-functions at
negative integral points, Hacettepe Bull. Natur. Sci. and
Eng., 13 (1984), 63-67.
Z565.10035; R1985,3A124
[3] (C,k)-summability of the Dirichlet L-functions,
Hacettepe Bull. Natur. Sci. and Eng., 13 (1984), 59-62.
Z565.10034; R1985,3B86
IBUKIYAMA T.,
[1] On some elementary character sums,
Comment. Math. Univ. St. Paul. 47 (1998), no. 1, 7-13.
Z921.11046; M99h:11094
IBUKIYAMA T., SAITO H.,
[1] On $L$-functions of ternary zero forms and exponential sums of
Lee and Weintraub.
J. Number Theory, 48 (1994), no. 2, 252-257.
Z824.11033; M95i:11032
[2] On zeta functions associated to symmetric matrices, I:
An explicit form of zeta functions,
Amer. J. Math., 117 (1995), no. 5, 1097-1155.
Z846.11028; M96j:11120
ICHIMURA H.: see HACHIMORI Y., ICHIMURA H.
IKEDA M.,
[1] Some inequalities for Bernoulli's polynomials and related functions,
Monatsh. Math., 68 (1964), 224-234.
Z129.284; M31#2435; err.31, p.1336; R1965,3B71
IMAI H.,
[1] Values of $p$-adic $L$-functions at positive integers and $p$-adic
log multiple gamma functions.
Tôhoku Math. J., 45 (1993), no. 4, 505-510.
Z809.11067; M95c:11139; R1994,8A371
IMAMOGLU Ö.: see DUKE W., IMAMOGLU Ö.
IMAOKA M.,
[1] Generalized Bernoulli numbers on the $K{\rm O}$-theory.
Hiroshima Math. J. 26 (1996), no. 1, 181-188.
Z865.55003; M97c:55016
IMSHENETSKII V.G.,
[1] O funktsiyakh Yakova Bernulli i vyrazhenii raznosti mezhdu odnopredel'nymi
summoyu i integralom [On functions of Jacob Bernoulli and an expression for
the difference between sum and integral with the same limits].
Uch. zap. Kazansk. Univ. 6 (1870), 244-265.
J2.124
[2] Ob odnom obobshchenii funktsii Yakova Bernulli [On a generalization of the
function of Jacob Bernoulli].
Zap. Peterb. Akad. Nauk, (7), 31 (1883), no.II, 1-58.
J15.370
[3] O nekotorykh prilozheniyakh obshchikh funktsii Bernulli, Prilozhenie No. 2
[On some applications of general functions of Bernoulli].
Prilozhenie No. 2 k zap. Peterb. Akad. Nauk 52 (1886), 1-62.
J18.373
INKERI K.,
[1] On the second case of Fermat's last theorem,
Ann. Acad. Sci. Fenn., Ser. AI, Math.-Phys. Kl., (1949), no. 60, 1-32.
Z33,351; M11-500d
[2] Über die Klassenzahl des Kreiskörpers
der $l$-ten Einheitswurzeln, Ann. Acad. Sci. Fenn., Ser. AI,
(1955), no. 199, 1-12.
Z65,269; M18-20d; R1956,7084
[3] The real roots of Bernoulli polynomials,
Turun Yliopiston Julkais., (Annales Universitatis
Turkuensis), 1959, Ser. AI, no. 37, 1-20.
Z104,15; M22#1703; R1961,5B376
INVERNIZZI S.,
[1] On the periodic BVP for the forced Duffing equation,
Rend. Inst. Mat. Univ. Trieste, 19 (1987), no. 1, 64-75.
Z651.34066; M89f:34026; R1988,10B1160
IRELAND K., ROSEN M.,
[1] A classical introduction to modern number
theory, Springer-Verlag, New York, 1982.
Z482.10001*; M83g:12001; R1983,1A63K
IRELAND K., SMALL, D.,
[1] A note on Bernoulli-Goss polynomials,
Can. Math. Bull., 27 (1984), no. 2, 179-184.
Z531.12012; M85f:11093; R1985,1A212
ISEKI S.,
[1] The transformation formula for the Dedekind
modular function and related functional equation,
Duke Math. J., 24 (1957), 653-662.
Z93.259; M19-943a; R1959,1222
ISHIBASHI M.,
[1] On a proof of the Artin-Hasse formula for the norm residue symbol,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 39 (1985), no. 1, 95-103.
Z547.12004; M86g:11069; R1985,12A332
[2] An elementary proof of the generalized Eisenstein formula,
Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 197
(1988), no. 8-10, 443-447.
Z684.10014; M91k:11075
[3] The value of the Estermann zeta functions at $s=0$.
Acta Arith. 73 (1995), no. 4, 357-361.
Z845.11034; M96k:11109; R1997,10A143
[4] $\bold Q$-linear relations of special values of the Estermann zeta function, Acta Arith. 86 (1998), no. 3, 239-244.
ISHIBASHI M., KANEMITSU S.,
[1] Fractional part sums and divisor functions, I. In: Number Theory
and Combinatorics, Japan 1984. World Sci Publ., Philadelphia, 1985, viii +
446 pp.
Z601.o10032; M87e:11093
ISHIBASHI M., SHIRATANI K.,
[1] On explicit formulas for the norm residue symbol in prime cyclotomic fields,
Mem. Fac. Sci., Kyushu Univ., Ser. A, 38 (1984), no. 2, 201-231.
Z595.12008; M85j:11169; R1985,6A297
ISMAIL M.E.H., STEWART D.,
[1] On Dumont's polynomials,
Discrete Math. 41 (1982), no. 2, 155-160.
Z492.05004; M83m:10010; R1983,2V458
ISMAIL M.E.H.: see also GOSPER R.W., ISMAIL M.E.H., ZHANG R.
ISRAILOV M.I.,
[1] The reconstruction of functions given by their moments, by means
of Bernoulli polynomials.
Dokl. Akad. Nauk USSR, 1967, no. 10, 7-10.
Z202,124; M46#5923; R1968,9B4
[2] On the Laurent expansion of the Riemann zeta function. (Russian),
Trudy Mat. Inst. Steklov., 158 (1981), 98-104. Engl. transl.:
Proc. Steklov Inst. Math. 1983, no. 4, 105-112.
Z477.10031; M83m:10069; R1982,5B39
ITZYKSON C.: see WALDSCHMIDT M. et al.
IVIC A.,
[1] Topics in recent zeta function theory, Publ. Math. D'Orsay, (1983).
Z534.10032*; M86b:11055
[2] The Riemann zeta-function: The theory of the Riemann zeta-function
with applications. John Wiley & Sons, New York etc., 1985, xvi + 517 pp.
Z556.10026; M87d:11062; R1985,11A132K
IVIC A., TE RIELE H.J.J.,
[1] On the zeros of the error term for the mean square of
$|\zeta({1\over 2}+it)|$.
Math. Comp., 56 (1991), no.193, 303-328.
Z714.11051; M91e:11095
IWANIEC H.,
[1] Topics in classical automorphic forms.
Graduate Studies in Mathematics, 17. American Mathematical Society,
Providence, RI, 1997. xii+259 pp. ISBN 0-8218-0777-3.
Z905.11023; M98e:11051
IWASAWA K.,
[1] On some invariants of cyclotomic fields,
Amer. J. Math., 80 (1958), no. 3, 773-783;
erratum, 81 (1959), no. 1, 280.
Z84,41; M23#A1631; R1961,5A247
[2] On p-adic L-functions, Ann. Math.,
89 (1969), 198-205.
M42#4522; R1971,2A300
[3] Lectures on p-adic L-functions, Ann.
of Math. Studies, Princeton, 1972, No. 74.
Z236.12001*; M50#12974; R1973,2A327
IWATA G.,
[1] A generalization of the Euler-Maclaurin sum formula,
Natur. Sci. Rep. Ochanomizu Univ., 27 (1976), no. 1, 27-31.
Z351.33009; M54#14305; R1977,1B26
JACOBSTHAL E.,
[1] Über eine Formel von Frobenius,
Kgl. Norske Videns. Selsk. Forh. Trondheim, 22 (1950), 51-55.
Z36,012; M11-653e
[2] Zur Theorie der Bernoullischen Zahlen,
Norske Vid. Selsk. Forh. Trondheim, 22
(1950), no. 24, 107-112.
Z36,012; M11-581b
[3] Number-theoretical propeties of binomial coefficients (Norwegian),
Norske Vid. Selsk. Skr., Trondhjem, 1942, no. 4, 28pp. (1945).
M8-314d
JACOBSTHAL E.: see also BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.
JAKUBEC S.,
[1] On Vandiver's conjecture,
Abh. Math. Sem. Univ. Hamburg, 64 (1994), 105-124.
Z828.11050; M95h:11116
[2] On divisibility of the class number of real octic fields of a prime
conductor $p=n^4+16$ by $p$.
Arch. Math. (Brno), 30 (1994), no. 4, 263-270.
Z818.11042; M96a:11120
[3] On the divisibility of $h\sp +$ by the prime $3$.
Rocky Mountain J. Math. 24 (1994), no. 4, 1467-1473.
Z821.11053; M95m:11119
[4] Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime
degree $l$.
Math. Proc. Cambridge Philos. Soc., 119 (1996), no. 1, 17-22.
Z853.11085; M96j:11145
[5] Congruence of Ankeny-Artin-Chowla type modulo $p\sp 2$ for cyclic fields
of prime degree $l$.
Acta Arith. 74 (1996), no. 4, 293-310.
Z853.11086; M97h:11135
[6] Connection between congruences $n\sp {q-1}\equiv 1\pmod {q\sp 2}$ and
divisibility of $h\sp +$,
Abh. Math. Sem. Univ. Hamburg, 66 (1996), 151-158.
Z; M98a:11145
[7] On divisibility of the class number $h\sp +$ of the real cyclotomic
fields of prime degree $l$.
Math. Comp. 67 (1998), no. 221, 369-398.
Z914.11057; M98d:11136
[8] Note on Wieferich's congruence for primes $p \equiv 1 \pmod{4}$,
Abh. Math. Sem. Univ. Hamburg, 68 (1998), 193-197.
M99i:11012
[9] Note on the congruence of Ankeny-Artin-Chowla type modulo $p\sp 2$,
Acta Arith. 85 (1998), no. 4, 377-388.
Z912.11041; M99m:11128
JAKUBEC S., LASSÁK M.,
[1] Congruence of Ankeny-Artin-Chowla type modulo $p\sp 2$.
Number theory (Cieszyn, 1998). Ann. Math. Sil. No. 12, (1998), 75-91.
Z923.11154; M99m:11127
JAMES R. D.,
[1] On the expansion coefficients of the functions $u/sn\;u$ and $u^2/sn^2u$.
Bull. Amer. Math. Soc., 40 (1934), 632-640.
J60.II.1056; Z9.400
JAMIESON A.M.,
[1] An expression for Bernoulli numbers,
Proc. Glasgow Math. Assoc., 1 (1953), 126-128.
Z53,231; M15-289g
JANKOVIC Z.,
[1] Une démonstration de la formule de
Bernoulli. (Serbo-Croatian. French summary.),
Glasnik Mat.-Fiz. Astr. Ser. II, 7 (1952), 23-29.
Z82,17; M13-913a
[2] Two recurrence formulae for the sums $s_{2k}$.
Hrvatsko Prirodoslovno Drustvo. Glasnik Mat.-Fiz. Astr. Ser. II.,
8 (1953), 27-29.
Z53.39; M14-974b
JAPIC R.R., MITROVIC Z.M.,
[1] Bernoulli and Euler polynomials in k variables,
Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Math. Fiz., No. 412-460
(1973), 75-78.
Z274.33012; M48#6478; R1974,4V257
JAULENT J.-F.: see GRAS G., JAULENT J.-F.
JEFFERY H.M.,
[1] On Staudt's proposition relating to the
Bernouillian numbers, Quart. J. Math., 6 (1864), 179-180.
JENSEN K.L.,
[1] Om talteoretiske Egenskaber ved de
Bernoulliske Tal, Nyt Tidskr. f. Math., 26 (1915), 73-83.
J45.1257
[2] Note sur la congruence de Kummer relative aux nombres de Bernoulli,
Overs. Danske Vidensk. Selsk. Forh., (1915), 321-331.
J45.304
JETTER K.,
[1] The Bernoulli spline and approximation by trigonometric
blending polynomials,
Resultate Math., 16 (1989), no. 3-4, 243-252.
Z682.42001; M91a:41009; R1990,4B109
JHA V.,
[1] Faster computation of irregular pairs corresponding to an odd prime.
J. Indian Math. Soc., 59 (1993), no. 1-4, 149-152.
Z865.11088; M95d:11173
[2] The Stickelberger Ideal in the Spirit of Kummer with Appllication
to the First Case of Fermat's Last Theorem.
Queen's Papers in Pure and Applied Mathematics, No. 93.
Kingston, Ontario 1993. xiv + 181 pp.
Z779.11057; M95d:11148
[3] On Krasner's theorem for the first case of Fermat's last theorem,
Colloq. Math., 67 (1994), no. 1, 25-31.
Z813.11009; M95h:11025
JIANG ZENG: see RANDRIANARIVONY A., JIANG ZENG
JIN JINGYU: see ZHANG ZHIZHENG, JIN JINGYU
JOCHNOWITZ N.,
[1] A $p$-adic conjecture about derivatives of $L$-series attached to modular forms.
$p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA,
1991), 239--263, Contemp. Math., 165, Amer. Math. Soc., Providence, RI, 1994.
Z869.11040; M95g:11037
JOFFE S.A.,
[1] Sums of like powers of natural numbers.
Quart. J. Math., 46 (1915), 33-51.
J45.1244
[2] Calculation of the first thirty-two Eulerian numbers
from the central differences of zero.
Quart. J. Pure Appl. Math., 47 (1916), 103-126.
J46.360
[3] Calculation of Eulerian numbers from central differences of zero. (Abstract)
Bull. Amer. Math. Soc., 22 (1916), 381.
J46.360
[4] Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math., 48 (1919), 193-271.
JOHNSEN J.,
[1] On the distribution of irregular primes,
J. Number Theory, 8 (1976), no. 4, 434-437.
Z339.10012; M55#5552; R1977,5A60
JOHNSON W.,
[1] On the vanishing of the Iwasawa invariant $\mu_p$ for $p < 8000$,
Math. Comp., 27 (1973), 387-396.
Z281.12006; M52#5621; R1974,1A355
[2] Irregular prime divisors of the Bernoulli
numbers, Math. Comp., 28 (1974), no. 126, 653-657.
Z293.10008; M50#229; R1974,12A129
[3] Irregular primes and cyclotomic invariants,
Math. Comp., 29 (1975), no. 129, 113-120.
Z302.10020; M51#12781; R1975,12A160
[4] On the distribution of quadratic residues (Abstract), Notices Amer. Math. Soc., 22 (1975), no. 1, A66.
[5] p-adic proofs of congruences for the
Bernoulli numbers, J. Number Theory, 7 (1975), no. 2, 251-265.
Z308.10006; M51#12687; R1975,12A117
JOHNSONBAUGH R.,
[1] Summing an alternating series, Amer.
Math. Monthly, 86 (1979), no. 8, 637-648.
Z425.65002; M80g:40003; R1980,8B19
JOLY J.-R.,
[1] Calcul des nombres de Bernoulli modulo
$p^m$. Application à l'étude des nombers premiers
irreguliers. Sémin. Théor. Nombres, Univ. Grenoble
I, (1980-1981). Exposé No.4, (1981), 19pp.
Z475.10013
[2] Analyse numérique p-adique des nombres de Bernoulli et des
séries $L$ de Dirichlet.
Sémin. Théor. Nombres, Univ. Grenoble I, (1981-82).
Exposé No.6, (1982), 14pp.
Z506.10010
[3] Calcul des nombres de Bernoulli modulo $p^m$,
Sémin. Théor. Nombres, Paris, (1981-82),113-124.
Sémin. Delange-Pisot-Poitou, Progr. Math., 38, Birkhäuser,
Boston, Mass., 1983.
Z536.10011; M85g:10023; R1984,8A101
JONQUIERE A.,
[1] Note sur la série $\sum_{n=1}^{n=\infty}{{x^n}\over{n^s}}$.
Bull. Soc. Math. France, 17 (1889), no.5, 142-152.
J21.246
[2] Note sur la série $\sum_{n=1}^{n=\infty}{{x^n}\over{n^s}}$.
Översigt Kongl. Vet.-Akad. Förhandl., 5 (1889), 257-268.
J21.247
[3] Über eine Verallgemeinerung der Bernoulli'schen
Funktionen und ihren Zusammenhang mit der verallgemeinerten
Riemann'schen Reihe.
Bihang K. Svenska Vet.-Akad. Handl., 16 (1891), no. 6, 1-28.
J23.432
JORDAN CH.,
[1] Calculus of finite differences, 2nd ed., Chelsea Publ. Co.,
New York, 1950, xxi +652 pp.
Z41,54; M1-74e
[2] Sur des polynomes analogues aux polynomes de Bernoulli et sur
des formules de sommation analogues à celle de Maclaurin-Euler.
Acta Scientiarum Math.(Szeged), 4 (1929), 130-150.
J55.266
JOSHI J.M.C.: see SRIVASTAVA H.M., JOSHI J.M.C., BISHT C.S.
JUNG W.,
[1] Poznamka k cislum Bernoulliho [A note on Bernoulli numbers],
Casopis Pest. Mat. Fyz., 9 (1880), 103-108.
J12.195
KAIRIES H.H.: see also DICKEY L.J., KAIRIES H.H., SHANK H.S.
Z626.10012; M88g:05018
KALLIES J.,
[1] Verallgemeinerte Dedekindsche Summen und ein Gitterpunktproblem im
n-dimensionalen Raum,
J. Reine Angew. Math., 344 (1983), 22-37.
Z508.10007; M86d:11004; R1984,1A98
[2] Ein Beitrag zur Arithmetik der Bernoullischen Zahlen
imaginär-quadratischer Zahlkörper,
J. Reine Angew. Math., 361 (1985), 73-94.
Z561.12001; M87g:11031; R1986,4A399
KALLIES J., SNYDER C.,
[1] On the values of partial zeta functions of real quadratic fields at
nonpositive integers,
Math. Nachr., 175 (1995), 159-191.
Z856.11053; M96k:11137
KALYUZHNYI V.N.,
[1] A $p$-adic analogue of the Hurwitz zeta function.(Russian)
Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 40 (1983),
74-79.
Z555.12007; M85h:11078; R1984,2A321
[2] The power moment problem on a $p$-adic disk.
Teor. Funktsii Funktsional. Anal. i Prilozhen., no. 39 (1983),
56-61.
Z561.12005; M85b:11077; R1984,1B135
[3] On certain sums with Stirling and Bernoulli numbers. (Russian)
Vestnik Kharkov. Gos. Univ., no. 286 (1986), 87-94.
Z626.10012; M88g:05018
KAMIENNY S.,
[1] Modular curves and unramified extensions of
number fields, Compositio Math., 47 (1982), no. 2, 223-225.
Z501.12011; M84e:12011; R1983,4A370
[2] Points of order $p$ on elliptic curves over
$ Q(\sqrt p)$, Math. Ann., 262 (1982), no. 4, 413-424.
Z489.14010; M84g:14047; R1983,5A390
[3] Rational points on modular curves and abelian varieties,
J. Reine Angew. Math., 359 (1985), 174-187.
Z569.14002; M86j:11061; R1986,4A589
[4] p-torsion in elliptic curves over subfields of $ Q(\mu_p)$,
Math. Ann., 280 (1988), no. 3, 513-519.
Z626.14024; M90a:11061
[5] On $J_1(p)$ and the kernel of the Eisenstein ideal,
J. Reine Angew. Math., 404 (1990), 203-208.
Z705.14025; M90m:11171; R1990,9A341
KAMIENNY S., STEVENS G.,
[1] Special values of L-functions attached to $X_1(N)$,
Composito Math., 49 (1983), no. 1, 121-142.
Z519.14018; M84g:14021; R1983,11A588
KANEKO M.,
[1] A recurrence formula for the Bernoulli numbers,
Proc. Japan Acad. Ser. A, 71 (1995), 192-193.
Z854.11012; M96i:11022; R1996,4V266
[2] Poly-Bernoulli numbers,
J. Théor. Nombres Bordeaux 9 (1997), no. 1, 221-228.
Z887.11011; M98k:11013; R1998,4A85
[3] Multiple zeta values and poly-Bernoulli numbers (Japanese), Seminar Reports of the Department of Mathematics, Tokyo Metropolitan University, 1997, 42 pp.
KANEKO M.: see also ARAKAWA T., KANEKO M.,
KANELLOS S.G.,
[1] On Bernoulli's numbers, Bull. Soc. Math. Grèce,
28 (1954); 101-106. (Greek, English summary.)
Z57,10; M15-855d; R1956,2755
KANEMITSU S.,
[1] On some bounds for values of Dirichlet's
L-function $L(s, \chi)$ at the point $s=1$, Mem. Fac. Sci.
Kyushu Univ., Ser. A, 31 (1977), no. 1, 15-23.
Z351.10024; M55#12655; R1977,12A103
[2] Omega theorems for divisor functions,
Tokyo J. Math., 7 (1984), no. 2, 399-419.
Z556.10031; M87c:11085; R1985,10A141
KANEMITSU S., KUZUMAKI T.,
[1] On a generalization of the Maillet determinant.
Number theory (Eger, 1996), 271-287, de Gruyter, Berlin, 1998.
Z920.11071; M99h:11122
KANEMITSU S., SHIRATANI K.,
[1] An application of the Bernoulli functions to character sums,
Mem. Fac. Sci. Kyushu Univ., Ser. A, 30 (1976), no. 1, 65-73.
Z336.10031; M54#249; R1976,9A151
[2] Applications of Bernoulli functions to Dirichlet character sums. (Japanese).
Characteristics of arithmetic functions (Proc. Sympos., Res. Inst. Math. Sci.,
Kyoto Univ., Kyoto, 1975). Sûrikaisekikenkyûsho Kókyûroku,
No. 274, (1976), 148-151.
Z336.10033; M56#15578
KANEMITSU S., SITARAMACHANDRA RAO R.,
[1] On a conjecture of P. Chowla and of S. Chowla and H. Walum, I,
J. Number Theory, 20 (1985), no. 3, 255-261.
Z(467.10031)573.10036; M87d:11072a; R1986,1A110
[2] On a conjecture of S. Chowla and Walum, II,
J. Number Theory, 20 (1985), no. 2, 103-120.
Z(467.10032)573.10037; M87d:11072b; R1986,1A111
KANEMITSU S.: see also ISHIBASHI M., KANEMITSU S.
KANO H.,
[1] On the equation $s(1^k+s^k+ \cdots +x^k)+r = by^z$,
Tokyo J. Math., 13 (1990), no. 2, 441-448.
Z722.11022; M91m:11022; R1991,9A121
KAPTEYN J.C., KAPTEYN W.,
[1] Die Höheren Sinus.
Sitzungsber. d. Kais. Akad. d. Wiss. in Wien, 93 (1886), 807-868.
J18.371
KAPTEYN W.,
[1] Expansion of functions in terms of Bernoulli polynomials,
Proc. Intern. Math. Congress, Toronto, (1924), Reprinted v.1 (1967), 605-609.
KARAMATSU Y.,
[1] On Fermat's last theorem and the first factor of
the class number of the cyclotomic field, 2, TRU Math.,
16 (1980), no. 1, 23-29.
Z465.10010; M82a:10020; R1981,4A113
[2] Ribenboim's criteria and some criteria for the first case
of Fermat's last theorem,
TRU Math., 17 (1981), no.1, 25-38.
Z472.10021; M83a:10023; R1982,3A143
[3] A note on the first case of Fermat's last theorem.
Prospects of mathematical science (Tokyo, 1986), pp. 73-77.
World Sci. Publishing, Singapore, 1988.
Z654.o10017; M89i:11043
KARAMATSU Y.:see also ABE S., KARAMATSU Y.
KARANDE B.K., THAKARE N.K.,
[1] On the unification of Bernoulli and Euler
polynomials, Indian J. Pure Appl. Math., 6 (1975), no. 1, 98-107.
Z343.33010; M54#110; R1977,6V412
KAREL M.L.,
[1] Fourier coefficients of certain Eisenstein series.
Bull. Amer. Math. Soc., 78 (1972), 828-830.
Z255.10030; M45#6760; R1973,4A560
[2] Fourier coefficients of certain Eisenstein series.
Ann. Math. (2), 99 (1974), no.1, 176-202.
Z279.10024; M49#8935; R1974,7A749
KASUBE H.: see GANDHI J.M., KASUBE H., SURYANARAYANA D.
KATAYAMA K.,
[1] On Ramanujan's formula for values of Riemann zeta function
at positive odd integers,
Acta Arith., 22 (1973), 149-155.
Z248.10032; M48#252; R1973,9A139
[2] On the values of Eisenstein series,
Tokyo J. Math., 1 (1978), no. 1, 157-188.
Z391.10022; M80f:10029; R1979,1A148
[3] Corrections to: "On the values of Eisenstein series",
Tokyo J. Math., 5 (1982), no. 1, 115-116.
M83j:10025
KATAYAMA K., OHTSUKI M.,
[1] On a theorem of Shintani,
Tokyo J. Math., 16 (1993), no. 1, 155-170.
Z802.11015; M94e:11042
KATSURADA H.,
[1] An explicit formula for the Fourier coefficients of Siegel-Eisenstein series
of degree $3$,
Nagoya Math. J. 146 (1997), 199-223.
Z882.11026; M98g:11051
[2] Power series and asymptotic series associated with the Lerch zeta-function,
Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 10, 167-170.
M99m:11098
[3] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue, Acta Arith. 90 (1999), no. 1, 79-89.
KATSURADA M., MATSUMOTO K.,
[1] The mean values of Dirichlet $L$-functions at integer points and
class numbers of cyclotomic fields.
Nagoya Math. J., 134 (1994), 151-172.
Z806.11036; M95d:11108; R1995,6A292
[2] Explicit formulas and asymptotic expansions for certain mean square of
Hurwitz zeta-functions. II. New trends in probability and statistics,
Vol. 4 (Palanga, 1996), 119-134, VSP, Utrecht, 1997.
Z929.11027; M2000c:11145
KATZ N.M.,
[1] p-adic L-functions via moduli of elliptic curves,
Proc. Symp. Pure Math., 29 (1975),
479-506.
Z317.14009; M55#5635
[2] The congruences of Clausen - von Staudt and
Kummer for Bernoulli-Hurwitz numbers, Math. Ann.,
216 (1975), 1-4.
Z303.10028; M52#8136; R1976,2A539
[3] Higher congruences between modular forms,
Ann. of Math. (2), 101 (1975), no. 2, 332-367.
Z356.10020; M54#5120; R1976,1A516
[4] p-adic L-functions for CM-fields, Invent. Math.,
49 (1978), no. 3, 199-297.
Z439.12010; M80h:10039; R1979,7A400
[5] Divisibilities, congruences and Cartier duality,
J. Fac. Sci. Univ. Tokyo, Ser. IA, 28 (1981), no. 3, 667-678.
Z559.14032; M83h:10067; R1982,11A355
KAWASAKI T.,
[1] On the class number of real quadratic fields,
Mem. Fac. Sci. Kyushu Univ., Ser. A, 35 (1981), no. 1, 159-171.
Z459.12003; M82g:12006; R1981,9A275
KAZANDZIDIS G.S.,
[1] On sums of like powers of the numbers less than
$N$ and prime to $N$, Prakt. Akad. Athenon,
44 (1969), (1970), 148-158.
Z264.10009; M46#5230
[2] On the Bernoulli polynomials, Bull. Soc. Math.
Grèce, 10 (1969), 151-182.
Z197,319; M43#4756
KELISKY R.P.,
[1] Congruences involving combinations of the Bernoulli and Fibonacci numbers,
Proc. Nat. Acad. Sci. U.S.A., 43 (1957), no. 12, 1066-1069.
Z84,270; M19-941d; R1960,4A589
[2] On formulas involving both the Bernoulli and Fibonacci numbers,
Scripta Math., 23 (1957), no. 1-4, 27-35.
Z84,66; M20#5300; R1960,3784
KELLER W., LÖH G.,
[1] The criteria of Kummer and Mirimanoff extended
to include 22 consecutive irregular pairs, Tokyo J.
Math., 6 (1983), no. 2, 397-402.
Z553.10009; M85h:11014; R1984,10A93
KERVAIRE M.A., MILNOR J.W.,
[1] Bernoulli numbers, homotopy groups, and a
theorem of Rohlin, Proc. Intern. Congress of Math.,
Edinburgh 1958, Cambridge Univ. Press, 1960, 454-458.
Z119,385; M22#12531; R1961,8A349
[2] Groups of homotopy spheres, I,
Ann. of Math., 77 (1963), no. 3, 504-537.
Z115,405; M26#5584; R1964,10A305
KHAN R.A.,
[1] A simple derivation of a formula for $\sum_{k=1}^n k^r$,
Fibonacci Quart., 19 (1981), no. 2, 177-180.
M82e:05010; R1981,9V438
KHANNA I.K.,
[1] A new type of generalization of Bernoulli and Euler numbers
and its applications,
Progr. Math. (Varanasi), 20 (1986), no. 2, 83-89.
Z699.10022; M88g:11008
KHANNA I.K., PANDAY P.,
[1] Extended Bernoulli numbers and its applications,
Ganita, 35 (1984), no. 1-2, 26-34 (1987).
Z632.10009
KHOVANSKII A.N.,
[1] Some identities connected with Bernoulli numbers. (Russian),
Izvestiya Kazan. Filial. Akad. Nauka. SSSR. Ser. Fiz.-Mat. Tehn. Nauk.,
1 (1948), 93-94.
M14-138c
KIDA M.,
[1] Kummer's criterion for totally real number fields.
Tokyo J. Math., 14 (1991), no.2, 309-317.
Z758.11031; M92j:11135
KIM E.E., TOOLE B.A.,
[1] Ada and the first computer.
Scientific American, May 1999, 76-81.
KIM HAN SOO, KIM TAEKYUN,
[1] On a $q$-analogue of the $p$-adic log gamma functions and related integrals.
Number theory and related topics (Masan, 1994; Pusan, 1994), 67--75,
Pyungsan Inst. Math. Sci., Seoul, 1995.
M97h:11013
[2] Remark on $q$-analogues of $p$-adic $L$-functions.
Number theory and related topics (Masan, 1994; Pusan, 1994), 76--83,
Pyungsan Inst. Math. Sci., Seoul, 1995.
M97g:11016
[3] On certain values of $p$-adic $q$-$L$-functions.
Rep. Fac. Sci. Engrg. Saga Univ. Math. 23 (1995), no. 1-2, 1-7.
Z820.11071; M96f:11153; R1997,4A262
[4] Some congruences for Bernoulli numbers. II.
Rep. Fac. Sci. Engrg. Saga Univ. Math. 24 (1996), no. 2, 5 pp.
Z869.11016; M98g:11018; R1996,12A142
[5] On $q$-$\log$-gamma-functions.
Bull. Korean Math. Soc. 33 (1996), no. 1, 111-118.
Z865.11059; M97b:11025
[6] Remark on $p$-adic $q$-Bernoulli numbers. Algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. 1 (1999), 127-136.
KIM HAN SOO, LIM PIL-SANG, KIM TAEKYUN,
[1] A remark on $p$-adic $q$-Bernoulli measure. Bull. Korean
Math. Soc. 33 (1996), no. 1, 39--44.
Z855.11062; M97b:11145
KIM JAE MOON,
[1] Class numbers of certain real abelian fields,
Acta Arith., 72 (1995), no. 4, 335-345.
Z841.11056; M96j:11152; R1996,10A248
[2] Class numbers of real quadratic fields,
Bull. Austral. Math. Soc., 57 (1998), no. 2, 261-274.
Z980.47404; M98m:11117
[3] Units and cyclotomic units in ${Z}\sb p$-extensions,
Nagoya Math. J. 140 (1995), 101-116.
Z848.11055; M96m:11100
KIM TAEKYUN,
[1] An analogue of Bernoulli numbers and their congruences.
Rep. Fac. Sci. Engrg. Saga Univ. Math., 22 (1994), no. 2, 21-26.
Z802.11007; M94m:11024
[2] On explicit formulas of $p$-adic $q$-$L$-functions.
Kyushu J. Math., 48 (1994), no.1, 78-86.
Z817.11054; M95c:11140; R1996,8A219
KIM TAEKYUN: see also KIM HAN SOO, KIM TAEKYUN
KIMBALL B.F.,
[1] The application of Bernoulli polynomials of negative order to differencing,
Amer. J. Math., 55 (1933), 399-416.
J59.I.367; Z7,211
[2] The application of Bernoulli polynomials of negative order
to differencing. II,
Amer. J. Math., 56 (1934), 147-152.
J60.II.1041; Z8,260
[3] A generalization of the Bernoulli polynomial of
order one, Bull. Amer. Math. Soc., 41 (1935), 894-900.
J61.I.377; Z13,167
[4] The generalized Bernoulli polynomial and its relation
to the Riemann zeta function (Abstract).
Bull. Amer. Math. Soc., 39 (1933), 510-511.
J59.I.375
KIMURA N.,
[1] Kummersche Kongruenzen für die verallgemeinerten Bernoullischen Zahlen,
J. Number Theory, 11 (1979), no. 2, 171-187.
Z406.10011; M81d:10008; R1980,1A112
[2] Über die Nullstellen der von Potenzsummen der
natürlichen Zahlen definierten Polynome, Proc. Japan Acad.
Ser. A, 58 (1982), no. 7, 326-328.
Z515.10012; M84k:10043; R1983,4A129
[3] On the degree of an irreducible factor of the Bernoulli polynomials,
Acta Arith., 50 (1988), no. 3, 243-249.
Z655.10008; M89j:11019; R1989,3A251
KIMURA N., SIEBERT H.,
[1] Über die rationalen Nullstellen der von Potenzsummen
der natürlichen Zahlen definierten Polynome.
Proc. Japan. Acad. Ser. A, 56 (1980), no.7, 354-356.
Z462.10007; M82e:10013; R1981,3A96
KING, AUGUSTA ADA,
[1] Notes by the translator. (On L. F. Menabrea, "Sketch of the Analytical
Engine Invented by Charles Babbage Esq.").
In Richard Taylor (Ed.), Scientific Memoirs, Vol. III, Richard and
John E. Taylor, London, 1843.
KINKELIN H.,
[1] Ueber eine mit der Gammafunction verwandte Transcendente
und deren Anwendung auf die Integralrechnung.
J. Reine Angew. Math., 57 (1860), 122-138.
KIRIYAMA H.: see ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.
KIRSCHENHOFER P., PRODINGER H.,
[1] On some applications of formulae of Ramanujan
in the analysis of algorithms.
Mathematika, 38 (1991), no. 1, 14-33.
Z707.68024; M92h:68025
KIRSTEN K.,
[1] Inhomogeneous multidimensional Epstein zeta functions.
J. Math. Phys., 32 (1991), no. 11, 3008-3014.
Z753.11032; M93a:11028
KISELEV A.A.,
[1] An expression for the number of classes of ideals of real quadratic fields
by means of Bernoulli numbers.
(Russian) Doklady Akad. Nauk. SSSR(N.S.), 61 (1948), 777-779.
Z35,022; M10-236h
[2] Vyrazhenie chisla klassov kvadratichnykh polej cherez chisla Bernulli [An expression for the number of classes of ideals of quadratic fields by means of Bernoulli numbers]. Nauchn. sessiya Leningradsk. Gos. Universiteta, Tezisy dokladov po sektsii Mat. Nauk, (1948), 37-39.
[3] O nekotorykh sravneniyakh chisla klassov idealov veshchestvennykh polej [On some congruences for the numbers of classes of ideals of real quadratic fields]. Uch. zap., Leningradsk. Gos. Universiteta, ser. mat. nauk, (1949), no. 16, 20-31.
[4] On the commumication "On the determination of the sum of
quadratic residues of a prime $p= 4m+3$ by means of Bernoulli numbers" (Russian)
In: Voronoi, G.F., Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. III, Kiev, 1953, 203-204.
KISELEV A.A., SLAVUTSKII I.SH.,
[2] Some congruences for the number of
representations as sums of an odd number of squares. (Russian) Dokl. Akad.
Nauk. SSSR, 143 (1962), 272-274.
[3] The transformation of Dirichlet's formulas
and the arithmetical computation of the class number of
quadratic fields. (Russian) 1964 Proc. Fourth All-Union Math. Congr.
(Leningrad, 1961), Vol.II, pp. 105-112, Izdat. "Nauka", Leningrad.
[4] Rol' teorii chisel i mnogochlenov Bernulli v teorii chisel [The role of
the theory of Bernoulli numbers and polynomials in number theory].
Tezisy dokl. konf. Leningradsk. otdeleniya Sovetsk. nats. ob'edineniya
istorikov estestvoznaniya i tekhniki, Leningrad, (1966), 9.
[5] Chislo klassov idealov kvadratichnogo polya i chisla Bernulli [The number
of classes of ideals of a quadratic field and Bernoulli numbers].
Tezisy sektsyii No. 3 Mezhdunarodn. kongressa matematikov, Moskva, (1966), 15-16.
KISHORE N.,
[2] A representation of the Bernoulli number $B_n$,
Pacific J. Math., 14 (1964), 1297-1304.
[3] Congruence properties of the Rayleigh functions and polynomials,
Duke Math. J., 35 (1968), 557-562.
KLEBOTH H.,
KLINE M.,
KLINOWSKI J.: see CVIJOVIC D., KLINOWSKI J.
KLUYVER J.C.,
[2] Ontwikkelingscoëfficiënten, die eenige
overeenkomst met de getallen van Bernoulli vertoonen, Nieuw
Arch. Wisk. (2), 5 (1901), 249-254.
[3] An analytical expression for the greatest common divisor of two integers,
Proc. Royal Acad. Amsterdam, 5 (1903), 658-662.
[4] Über die Summen der gleich hohen inversen
Potenzen der ganzen Zahlen, Handl. Neder. Nat. en Geneesk.
Congr., 10 (1905), 181-184 . (original title:
Over de sommen van gelijknamige machten der
omgekeerden van de geheele getallen).
[5] Verallgemeinerung einer bekannten Formel,
Nieuw Arch. Wisk. (2), 4 (1899/1900), 284-291.
KNAR J.,
KNOPP K.,
KNUTH D.E.,
KNUTH D.E., BUCKHOLTZ T.J.,
KNUTH D.E.: see also GRAHAM R.L., KNUTH D.E., PATASHNIK O.
KOBELEV V.V.,
KOBLITZ N.,
[2] Interpretation of the p-adic log gamma functions
and Euler constant using the Bernoulli measure,
Trans. Amer. Math. Soc., 242 (1978), 261-269.
[3] A new proof of certain formulas for p-adic
L-functions, Duke Math. J., 46 (1979), 455-468.
[4] p-adic analysis: a short course on recent works,
London Math Soc. Lecture Note Series, No. 46, 1980.
[5] On Carlitz's q-Bernoulli numbers, J.
Number Theory, 14 (1982), no. 3, 332-339.
[6] q-extension of the p-adic gamma function, II,
Trans. Amer. Math. Soc., 273 (1982), no. 1, 111-129.
[7] Introduction to elliptic curves and modular
forms, Graduate Texts in Mathematics No. 97. Springer-Verlag, New York-
Berlin, 1984. viii + 248pp.
[8] p-adic congruences and modular forms of half integer weight,
Math. Ann., 274 (1986), no. 2, 199-220.
[9] Congruences for periods of modular forms,
Duke Math. J., 54 (1987), no. 2, 361-373.
[10] Jacobi sums, irreducible zeta-polynomials and cryptography.
Canad. Math. Bull., 34 (1991), no. 2, 229-235.
KOCH H.,
[2] Introduction to classical mathematics. I. From the quadratic
reciprocity law to the uniformization theorem. Mathematics and its
Applications, 70. Kluwer Akademic Publ., Dordrecht, 1991. xviii+453pp.
KOECHER M.: see EBBINGHAUS H.-D. et al.
KOEPF W.,
KÖHLER G.,
KOHNEN W.,
KOHNEN W., ZAGIER D.,
KOLK J.A.C.: see BEUKERS F., KOLK J.A.C., CALABI E.
KOLSCHER M.,
KOLSTER M.,
[2] Remarks on étale $K$-theory and Leopoldt's conjecture.
Séminaire de théorie des nombres, Paris, 1991-92, 37-62,
Progr. Math., 116, Birkhäuser, Boston, MA, 1993.
KOLYVAGIN V.A.,
[2] Fermat equations over cyclotomic fields,
Proc. Steklov Inst. Math., 208 (1995), 146-165; translation from
Tr. Mat. Inst. Steklova, 208 (1995), 163-185.
KORTEWEG D.J.,
KOSEKI H.: see HASHIMOTO K., KOSEKI H.
KOSHLYAKOV N.S.,
[2] Remarks on the paper of I.J. Schwatt "The sum of like powers
of a series of numbers forming an arithmetical progression and the Bernoulli
numbers." (Russian),
Mat. Sb., 40 (1933), 528.
KOTIAH T.C.T.,
KOUNCHEV O.: see DRYANOV D., KOUNCHEV O.
KOUTSKY K.,
KOZUKA K.,
[2] on a p-adic interpolating power series of the generalized Euler numbers,
J. Math. Soc. Japan, 42 (1990), no. 1, 113-125.
[3] On the values of the p-adic valuation of the generalized Euler numbers,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 37-53.
[4] On the $\ mu$-invariant of an interpolating power series of the
generalized Euler numbers,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), no. 2, 43-53.
[5] On the $\mu$-invariants of certain $p$-adic $L$-functions attached to
the formal multiplicative group.
Res. Rep. Miyakonojo Nat. Coll. Technol., 1994, no. 28, 1-10.
KRAFT J. S.,
KRALL H.L.,
KRAMER D.,
[2] On the values at integers of the Dedekind zeta function of a
real quadratic field,
Trans. Amer. Math. Soc., 299 (1987), no. 1, 59-79.
KRASNER M.,
KRAUSE M.,
[2] Über Bernoulische Zahlen und Funktionen im
Gebiete der Funktionen zweier
veränderlicher Grössen,
Berichte Verh. Kgl. Gesells. Wiss., Leipzig, 55 (1903),
39-62.
[3] Zur Theorie der Eulerschen und Bernoullischen
Zahlen, Monatsh. Math. Phys., 14 (1903),
305-324.
[4] Über die Bernoullische Funktion zweier
veränderlicher Grössen, Arch. Math. und Phys. (3),
4 (1903), 293-295.
KREWERAS G.,
[2] Sur les permutations comptées par les nombres de Genocchi de
1-ière et 2-ième espèce. (French) [Permutations enumerated
by Genocchi numbers of the first and the second kind]
European J. Combin. 18 (1997), no. 1, 49-58.
KRICK M.S.,
KRIEG A.: see EIE M., KRIEG A.
KRISHNAMACHARY C., BHIMASENA RAO M.,
KRONECKER L.,
[2] Démonstration d'un Théorème de Kummer, J. Math. Pure
Appl., (2), 1 (1856), 396-398.
[3] Über die Bernoullischen Zahlen (Bermerkungen
zu der Abhandl. des Herrn Worpitzky), J. Reine Angew. Math.,
94 (1883), 268-270.
[4] Über eine bei Anwendung partieller
Integration nützliche Formel, Sitz. Kgl. Preuss. Akad. Wiss.,
Berlin, (1885), 841-862.
KROUKOVSKI B.V.,
KUBERT D.S.,
[2] The 2-divisibility of the class number of cyclotomic fields
and the Stickelberger ideal,
J. Reine Angew. Math., 369 (1986), 192-218.
KUBERT D., LANG S.,
[2] Modular units inside cyclotomic units,
Bull. Soc. Math. France, 107 (1979), fasc. 2, 161-178.
[3] Modular units, Springer-Verlag, New York-Berlin,
1981, xiii + 358pp. (Grundl. Math. Wiss., No. 244.)
KUBOTA T., LEOPOLDT H.W.,
KUDO A.,
[2] On generalization of a theorem of Kummer, Mém
Fac. Sci. Kyushu Univ., Ser. A, 29 (1975), no. 2, 255-261.
[3] Generalized Bernoulli numbers and the basic
$ Z_p$-extensions of imaginary quadratic fields, Mém. Fac.
Sci. Kyushu Univ., Ser. A, 32 (1978), no. 2, 191-198.
[4] On $p$-adic Dedekind sums, II.
Mem. Fac. Sci. Kyushu Univ., Ser. A, 45 (1991), no.2, 245-284.
[5] Reciprocity formulas for $p$-adic Dedekind sums,
Bull. Fac. Liberal Arts Nagasaki Univ., 34 (1994), no. 2, 97-101.
[6] On $p$-adic Dedekind sums,
Nagoya Math. J. 144 (1996), 155-170.
KUDRYAVTSEV V.A.,
KUHN P.,
KUMMER E.E.,
[2] Zwei besondere Untersuchungen über die
Classen-Anzahl und über die Einheiten der aus
$\lambda$-ten Wurzeln der Einheit gebildeten complexen
Zahlen, J. Reine Angew. Math., 40 (1850), no. 2,
117-129. / Coll. Papers, v.1., Berlin e.a.:
Springer-Verlag, 1975. viii + 957pp.
[3] Allgemeiner Beweis des Fermat'schen Satzes,
dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$
durch ganze Zahlen unlösbar ist, für alle diejenigen
Potenz-Exponenten $\lambda$, welche ungerade Primzahlen
sind und in den Zählern der ersten $({\lambda}-3)/2$
Bernoulli'schen Zahlen als Factoren nicht vorkommen, J.
Reine Angew. Math., 40 (1850), 131-138.
[4] Mémoire sur la théorie des nombres complexes
composés de racines de l'unité et de nombres entiers, J.
Math. Pure Appl., 16 (1851), 377-498.
[5] Über eine allgemeine Eigenschaft der rationalen
Entwicklungscoefficienten einer bestimmten Gattung
analytischer Functionen, J. Reine Angew. Math.,
41 (1851), 368-372.
[6] Über die Ergänzungssätze zu den allgemeinen
Reciprocitätsgesetzen, J. Reine Angew. Math., 44
(1852), no. 2, 93-146.
[7] Über die Ergänzungssätze zu den allgemeinen
Reciprocitätsgesetzen, J. Reine Angew. Math., 56
(1859), 270-279.
[8] Einige Sätze über die aus den Wurzeln der
Gleichung $\alpha^{\lambda} = 1$ gebildeten complexen
Zahlen, für den Fall, dass die Klassenzahl durch $\lambda$
theilbar ist, nebst Anwendung derselben auf einen weiteren
Beweis des letzten Fermats'chen Lehrsatzes, Abhandl. Akad.
Wiss. Berlin, Math., (1857), (1858), 41-74. (See also
Auszug, Monatsb. Akad. Wiss. Berlin, (1857), 275-282.)
[9] Über diejenigen Primzahlen $\lambda$, für
welche die Klassenzahl der aus $\lambda$-ten
Einheitswurzeln gebildeten complexen Zahlen durch
$\lambda$ theilbar ist, Monatsb. Akad. Wiss. Berlin, (1874), 239-248.
[10] Die Briefe an Leopoldt Kronecker, Abhandl. zur
Geschichte der Math. Wiss., Leipzig, (1910), Heft 29.
KUNDERT E.G.,
[2] The Bernoullian of a matrix (A generalization of
Bernoulli numbers), Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. (8) 72 (1982),
(1983), no. 6, 315-317.
[3] A von Staudt-Clausen theorem for certain Bernoullian-like numbers
and regular primes of the first and second kind.
Fibonacci Quart., 28 (1990), no. 1, 16-21.
KUO HUAN-TING,
KURIHARA A.,
KURIHARA F.,
KURIHARA M.,
KURT V.,
KÜTTNER W.,
KUZMIN L.V.,
KUZNETSOV A. G., PAK I. M., POSTNIKOV A. E.,
KUZUMAKI T.: see KANEMITSU S., KUZUMAKI T.
KWON SOUN-HI: see CHANG KU-YOUNG, KWON SOUN-HI
LAFORGIA A.,
LAGRANGE R.,
LAI K.F.: see EIE M., LAI K.F.
LAMPE E.,
LAMPE E.: see also BARNIVILLE J.J., DICKSON J.D.H., LAMPE E.
LAN YIZHONG,
LANG H.,
[2] Über Anwendungen höherer Dedekindscher Summen auf die Struktur
elementar-arithmetischer Klasseninvarianten reell-quadratischer
Zahlkörper,
J. Reine Angew. Math., 254 (1972), 17-32.
[3] Über Bernoullische Zahlen in reell-quadratischen
Zahlkörpern, Acta Arith., 22 (1973), 423-437.
[4] Über verallgemeinerte Bernoullische Zahlen und die
Klassenzahl reell-quadratischer Zahlkörper, Acta Arith., 23
(1973), 13-18.
[5] Über die Klassenzahlen eines imaginären bizyklischen
Zahlkörpers und seines reell-quadratischen Teilkörpers, 2, J.
Reine Angew. Math., 267 (1974), 175-178.
[6] Über verallgemeinerte Dedekindsche Summen,
Strahlklasseninvarianten reell-quadratischer Zahlkörper und die
Klassenzahl des q-ten Kreisteilungskörpers, J. Reine Angew. Math., 338
(1983), 95-106.
[7] Über die Werte $\zeta (2-p,K)$ der Zetafunktion einer Idealklasse
aus einem reell-quadratischen Zahlkörper,
J. Reine Angew. Math., 361 (1985), 35-46.
[8] Über die Restklasse modulo $2^{e+2}$ des Wertes
$2^en{\zeta}(1-2^en, K)$ der Zetafunktion einer Idealklasse aus
dem reell-quadratischen Zahlkörper $ Q(\sqrt(D))$ mit $D \equiv 3 (mod 4)$,
Acta Arith., 51 (1988), 277-292.
[9] Kummersche Kongruenzen für die normierten
Entwicklungskoeffizienten der Weierstrassschen $\wp$-Funktion.
Abh. Math. Sem. Univ. Hamburg, 33 (1969), no. 3-4, 183-196.
[10] Über die Werte der Zetafunktionen einer Idealklasse und die
Kongruenzen von N. C. Ankeny, E. Artin und S. Chowla für die Klassenzahl
reell-quadratischer Zahlkörper.
J. Number Theory, 48 (1994), no. 1, 102-108.
LANG S.,
[2] Introduction to Modular Forms,
Springer-Verlag, Berlin, 1976, Ch. 6, 10, 13.
[3] Cyclotomic fields. Graduate Texts in Mathematics, Vol. 59.
Springer-Verlag, New York, 1978.
[4] Cyclotomic fields. II. Graduate Texts in Mathematics, 69.
Springer-Verlag, New York, 1980.
[5] Units and class groups in number theory and algebraic
geometry, Bull. Amer. Math. Soc., 6 (1982), no. 3, 253-316.
[6] Introduction to Arakelov theory.
Springer-Verlag, New York-Berlin, 1988. x+187 pp.
[7] Old and new conjectured Diophantine inequalities,
Bull. Amer. Math. Soc. (N.S.), 23 (1990), no. 1, 37-75.
[8] Cyclotomic Fields I and II. Combined second edition.
With an appendix by Karl Rubin. Graduate Texts in Mathematics, 121.
Springer Verlag, Berlin etc., 1990, xviii+433p.
LANG S.: see also KUBERT D., LANG S.
LANGMANN K.,
LAPLACE P.-S.,
LASSÁK M.: see JAKUBEC S., LASSÁK M.
LE MAOHUA,
LE BESGUE V.A.,
LE BIHAN P.,
[2] Sur un résultat de J.J. Schäffer concernant
l'équation $\sum_{k=1}^nk^p = m^q$ ,
preprint, Mathématiques, Faculté des Sciences, Brest (France).
[3] L'équation $m^q = \sum_{x=0}^{n-1}(kx+1)^p$ ,
preprint, Mathématiques, Faculté des Sciences, Brest (France).
LECLERC M.: see BUTZER M. et al
LEE JUNGSEOB,
LEEMING D.J.,
[2] An asymptotic estimate for the Bernoulli and Euler numbers,
Canad. Math. Bull., 20 (1977), no. 1, 109-111.
[3] The real zeros of the Bernoulli polynomials,
J. Approx. Theory, 58 (1989), no. 2, 124-150.
[4] The coefficients of sinh $xt/\sin t$ and the Bernoulli polynomials.
Internat. J. Math. Ed. Sci. Tech. 28 (1997), no. 4, 575-579.
LEEMING D.J., MACLEOD R.A.,
[2] Generalized Euler number sequences: asymptotic estimates and congruences,
Canad. J. Math., 35 (1983), no. 3, 526-546.
LEGENDRE A.M.,
LEHMER D.H.,
[2] An extension of the table of Bernoulli numbers, Duke Math. J.,
2 (1936), 460-464.
[3] On the maxima and minima of Bernoulli polynomials, Amer.
Math. Monthly, 47 (1940), 533-538.
[4] The lattice points of an $n$-dimensional tetrahedron,
Duke Math. J. 7 (1940), 341-353.
[5] Generalized Eulerian numbers,
J. Combinat. Theory, Ser. A, 32 (1982), no. 2, 195-215.
[6] Some properties of the cyclotomic polynomial,
J. Math. Anal. Appl., 15 (1966), 105-117.
[7] A new approach to Bernoulli polynomials,
Amer. Math. Monthly, 95 (1988), no. 10, 905-911.
[8] The sum of like powers of the zeros of the Riemann zeta function,
Math. Comp., 50 (1988), no. 181, 265-273.
LEHMER D.H., LEHMER E., VANDIVER H.S.,
LEHMER E.,
[2] On congruences involving Bernoulli numbers and quotients of
Fermat and Wilson, Ann. Math. (2), 39 (1938), 350-360.
LEHMER E.: see also LEHMER D.H., LEHMER E., VANDIVER H.S.
LE LIDEC P.,
[2] Nouvelle forme des congruences de Kummer-Mirimanoff pour le premier cas du
théorème de Fermat, Bull. Soc. Math. France, 97
(1969), 321-328.
LÉMERAY E.M.,
LENSE J.,
LEOPOLDT H.W.,
[2] Über Klassenzahlprimteiler reeller abelscher Zahlkörper
als Primteiler verallgemeinerter Bernoullischer Zahlen, Abh. Math.
Sem. Univ. Hamburg, 23 (1959), 36-47.
[3] Über Fermatquotienten von Kreiseinheiten und
Klassenzahlformeln modulo p, Rend. Circ. Mat., Palermo (2), 9
(1960), 39-50.
[4] Zur Arithmetik in abelschen Zahlkörpern, J.
Reine Angew. Math., 209 (1962), 54-71.
[5] Zum wissenschaftlichen Werk von Helmut Hasse,
J. Reine Angew. Math., 262/263 (1973), 1-17.
[6] Eine p-adische Theorie der Zetawerte, 2: Die p-adische
$\Gamma$-Transformation, J. Reine Angew. Math., 274/275 (1975),
224-239.
LEOPOLDT H.W.: see also KUBOTA T., LEOPOLDT H.W.
LE PAIGE C.: see le PAIGE C.
LEPKA K.,
LERCH M.,
LETTL G.,
LEVINE J.: see CARLITZ L., LEVINE J.
LI JIAN YU: see CHEN JING RUN, LI JIAN YU
LICHTENBAUM St.,
le LIDEC P.: see LE LIDEC P.
LIÉNARD R.,
LIGOWSKI W.,
LIKHIN V.V.,
[2] Osnovnye etapy razvitiya teorii chisel i funktsij Bernulli [The main
stages of development of the theory of numbers and functions of Bernoulli].
Trudy instituta istorii estestvoznaniya i tekhniki Akad. Nauk SSSR 19
(1957), 411-430.
[3] Teoriya chisel i funktsij Bernulli i ee razvitie v trudakh otechestvennykh
matematikov [The theory of numbers and functions of Bernoulli, and its
development in the works of Soviet and Russian mathematicians].
Istoriko-mat. issledovaniya 12 (1959), 59-134.
[4] Ob obobshchennykh chislakh i funktsiyakh Bernulli [On generalized numbers
and functions of Bernoulli] (Ukrainian).
Nauchn. zap. Poltavsk. pedagogichesk. instituta, fiz.-mat. ser. 13
(1963), no. 2, 3-21.
[5] Prilozhenie chisel Bernulli k teorii chisel [Application of Bernoulli
numbers in number theory] (Ukrainian).
Nauchn. zap. Poltavsk. pedagogichesk. instituta, fiz.-mat. ser. 13
(1963), no. 2, 22-31.
LIM PIL-SANG: see KIM HAN SOO, LIM PIL-SANG, KIM TAEKYUN
LINDELÖF E.,
LIPSCHITZ R.,
[2] Beiträge zu der Kenntniss der Bernouillischen Zahlen, J.
Reine Angew. Math., 96 (1884), 1-16.
[3] Über Eigenschaften der Bernoullischen Zahlen,
Deutsch. Natf. Ber., 1883, 56-57.
[4] Sur la représentation asymptotique de la valeur numérique
ou de la partie entière des nombres de Bernoulli, Bull. Sci. Math. (2),
10 (1886), no. 1, 135-144.
LIU BO LIAN,
LIU GUO DONG,
[2] Higher-order multivariable Euler's polynomial and higher-order multivariable
Bernoulli's polynomial,
Appl. Math. Mech. (English Ed.) 19 (1998), no. 9, 895-906;
translated from Appl. Math. Mech. 19 (1998), no. 9, 827-836 (Chinese).
[3] Generalized Euler-Bernoulli polynomials of order $n$. (Chinese),
Math. Practice Theory 29 (1999), no. 3, 5-10.
LJUNGGREN W.,
[2] A theorem on the elementary symmetric functions of the n first odd numbers,
Norske Vid. Selsk. Forh., 19 (1946), no. 5, 14-17.
[3] Sur un théorème de M. E. Jacobsthal,
Avhdl. Norske Vid. Akad. Oslo, 1 (1947), no. 5, 1-14.
LOBACHEVSKII N.I.,
LOEB D.E.,
[2] The iterated logarithmic algebra. II. Sheffer sequences.
J. Math. Anal. Appl., 156 (1991), no. 1, 172-183.
LÖH G.: see KELLER W., LÖH G.
LOHNE J.,
LONGCHAMPS G.,
LÓPEZ J.L.; TEMME N.M.,
[2] Hermite polynomials in asymptotic representations of
generalized Bernoulli, Euler, Bessel, and Buchholz polynomials,
generalized Bernoulli, Euler, Bessel, and Buchholz polynomials,
J. Math. Anal. Appl. 239 (1999), no. 2, 457-477.
LOUBOUTIN ST.,
[2] Computation of relative class numbers of imaginary abelian number fields,
Experiment. Math. 7 (1998), no. 4, 293-303.
LOVELACE, Augusta Ada, Countess of: see KING, AUGUSTA ADA
LU HONG-WEN,
LUCAS E.,
[2] Sur les rapports qui existent entre le triangle arithmétique de
Pascal et les nombres de Bernoulli, Nouv. Ann. Math. (2), 15 (1876),
497-499.
[3] Théorie nouvelle des nombres de Bernoulli et d'Euler, Annali
de Math., Milano (2), 8 (1877), 56-79.
[4] Sur les théorèmes de Binet et de Staudt concernant les
nombres de Bernoulli, Nouv. Ann. Math. (2),
16 (1877), 157-160.
[5] Sur la généralisation de deux théorèmes dus
à MM. Hermite et Catalan, Nouv. Corres. Math., 3 (1877), 69-73.
[6] On the development of
$\bigl({z\over{1-e^{-z}}}\bigr)^{\alpha}$ in a series, Messeng.
Math. (2), 7 (1877), 82-84.
[7] On the successive summations of $1^m + \cdots +x^m$,
Messeng. Math., 7 (1878), 84-86.
[8] On development in series, Messeng. Math., 7 (1877), 116.
[9] On Eulerian numbers, Messeng. Math., 7 (1877), 139-141.
[10] Sur les congruences des nombres eulériens et les coefficients
différentiels des fonctions trigonométriques suivant un module
premier, Bull. Soc. Math. France, 6 (1878), 49-54.
[11] Sur les développements en séries, Bull. Soc. Math. France,
6 (1878), 57-68.
[12] Sur les nouvelles formules de MM. Seidel et Stern,
concernant les nombres de Bernoulli, Bull. Soc. Math. France,
8 (1880), 169-173.
[13] Démonstration du théorème de Clausen et de Staudt
concernant les nombres de Bernoulli, Mathesis, 3 (1883),
25-28.
[14] Démonstration du théorème de Clausen et de Staudt, sur
les nombres de Bernoulli, Bull. Soc. Math. France, 11 (1883),
69-72.
[15] Théorie des nombres, Paris, (1891), t.1.
[16] Sur les théorèmes énoncés par Fermat, Euler, Wilson,
Staudt et Clausen, Mathesis (2), 1 (1891), 5-12.
LUCAS E., CATALAN E.,
LUCHT L.G.,
LUCK J.-M.: see WALDSCHMIDT M. et al.
LUNDELL A.T.,
LURSMANASHVILI A.P.,
LYAKHOVITSKII V.N.,
LYCHE R.T.: see TAMBS LYCHE R.
Z49,28; M16-2d; R1954,3228K
[1] On the number of classes of ideals of a quadratic
field and its rings. (Russian) Dokl. Akad. Nauk. SSSR, 126 (1959),
1191-1194.
Z92,274; M23#A141; R1960,4872
Z121,264; M26#3687; R1962,10A73
Z201,378; M36#3748; R1964,11A108
[1] The Rayleigh function,
Proc. Amer. Math. Soc., 14 (1963), 527-533.
Z117,299; M27#1633; R1964,5B48
Z132,299; M30#1082; R1966,2B61
Z182,66; M37#3995; R1969,6B90
[1] Untersuchung über Klassenzahl und Reziprozitätsgesetz im
Körper der 6l-ten Einheitswurzeln und die Diophantische Gleichung
$x^{2l}+3ly^{2l}=z^{2l}$ für eine Primzahl $l$ grösser als 3,
Dissertation, Univ. Zürich, 1955, 37 pp.
M20#4537; R1962,11A123D
[1] Euler and infinite series, Math. Mag., 56
(1983), no. 5, 301-315.
Z526.01015; M86a:01020; R1984,7A11
[1] Der Staudt-Clausen'sche Satz., Math. Ann.,
53 (1900), 591-592.
J31.198
J32.282
J36.341
J31.437
[1] Entwicklung der vorzüglichsten Eigenschaften
einiger mit den goniometrischen zunächst verwandten
Functionen, Arch. Math. und Phys., 27 (1856), 365-470.
[1] Theorie und Anwendung der unendlichen Reihen, 4-te Auflage,
Springer-Verlag, Berlin-Heidelberg, 1947, xii + 583 pp.
Z31,118; M10-446a
[1] Johann Faulhaber and sums of powers.
Math. Comp., 61 (1993), no. 203, 277-294.
Z797.11026; M94a:11030
[1] Computation of tangent, Euler and Bernoulli numbers,
Math. Comp., 21 (1967), 663-688.
Z178,44; M36#4787; R1968,6B856
[1] A proof of Fermat's theorem for all prime exponents less than 5500.
(Russian) Dokl. Akad. Nauk. SSSR, 190 (1970), 767-768.
Z205,65; M41#3363; R1970,7A149
[1] p-adic numbers, p-adic analysis and
zeta-functions, Springer-Verlag, New York, 1977. (Russk. perevod 83i:12013).
Z364.12015*; M57#5964; R1978,8A366K
Z(358.12010)379.12011; M58#10836; R1979,2A255
Z409.12028; M80f:12011; R1980,2A355
Z439.12011*; M82c:12014; R1981,5A374
Z501.12020; M83k:12017; R1982,12A354
Z508.12016; M84a:12024; R1983,4A364
Z553.10019*; M86c:11040; R1985,5A394K
Z571.10030, 582.10019; M88a:11043; R1986,11A576
Z628,10032; M88k:11030; R1988,5A434
Z(725.11028) 686.12011; M92e:11067
[1] Algebraic number theory. (Russian) Itogi Nauki i Tekhniki, Number Theory,
2 (1990), 5-308.
Z722.11001; M92a:11118b
Z733.00001; M92k:00010
[1] On two conjectures of M.S. Robertson.
Complex Variables, Theory and Appl., 16 (1991), no. 2/3, 127-130.
Z745.30004; M92f:30004
[1] Observations on Hecke eigenforms on the Hecke groups $G(\sqrt{2})$
and $G(\sqrt{3})$,
Abh. Math. Sem. Univ. Hamburg, 55 (1985), 75-89.
Z565.10022, 575.10018; M87e:11067; R1986,8A536
[1] On the proportion of quadratic character twists of $L$-functions attached to
cusp forms not vanishing at the central point,
J. Reine Angew. Math. 508 (1999), 179-187.
[1] Modular forms with rational periods. Modular
forms (Durham, 1983), 197-249, Horwood, Chichester, 1984.
Z618.10019; M87h:11043; R1987,5A440
[1] Die Potenzsummen der natürlichen Zahlen,
Math. Naturwiss. Unterricht, 6 (1954), 307-310.
M15-684f
[1] On the Birch-Tate conjecture for maximal real subfields of cyclotomic fields,
Lecture Notes Math., 1046 (1984), 229-234.
Z528.12009; M86b:11079; R1984,9A305
M95i:19006
[1] Euler systems. In: The Grothendieck Festschrift Vol. II, Progr. Math.,
87, Birkhäuser Boston, Boston, MA, 1990, 435-483.
Z742.14017; M92g:11109
Z881.11037; R1996,4A272
[1] Over benaderings-formelen voor de som von
reeksen welke uit een groot aantal termen bestaan, Nieuw
Arch. Wiskunde, 2 (1876),
161-176.
J8.134
[1] Ob odnom obobshchenii polinomov Bernulli [An extension of Bernoulli's
polynomials]. Mat. Sbornik 42 (1935), 425-434.
J61.I.378; Z13,167
J59.II.895; Z9.074
[1] Sums of powers of integers - a review.
Internat. J. Math. Ed. Sci. Tech., 24 (1993), no. 6, 863-874.
Z806.11015; M94g:11016
[1] K Lerchovym pracim o Fermatove kvotientu [On Lerch's work on the Fermat
quotient], Prace Moravske Prirodovedecke Spolecnosti, 18 (1947), 1-7.
[1] On abelian extensions over cyclotomic
$Z_{p_1}\times \cdots \times Z_{p_t}$-extension,
Mem. Fac. Sci., Kyushu Univ., Ser A, 38 (1984), no. 2, 141-149.
Z528.12009; M85i:11095; R1985,6A294
Z706.11068; M90j:11020; R1990,8A87
Z705.11007; M91a:11062a; R1990,7A292
Z706.11069; M91a:11062b; R1990,7A293
R1994,8A372
[1] Class numbers and Iwasawa invariants of quadratic fields.
Proc. Amer. Math. Soc. 124 (1996), no. 1, 31-34.
Z846.11059; M96d:11112; R1996,7A228
[1] Self-adjoint differential expressions,
Amer. Math. Monthly, 67 (1960), no. 9, 876-878.
Z145.32501; M24#A270; R1961,12B123
[1] Spherical polynomials and periods of a certain modular form,
Trans. Amer. Math. Soc., 294 (1986), no. 2, 595-605.
Z592.10017; M87e:11061; R1986,12A587
Z606.12007; M88a:11123; R1987,7A113
[1] Sur le premier cas du théorème de Fermat, C.R.
Acad. Sci., Paris 199 (1934), 256-258.
J60.I.129; Z10,007
[1] Zur Theorie der ultra-Bernoullischen Zahlen und
Funktionen, Berichte Verh. Kgl. Gesells. Wiss., Leipzig,
54 (1902), 139-205.
J33.971
J34.485
J34.483
J34.485
[1] An additive generation for the Genocchi numbers and two of its enumerative
meanings.
Bull. Inst. Combin. Appl. 20 (1997), 99-103.
Z879.05001; M98d:05010
Z869.05002; M97k:05010
[1] On the coefficients of $cosh x/cos x$,
Math. Mag., 34 (1960), no. 1, 37-40.
Z105,264; R1961,6B334
[1] On a table for calculating Eulerian numbers based on a new method.
Proc. London Math. Soc. (2), 22 (1923), 73-80.
J49.167
[1] Sur quelques fonctions symmetriques et sur les
nombres de Bernoulli, J. Math. Pure Appl. (2), 1
(1856), 385-391.
J15.201
J17.251
[1] Sur les nombres semblables aux nombres Bernouilliens et
Eulériens. Les nombres pseudo-cotangentiels (Ukrainian; French summary).
J. Inst. Math. Kiev., (1934-35), no. 1, 43-62.
J61.II.985; Z12.151
[1] The universal ordinary distribution,
Bull. Soc. Math. France, 107 (1979), no. 2, 179-202.
Z409.12021; M81b:12004; R1980,2A357
Z584.12003; M88a:11108
[1] Cartan-Bernoulli numbers as values of L-series,
Math. Ann., 240 (1979), no. 1, 21-26.
Z(377.12010),393.12020; M81b:10027; R1979,7A404
Z409.12007; M81k:12006; R1980,2A356
Z492.12002*; M84h:12009; R1982,3A406,7A382
[1] Eine p-adische Theorie der Zetawerte, Teil 1:
Einführung der p-adischen Dirichletschen L-Funktionen,
J. Reine Angew. Math., 214/215 (1964), 328-339.
Z186,91; M29#1199; R1965,4A90
[1] On a class number relation of imaginary abelian
fields, J. Math. Soc. Japan, 27 (1975), 150-159.
Z294.12004; M50#12968; R1975,9A292
Z314.12011; M53#8010; R1976,3A369
Z425.12007; M80e:12012; R1979,2A260
Z751.11031; M93g:11120; R1992,7A355
Z813.11065; M95c:11142
Z872.11051; M97m:11143; R1997,11A270
[1] Summirovanie stepenej natural'nogo ryada i chisla Bernulli [Summation of
powers of natural series and Bernoulli numbers]. Moskva, 1936.
[1] Zu den Mittelwerten zahlentheoretischer Funktionen.
Norske Vid. Selsk. Forhdl., Trondheim, 14 (1941), no. 42, 157-160.
J67.131; M8-503d
[1] Beweis des Fermat'schen Satzes der Unmöglichkeit von
$x^{\lambda}+y^{\lambda}=z^{\lambda}$ für eine unendliche Anzahl
Primzahlen $\lambda$,
Monatsb. Akad. Wiss. Berlin, (1847), 132-141, 305-319.
Z327.01019*; M57#5650a; R1976,1A127K
J6.117
J41.15
[1] Basis in a certain completion of the s-d-ring over the rational
numbers. I, II.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978),
no. 5, 423-428; no. 6, 543-547.
Z428:13013; M81j:13026a,b; R1980,7A204; 7A205
Z523.10005; M85g:05021; R1984,6A87
Z694.10013; M91e:11022; R1991,2A107
[1] A recurrence formula for $\zeta(2n)$,
Bull. Amer. Math. Soc., 55 (1949). 573--574.
Z032.34501; M10,683d
[1] On the values at non-positive integers of Siegel's zeta functions
of $ Q$-anisotropic quadratic forms with signature $(1, n-1)$.
J. Fac. Sci. Univ. of Tokyo Sect. IA Math., 28 (1981), no.3, 567-584.
Z495.10019; M84a:10021
[1] On the p-adic expansion of units of cyclotomic fields,
J. Number Theory, 32 (1989), no. 2, 226-253.
Z689.12005; M90k:11138; R1990,2A337
[1] Some remarks on conjectures about cyclotomic fields and $K$-groups
of $ Z$.
Compositio Math., 81 (1992), no. 2, 223-236.
Z747.11055; M93a:11091
[1] Remarks on higher-dimensional Dedekind sums,
Math. Japon. 45 (1997), no. 2, 297-301.
Z882.11024; M98c:11037
[1] Zur Theorie der Bernoullischen Zahlen, Zeits.
für Math. u. Phys., 24 (1879), 250-252.
J11.188
[1] Algebraic number fields. (Russian) Algebra. Topology. Geometry, Vol. 22,
(Itogi. Nauki i Tekhniki, Akad. Nauk. SSSR), Moscow, 1984, 117-204.
Z563.12002; M86f:11076; R1985,1A446
[1] Increasing trees and alternating permutations. (Russian)
Uspekhi Mat. Nauk 49 (1994), no. 6(300), 79-110. Translated in:
Russian Math. Surveys 49 (1994), no. 6, 79-114.
Z842.05025; M96e:05048
LACROIX S.F.,
[1] Traité des différences, Paris, 1819, t.2.
[1] Inequalities for Bernoulli and Euler numbers, Boll. Un. Mat.
Ital. A(5), 17 (1980), no. 1, 98-101.
Z498.10011; M81g:10028; R1980,11V466
[1] Mémoire sure les suites de polynomes.
Acta Math., 51 (1928), 201-309.
J54.484
[1] Auszug eines Schreibens an Herrn Stern über die
Verallgemeinerung einer Jacobi'schen Formel, J. Reine Angew. Math.,
84 (1878), 270-272.
J9.176
[1] A limit formula for $\zeta(2k+1)$.
J. Number Theory, 78 (1999), no. 2, 271-286.
[1] Über eine Gattung elementar-arithmetischer Klasseninvarianten
reell-quadratischer Zahlkörper,
J. Reine Angew. Math., 233 (1968), 123-175.
Z165,365; M39#168; R1969,10A72
Z244.12012; M45#8637; R1972,12A141
Z231.12004; M47#6651; R1973,11A120
Z231.12005; M48#3914; R1974,1A175
Z285.12013; M49#7238; R1974,12A133
Z506.12010; M84m:12006; R1983,7A151
Z559.12008; M87g:11153; R1986,4A397
Z621.12014; M89i:11125; R1989,6A128
Z183,313; M41#6780; R1970,3B71
Z810.11062; M95i:11133
[1] Elliptic Functions, Addison-Wesley, London, 1974. xiii + 326 pp.
Z316.14001*; M53#13117; R1975,9A353
Z344.10011*; M55#2751; R1977,7A118K
Z395.12005*; M58#5578; R1979,11A312K
Z435.12001*; M81i:12004; R1981,9A274K
Z482.12002; M83m:12002; R1983,1A344
Z667.14001; M89m:11059
Z714.11034; M90k:11032
Z704.11038; M91c:11001
[1] Eine enliche Formel für die Anzahl der Teiler von $n$.
J. Number Theory, 11 (1979), no. 1, 116-127.
Z397.10038; M80g:10044; R1979,9A90
[1] Mémoire sur l'usage du calcul aux différences partielles dans
la théorie des suites, Mém. de math. et phys. Acad. Sci. (Paris),
(1777), 99-122.
[1] A note on the generalized Bernoulli sequences,
Ars Combin., 44 (1996), 283-286.
Z888.11010; M97g:05005
[1] Note sur les nombres de Bernoulli, C.R. Acad. Sci., Paris, 58
(1864), 853-856, 937-938.
[1] L'équation diophantienne $m^q = \sum_{x=0}^{n-1}(kx+1)^p$,
preprint, Mathématiques, Faculté des Sciences, Brest (France).
[1] Integrals of Bernoulli polynomials and series of zeta function,
Commun. Korean Math. Soc. 14 (1999), no. 4, 707-716.
[1] Some properties of a certain set of interpolating polynomials,
Canad. Math. Bull. 18 (1975), no. 4, 529-537.
Z317.41003; M53#1098; R1977,10V374
Z358.10006; M56#5412; R1978,1V470
Z692.41006; M90k:33029; R1990,4B130
Z970.56671; M98m:33023
[1] Some properties of generalized Euler numbers,
Canad. J. Math., 33 (1981), no. 3, 606-617.
Z419.10017; M82j:10025; R1982,4V517
Z493.10015, 516.10007; M85c:11021; R1984,11A36
[1] Traité des fonctions elliptiques, 1, Paris, 1825.
[1] Lacunary recurrence formulas for the numbers of Bernoulli and Euler,
Ann. of Math., 36 (1935), no. 3, 637-649.
J61.I.66; Z12,151
J62.I.50; Z15,003
J66.319; M2-43a
Z024.14901; M2,149g
Z484.05006; M83k:10026; R1982,11V558
Z168,293; M33#5606; R1967,4A144
Z663.10009; M90c:11014
Z664.10029; M88m:11073; R1988,9A122
[1] An application of high-speed computing to Fermat's last
theorem, Proc. Nat. Acad. Sci. USA, 40 (1954), 25-33.
Z55,40; M15-778f; R1955,1638
[1] A note on Wilson's quotient, Amer. Math. Monthly, 44
(1937), 237-238.
J56.106
J64.II.95; Z19,005
[1] Sur une forme nouvelle des congruences de Kummer-Mirimanoff,
C.R. Acad. Sci. Paris, 265 (1967), no. 3, A89-A90.
Z154,296; M36#108; R1968,5A195
Z188,101; M41#6768; R1970,8A114
[1] Sur certains nombres analogues aux nombres de Bernoulli,
Nouv. Ann. Math. (4), 1 (1901), 509-516.
J32.283
[1] Über die Nullstellen der Bernoullischen Polynome, Monatsh.
Math., 41 (1934), 188-190.
J60.296; Z9,311
[1] Eine Verallgemeinerung der Bernoullischen Zahlen,
Abh. Math. Sem. Univ. Hamburg, 22 (1958), 131-140.
Z80,30; M19-1161e; R1958,9758
Z86,31; M21#1967; R1960,3770
Z98,35; M24#A722; R1961,10A142
Z204,71; M25#3034; R1963,5A246
Z268.01011; M58#87; R1974,7A33
Z309.12009; M52#351; R1976,1A380
[1] Historie Fermatovych kvocientu (Fermat - Lerch),
Dissertation, Brno, 1998.
[1] Zur Theorie des Fermatschen Quotienten ${{a^p-1\over{p}}=q(a)$,
Math. Ann., 60 (1905), 471-490.
J36.266
[1] Stickelberger elements and cotangent numbers.
Exposition. Math., 10 (1992), no. 2, 171-182.
Z757.11038; M93g:11111; R1993,7A287
[1] On p-adic L-fucntions associated to elliptic curves,
Invent. Math., 56 (1980), no. 1, 19-55.
Z425.12017; M81j:12013; R1980,5A422
[1] Tables fondamentales à 50 décimales des sommes $S_n$,
$U_n$, ${\Sigma_n$. Centre de Documentation Universitaire, Paris, 1948.
54 pp.
M10-149i
[1] Die Bestimmung der Summe $\Sigma x^r$, Arch. Math. und
Phys., 65 (1880), 329-334.
J12.191
[1] Razvitie teorii chisel i funktsij Bernulli v trudakh russkikh i
sovetskikh matematikov [Development of the theory of Bernoulli numbers and
functions in the works of Russian and Soviet mathematicians].
Dissertatsiya, Moskovsk. Gos. Universitet [Dissertation, Moscow State
University], 1954.
R1961,4A29
Z104,290; M24#A18; R1962,3A22
R1964,6A30
R1964,6A31
[1] Le calcul des résidus et ses applications à la théorie
des fonctions. Gautier-Villars, Paris, 1905. 141 pp.
J36.468
[1] Über die Darstellung gewisser Functionen durch die
Eulersche Summenformel, J. Reine Angew. Math., 56 (1859), 11-26.
J16.152
J18.225
[1] The sum of $k$th powers of the first $n$ integers.
Dongbei Shuxue, 6 (1990), no. 3, 291-296.
Z741.11013; M91k:11020
[1] $n$-variable Euler numbers and polynomials, and $n$-variable Bernoulli
numbers and polynomials. (Chinese),
J. Math. (Wuhan) 17 (1997), no. 3, 352-358.
M99k:11031
M2000c:11028
[1] Aritmetiske egenskaper ved de Bernoulliske tall [Arithmetical properties
of the Bernoulli numbers], Norsk Mat. Tidsskr., 28 (1946), 33-37.
Z60,087; M8-314f
Z60,85; M8-368g
Z30.198; M9-568e
[1] Sposob uverit'sya v ischeznovenii strok i priblizhat'sya k znacheniyu
funktsij ot ves'ma bol'shikh chisel [A method of convincing oneself of the
vanishing of series and approximating the value of functions from very large
numbers]. (1835). Sobranie sochinenij [Collected Works], Vol. 5, Moskva, 1951,
81-162.
M13-612n
[1] The iterated logarithmic algebra,
Adv. Math., 86 (1991), no. 2, 155-234.
Z816.05011; M92g:05022
Z742.05010; M92d:05013
[1] Potenssummer av de naturlige tall [Sums of powers of natural numbers],
Nordisk Mat. Tidsskrift, 6 (1958), 155-158, 182.
[1] Sur les nombres de Bernoulli, Ann. de l'Ecole Normale
(2), 8 (1879), 55-80.
J11.185
[1] Uniform approximations of Bernoulli and Euler polynomials in terms of
hyperbolic functions. Stud. Appl. Math. 103 (1999), no. 3, 241-258.
[1] Détermination des corps quartiques cycliques totalement
imaginaires à groupe des classes d'idéaux d'exposant $\leq 2$.
Manuscr. Math., 77 (1992), no. 4, 385-404.
Z799.11046; M93m:11114
[1] Congruences for the class number of quadratic fields, Abh.
Math. Sem. Univ. Hamburg, 52 (1982), 254-258.
Z495.12003; M85b:11096; R1983,12A393
[1] Théorie nouvelle des nombres de Bernoulli et d'Euler, C.R.
Acad. Sci. Paris, 83 (1876), 539-541.
J8.143
J8.143
J9.187
J9.187
J9.188
J9.188
J9.177
J9.314
J10.191
J10.139
J10.191
J12.194
J15.205
J15.205
J23.174
J23.197
[1] Sur les calcul symbolique des nombres de Bernoulli, Nouv.
Corres. Math., 2 (1876), 328-338.
J8.150
[1] Arithmetical aspects of certain functional equations,
Acta Arith. 82 (1997), no. 3, 257-277.
Z980.02698
[1] On the denominator of generalized Bernoulli numbers,
J. Number Theory, 26 (1987), 79-88.
Z621.10010; M88d:11020; R1987,10A64
[1] On the number of lattice points in multidimensional
spheres. (Russian) Akad. Nauk. Gruzin. SSR. Trudy Tbiliss. Mat. Inst.
Razmadze, 19 (1953), 79-120.
Z52,42; M16-451b; R1954,3210
[1] A relation for Bernoulli numbers. (Russian)
Mat. Zametki, 1 (1967), 633-644.
Z174,74; M35#6613; R1967,11V243
MACLAURIN C.,
[1] A treatise of fluxions, Edinburgh, 1742.
MACLEOD R.A.,
[1] Fractional part sums and divisor functions,
J. Number Theory 14 (1982), no. 2, 185-227.
Z481.10044; M83m:10080
[2] A curious identity for the Möbius function,
Utilitas Math., 46 (1994), 91-95.
Z821.11053; M95g:11002
MACLEOD R.A.: see LEEMING D.J., MACLEOD R.A.
MADHEKAR H.C.,
[1] Some results in unified form for classes of generalized
Bernoulli, Euler, and related polynomials, J. Indian Acad. Math., 4
(1982), no. 2, 104-112.
Z516.33010; M84e:33021
MADSEN I.: see BENTSEN S., MADSEN I.
MAEDA Y.,
[1] Generalized Bernoulli numbers and congruence of modular forms,
Duke Math. J., 57 (1988), no. 2, 673-696.
Z664.10012; M89m:11042; R1989,6A92
MAESS G.,
[1] Vorlesungen über numerische Mathematik. II. Analysis.
Akademie-Verlag, Berlin, 1988, and Birkhäuser Verlag
Basel-Boston, 1988, 327 pp.
Z644.65001; M91a:65003; R1989.6G14K
MAGNUS W.: see ERDÉLYI A., MAGNUS W., OBERHETTINGER F., TRICOMI F.
MAHON BR. J.M., HORADAM A.F.,
[1] Infinite series summation involving reciprocals of
Pell polynomials. In: Fibonacci Numbers and Their Applications
(A.N. Philippou et al., Eds.), D. Reidel Publ. Co., Dordrecht,
1986, 163-180.
Z592.10010; M88b:11011
MAIER W.,
[1] Euler-Bernoullische Reihen,
Math. Z., 30 (1929), 53-78.
J55.782
[2] Bernoullische Polynome und elliptische Funktionen.
J. Reine Angew. Math., 164 (1931), 85-111.
J57.441; Z1,282
MAINZER K.: see EBBINGHAUS H.-D. et al.
MALAISE J.,
[1] Sur une formule d'approximation pour les nombres de Bernoulli
très grands, Nouv. Ann. Math. (4), 14 (1914), 174-179.
J45.677
[2] Sur la formule $hU^{\prime}_x = \Delta U_x - {h\over 2} {\Delta} U^{\prime}_x + B_1{h^2\over 2} {\Delta} U^{\prime \prime}_x$ etc., J. Reine Angew. Math., 35 (1847), 55-82.
MALLET C.-A.,
[1] Calcul des dalles encastrées. Application des polynomes de Bernoulli,
C. R. Acad. Sci. Paris A, 268 (1969), 974-977.
Z181,526
MALLOCH L.,
[1] Bernoulli-Padé numbers and polynomials.
M.Sc. thesis, Dalhousie University, Halifax, Nova Scotia, 1996. 80pp.
MALMSTÉN C.J.,
[1] Note sur l'integrale finite $\Sigma e^x y$,
Arch. Math. und Physik, 6 (1845), 41-45.
MAMBRIANI A.,
[1] Saggio di una nuova trattazione dei numeri i dei
polinomi di Bernoulli e di Euler.
Mem. R. Accad. Italia Mat., 3 (1932), no.4, 1-36.
J58.I.376; Z6.051
MANGEOT S.,
[1] Sur les nombres de Bernoulli, Ann. Fac. Sci., Marseille,
2 (1892), 63-65.
MANIN Yu.I.,
[1] Non-archimedean integration and p-adic Jaquet-Langlands L-functions.
(Russian) Uspehi. Mat. Nauk., 31 (1976), no. 1(187), 5-54.
Z348.12016; M54#5194; R1976,8A478
MANIN Yu.I., PANCHISHKIN A.A.,
[1] An introduction to the theory of numbers. (Russian) Current problems in
mathematics. Fundamental directions, Vol. 49, Itogi Nauki i Tekhniki.,
Akad. Nauk. SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform, Moscow,
1990, 5-348.
Z732.11002; M91j:11001b
MARKETT C.: see BUTZER P.L., MARKEETT C., SCHMIDT M.
MARKOV A.A.,
[1] Ischislenie konechnykh raznostej, Otdel 2, Uravnenie v konechnykh
raznostyakh i summirovanie [The calculus of finite differences. The equation
in finite differences and summation]. Sankt-Peterburg, 1891.
J23.347
[3] (A.A. Markoff) Differenzenrechnung. Teubner, Leipzig, 1896.
J27.261
MARSAGLIA G., MARSAGLIA J.C.W.,
[1] A new derivation of Stirling's approximation to $n!$,
Amer. Math. Monthly, 97 (1990), no. 9, 826-829.
(See also: N. Grossman, Letter to the Editor, Amer. Math. Monthly,
98 (1991), no. 3, 233.)
Z786.05007; M92b:41049
MARTINET J.,
[1] Sur l'ouvrage de Hasse "Über die Klassenzahl Abelscher
Zahlkörper". Séminaire de Théorie des nombres. Univ. Bordeaux I,
année 1982-83 (1983), exp. no. 4, 15 pp.
Z526.12003; M85m:11071
MATHAI A.M., PEDERZOLI G.,
[1] A direct statistical technique of obtaining some summation formulae
for Bernoulli polynomials and representations of certain algebraic functions,
Metron, 43 (1985), no. 3-4, 157-166.
Z598.33001; M87j:33001
MATIYASEVICH Yu.V.,
[1] Hilbert's tenth problem. Foundations of Computing Series.
MIT Press, Cambridge, MA, 1993. xxiv+264pp.
Z790.03009; M94m:03002b
MATSUMOTO K.: see KATSURADA M., MATSUMOTO K.
MATSUOKA Y.,
[1] On the values of a certain Dirichlet series at rational
integers, Tokyo J. Math., 5 (1982), no. 2, 399-403.
Z505.10020; M84d:10046; R1983,8A117
[2] A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=62(1)99$.
Rep. Fac. Sci. Kogashima Univ. Math. Phys. Chem., 22 (1990), 73-132.
Z682.10012; M91k:11021
[3]A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=100(1)119$.
Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., 23 (1990), 41-100.
Z731.11013
MATSUOKA Y.: see also ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.
MATTER K.,
[1] Die den Bernoullischen Zahlen analogen Zahlen im Körper der
3. Einheitswurzeln, Diss., Zürch, 1900. Zürch. Naturf. Ges., 45,
238-269.
J31.204
MATTICS L.E.: see GESSEL I., MATTICS L.E.
MAZUR B.,
[1] Review of Kummer's Collected Papers, Vols. I and II, ed. by A. Weil,
Bull. Amer. Math. Soc., 83 (1977), no. 5, 976-988.
MAZUR B., WILES A.,
[1] Analogues between function fields and number fields, Amer.
J. Math., 105 (1983), no. 2, 507-521.
Z531.12015; M84g:12003
[2] Class fields of abelian extensions of Q,
Invent. Math., 76 (1984), no. 2, 179-330.
Z545.12005; M85m:11069; R1985,2A351
McCALLUM W.G.,
[1] On the Shafarevich-Tate group of the Jacobian of a quotient
of the Fermat curve,
Invent. Math., 93 (1988), no. 3, 637-666.
Z661.14033; M90b:11059
[2] The arithmetic of Fermat curves.
Math. Ann., 294 (1992), no.3, 503-511.
Z766.14013; M93j:11037
McCARTHY P.J.,
[1] Some irreducibility theorems for Bernoulli polynomials of
higher order, Duke Math. J., 27 (1960), 313-318.
Z178,373; M22#5613; R1961,6A137
[2] Irreducibility of certain Bernoulli polynomials, Amer. Math.
Monthly, 68 (1961), 352-353.
Z98,248; M23#A1625; R1962,5A161
[3] Irreducibility of Bernoulli polynomials of higher order, Canad.
J. Math., 14 (1962), 565-567.
Z118,260; M25#4150; R1963,7B63
McCLENON R.B.,
[1] Bernoulli numbers,
Proc. Iowa Acad. Sci., 57 (1950), 315-319.
M13-13f
McINTOSH R.J.,
[1] A necessary and sufficient condition for the primality of Fermat
numbers, Amer. Math. Monthly, 90 (1983), no. 2, 98-99.
Z513.10012; M85c:11022; R1983,3A111
[2] On the converse of Wolstenholme's theorem.
Acta Arith. 71 (1995), no. 4, 381-389.
Z829.11003; M96h:11002; R1996,5A120
[3] Franel integrals of order four,
J. Austral. Math. Soc. Ser. A, 60 (1996), no. 2, 192-203.
Z855.11020; M96j:11055; R1997,5A35
MELHAM R.S., SHANNON A.G.,
[1] Some infinite series summations using power series evaluated at a matrix.
Fibonacci Quart., 33 (1995), no. 1, 13-20.
Z826.11007; M95k:11025
MERCIER A.,
[1] Sums containing the fractional parts of numbers,
Rocky Mountain J. Math., 15 (1985), no. 2, 513-520.
Z588.10044; M87e:11011
MESSICK C.A.,
[1] A new method of determining Bernoulli's numbers,
Amer. Math. Monthly, 33 (1926), 214-217.
J52.355
METSÄNKYLÄ T.,
[1] A congruence for the class number of a cyclic field, Ann. Acad. Sci.
Fennicae, Ser. AI, Math., (1970), no. 472, 1-11.
Z194,352; M42#3057; R1971,4A319
[2] Note on the distribution of irregular primes, Ann. Acad. Sci.
Fennicae, Ser. AI, Math., (1971), no. 492, 1-7.
Z208,55; M43#168; R1971,9A100
[3] A class number congruence for cyclotomic fields and their
subfields, Acta Arith., 23 (1973), 107-116.
Z233.12004; M48#11046; R1974,1A176
[4] On the cyclotomic invariants of Iwasawa, Math. Scand.,
37 (1975), 61-75.
Z314.12004; M52#10677; R1976,11A432
[5] On the Iwasawa invariants of imaginary abelian fields,
Ann. Acad. Sci. Fennicae, Ser. AI, 1 (1975), 343-353.
Z323.12010; M53#347; R1976,11A426
[6] Distribution of irregular prime numbers, J. Reine Angew. Math.,
282 (1976), 126-130.
Z327.10041; M53#2865; R1976,10A99
[7] Note on certain congruences for generalized Bernoulli
numbers, Arch. Math. (Basel), 30 (1978), 595-598.
Z(371.12003),378.12001; M58#16602; R1978,12A180
[8] Iwasawa invariants and Kummer congruences, J. Number
Theory, 10 (1978), 501-522.
Z(381.12009),388.12006; M80d:12007; R1978,6A302
[9] An upper bound for the $\lambda$-invariant of imaginary
abelian fields, Math. Ann., 264 (1983), 5-8.
Z(497.12002),505.12005; M85a:11019; R1984,1A283
[10] Maillet's matrix and irregular primes, Ann. Univ. Turku., Ser.
AI, (1984), no. 186, 72-79.
Z531.12003; M85j:11145; R1985,1A213
[11] The Voronoi congruence for Bernoulli numbers. The Very
Knowledge of Coding. Studies in honour of Aimo Tietäväinen, Turun
yliopiston offsetpaino-Turku, 1987, 112-119.
Z632.10006; M88m:11010; R1988,3A414
[12] The index of irregularity of primes,
Expositiones Math., 5 (1987), 143-156.
Z608.12004; M88f:11011; R1987,9A80
[13] A simple method for estimating the Iwasawa $\lambda$-invariant,
J. Number Theory, 27 (1987), no. 1, 1-6.
Z612.12005; M88m:11091; R1988,3A414
[14] Cyclotomic fields, irregular primes, and supercomputing (Finnish).
Arkhimedes, 45 (1993), no. 2, 116-128.
Z776.14013; M94g:11094; R1994,2A15
[15] An application of the $p$-adic class number formula,
Manuscr. Math., 93 (1997), no. 4,481-498.
Z886.11061; M98m:11118
[16] Some divisibility results for the cyclotomic class numbers, Tatra Mountains Math. Publ. 11 (1997), 56-68.
[17] Letter to the editor. Comment on: "On Demjanenko's matrix and Maillet's determinant for imaginary abelian number fields" [J. Number Theory 60 (1996), no. 1, 70-79] by H. Tsumura. J. Number Theory 64 (1997), no. 1, 162-163.
METSÄNKYLÄ T.: see also ERNVALL R., METSÄNKYLÄ T.
METSÄNKYLÄ T.: see also BUHLER J.P. et al
MEURMAN A.: see ALMKVIST G., MEURMAN A.
MEYER C.,
[1] Über die Bildung von elementar-arithmetischen Klasseninvarianten in
reell-quadratischen Zahlkörpern. Algebraische Zahlentheorie (Ber. Tagung
Math. Forschungsinst. Oberwolfach, 1964) Bibliographisches Institut, Mannheim,
1967, 165-215.
Z122,52; M38#2121; R1965,5A146
MEYER G.F.,
[1] Über Bernoulli'sche Zahlen, Diss. Göttingen, 1859, 56pp.
[2] Einige Beiträge zur Theorie der Bernoullischen Zahlen und der Secantencoefficienten, Arch. für Math. und Phys., 35 (1860), 449-474.
[3] Verschiedene arithmetische Sätze, Arch. für Math. und Phys., 38 (1862), 241-246.
[4] Vorlessungen über die Theorie der bestimmten Integrale
zwischen reellen Grenzen, Leipzig, 1871, sects. 53, 54.
J3.125
MEYER J.R.,
[1] Une conjecture de Chowla et Walum,
J. Number Theory, 21 (1985), no. 3, 245-255.
Z568.10023; M87a:11089; R1986,5A137
MEYER W., VON RANDOW R.,
[1] Ein Würfelschnittproblem und Bernoullische Zahlen, Math.
Ann., 193 (1971), 315-321.
Z209,344; M45#2569; R1972,4V308
MIKELADZE SH. E.,
[1] Numerical integration. (Russian) Uspekhi Matem. Nauk (N.S.), 3 (1948),
3-88.
Z41,444; M10-575g
[2] Numerical methods of mathematical analysis. (Russian) Gosudarstv. Izdat.
Tekhn.-Teor. Lit., Moscow, 1953, 527 pp.
Z52,349; M16-627c; R1955,1974K
MIKI H.,
[1] A relation between Bernoulli numbers,
J. Number Theory, 10 (1978), no. 3, 297-302.
Z379.10007; M80a:10024; R1979,2A109
[2] On the congruence for Gauss sums and its applications.
Théorie des nombres (Quebec, PQ, 1987), 633-641, deGruyter,
Berlin, 1989.
Z715.11041; M91h:11083
[3] On the conductor of the Jacobi sum Hecke character.
Comp. Math., 92 (1994), no. 1, 23-41.
Z798.11049; M95i:11131
MIKOLÁS M.,
[1] Sur une extension de la formule d'Euler-Maclaurin,
se rapportant à des intégrales curvilignes complexes.
C. R. du I Congr. Math. Hongr., (1950), 519-538, 541-550.
Akadémiai Kiadó, Budapest, 1952.
Z49.53; M14-1073g
[2] Über die Beziehung zwischen der Gammafunktion und den
trigonometrischen Funktionen.
Acta Math. Acad. Sci. Hungar., 4 (1953), no. 1-2, 143-157.
Z51.52; M15-525d; R1954,2989
[3] Zur Theorie der Gammafunktion, der Riemannschen Zetafunktion
und verwandter Funktionen, I.
Acta Math. Acad. Sci. Hungar., 6 (1955), no. 3-4, 381-438.
Z68.283; M19-132e; R1957,1568
[4] Integral formulae of arithmetical characteristics relating to the
zeta-function of Hurwitz.
Publ. Math., Debrecen, 5 (1957), no. 1-2, 44-53.
Z81.274; M19-731; R1958,6429
[5] Über gewisse Lambertsche Reihen. I. Verallgemeinerung der Modulfunktion
$\eta(\tau)$ und ihrer Dedekindschen Transformationsformel.
Math. Z., 68 (1957), no. 1, 100-110.
Z78.70; M19-943b; R1959,2305
[6] Über die Charakterisierung der Hurwitzschen Zetafunktion
mittels Funktionalgleichungen,
Acta Sci. Math. Szeged, 19 (1958), no. 3-4, 247-250.
Z87,74; M21#1953; R1960,93
[7] On a problem of Hardy and Littlewood in the theory of Diophantine
approximations.
Publ. Math., Debrecen, 7 (1960), no. 4, 158-180.
Z96,261; M22#10978; R1961,10A135
[8] Einige neuere Aspekte und analytische-technische Anwendungen
Diophantischer Approximationen.
Result. Math., 18 (1990), no. 3/4, 298-305.
Z716.11032; M92e:11072
MILLAR J., SLOANE N.J.A., YOUNG N.E.,
[1] A new operation on sequences: the boustrophedon transform,
J. Combin. Theory Ser. A 76 (1996), no. 1, 44--54.
Z858.05007; M97e:05020
MILLER H.,
[1] Universal Bernoulli numbers and the $S^1$-transfer. Current Trends in
Algebraic Topology, Part 2 (London, Ont., 1981), Canad. Math. Soc. Conf. Proc.,
Vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 437-449.
Z544.55005; M85b:55029
MILLER J.B.,
[1] The Euler-Maclaurin sum formula for an inner derivation,
Aequationes Math., 25 (1982), no. 1, 42-51.
Z519.47022; M85b:46057; R1984,2B1093
[2] Series like Taylor's series,
Aequationes Math., 26 (1983), no. 2-3, 208-220.
Z562.40001; M86a:30081; R1985,2B915
[3] The Euler-Maclaurin formula generated by a summation operator,
Proc. Roy. Soc. Edinburgh Sect. A, 95 (1983), no. 3-4, 285-300.
Z527.47024; M85f:47018; R1984,6B1042
[4] The Euler-Maclaurin sum formula for a closed derivation,
J. Austral. Math. Soc. Ser. A, 37 (1984), no. 1, 128-138.
Z545.47022; M86d:47043; R1985,3B1003
[5] The standard summation operator, The Euler-Maclaurin sum formula,
and the Laplace transformation,
J. Austr. Math. Soc. Ser. A, 39 (1985), no. 3, 367-390.
Z589.65003; M86j:65011; R1986,6B1218
[6] The operator remainder in the Euler-Maclaurin formula,
Aequationes Math., 28 (1985), no. 1-2, 64-68.
Z558.41031; M86m:41040; R1985,7B948
MILLER J.C.P.: see FLETCHER A. et al.
MILLS S.,
[1] The independent derivations by Leonhard Euler and Colin
Maclaurin of the Euler-Maclaurin summation formula,
Arch. Hist. Exact Sci., 33 (1985), no. 1-3, 1-13.
Z607.01013; M86i:01025; R1985,12A8
MILNE-THOMSON L.M.,
[1] The Calculus of Finite Differences.
Macmillan, London, 1933, xix + 558 pp.
Z8,018; J59.II.1111
MILNOR J.,
[1] On polylogarithms, Hurwitz zeta functions, and the Kubert identities.
L'Enseign. Math., 29 (1983), no. 3-4, 281-322.
Z557.10031; M86d:11007; R1984,5A117
MILNOR J.W., STACHEFF J.,
[1] Characteristic classes. Annals of Math. Stud., No. 76,
Princeton University Press, Princeton, 1974.
Z298.57008; M55#13428; R1975,3A611K
MILNOR J.W.: see also KERVAIRE M.A., MILNOR J.W.
MILOSEVIC-RAKOCEVIC K.,
[1] Staudt-Clausenova teorema, Mat. Bibl., 22
(1962), 71-79.
R1964,2A176
[2] Prilozi teoriji i praksi Bernoullievih polinoma i brojeva,
(Serbo-Croatian), [Applications of the theory and practice of Bernoulli
polynomials and numbers],
Matematicki Institut u Beogradu, Belgrade, 1963, 143 pp.
Z193,363; M31#3635; R1964,2A176
MINÁC J.,
[1] A remark on the values of the Riemann zeta function,
Exposition. Math., 12 (1994), no. 5, 459-462.
Z812.11051; M96a:11082
MINOLI D.,
[1] Asymptotic form for generalized factorial,
Rev. Colombiana Mat., 11 (1977), no. 1-4, 59-75.
Z445.05007; M58#27853; R1979,4B1
[2] Some results for modified Bernoulli polynomials, Notices Amer. Math. Soc., 26 (1979), A-613.
[3] Inductive formulae for general sum operations,
Math. Comp., 34 (1980), no. 150, 543-545.
Z424.40003; M81g:65002; R191980,11A65
MIRIMANOFF D.,
[1] L'equation indéterminée $x^l+y^l+z^l=0$ et le critérium
de Kummer, J. Reine Angew. Math., 128 (1905), 45-68.
J35.216
[2] Sur le dernier théorème de Fermat et le critérium de
M. A. Wieferich, Enseign. Math., 11 (1909), 455-459.
J40.257
[3] Sur le dernier théorème de Fermat, J. Reine Angew. Math.,
139 (1910), 309-324.
J41.236
[4] Sur les nombres de Bernoulli,
Enseign. Math., 36 (1937), 228-235.
J63.106; Z17,062
MISHRA S.S.: see SHUKLA R.N., MISHRA S.S.
MISHRA S.S.: see SINGH S.N., MISHRA S.S.
MISON K.,
[1] Stanoveni Bernoulliho cisel. Soucet posloupnosti bez uziti
diferencnich posloupnosti
[Definition of the Bernoulli numbers. Sum of an arithmetic
series without use of difference series], (Czech), Casopis Pest.
Mat., 76 (1951), 199-200.
M14-4786
MISRA S.S., SHUKLA R.N.,
[1] Some properties of multivariate Bernoulli polynomials of the
second kind (Hindi. English and Hindi summaries).
Vijnana Parishad Anusandhan Patrika, 37 (1994), no. 2, 77-85.
M96b:11019
MITRINOVIC D.S.,
[1] Sur les nombres de Bernoulli d'ordre supérieur,
Bull. Soc. Math. Phys. Serbie, 11 (1959), 23-26.
Z135,91; M32#299
[2] Sur une relation de récurrence relative aux nombres de Bernoulli
d'ordre supérieur, C.R. Acad. Sci., Paris, 250 (1960),
4266-4267.
Z99,281; M22#12049; R1961,6A138
[3] Sur une formule concernant les nombres de Bernoulli d'ordre
supérieur,
Bull. Soc. Math. Phys. Serbie, 12 (1960), 21-23.
Z135,91; M32#1474
MITRINOVIC D.S., MITRINOVIC R.S.,
[1] Sur les nombres de Stirling et les nombres de Bernoulli d'ordre
supérieur, Publ. electr. fak. Univ. Beogradu, ser. mat. i fiz.,
(1960), no. 43, 1-63.
Z106,32; M23#A1547; R1962,8V199
MITRINOVIC R.S.: see MITRINOVIC D.S., MITRINOVIC R.S.
MITROVIC Z.M.: see JAPIC R.R., MITROVIC Z.M.
MIYAKE T.,
[1] Modular forms.
Springer-Verlag, Berlin-New York, 1989. x+335 pp.
Z701.11014; M90m:11062
MIYOSHI T.,
[1] On the Diophantine equation $x^l+y^l=cz^l$, 2, TRU Math.,
2 (1966), 53-54.
Z149,288; M36#6349; R1968,4A122
MIZUMOTO S.,
[1] On integrality of certain algebraic numbers associated with
modular forms, Math. Ann., 265 (1983), no. 1, 119-135.
Z578.10031; M85i:11047; R1984,3A591
[2] Congruences for eigenvalues of Hecke operators on Siegel
modular forms of degree two,
Math. Ann., 275 (1986), no. 1, 149-161.
Z578.10032; 588.10029; M87k:11054; R1986,12A549
[3] Integrality of critical values of triple product $L$-functions.
Analytic number theory (Tokyo, 1988), 188--195, Lecture Notes in Math., 1434,
Springer, Berlin, 1990.
M91j:11034
MOIVRE A. DE: see DE MOIVRE A.
MOLLAME V.,
[1] Sulla somma delle potenze simili di numeri qualunque in progressione
aritmetica, esopra alcuni coefficienti analoghi ai numeri bernulliani che si
presento in tale somma.
Catania, Accad. Gioen. Atti 15 (1881), 261-272.
MONAGAN M.B.: see GRANVILLE A., MONAGAN M.B.
MONTGOMERY H.L.,
[1] Distribution of irregular primes, Illinois J. Math.,
9 (1965), 553-558.
Z131,45; M31#5861; R1966,8A97
MORDELL L.J.,
[1] Three lectures on Fermat's last theorem.
Cambridge Univ. Press, 1921. Also in: Famous problems and other monographs,
Chelsea Publ. Co., New York, 1955; and in: L.J. Mordell, Two papers on
number theory, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972.
Z237.10016; M50#4453
[2] On the evaluation of some multiple series,
J. London Math. Soc., 33 (1958), 368-371.
Z81,275; M20#6615; R1959,4426R
[3] Integral formulae of arithmetical character, J. London Math.
Soc., 33 (1958), 371-375.
Z81,274; M20#6488; R1960,1286
[4] On a Pellian equation conjecture,
Acta Arith., 6 (1960), 137-144.
Z93,43; M22#9470; R1961,7A121
[5] Recent work in number theory, Scripta Math., 25
(1960), 93-103.
Z109,270; M22#9471; R1961,5A107
[6] On a Pellian equation conjecture. II. J. London Math.
Soc., 36 (1961), 282-288.
Z122,55; M23#A3707; R1962,5A154
[7] A Pellian equation conjecture, Second Hung. Math. Congress 1960, Budapest, 1 (1961), 1b, 24-27.
[8] Expansion of a function in a series of Bernoulli polynomials, and
some other polynomials, J. Math. Anal. Appl., 15 (1966), 132-140.
Z166,70; M33#6276; R1967,3B57
[9] Expansion of a function in terms of Bernoulli polynomials,
J. London Math. Soc., 41 (1966), 526-528.
Z165,70; M33#6276; R1967,9V207
[10] Diophantine equations. Pure and Appl. Math., Vol. 30, Acad. Press,
London-New York, 1969, x + 312 pp., Ch. 8.
Z188.345; M40#2600; R1970,8A97K
[11] The sign of the Bernoulli numbers, Amer. Math. Monthly,
80 (1973), 547-548.
Z273.10011; M47#4918; R1974,2V418
MOREE P.,
[1] On a theorem of Carlitz - von Staudt.
C. R. Math. Rep. Acad. Sci. Canada, 16 (1994), no. 4, 166-170.
Z820.11002; M95i:11002
[2] Primes in arithmetic progression having a prescribed primitive root, MPI für Math., Bonn, Preprint Ser. 1998(57).
MOREE P., TE RIELE H.J.J., URBANOWICZ J.,
[1] Divisibility properties of integers $x$, $k$ satisfying
$1^k+\ldots +(x-1)^k=x^k$,
Math. Comp., 63 (1994), no. 208, 799-815.
Z816.11024; M94m:11041; R1997,12A101
MORENO C.J.,
[1] The Chowla-Selberg Formula, J. Number Theory,
17 (1983), no. 2, 226-245.
Z525.12012; M85b:11034; R1984,3A569
MORI K.: see AGOH T., MORI K.
MORISHIMA T.,
[1] Über die Fermatsche Vermutung, XI, Japan J. Math.,
11 (1935), 241-252.
J61.I.174; Z11,338
[2] Über die Fermatsche Vermutung, XII,
Proc. Imper. Acad. Tokyo, 11 (1935), no. 8, 307-309.
J61.I.175; Z13,052
[3] On Fermat's last theorem (13th paper),
Trans. Amer. Math. Soc., 72 (1952), no. 1, 67-81.
Z47,47; M13-726e
[4] On the second factor of the class number of the cyclotomic fields,
J. Math. Anal. Appl., 15 (1966), 141-153.
Z139,282; M33#5607; R1967,7A146
MORO G.,
[1] L'ultimo teorema di Fermat,
Riv. Mat., 1986, Suppl., 86 pp.
R1986,8A101
MOUSSA P.: see WALDSCHMIDT M. et al.
MÜLLER H.,
[1] On some congruences concerning the criteria of Kummer,
Expositiones Math., 2 (1984), no. 1, 85-89.
Z525.12012; M86h:11024; R1984,10A94
MUNCH O.J.,
[1] Om Potensproduktsummer,
Nordisk Mat. Tidsskrift, 7 (1959), 5-19.
Z084.26902; R1960,3178
MÜNTZ CH.-H.,
[1] Sur une propriété des polynômes de Bernoulli, C.R. Acad.
Sci., Paris, 158 (1914), 1864-1866.
J45.677
MURAKAMI JUN: THANG LE THU QUAC, MURAKAMI JUN
MUSÈS C.,
[1] A closed expression for the zeta function of odd integer
argument, Abstracts Amer. Math. Soc., 4 (1983), no. 5, 339.
[2] Bernoulli numbers of general index, Abstracts Amer. Math. Soc., 8 (1987), no. 1, 17.
[3] Bernoulli numbers of general index, Abstracts Amer. Math. Soc., 15 (1994), no. 1, 23.
[2] Some congruence property of modular forms,
Manuscripta Math. 94 (1997), no. 2, 253-265.
Z980.18769; M98g:11054
NAGASAKA CH.,
[1] Eichler integrals and generalized Dedekind sums, Mém.
Fac. Sci., Kyushu Univ., Ser. A, 37 (1983), no. 1, 35-43.
Z512.10030; M84f:10032; R1983,10A96
[2] On generalized Dedekind sums attached to Dirichlet characters,
J. Number Theory, 19 (1984), no. 3, 374-385.
Z551.10022; M86f:11035; R1985,5A329
[3] Dedekind type sums and Hecke operators.
Acta Arith. 44 (1984), no. 3, 207-214.
Z512.10007, 543.10013; M86i:11020; R1985,7A158
NÄGELSBACH H.,
[1] Zur independenten Darstellung der Bernoulli'schen Zahlen,
Zeit. für Math. und Phys., 19 (1874), 219-234.
J6.140
NAKAGOSHI N.,
[1] On the unramified extension of the prime cyclotomic number field
and its quadratic extension,
Nagoya Math. J., 115 (1989), 151-164.
Z(659.12007)673.12002; M90m:11159; R1990,6A301
[2] On the unramified Kummer extensions of quadratic extensions of the prime
cyclotomic number field, Arch. Math. 57 (1991), no. 6, 566-570.
Z728.11056; M93b:11139
NAKAJIMA MASUMI,
[1] The Taylor coefficients of ${\zeta}(s)$, $(s-1){\zeta}(s)$
and $(z/(1-z)){\zeta}(1/(1-z))$,
Math. J. Okayama Univ., 29 (1987), 207-219 (1988).
Z641.10030; M89f:11120; R1988,10A116
NAKAJIMA SHOICHI,
[1] On Gauss sum characters of finite groups and generalized Bernoulli numbers.
Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).
J. Théor. Nombres Bordeaux 7 (1995), no. 1, 143-154.
Z848.11052; M97g:11087
NAKAZATO H.,
[1] A remark on Ribet's theorem, Proc. Japan Acad., Ser. A,
56 (1980), no. 4, 192-195.
Z453.12001; M81g:12007
[2] The q-analogue of the p-adic gamma-function,
Kotai Math. J., 11 (1988), no. 1, 141-153.
Z664.12015; M89e:11075; R1988,10A314
NAMIAS V.,
[1] A simple derivation of Stirling's asymptotic series,
Amer. Math. Monthly, 93 (1986), no. 1, 25-29.
Z615.05010; M87i:05018; R1986,8B20
NARISHKINA E.A.,
[1] On the analogue of Bernoulli numbers in quadratic fields,
Proc. Intern. Math. Congress, Toronto 1924, Reprinted 1967, v.1, 299-307.
(This report at the Congress was read by V.A.Steklov.)
[2] O chislakh analogichnykh chislam Bernulli, v odnoklassovykh kvadratichnykh
oblastyakh otritsatel'nogo diskriminanta [On numbers analogous to Bernoulli
numbers in one-classed quadratic fields of a negative discriminant].
Izv. Rossijsk. Akad. Nauk, Ser. VI, 19 (1925), 145-176, 287-314.
J51.154
NARKIEWICZ W.,
[1] Class number and factorization in quadratic number fields,
Colloq. Math., 17 (1967), 167-190.
Z153,77; M36#3750; R1968,8A339
[2] Elementary and analytic theory of algebraic numbers, Warszawa,
1974. (Second edition: PWN-Polish Scientific Publishers, Warszawa, 1990.
xiii + 746 pp.)
Z276.12002; M50#268; R1974,10A321K
NATH B.,
[1] A generalization of Bernoulli numbers and polynomials,
Ganita, 19 (1968), no. 1, 9-12.
Z226.10015; M45#3812
NEGGERS J.: see AINSWORTH O.R., NEGGERS J.
NEKOVÁR J.,
[1] Iwasawa's main conjecture. (A survey).
Acta Math. Univ. Comenian., 50/51 (1987), 203-215.
Z675.12001; M90d:11119; R1989,10A322
NEUKIRCH J.,
[1] The Beilinson conjecture for algebraic number fields.
In: Beilinson's conjecture on special values of L-functions, pp. 193-247,
Perspect. Math., 4, Academic Press, Boston, 1988.
Z651.12009; M90f:11042; R1989,10A322
NEUKIRCH J.: see also EBBINGHAUS H.-D. et al.
NEUMAN C.P., SCHONBACH D.I.,
[1] Evaluation of sums of convolved powers using Bernoulli numbers,
SIAM Review, 19 (1977), no. 1, 90-99.
Z355.65002; M55#1698; R1977,9B13
NGUYEN THI TINH: see TUAN VU KIM, NGUYEN THI TINH
NICOL C.A.: see SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.
NIEDERHAUSEN H.,
[1] Factorials and Stirling numbers in the algebra of formal
Laurent series.
Discrete Math., 90 (1991), no.1, 53-62.
Z751.11013; M92j:05012; R1991,10V243
[2] Factorials and Stirling numbers in the algebra of formal
Laurent series. II. $z^a-z^b=t$.
Discrete Math., 132 (1994), no. 1-3, 197-213.
Z805.05006; M95k:05014
NIELAND L.W.,
[1] Over $\sum_{n=1}^m {1\over n^{2h}}$ en $\sum_{n=1}^\infty
{1 \over n^{2h}} = \zeta(2h).$
Nieuw. Arch. Wisk (2), 16 (1929/30), no. 1, 1-13.
J55.130
NIELSEN N.,
[1] Handbuch der Theorie der Gammafunktion, Leipzig, 1906.
J37.450
[2] Note sur les fonctions de Bernoulli
(Extrait d'une lettre à F.G. Teixeira),
Ann. Ac. Pol. Porto, 6 (1911), 5-11.
J42.460
[3] Note sur les polynômes parfaits, Nieuw Arch. Wisk.
(2), 10 (1912), 100-106.
J43.242
[4] Sur les transcendentes élémentaires et les nombres
de Bernoulli et d'Euler,
Annali di Mat. (3), 19 (1912), 179-204.
J43.532
[5] Recherches sur les nombres de Bernoulli, Kgl. Danske
Videnskab. Selskabs Skrifter, Nat. og Mathem. Afdeling, 10 (1913),
283-362.
J44.398
[6] Recherches sur les suites régulières et les nombres
de Bernoulli et d'Euler, Annali di Mat. (3), 22 (1913), 71-115.
J44.319
[7] Verkürzte Rekursionsformeln für Bernoullische und Eulersche Zahlen,
Abh. Königl. Sächs. Ges. Wiss. Leipzig, 65 (1913), 3-26.
J44.514
[8] Sur les fonctions de Bernoulli et des sommes de
puissances numériques,
Nieuw. Arch. Wisk. (2), 10 (1913), 396-415.
J44.514
[9] Elementære Beviser for Sætninger af v. Staudt og Stern
verdrørende de Bernoulliske Tal,
Nyt Tidskr. Mat., 25 (1914), 19-23.
J45.1257
[10] Sur le théorème de v. Staudt et de Clausen relatif aux nombres
de Bernoulli, Annali di Mat. (3), Milano, 22 (1914), 249-261.
J45.302
[11] Recherches sur les résidus quadratiques et sur quotients de
Fermat, Ann. de l'Ecole Normale (3), 31 (1914), 161-204.
J45.323
[12] Note sur une théorie élémentaire des nombres de
Bernoulli et Euler, Arch. för Math., Astr. och Fys.,
9 (1914), no. 24, 1-15.
J45.677
[13] Über die von A. v. Ettingshausen entdeckten verkürzten
Rekursionsformeln für die Bernoullischen Zahlen, Monatsh. Math.,
25 (1914), 152-162.
J45.678
[14] Über die Verallgemeinerungen der von A. v. Ettingshausen
entdeckten verkürzten Rekursionsformeln für die Bernoullischen
Zahlen, Monatsh. Math., 25 (1914), 328-336.
J45.679
[15] Note sur les polynômes réguliers et sur leur application dans
la théorie des nombres, Overs. Danske vidensk. Selsk. Förh.,
(1915), 171-180.
J45.326
[16] Sur les nombres de Bernoulli et leur application dans la
théorie des nombres, Overs. Danske Vidensk. Selsk. Förh.,
(1915), no. 6, 509-524.
J45.303
[17] Recherches sur les fonctions de Bernoulli, Mém. Acad. R.
Copenhagen (7), 12 (1915), 55-102.
J45.677
[18] Traité élémentaire des nombres de Bernoulli,
Gauthier-Villars, Paris, 1923.
J49.99
[19] Note sur les séries de fonctions bernoulliens.
Math. Ann., 59 (1904), no. 1/2, 103-109.
J35.448
[20] Sur les séries de fonctions de Stirling.
Annali di. Mat. pura ed appl. (3), 12 (1905), 101-112.
J36.500
[21] Note sur les fonctions de Bernoulli et leur analogie
aux factorielles ordinaires.
Oversigt Kongl. Dansk. Vidensk. Selsk. Forhandl., no. 4, 1916, 191-201.
J46.567
[22] Note sur les nombres de Bernoulli et d'Euler.
Nyt Tidskr. Mat., B28 (1917), 1-7.
J46.568
[23] Recherches sur les polynômes de Stirling. Copenhagen, 1920, 106pp.
NIEMEYER H.,
[1] Bernoullische Zahlen in imaginär-quadratischen Zahlkörpen.
Staatsexamensarbeit, Hamburg 1966.
NIKULIN M.: see VOINOV V., NIKULIN M.
NISHIZAWA M.: see UENO K., NISHIZAWA M.
NÖRLUND N.E.,
[1] Sur les polynômes de Bernoulli,
C.R. Acad. Sci., Paris, 169 (1919), 521-524.
J47.216
[2] Mémoire sur les polynômes de Bernoulli, Acta Math.,
43 (1922), 121-196.
J47.216
[3] Remarques diverses sur le calcul aux différences finies,
J. de Math. Pures Appl. (9), 2 (1923), 193-214.
J49.324
[4] Sur certaines équations aux différences finies, Trans. Amer.
Math. Soc., 25 (1923), 13-48.
J49.324
[5] Vorlesungen über Differenzenrechnung,
Springer-Verlag, Berlin, 1924.
J50.315, 318
[6] Sur les valeurs asymptotiques des nombres et des polynômes de
Bernoulli, C.R. Acad. Sci., Paris, 251 (1960), 2269-2270.
Z96,269; M23#A1078; R1962,5B44
[7] Sur les valeurs asymptotiques des nombres et des
polynômes de Bernoulli,
Rend. Circ. Mat. Palermo, 10 (1961), no. 1, 27-44.
Z96,269; M29#295; R1963,2B41
[8] De Bernoulli'ske Polynomier. Nyt Tidskr. Mat. B (1919), 33-41.
[9] De Euler'ske Polynomier. Nyt Tidskr. Mat. B (1919), 49-55.
[10] Sur les polynomes d'Euler.
C. R. Acad. Sci., Paris, 169 (1919), 166-168.
J47.216
[11] Sur une extension des polynomes de Bernoulli.
C. R. Acad. Sci., Paris, 169 (1919), 608-610.
J47.216
NORMI M.,
[1] On a convolution on the space of p-adic functions,
Bull. Kyushu Inst. Tech. Math. Natur. Sci., 1989, no. 36, 11-20.
M90k:11159; R1990,2A328
NOVIKOV A.P.,
[1] The regularity of prime divisors of the first degree of an
imaginary quadratic field. (Russian) Izv. Akad. Nauk. SSSR Ser. Mat.,
33 (1969), 1059-1079.
Z188,352; M40#4239; R1970,3A387
NOWAK W.G.,
[1] On a problem of S. Chowla and H. Walum,
Bull. Number Theory Related Topics, 7 (1982), no. 1, 1-10.
Z491.10013; 499.10012; M85e:11071; R1985,6A99
[2] An analogue to a conjecture of S. Chowla and H. Walum, J.
Number Theory, 19 (1984), no. 2, 254-262.
Z546.10039; M85m:11056; R1985,6A100
NUNEMACHER J.,
[1] On computing Euler's constant, Math. Magazine, 65 (1992),
no. 5, 313-322.
Z858.11067; M93j:65042
NUNEMACHER J., YOUNG R.M.,
[1] On the sum of consecutive kth powers,
Math. Mag., 60 (1987), no. 4, 237-238.
Z625.10009; R1988,4V494
OBRESCHKOFF N.,
[1] Neue Quadraturformeln, Abhandl. der Preussisch. Akad. d.
Wissen., math.-naturw. Kl., (1940), no. 4, 1-20.
J66.581; Z24,026; M2-284c
D'OCAGNE M.,
[1] Sur les nombres de Bernoulli, Bull. Soc. Math. France, 17
(1889), 107-109.
J21.248
[2] Sur une classe de nombres rationnels réductibles aux
nombres de Bernoulli.
Bull. des sciences math. (2), 28 (1904), 29-32.
J35.449
ODLYZKO A.M., SCHÖNHAGE A.,
[1] Fast algorithms for multiple evaluation of the Riemann zeta function,
Trans. Amer. Math. Soc., 309 (1988), no. 2, 797-809.
Z706.11047; M89j:11083; R1989,5G177
OESTERLÈ J.,
[1] Travaux de Ferrero et Washington sur le nombre de classes
d'idéaux des corps cyclotomiques, Lect. Notes Math., 770 (1980),
170-182.
Z436.12003; M81i:12005; R1980,9A345
OETTINGER L.,
[1] Beiträge zur Summirung der Reihen,
Archiv der Math. und Phys., 26 (1856), 1-42.
OHM M.,
[1] De nonnullis problematis analyticis caute tractandis,
Mémoires présentés à l'Academie Imperiale des
Sciences de St. Petersbourg par divers savants, 1 (1831), 109-130.
[2] Etwas über die Bernoulli'schen Zahlen, J. Reine Angew. Math., 20 (1840), 11-12.
OHTSUKI M.: see KATAYAMA K., OHTSUKI M.
OKADA S.,
[1] Generalized Maillet determinant, Nagoya Math. J.,
94 (1984), 165-170.
Z535.12005; M85j:11147; R1985,12A387
[2] Kummer's theory for function fields,
J. Number Theory, 38 (1991), no. 2, 212-215.
Z728.11031; M92e:11134
OKADA T.,
[1] Dirichlet series with periodic algebraic coefficients,
J. London Math. Soc., 33 (1986), no. 1, 13-21.
Z589.10034; M87i:11087; R1986,12A114
OKAZAKI R.,
[1] On evaluation of $L$-functions over real quadratic fields.
J. Math. Kyoto Univ., 31 (1991), no. 4, 1125-1153.
Z776.11071; M93b:11154
OLIVIER M.: see COHEN H., OLIVIER M.
OLSON F.R.,
[1] Some determinants involving Bernoulli and Euler numbers of
higher order, Pacific J. Math., 5 (1955), 259-268.
Z68,284; M16-988i; R1956,3658
[2] Arithmetical properties of Bernoulli numbers of higher order,
Duke Math. J., 22 (1955), 641-653.
Z66,281; M17-238b; R1956,5709
OLSON F.R.: see also CARLITZ L., OLSON F.R.
OLTRAMARE G.,
[1] Mémoire sur les nombres inférieurs et premiers, à un
nombre donné, Mémoire de l'Inst. Nat. Genèvois, 4 (1856),
1-10.
OLVER F.W.J.,
[1] Asymptotics and special functions. Academic Press, New York,
1974. xvi + 572 pp.
Z303.41035; M55#8655; R1975,3B32K
ONG Y.L.: see EIE M., ONG Y.L.
ONO K.,
[1] Indivisibility of class numbers of real quadratic fields,
Compositio Math. 119 (1999), no. 1, 1-11.
ONO K.: see also BALOG A., DARMON H., ONO K.
OPOLKA H.: see SCHARLAU W., OPOLKA H.
ORIAT B.,
[1] Lien algébrique entre les deux facteurs de la formule analytique
du nombre de classes dans les corps abéliens,
Acta Arith., 46 (1986), no. 4, 331-354.
Z615.12005; M88c:11063; R1987,6A370
ORIGUCHI T., KIRIYAMA H., MATSUOKA Y.,
[1] A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=1(1)61$.
Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., No. 20
(1987),1-31. Corrigenda: Ibid. 22 (1989), 133-134.
Z682.10011,697.10008; M89e:11016
[2] A table of the explicit formulas for the sums of powers
$S_p(n) = \sum_{k=1}^n k^p$ for $p=1(1)61$.
Rep. Fac. Sci. Kagoshima Univ. Math. Phys. Chem., No. 21
(1988), 49-64.
Z682.10012; M90g:11026
ORTEGA ARAMBURU J.M.
[1] Euler, series y algunas funcciones especiales,
Butl. Soc. Catalana Ciènc. Fís. Quím. Mat. (2), 2
(1984), no. 4, 384-404.
Z545.01004; M86i:01026
OSIPOV Yu.V.,
[1] p-adic Fourier transform. (Russian) Uspekhi. Mat. Nauk., 34 (1979),
no. 5(209), 227-228.
Z431.43004; M81b:12021; R1980,4B987
[2] p-adic zeta-functions and Bernoulli numbers. (Russian) Studies in number
theory, 6, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
93 (1980), 192-203, 228.
Z467.12019; M81f:12012; R1980,9A344
[3] On p-adic distributions. (Russian) Uspekhi Mat. Nauk., 37 (1982),
no. 3(225), 193-194.
Z498.43007; M84d:12016; R1982,11B963
ÖSTLUND J.,
[1] Ett elementärt bevis för Bernoullis formel för potenssummor.
Ark. för Mat., Astron. och Fys., 8 (1912), no. 12, 3p.
J(43.345)
[2] Sur le théorème de v. Staudt concernant le
propriétés des nombres de Bernoulli.
Ark. för Mat., Astron. och Fys., 11 (1916), 4 p.
J46.358
OSTMANN H.-H.,
[1] Additive Zahlentheorie, Teil II.
Springer-Verlag, Berlin, 1956. 133 pp.
Z72,31; M20#5176; R1957,1137
OSTROGRADSKY M.V.,
[1] Mémoire sur les quadratures définies, Zap. Peterb.
Akad. Nauk, VI ser., Fiz.-mat. Nauki, 2 (1841), 322-323.
OSTROWSKI A.,
[1] On the zeros of Bernoulli polynomials of even order,
Enseign. Math. (2), 6 (1960), 27-47. (Collected
Mathematical Papers, vol. 1, 764-784.)
Z103,254; M23#A3868; R1962,1B48
OTSUBO T.,
[1] Algebraic surfaces derived from quaternion algebras
over real quadratic fields,
Siatama Math. J., 3 (1985), 1-10.
Z607.14028; M87b:14018; R1986,5A541
OUTLAW C., SARAFYAN D., DERR L.,
[1] Generalization of the Euler-Maclaurin formula for Gauss,
Lobatto and other quadrature formulas, Rend. Mat. (7), 2
(1982), no. 3, 523-530.
Z508.65008; M84i:65031; R1983,7B1015
OVERHOLTZER G.,
[1] A new application of the Schur derivative,
Bull. Amer. Math. Soc., 51 (1945), no. 4, 313-324.
Z60,086; M6-255f
[2] Sum functions in elementary $p$-adic analysis,
Amer. J. Math., 74 (1952), 332-346.
M14-21g
OWENS R.W.,
[1] Sums of powers of integers.
Math. Mag., 65 (1992), no. 1, 38-40.
Z765.11007; M93a:11017
ÖZLÜK A.E., SNYDER C.,
[1] An identity involving Nörlund polynomials,
Bull. Austral. Math. Soc., 43 (1991), no. 2, 307-315.
Z711.11011; M92c:11046; R1991,11B25
LE PAIGE C.,
[1] Note sur les nombres de Bernoulli, C.R. Acad. Sci., Paris,
81 (1875), 966-967.
J7.132
[2] Relation nouvelle entre les nombres de Bernoulli, Bull.
Acad. Royal Belgique, Cl. Sci. (2), 41 (1876), 1017.
J8.147
[3] Sur les nombres de Bernoulli et sur quelques fonctions qui s'y
rattachent, Ann. Soc. Sci. Bruxelles, 1B (1876), 43-50.
J8.147
[4] Sur une formule de Scherk, Nouv. Corres. Math., 3 (1877), 159-161.
[5] Sur le développement de $\cot x$. Extrait d'une lettre
adressée à M. Hermite. C.R. Acad. Sci., Paris, 88
(1879), 1075-1077.
J11.187
PAK I. M.: see KUZNETSOV A. G., PAK I. M., POSTNIKOV A. E.
PANCHISHKIN A.A.,
[1] Nearkhimedovy avtomorfnye dzeta-funktsii [Non-archimedean automorphic zeta
functions]. Moskva: Izd. MGU, 1988, 140 pp.
Z667.10017; R1988,9A95K
[2] Non-archimedean L-functions associated with Hilbert modular forms. Max-Planck-Institut für Mathematik, Bonn, MPI/89-54, 59 pp.
[3] Non-archimedean L-functions associated with Siegel modular forms. Max-Planck-Institut für Mathematik, Bonn, MPI/89-55, 99 pp.
[4] Automorphic forms, $L$-functions, and $p$-adic analysis.
Aleksandrov, I. A. (ed.) et al., Second Siberian winter school ``Algebra and
Analysis''. Proceedings of the second Siberian school, Tomsk State University,
Tomsk, Russia, 1989. Transl. ed. by Simeon Ivanov. Providence, RI: American
Mathematical Society, Transl., Ser. 2, Am. Math. Soc. 151, 121-134 (1992).
Z871.11040
[5] Non-archimedean zeta functions associated with automorphic forms.
In: International Conference, Automorphic functions
and their applications. Khabarovsk, 27 June - 4 July 1988. Inst. Appl. Math.,
Acad. Sci. USSR, Khabarovsk, 1990, 135-162.
Z761.11025; M92f:11075
[6] Non-Archimedean $L$-functions of Siegel and Hilbert modular forms.
Lecture Notes in Mathematics, 1471, Springer-Verlag, Berlin,
1991. vi+157pp.
Z732,*11026; M93a:11044
[7] Generalized Kummer congruences and $p$-adic families of motives. MSRI Preprint no. 030-95, Berkeley, CA, 1995.
[8] Non-archimedean Mellin transform and $p$-adic $L$-functions,
Vietnam J. Math., 25 (1997), no.3, 179-202.
Z980.41357
PANCHISHKIN A.A.: see also MANIN YU.I., PANCHISHKIN A.A.
PANDAY P.: see KHANNA I.K., PANDAY P.
PÁNEK A.,
[1] Das System der Bernoullischen Zahlen, Prag, 1877.
PARASHAR B.P.,
[1] On generalized exponential Euler polynomials,
Indian J. Pure Appl. Math., 15 (1984), no. 12, 1332-1339.
Z561.33004; M86f:05019; R1985,8B11
PARENT D.P.,
[1] Exercises in number theory. Springer-Verlag, New York, 1984. x + 541 pp.
Z536.10001; M86f:11002; R1985,5A102
PARODI M.,
[1] Fonction $\zeta$ de Riemann et nombres de Bernoulli, C.R. Acad.
Sci., Paris, 240 (1955), 1395-1396.
Z64,69; M16-798d; R1956,129
[2] Matrices d'operateurs linéaires et polynômes orthogonaux.
Application: polynômes de Bernoulli et polynômes de Tchebicheff,
C. R. Acad. Sci. Paris A, 263 (1966), 279-281.
Z144,66; M34#1585; R1967,3B52
PARRY C.J.: see HAO F.H., PARRY C.J.
PARSON L., ROSEN K.,
[1] Hecke operators and Lambert series.
Math. Scand., 49 (1981), no. 1, 5-14.
Z472.10017; M83d:10031
PASCAL E.,
[1] I determinanti ricorrenti e i nuovi numeri pseudo-Euleriani,
Rend Ist Lomb., serie II, 40 (1907), 461-475.
J38.199
[2] I nuovi numeri pseudo-tangenziali,
Rend. Palermo, 23 (1907), 358-366.
J38.466
[3] Repertorium der höheren Mathematik,
Druck und Verlag von B. G. Teubner Leipzig, 1910.
J41.44,45
PATASHNIK O.: see GRAHAM R.L., KNUTH D.E., PATASHNIK O.
PATTERSON S.J.,
[1] An Introduction to the Theory of the Riemann Zeta-Function.
Cambridge Univ. Press, Cambridge, 1988. xi + 156 pp.
Z641.10029; M89d:11072; R1988,9A96K
PEANO G.,
[1] Formulaire de Mathématique. Paris, 1901.
J32.69
PEDERZOLI G.: see MATHAI A.M., PEDERZOLI G.
PEDRO: see ALVARADO R., PEDRO
PENNEY D.E., POMERANCE C.,
[1] Multiplicative relations for sums of initial k-th powers,
Amer. Math. Monthly, 92 (1985), no. 10, 729-731.
Z597.10011; M87d:11010; R1986,7A101
PENNY C.,
[1] Arts. Numbers of Bernoulli and Series, 1833.
(Quoted from Ely [1]).
PEREIRA N.C.,
[1] Fermat's conjecture. (Portuguese).
Bol. Soc. Port. Mat. No. 9 (1986), 18-22.
Z623.10001; M88a:11001
PEREMANS W.: see DUPARC H.J.A., PEREMANS W.
de PESLOUAN L.: see DE PESLOUAN L.
PETERMANN Y.-F.S.,
[1] Divisor problems and exponent pairs,
Arch. Math., 50 (1988), 243-250.
Z619.10034; M89i:11104; R1988,10A126
[2] About a theorem of Pado Codeca's and $\Omega$-estimates for
arithmetical convolutions: Addendum,
J Number Theory, 36 (1990), no. 3, 322-327.
Z732.11048; M91j:11079
PETERSON H.,
[1] Modulfunktionen und quadratische Formen, Springer-Verlag,
Berlin-New York, 1982. x + 307pp.
Z493.10033*; M85h:11021; R1983,5A386K
PETR K.,
[1] Poznamka k cislum Bernoulliho
[A note on Bernoulli numbers],
Casopis pest. mat. a fyz., 28 (1899), 24-27, (Czech).
J30.386
[2] On the Bernoulli polynomials, Rozpravy II. Trídy
Ceské Akad., no. 40, 53 (1943), 16pp., (Czech).
Z63/II; M9-411a
[3] Über die Bernoullischen Polynome, Acad. Tchèque Sci. Bull.
Int. Cl. Sci. Math. Nat., 44 (1943), 511-526. (German translation
of [2]).
M8-441a
PETRENKO A.K., PETRENKO O.L.,
[1] The Babbage machine and the origin of programming. (Russian).
Istor.-Mat. Issled. No. 24 (1979), 340-360, 389.
Z446.01017; M83b:01045; R1979,11A24
PETROVA S. S.,
[1] Euler-Maclaurin's summation formula and asymptotic series. (Russian)
Istor. Metodol. Estestv. Nauk., no. 36 (1989), 103-108.
Z715.01011; M92f:01021
PETROVA S.S., SOLOVJEV A.A.,
[1] The calculus of variations. Theory of finite differences. (Russian).
"Nauka", Moscow, 1987, 307 pp.
Z629.01011; M90a:01040
PFEIFFER G.V.,
[1] Zametka o funktsiyakh Bernulli [A note on Bernoulli functions].
Izvestiya. Kievsk. Universiteta, No. 11, (1905), 115-119.
J36.449
PFISTER F.,
[1] Bernoulli numbers and rotational kinematics,
Trans. ASME J. Appl. Mech. 65 (1998), no. 3, 758-763.
M99i:70004
PHATAK M.S.,
[1] Sums of powers of natural numbers.
Indian J. Pure Appl. Math., 21 (1990), no. 10,
879-887.
Z715.11013; M91i:11021; R1991,6V511
PHILLIPS E.G.,
[1] Note on summation of series
J. London Math. Soc., 4 (1929), 114-116.
J55.I.131
PIERCE T. A.,
[1] Note on Bernoulli's numbers. (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 199.
J(48.255)
PIETROCALA C.,
[1] Sui numeri e polinomi di Bernoulli, Giorn. mat., Napoli,
34 (1896), 48-72.
J27.212
PINK R.: see HARDER G., PINK R.
PINTÉR Á.,
[1] A note on the equation $1\sp k+2\sp k+\cdots+(x-1)\sp k=y\sp m$,
Indag. Math., New Ser. 8 (1997), no. 1, 119-123.
Z876.11014
PINTÉR Á.: see BRINDZA B., PINTÉR Á.
PIOUI R.,
[1] Module de continuité des fonctions $L$ $2$-adiques
des charactères quadratiques.
Manuscr. Math., 75 (1992), no. 2, 167-195.
Z763.11044; M93f:11092; R1994,2A327
PLANA G.A.A.,
[1] Note sur une nouvelle expression analytique des nombres
Bernoulliens, propre à
exprimer en termes finis la forme générale
pour la sommation des suites, Mém. Acad. Sci., Turin (1), 25
(1820), 403-418.
PLATONOV M.L.,
[1] Combinatorial numbers of a class of mappings and their
applications. (Russian). Moscow: Nauka, 1979, 151 pp.
Z597.05004; M83m:05018; R1980,2V593K
[2] Combinatorial numbers. (Russian). Irkutsk: Irkutsk Univ. Publ., 1980, 104 pp.
PLOUFFE S.: see SLOANE N.J.A., PLOUFFE S.
POGREBISSKII I.B., STOKALO I.Z.,
[1] Zhizn' i nauchnaya deyatel'nost' G.F. Voronogo [Life and scientific
activity of G. F. Voronoi]. In: Voronoi, G.F., Sobranie sochinenii v trekh
tomakh. (Russian) [Collected works in three volumes.] Vol. III, Kiev, 1953,
263-304.
Z49,28; M16-2d; R1954,3228K
POISSON S.D.,
[1] Mémoire sur le calcul numérique des intégrales définies,
Mém. Acad. Sci. Inst. de France, 6 (1823), 571-602.
POITOU G.: see COATES J., POITOU G.
POLI L.,
[1] Tangentes d'ordre supérieur et nombres de Bernoulli
généralisés.
Ann. Univ. Lyon Sect. A (3), 12 (1949), 5-25.
M12-96f
POLLACZEK F.,
[1] Über den grossen Fermatschen Satz, Sitzungsb. Kais. Akad.
Wiss., Wien, Math.-Natur. Kl., Abteil. 2a, 126 (1917), 45-59.
J46.193
[2] Über die irregulären Kreiskörper der $l$-ten und
$l^2$-ten Einheitswurzeln, Math. Zeit., 21 (1924), 1-38.
J50.111
[3] Relations entre les dérivées logarithmiques de Kummer et les
logarithmes $\pi$-adiques, Bull. Sci. Math., (2),
70 (1946), 199-218.
Z63,734; M9-273d
POLOVINKIN V. I.,
[1] Approximations of the Bernoulli polynomials by constants and applications tothe theory of quadrature formulas,
Siberian Adv. Math., 8 (1998), no. 2, 110-121.
Z915.41020; M99j:41046
POLYA G., SZEGÖ G.,
[1] Aufgaben und Lehrsätze aus der Analysis, Berlin, 1925, 2te Aufl.,
Berlin, Springer-Verlag, Bd. 1, 1954, xvi + 338S.; Bd. 2, 1954, x+407S.
Z55,278; M15-512a,b; R1956,5294K
[2] Problems and theorems in analysis. 2 Vols.,
Springer-Verlag, New York-Berlin, 1972, 1976.
M49 #8782, 53 #2
POMERANCE C.: see PENNEY D.E., POMERANCE C.
POMERANCE C.: see also CRANDALL R.E., DILCHER K., POMERANCE C.
van der POORTEN A.,
[1] Notes on Fermat's last theorem.
Canadian Mathematical Society Series of Monographs and Advanced Texts.
John Wiley & Sons, Inc., New York, 1996. xviii+222 pp.
Z882.11001; M98c:11026
POPOV B. S.,
[1] Expressions of Laguerre polynomials through Bernoulli polynomials. Mat.
Bilten No. 22, (1998), 15-18.
M2000e:33011
PORUBSKÝ S.,
[1] Covering systems and generating functions, Acta Arith.,
26 (1975), no. 3, 222-231.
Z(268.10044),306.10003; M52#328; R1976,2A158
[2] A characterization of finite unions of arithmetic sequences,
Discrete Math., 38 (1982), no. 1, 73-77.
Z473.05001; M84a:10057; R1982,7V481
[3] Further congruences involving Bernoulli numbers,
J. Number Theory, 16 (1983), no. 1, 87-94.
Z507.10008; M85b:11015; R1983,9A76
[4] Voronoi's congruence via Bernoulli distribution,
Czechoslovak Math. J., 34 (109) (1984), no. 1, 1-5.
Z543.10012; M85g:11024; R1984,9A92
[5] Identities involving covering systems, I.
Math. Slovaca, 44 (1994), no. 2, 153-162.
Z821.11008; M95f:11002; R1995,2A63
[6] Identities involving covering systems, II,
Math. Slovaca, 44 (1994), no. 5, 555-568.
Z821.11008; M96e:11006; R1997,2A35
[7] Voronoi Type Congruences for Bernoulli Numbers, in: "Voronoi's Impact on Modern Science" (P. Engel and H. Syta, eds.), Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 1998.
POSTNIKOV A. E.: see KUZNETSOV A. G., PAK I. M., POSTNIKOV A. E.
POSTNIKOV M.M.,
[1] Fermat's theorem. (Russian) Moscow, 1978, 128 pp.
M58#21906
[2] Introduction to algebraic number theory. (Russian) "Nauka", Moscow,
1982, 240 pp.
Z527.12001*; M85d:11001; R1982,10A99K
POUSSIN F.,
[1] Sur une propriété arithmétique de certains polynômes
associés aux nombres d'Euler,
C.R. Acad. Sci. Paris Sér. A-B, 266 (1968), A392-A393.
Z155,27; M39#1338; R1968,9A140
POUSSIN F.-H.,
[1] Polynômes et nombres d'Euler.
Thèse de doctorat de 3e cycle, Paris, 1970.
PRABHAKAR T.R., GUPTA S.,
[1] Bernoulli polynomials of the second kind and
general order,
Indian J. Pure Appl. Math., 11 (1980), no. 10, 1361-1368.
Z483.33007; M81m:05011; R1981,4V378
PRABHAKAR T.R., REVA,
[1] An Appel cross-sequence suggested by the Bernoulli and
Euler polynomials of general order, Indian J. Pure Appl. Math.,
10 (1979), no. 10, 1216-1227.
Z414.33008; M81c:10018; R1981,4V374
[2] An Appel sequence general nature, Math. Stud., 50 (1982),
no. 1-4, 116-123 (1987).
Z708.33008; M90e:33033; R1989,8B20
PRABHU S.,
[1] Some integrals involving Euler and Bernoulli numbers,
J. Indian Inst. Sci., 50 (1968), no. 3, 238-243.
M38#1292; R1969,6B19
PRASAD J.: see AGRAWAL B.D., PRASAD J.
PRASAD S.: see SINGH R., PRASAD S.
PREECE C.T.,
[1] Theorems stated by Ramanujan (III): Theorems on transformation
of series and integrals,
J. London Math. Soc., 3 (1928), 274-282.
J54.250
DE PRESLE A.G.V.,
[1] Determination des nombres de Bernoulli, Bull. Soc. Math.
France, 14 (1886), 100-103.
J18.288
PRESTEL A.: see EBBINGHAUS H.-D. et al.
PRODINGER H.,
[1] How to select a loser,
Discrete Math., 120 (1993), no. 1-3, 149-159.
Z795.90103; M94g:05010
PRODINGER H.: see also FLAJOLET P., PRODINGER H.
PROPAVESSI D. T.,
[1] On Jacobi sum Hecke characters ramified only at 2.
J. Number Theory, 38 (1991), 161-184.
M92k:11122
PROUHET M.E.,
[1] Note sur la solution précédente, Nouv. Ann. de Math. (Paris),
10 (1851), 328-330.
PUPPO G.,
[1] Sulle somme delle potenze simili dei numeri interi, e sui
numeri di Bernoulli et di Stirling,
Atti Instituto Veneto, 91 (1932), no. 2, 925-932.
J58.I.160
PUTNAM T. M.,
[1] Residues of certain sums of powers of integers.
Amer. Math. Monthly, 21 (1914), no. 7, 220-221.
J45.II.332
QUEEN C.,
[1] A note on class numbers of imaginary quadratic fields, Arch.
Math., 27 (1976), no. 3, 295-298.
Z334.12008; M53#10760; R1976,12A165
[2] The existence of p-adic Abelian L-functions. Number theory and
algebra, pp. 263-280. Academic Press, New York, 1977.
Z371.12015; M58#5598
RAABE J.L.,
[1] Die Differential- und Integralrechnung mit
Funktionen einer Variablen, Zürich, 1839, Bd. 1.
[2] Angenäherte Bestimmung der Factorenfolge $1 \cdot 2 \cdots n = \Gamma (1+n) = \int x^n e^{-x}dx$, wenn n eine sehr grosse Zahl ist, J. Reine Angew. Math., 25 (1843), 146-159.
[3] Angenäherte Bestimmung der Function \Gamma (1+n) = \int_0^{\infty} x^n e^{-x}dx$, wenn $n$ eine ganze, gebrochene, oder incommensurable sehr grosse positive Zahl ist, J. Reine Angew. Math., 28 (1844), 10-18.
[4] Die Jacob Bernoullische Funktion, Zürich, 1848.
[5] Zurückführung einiger Summen und bestimmter Integrale auf die Jacob Bernoulli'sche Funktion, J. Reine Angew. Math., 42 (1851), 348-367.
[6] Mathematische Mittheilungen (2 volumes), Zürich, Verlag von Meyer & Zeller, 1857, 1858.
RADEMACHER H.,
[1] Topics in analytic number theory, Springer-Verlag,
Berlin, 1973.
Z253.10002*; M51#358; R1973,11A116K
RADEMACHER H., GROSSWALD E.,
[1] Dedekind sums. The Math. Assoc. of America, Washington, D.C.,
1972. xvi + 102 pp.
Z251.10020; M50#9767; R1973,11A116K
RADICKE A.,
[1] Solutions des questions proposées, Nouv. Corres. Math.,
5 (1879), 33; 6 (1880),69-72.
[2] Extrait d'une lettre, Nouv. Corres. Math., 5 (1879), 196.
[3] Démonstration d'un théorème de Stern, Nouv. Corres. Math.,
6 (1880), 507-509.
J12.194
[4] Die Recursions-formeln für die Berechung der
Bernoullischen und Eulerschen Zahlen,
Louis Nebert, Halle a.S., 1880, 35 pp.
J12.193
[5] Démonstration du théorème de Staudt et de Clausen, Nouv.
Corres. Math., 6 (1880), 503-507.
J12.194
[6] Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math.,
89 (1880), 257-261.
J12.193
RADO R.,
[1] A new proof of a theorem of v. Staudt, J. London Math. Soc.,
9 (1934), 85-88.
J60.I.115; Z14,011
[2] A note on the Bernoullian numbers, J. London Math. Soc.,
9 (1934), 88-90.
J60.I.115; Z9,150
RAI B.K., RAI N., SINGH S.N.,
[1] On generalized Bernoulli and Euler polynomials,
Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.), 25(73) (1981),
no. 3, 307-311.
Z475.33009; M83e:33008; R1982,7B29
RAI B.K., SINGH S.N.,
[1] On the extension of Bernoulli and Euler polynomials,
Proc. Nat. Acad. Sci. India A, 52 (1982), no. 2, 207-216.
Z514.05006; M85a:33018; R1984,2B43
[2] Properties of some extended Bernoulli and Euler polynomials,
Fibonacci Quart., 21 (1983), no. 3, 162-173.
Z529.10016; M85f:05005
RAI B.K.: see also SINGH S.N. et al.
RAI N.: see RAI B.K., RAI N., SINGH S.N.
RAI V.S., SINGH S.N.,
[1] Certain properties of extended Euler and Bernoulli polynomials,
Tamkang J. Math., 16 (1985), no. 4, 1-12.
Z598.10025; M87f:11016; R1987,3A133
[2] A two-variable generalization of Bernoulli and Euler polunomials (Hindi).
Vijnana Parishad Anusandhan Patrika, 29 (1986), no. 1, 27-34.
M88j:33013
[3] On extended Bernoulli and Euler polynomials,
Proc. Nat. Acad. Sci. India, A 57 (1987), no. 4, 411-426.
Z673.10009; M90h:05016; R1989,3B22
RAI V.S.: see also SINGH S.N., RAI B.K., RAI V.S.
RAMACHANDRA K., SANKARANARAYANAN A.,
[1] A remark on ${\zeta}(2n)$,
Indian J. Pure Appl. Math., 18 (1987), no.10, 891-895.
Z635.10036; M89a:11087; R1988,6A108
RAMAKRISHNAN D.,
[1] Regulators, algebraic cycles and values of $L$-functions.
Algebraic $K$-theory and algebraic number theory, Proc. Semin.,
Honolulu/Hawaii 1987, Contemp. Math., 83 (1989), 183-310.
Z694.14002; M90e:11094
RAMANUJAN S.,
[1] Some properties of Bernoulli's numbers,
J. Indian Math. Soc., 3 (1911), 219-234.
J42.460
[2] Collected Papers, Cambridge Univ. Press,
Cambridge, 1927, xxxvi + 355 pp.; reprinted: Chelsea Publ., New York, 1962.
J53.30
[3] Notebooks vol. 1, 2, Tata Inst. Fundamental Research, Bombay, 1957.
M20#6340
RANDRIANARIVONY A.,
[1] Fractions continues, $q$-nombres de Catalan et $q$-polynomes de Genocchi.
(French) [Continued fractions, $q$-Catalan numbers and $q$-Genocchi polynomials]
European J. Combin. 18 (1997), no. 1, 75-92.
Z872.05001; M98e:05007
RANDRIANARIVONY A., ZENG JIANG,
[1] Sur une extension des nombres d'Euler et les records des permutations
alternantes. Séminaire Lotharingien de Combinatoire (Gerolfingen, 1993),
97-110, Prépubl. Inst. Rech. Math. Av., 1993/34, Univ. Louis Pasteur,
Strasbourg, 1993.
M95j:05023
[2] Sur une extension des nombres d'Euler et les records des
permutations alternantes,
J. Combin. Theory A, 68 (1994), no. 1, 86-99.
Z809.05002; M95k:05011
[3] Une famille de polynômes qui interpole plusieurs suites classiques de
nombres. Séminaire Lotharingien de Combinatoire (Saint Nabor, 1993),
103-126, Prépubl. Inst. Rech. Math. Av., 1994/21, Univ. Louis Pasteur,
Strasbourg, 1994.
M95m:11020
[4] Une famille de polynomes qui interpole plusieurs suites classiques de
nombres. Adv. in Appl. Math. 17 (1996), no. 1, 1-26.
Z874.05005; M97e:05009
[5] Some equidistributed statistics on Genocchi permutations.
The Foata Festschrift. Electron. J. Combin. 3 (1996), no. 2,
Research Paper 22, approx. 11 pp. (electronic).
Z857.05002; M97k:05012
RANDRIANARIVONY A.: see also DUMONT D., RANDRIANARIVONY A.
RANDRIANARIVONY A.: see also HAN G.-N.; RANDRIANARIVONY A.; ZENG J.
RANKIN R.A.,
[1] Modular forms and functions. Cambridge Univ. Press,
Cambridge-New York-Melbourne, 1977. xiii + 384 pp.
Z376.10020; M58#16518; R1979,1A509
[2] On certain meromorphic modular forms,
Analytic number theory, Vol. 2 (Allerton Park, IL, 1995), 713-721,
Progr. Math., 139, Birkhäuser Boston, Boston, MA, 1996.
Z862.11032; M97f:11034
RASSIAS T.M.: see HARUKI H., RASSIAS T.M.
RATCLIFFE J.G., TSCHANTZ S.T.,<\a>
RAY G.A.,
RAY N.,
[2] Stirling and Bernoulli numbers for complex oriented homology theory.
In: G. Carlsson et al. (Eds.), Algebraic Topology (Arcata, CA, 1986), 362-373,
Lecture Notes in Math., 1370, Springer-Verlag, Berlin-New York, 1989.
RAY N.: see BAKER A.J. et al.
RAZAR M.J.: see GOLDSTEIN L.J., RAZAR M.J.
RECKNAGEL W.,
[2] Über eine zum Kreisproblem verwandte Summe,
Monatsh. Math., 100 (1985), no. 4, 293-298.
[3] Über eine Verallgemeinerung des Problems von Chowla und Walum,
Arch. Math., 46 (1986), no. 2, 148-152.
[4] Über ein Analogon zu einem Satz von Walfisz,
Comm. Math. Univ. St. Paul., 36 (1987), no. 1, 13-20.
REDFERN E.J.: see ALLENBY R.B.J.T., REDFERN E.J.
REICHERT M.A.,
REMMERT R.: see EBBINGHAUS H.-D. et al.
REMOROV P.N.,
[2] Ob otsenke chisla klassov krugovogo polya [On an estimation of the class
number of a cyclotomic field]. XXVII Gertsenovsk. chteniya, Matematika, Nauchn.
Dokl., Leningrad, 1974, 19-22.
RENFER H.,
REVA: see PRABHAKAR T.R., REVA
REY PASTOR J.,
RIBENBOIM P.,
[2] Some criteria for the first case of Fermat's last theorem, Tokyo
J. Math., 1 (1978), 149-155.
[3] Fermat's last theorem: recent developments.
Sémin. Théor. Nombres, 1978-79, Exp. No. 17, 22 pp., CNRS, Talence,
1979.
[4] 13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York-
Heidelberg-Berlin, 1979.
[5] Fermat's last theorem: Recent developments.
Jahrbuch Überblicke Math., 1980, pp. 75-92. Bibliographisches Institut,
Mannheim, 1980.
[6] The work of Kummer on Fermat's last theorem. Number theory
related to Fermat's last theorem (Cambridge Mass., 1981), 1-29, Progr.
Math., 26, Birkhäuser, Boston, Mass., 1982.
[7] Kummer's ideas on Fermat's last theorem,
Enseign. Math., 29 (1983), 165-177.
[8] "1093",
Math. Intelligencer, 5 (1983), no. 2, 28-34.
[9] Krasner versus Fermat, Queen's Mathematical Preprint
No. 1983-11 (Kingston, Ont., Canada), 8 pp.
[10] Il mondo Krasneriano, Queen's Mathematical Preprint No. 1983-12
(Kingston, Ont., Canada), 158 pp.
[11] A história do último teorema de Fermat (Portuguese)(The history
of Fermat's last theorem),
Bol. Soc. Paran. Mat. (2), 5 (1984), no. 1, 14-32.
[12] Impuissants devant les puissances,
Exposition. Math. 6 (1988), no. 1, 3-28.
[13] Prime number records (a new chapter for the Guinness Book
of Records).(Russian),
Uspekhi Mat. Nauk, 42 (1987), no. 5 (257), 119-176.
[14] The book of prime number records. Springer-Verlag,
New York-Berlin, 1988. xxiv + 476 pp.
[15] The Little Book of Big Primes.
Springer-Verlag, New York etc., 1991, xvii+237pp.
[16] Prime number records. (Spanish) Translated from the English by
V. S. Albis Gonzalez.
Lect. Mat. 12 (1991), no. 1-3, 137-158.
[17] Prime number records.
Nieuw Arch. Wisk. (4), 12 (1994), no. 1-2, 53-65.
[18] The new book of prime number records.
Springer-Verlag, New York, 1996. xxiv+541 pp.
RIBET K.A.,
[2] p-adic L-functions attached to characters of p-power order,
Sémin. Delange-Pisot-Poitou, Théorie des Nombres, 19e année,
1977/1978, Exp. no. 9, 8pp.
[3] Fonctions L p-adiques et théorie d'Iwasawa (Notes by Ph. Satgé),
Publ. Math. d'Orsay, Univ. Paris-Sud, Départ. Math., 1979.
[4] Report on p-adic L-functions over totally real field, Journées
Arithmétiques de Luminy, Astérisque, Soc. Math. France, Paris,
61 (1979), 177-192.
[5] Sur la recherche des p-extensions non ramifiées de
$Q(\mu_p)$, Groupe étude algèbre, Univ. P. et M. Curie, (1975-76),
1 (1978), no. 2, 1-3.
RIBET K.A.: see also DELIGNE P., RIBET K.A.
RICCI G.,
[2] Sui coefficienti binomiali e polinomiali. Una dimonstrazione del
teorema di Staudt-Clausen sui numeri di Bernoulli, Giorn di Mat. Battaglini,
69 (1931) 9-12.
RICCI P.E.: see DI CAVE A., RICCI P.E.
RIEGER G.I.,
TE RIELE H.J.J.: see IVIC A., TE RIELE H.J.J.
TE RIELE H.J.J.: see MOREE P., TE RIELE H.J.J.,
URBANOWICZ J.
RIESEL H.,
[2] Bernoullis tal och von Staudts teorem, Elementa,
51 (1968), no. 3, 201-206.
[3] Some series related to infinite series given by Ramanujan,
Nordisk. Tidsk. Informationsbehandling (BIT), 13 (1973), 97-113.
[4] A consequence of the von Staudt - Clausen theorem,
Nordisk. Tidskr. Informationsbehandling (BIT), 14 (1974), 120-121.
[5] An "exact" formula for the $2n$-th Bernoulli number, Acta
Arith., 26 (1975), 273-277.
RIMSKII-KORSAKOV B.S.,
RIORDAN J.,
[2] Combinatorial identities. John Wiley & Sons, Inc., New York-
London-Sidney, 1968. xiii $+$256pp. Reprint Robert E. Krieger Publ. Co.,
Huntington, N.Y., 1979.
RIORDAN J., STEIN P.R.,
RIORDAN J.: see also CARLITZ L., RIORDAN J.
RITTER J., WEISS A.,
ROBBINS N.,
ROBERT A.M.,
ROBERT G.,
[2] Nombres de Hurwitz et unités elliptiques, Ann. Sci.
École Norm. Sup. (4), 11 (1978), no. 3, 297-389.
RODRIGUEZ D.M.: see DEEBA E.Y., RODRIGUEZ D.M.
RODRIGUEZ VILLEGAS F.,
RÖDSETH Ö. J.,
ROGEL F.,
[2] Arithmetische Entwicklungen, Arch. Math. und Phys. (2), 11
(1892), 77-82.
[3] Ein neues Recursionsgesetz der Bernoullischen Zahlen,
Sitzungsb. Kgl. Böhmische Gesells. Wiss., Prag, (1895), No. 26, 1-4.
[4] Die Entwicklung nach Bernoullischen Funktionen, Sitzungsb.
Kgl. Böhmische Gesells. Wiss., Prag, (1896), No. 31, 1-48.
[5] Die Entwicklung nach Bernoullischen Funktionen, Arch. Math.
und Phys. (2), 17 (1899), 129-146.
[6] Question 13781, Math. questions and solutions from
"Educational Times", London, 70 (1899), 37-38.
[7] Question 13868, Math. questions and solutions from
"Educational Times", London, 70 (1899), 121-122.
[8] Question 14066, Math. questions and solutions from
"Educational Times", London, 71 (1899), 34-35.
[9] Question 13959, Math. questions and solutions from
"Educational Times", London, 71 (1899), 126-128.
[10] Question 14194, Math. questions and solutions from
"Educational Times", London, 72 (1900), 125-126.
[11] Über Bernoullische und Eulersche Zahlen, Sitzungsber. d. kgl.
Böhmischen Gesells. Wiss., Prag, (1907), No. 23, 1-27.
[12] Theorie der Euler'schen Functionen.
Sitzungsber. d. kgl. Böhm. Ges. Wiss., (1896), no. 2, 45p.
[13] Note zur Entwicklung nach Euler'schen Funktionen.
Sitzungsber. d. kgl. Böhm. Ges. Wiss., Prag., (1896),
no. 42, 1-9.
[14] Transformationen der harmonischen Reihen $S_{2n+1}$ und $U_{2n}$.
Sitzungsber. d. kgl. Böhm. Ges. Wiss., Prag., (1907),
no. 17, 14p.
ROMAN S.,
ROMANOV N.P.,
[2] On Hilbert space and the theory of numbers, II. (Russian) Izv. Akad. Nauk.
SSSR. Ser. Mat., 15 (1951), 131-152.
[3] Ob odnom novom analiticheskom predstavlenii dzeta-funktsii Rimana [On a new
analytical representation of the Riemann zeta function].
Trudy Sredneaz. Univ., (1956), vyp. 66, kn. 13, 51-54.
ROSE H.E.,
ROSELLE D.P.: see DILLON J.F., ROSELLE D.P.
ROSEN K.H., SNYDER W.M.,
[2] p-adic Dedekind sums,
J. Reine Angew. Math., 361 (1985), 23-26.
ROSEN M.,
ROSEN M.: see also IRELAND K., ROSEN M.
ROSENHEAD L.: see FLETCHER A. et al.
ROSSI F.S., TOSCANO L.,
ROTA G.-C.,
ROTA G.-C., TAYLOR B.D.,
[2] The classical umbral calculus,
SIAM J. Math. Anal., 25 (1994), no. 2, 694-711.
ROTA G.-C.: see also DI CRESCENZO, ROTA G.-C.
ROTHE H.A.,
ROUGH M.,
ROVINSKY M.,
ROY Y.: see CARTIER P., ROY Y.
RUBIN K.,
[2] The main conjecture. Appendix to: Cyclotomic Fields by S. Lang,
2nd ed., Springer-Verlag, New York, 1990.
[3] Kolyvagin's system of Gauss sums. Proc. Conf., Texel/Neth. 1989,
Prog. Math., 89 (1991), 309-324.
RUBIN K.: see also LANG S. [7]
RUBIN K., WILES A.,
RUDAZ S.,
RUDOLFER S.M., WILKINSON K.M.,
RUTGERS J.G.,
RUTKOWSKI J.,
RUTKOWSKI J.: see also BARTZ K., RUTKOWSKI J.
RYBNIKOV K.A.,
[1] Volumes of integral congruence hyperbolic manifolds,
J. Reine Angew. Math. 488 (1997), 55-78.
Z873.11031; M99b:11076
[1] Relations between Mahler's measure and values of L-series,
Canad. J. Math., 39 (1987), no. 3, 694-732.
Z621.12005; M88m:11071; R1988,4A87
[1] Extensions of umbral calculus I: Penumbral coalgebras and generalized
Bernoulli numbers,
Adv. Math., 61 (1986), no. 1, 49-100.
Z631.05002; M88b:05019; R1987,3A422
Z698.55002; M90f:55010; R1990,5A525
[1] Über eine Vermutung von S. Chowla and H. Walum,
Arch. Math., 44 (1985), no.4, 348-354.
Z556.10032; M86i:11051; R1985,10A126
Z568.10024; M87b:11083; R1986,5A138
Z588.10050; 551.10008; M87g:11114; R1986,9A84
Z629.10033; M88f:11099; R1988,9A133
[1] Détermination explicite des courbes elliptiques ayant un groupe
de torsion non trivial sur des corps de nombres quadratiques sur Q.
Séminaire de théorie des nombres, Univ. Bordeaux I, année 1983-84,
exp. no. 11, 33 pp.
Z562.14009; M86h:11049
[1] On Kummer's theorem. (Russian) Leningrad. Gos. Univ. Uch. Zap. Ser.
Mat. Nauk., 144(23) (1952), 26-34.
M18-381b
R1974,10A165
[1] Die Definitionen der Bernoullischen Funktion und Untersuchung zur
Frage, welche von denselben für die Theorie die zutreffendste ist.
Inaugural Dissertation, Bern, 1900, 100pp.
J31.437
[1] Polinomios correlativos de los de Bernoulli.
Boletín Seminario mat. Argentino, 1 (1929), 1-10.
J55.II.798
[1] Recent results on Fermat's Last Theorem, Canad.
Math. Bull., 20 (1977), no. 2, 229-242.
Z355.10015; M57#3050; R1978,5A132
Z381.10012; M58#10723; R1979,2A132
Z418.10022; M81m:10025
Z456.10006*; M81f:10023; R1980,8A113K
Z458.10016; M82h:10023
Z498.12002; M85d:11028; R1985,2A356
Z521.12002; M85c:01029; R1983,11A6
Z516.10001; M85e:11001; R1983,12A100
Z545.10002; M85m:01009; R1985,7A16
Z635.10013; M89c:11045
Z642,10002; M89c:11181; R1988,2A105
Z642.10001; M89e:11052; R1989,4A50
Z734.11001; M92i:11008; R1991,8A159
Z817.11003; M94j:11008
Z856.11001; M96k:11112
[1] A modular construction of unramified p-extensions of
$Q(\mu_p)$, Inventiones Math., 34 (1976), no. 3, 151-162.
Z338.12003; M54#7424; R1977,6A253
Z394.12007; M80b:12012; R1979,7A393
Z445.12007; M81c:12022
Z408.12016; M81f:12009; R1979,10A233
Z375.12007; M80f:12005; R1978,11A406
[1] Un perfezionamento dei teoremi di Sylvester, N. Nielsen,
Saalschütz, Lipschitz sui numeri di Bernoulli,
Giorn. di Mat. Battaglini, 69 (1931), 1-4.
J57.179; Z2,178
J57.180; Z2,179
[1] Eine Bemerkung über die Hurwitzschen Zahlen, J.
Reine Angew. Math., 296 (1977), 212-216.
Z375.12007; M56#15550; R1978,8A112
[1] Om rekursionsformuler för Bernoullis Tal, Nordisk
Matem. Tidskrift, 9 (1961), 44-48, 95-96.
Z116,267; M23#A3101; R1962,6A106
R1969,4A69
Z252.10040; M50#820; R1973,9B27
Z271.10004; M49#199; R1974,8A113
Z271.10009; M51#10214; R1976,2A159
[1] Zametka ob obobshchennykh teoremakh umnozheniya bernullievykh polinomov i
kinkelinovykh funktsij [A note on the generalized multiplication theorems for
Bernoulli polynomials and Kinkelin functions].
Trudy. Moskovsk. aviatsionnogo instituta, 1947, no. 6, 49-52.
[1] Inverse relations and combinatorial identities,
Amer. Math. Monthly 71 1964, 485-498.
Z; M30 #34; R1965,3A137
Z194,5; M38#53; R1970,3V264K
[1] Proof of a conjecture on Genocchi numbers,
Discrete Math., 5 (1973), no. 4, 381-388.
Z271.05004; M47#4919; R1974,1V304
[1] Cohomology of units and $L$-values at zero,
J. Amer. Math. Soc. 10 (1997), no. 3, 513-552.
Z885.11059; M98a:11150
[1] Revisiting an old favourite: $\zeta(2m)$,
Math. Mag. 72 (1999), no. 4, 317-319.
[1] A note on the numerators of the Bernoulli numbers.
Exposition. Math., 9 (1991), no. 2, 189-191.
Z738.11024; M92c:11017; R1991,12A67
[1] Nombres de Hurwitz et régularité des idéaux premiers.
Séminaire Delange - Pisot - Poitou (16e année: 1974/75), Fasc. 1,
Exp. No. 21, 7 pp., Paris, 1975.
Z372.12011; M53#348; R1976,7A447
Z409.12008; M80k:12010; R1979,8A360
[1] The congruences of Clausen - von Staudt and Kummer for half-integral
weight Eisenstein series.
Math. Nachr., 162 (1993), 187-191.
Z805.11042; M94h:11048
[1] A note on Brown and Shiue's paper on a remark related to the
Frobenius problem,
Fibonacci Quart., 32 (1994), no.5, 407-408.
Z840.11009; M95j:11022; R1997,11A154
[1] Über den Zusammenhang der Facultäten-Coefficienten mit den
Bernoullischen und Eulerschen Zahlen, Arch. Math. und Phys. (2), 10
(1891), 318-332.
J23.272
J24.185
J26.286
J27.329
J30.251
J30.250
J30.250
J30.250
J30.251
J31.287
J38.316
J27.333
J27.329
J38.316
[1] The umbral calculus, New York, Acad. Press Inc., (Pure and
Appl. Math., 111 ) 1984.
Z536.33001; M87c:05015
[1] On an orthogonal system.,
Doklady Akad. Nauk SSSR (N.S.), 40 (1943), 257-258.
M6-49a
Z44,40; M13-208g
R1957,56
[1] A course in number theory. The Clarendon Press, Oxford
University Press, New York, 1988. xii + 354 pp.
Z637.10002; M89f:11002
[1] A Kummer congruence for the Hurwitz-Herglotz
Function, Tokyo J. Math., 6 (1983), no. 1, 125-138.
Z561.10005; M84m:10018; R1984,2A432
Z561.10005; M87b:11037; R1986,4A396
[1] Remarks on the history of Fermat's Last Theorem 1844 to 1984.
Cornell, Gary (ed.) et al., Modular forms and Fermat's last theorem. Papers
from a conference, Boston, MA, USA, August 9-18, 1995. New York, NY: Springer,
505-525 (1997).
Z893.11011
[1] Sui polinomi e sui numeri di Bernoulli e di Eulero,
Archimede, 20 (1968), no. 3, 155-160.
Z165,361; M38#2354; R1969,2V204
[1] Combinatorial snapshots,
Math. Intelligencer 21 (1999), no. 2, 8-14.
[1] An introduction to the umbral calculus.
Analysis, geometry and groups: a Riemann legacy volume, 513-525,
Hadronic Press, Palm Harbor, FL, 1993.
M96a:05015
Z797.05006; M95d:05014
[1] Bekanntmachung für Mathematiker, Allgemeine
Literatur-Zeitung, Halle, Bd. 1, No. 63 (1817), 503-504.
[1] Some numbers related to the Bernoulli numbers, Math. Mag.,
29 (1955), 101-103.
R1956,6352
[1] Multiple gamma functions and $L$-functions.
Math. Res. Lett. 3 (1996), no. 5, 703--721.
Z867.11061; M98b:11093
[1] Congruences for special values of L-functions of elliptic curves
with complex multiplication, Invent. Math., 71 (1983), no. 2
339-364.
Z513.14012; M84h:12018; R1983,7A409
M91c:11001
[1] A Mordell-Weil group of elliptic curves over cyclotomic fields.
Number theory related to Fermat's last theorem (N. Koblitz, Ed.),
Progress in Math., No. 26, Birkhäuser, Boston, Mass., 1982, 237-254.
Z519.14017; M84h:12017; R1986,4A396
[1] Note on asymptotic series expansions for the derivative
of the Hurwitz zeta function and related functions.
J. Math. Phys., 31 (1990), no. 12, 2832-2834.
Z729.11043; M91j:33012
[1] A number-theoretic class of weak Bernoulli transformations,
Math. Systems Theory, 7 (1973), 14-24.
Z258.10031; M48#2100; R1974,1V47
[1] Over de getallen en de polynomen van Stirling.
Handel. Nederl. Natuur- en Geneesk. Congr., 11 (1907), 260-265.
J38.467
[1] A $p$-adic analogue of the Legendre system.
Number Theory, v. 2 (Budapest, 1987), 939-950.
Colloq. Math. Soc. Janos Bolyai, 51 Amsterdam, 1990.
Z701.11064; M91h:11134
[1] Introduction to combinatorical analysis, Moscow: Moscow State Univ.,
1985, 2nd ed., 308 pp.
Z617.05001; M87b:05002; R1985,11V564K
SAALSCHÜTZ L.,
[1] Zwei Abhandlungen aus dem Gebiete der Bernoullischen Zahlen,
Schrift. Phys.-ökonom. Gesell. Königsb. 33 (1892), 44-49.
[2] Verkürzte Recursionsformeln fü,r die Bernoullischen
Zahlen, Zeit. für Math. und Phys., 37 (1892), 374-378.
J24.237
[3] Vorlesungen über die Bernoullischen Zahlen, ihren
Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren
Anwendungen, Springer-Verlag, Berlin, 1893. viii + 208 S.
J24.236
[4] Studien zu Raabe's Monographie über die Jacob Bernoullische
Funktion, Zeit. für Math. und Phys., 42 (1897), 1-13.
J28.375
[5] Über Beziehungen zwischen den Anfangsgliedern von Differenzreihen und von deren Verwendung zu Summationen und zur Darstellung der Bernoullischen Zahlen, Schrift. Phys.-ökonom. Gesell. Königsb., 41 (1900), 14-17.
[6] Gleichungen zwischen den Anfangsgliedern von
Differenzreihen und deren Verwendung zu Summationen und zur
Darstellung der Bernoullischen Zahlen, J. Reine Angew. Math., 123
(1901), 210-240.
J32.280
[7] Die ganzen Potenzen der Cotangente und der Cosecante
nebst neuen Formeln für die Bernoullischen Zahlen.
Schriften der physik-ökonom. Ges. zu Königsberg i. Pr.,
44 (1903), 32p.
J34.482
[8] Neue Formeln für die Bernoullischen Zahlen.
J. Reine Angew. Math., 126 (1903), 99-101.
J34.482
SACHKOV V.N.,
[1] Combinatorical methods of discrete mathematics. (Russian) Moscow: Nauka,
1977, 319 pp.
R1978,4V321
[2] Probabilistic methods in combinatorical analysis. (Russian) Moscow:
Nauka, 1978, 287 pp.
Z517.05011; M80g:05002; R1979,2V7
[3] Introduction to combinatorical methods of discrete mathematics. (Russian)
Moscow: Nauka, 1982, 384 pp.
M85g:05001
SACHSE A.,
[1] Über die Darstellung der Bernoullischen und Eulerschen
Zahlen durch Determinanten, Arch. für Math. und Phys., 68
(1882), 427-432.
J14.110,191
SAGAN B.E., ZHANG PING,
[1] Arithmetic properties of generalized Euler numbers,
Southeast Asian Bull. Math. 21 (1997), no. 1, 73-78.
Z970.56656; M98h:11025
SAITO H.: see IBUKIYAMA T., SAITO H.
SALIÉ H.,
[1] Eulersche Zahlen, Sammelband zu Ehren des 250. Geburtstags
Leonhard Eulers, Akademie-Verlag, Berlin, 1959, 293-310.
Z106,31; M24#A75; R1960,7814
[2] Arithmetische Eigenschaften der Koeffizienten einer
speziellen Hurwitzschen Potenzreihe,
Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturw. R., 12 (1963),
617-618.
Z117,277; M29#58
[3] Über die Koeffizienten Blasiusscher Reihen,
Math. Nachr., 14 (1955), 241-248.
M18,379i; R1957,3757
SAMI Z.,
[1] On the first case of Fermat's last theorem,
Glas. Mat. Ser. III, 21(41) (1986), no.2, 259-269.
Z621.10012; M88g:11012; R1987,12A82
[2] A sequence of numbers $a^m_{j,n}$,
Glas. Mat. Ser. III, 23(43) (1988), no. 1, 3-13.
Z657.10009; M90f:11014; R1989,4B463
[3] On a sequence of polynomials, Proceedings of the
Mathematical Conference in Pristina 1994, 39-46, Univ. Pristina,
Pristina, 1995.
Z885.11022; M98h:11028
[4] Sequence $a\sp m\sb {j,n}$ and Bernoulli numbers. Proceedings of the
Mathematical Conference in Pristina 1994, 47-50, Univ. Pristina,
Pristina, 1995.
Z885.11019; M98h:11029
SANDHAM H.F.,
[1] Some infinite series, Proc. Amer. Math. Soc.,
5 (1954), no. 3, 430-436.
M15-950f; R1955,3271
SÁNDOR I.,
[1] Remarks on Bernoulli polynomials and numbers,
Stud. Cerc. Math., 41 (1989), no. 1, 47-49.
Z671.10009; M90h:11017
SANDS J. W.: see FRIEDMAN E., SANDS J. W.
SANKARANARAYANAN A.,
[1] An identity involving Riemann zeta function.
Indian J. Pure Appl. Math., 18 (1987), no. 9, 794-800.
Z625.10031; M88i:11059; R1988,3A156
SANKARANARAYANAN A.: see RAMACHANDRA K., SANKARANARAYANAN A.
SARAFYAN D.: see OUTLAW C., SARAFYAN D., DERR L.
SASVÁRI Z.,
[1] An elementary proof of Binet's formula for the gamma function,
Amer. Math. Monthly 106 (1999), no. 2, 156-158.
SATGÉ Ph.: see RIBET K. [3].
SATO M.,
[1] On formal fractions associated with the symmetric groups,
J. Combin. Theory, Ser. A, 20 (1976), no. 1, 124-131.
Z335.10016; M52#13413; R1976,7V378
SATOH J.,
[1] $q$-analogue of Riemann's $\zeta$-function and $q$-Euler numbers,
J. Number Theory, 31 (1989), no. 3, 346-362.
Z675.12010; M90d:11132
[2] The Iwasawa $\lambda\sb p$-invariants of $\Gamma$-transforms of the
generating functions of the Bernoulli numbers,
Japan. J. Math. (N.S.) 17 (1991), no. 1, 165--174.
Z739.11047; M92e:11122
[3] A construction of $q$-analogue of Dedekind sums.
Nagoya Math. J., 127 (1992), 129-143.
Z761.11023; M93h:11022; R1976/77,5B12
[4] Construction of $q$-analogue by using Stirling numbers.
Japan J. Math. (N.S.), 20 (1994), no. 1, 73-91.
Z808.11018; M95j:11015
[5] Sums of products of two $q$-Bernoulli numbers,
J. Number Theory, 74 (1999), 173-180
Z916.11014; M99m:11019
SAUZET O.,
[1] Théorie d'Iwasawa des corps $p$-rationnels et $p$-birationnels,
Manuscripta Math. 96 (1998), no. 3, 263-273.
Z905.11047; M99h:11123
SAVEL'EV L.Ya.,
[1] Combinatorics and probability. (Russian)
Novosibirsk: Nauka, 1975, 423 pp.
Z447.05001; M52#13395; R1975,9V3K
SAYER F.P.,
[1] The sums of certain series containing hyperbolic functions.
Fibonacci Quart., 14 (1976), no. 3, 215-223.
Z344.40002; M54#5663; R1976/77,5B12
SCAROWSKY M.,
[1] On a formal analogue of the Bernoulli numbers, J.
Number Theory, 19 (1984), no. 2, 228-232.
Z546.10021; M86h:11019; R1985,8A110
SCHÄFFER J.J.,
[1] The equation $1^p+ 2^p+ 3^p+ \cdots +n^p = m^q$,
Acta Math., 95 (1956), no. 3-4, 155-189.
Z71,37; M17-1187a; R1957,2878
SCHAPPACHER N., SCHOLL A.J.,
[1] The boundary of the Eisenstein symbol.
Math. Ann., 290 (1991), no. 2, 303-321. Erratum: Math.
Ann., 290 (1991), no. 4, 815.
Z729.11027; M93c:11037a/b
SCHARLAU W., OPOLKA H.,
[1] Von Fermat bis Minkowski. Eine Vorlesung über
Zahlentheorie und ihre Entwicklung, Springer-Verlag, Berlin-New York, 1980.
xi + 224pp.
Z426.10001*; M82g:10001; R1981,3A85K
[2] From Fermat to Minkowski. Lectures on the theory of numbers and
its historical development. (Translation of [1]). Springer-Verlag, New York-
Berlin, 1985, xi + 184 pp.
Z551.10001; M85m:11003; R1985,8A102K
SCHEIBNER W.,
[1] Zur Theorie der Maclaurinschen Summenformel,
Berichte über die Verhandlungen der Königl. Sächsischen Gesellschaft
der Wissenschaften zu Leipzig, 9 (1857), 190-198.
SCHENDEL L.,
[1] Die Bernoullischen Funktionen und das Taylorsche Theorem
nebst einem Beitrag zur analytischen Geometrie der Ebene in trilinearen
Coordinaten, H. Costenoble, Jena, 1876.
J8.133
[2] Zur Theorie der Reihen, Zeit. für Math. und Phys., 16
(1871), 211-227.
J3.105
SCHERK H.F.,
[1] Über einen allgemeinen, die Bernoullischen Zahlen und die
Coëfficienten der Secantenreihe zugleich darstellenden Ausdruck, J.
Reine Angew. Math., 4 (1829), 299-304.
[2] Von den numerischen Coeffizienten der Secantreihe, ihrem Zusammenhange, und ihrer Analogie mit den Bernoullischen Zahlen. Gesammelte Mathematische Abhandlungen, Reimer, Berlin, 1825, 1-30.
SCHIKHOF W.H.,
[1] Ultrametric calculus. An introduction to $p$-adic analysis.
Cambridge University Press, Cambridge-New York, 1984. viii+306 pp.
Z553.26006; M86j:11104
SCHINZEL A.,
[1] Sur les nombres composés $n$ qui divisent $a^n - a$,
Rend. Circ. Mat. Palermo (2), 7 (1958), no. 1, 37-41.
Z83,261; M21#4935; R1959,9761
SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.,
[1] Class numbers and short sums of Kronecker symbols,
J. Number Theory 78 (1999), no. 1, 62-84.
SCHLÄFLI L.,
[1] On Staudt's theorem relating to the Bernoullian numbers,
Quart. J. Math., 6 (1864), 75-77.
SCHLÖMILCH O.,
[1] Über die Bernoullischen Zahlen und die Coëfficienten der
Secantreihen, Arch. für Math. und Phys., 1 (1841), 360-363.
[2] Über die recurrirende Bestimmung der Bernoullischen Zahlen, Arch. für Math. und Phys., 3 (1843), 9-18.
[3] Développement d'une formule qui donne en mème temps les nombres de Bernoulli et les coëfficients de la série qui exprime la sécante, J. Reine Angew. Math., 32 (1846), 360-364.
[4] Relation zwischen den Facultätencoefficienten, Arch. für Math. und Phys., 9 (1847), 333-335.
[5] Über die Summe der Reihe $1^m + \cdots + z^m$, Arch. für Math. und Phys., 10 (1847), 342-344.
[6] Theorie der Differenzen und Summen. Druck und Verlag von H.W. Schmidt, Halle, 1848, 241 pp.
[7] Neue Methode zur Summirung endlicher und unendlicher Reihen, Arch. für Math. und Phys., 12 (1849), 130-166.
[8] Neue Formeln zur independenten Bestimmung der Sekanten und Tangenten Coëfficienten, Arch. für Math. und Phys., 16 (1851), 411-418.
[9] Handbuch der algebraischen Analysis, 2te Auflage. Druck und Verlag von Fr. Frommann, Jena, 1851. viii + 344 pp.
[10] Über die independente Bestimmung der Coëfficienten unendlicher Reihen und der Facultätencoefficienten insbesondere, Arch. für Math. und Phys., 18 (1852), 306-327.
[11] Über die Bernoulli'schen Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeit. für Math. und Phys. (2), 1 (1856), 193-211.
[12] Über ein allgemeines Princip für Reihenentwickelungen, Zeitsch. für Math. und Phys., 2 (1857), 289-298.
[13] Über die Lambert'sche Reihe, Zeit. für Math. und Phys. (2), 6 (1861), 407-415.
[14] Compendium der höheren Analysis. Band 2. Braunschweig, 1862.
[15] Die Bernoulli'schen Funktionen und die halbconvergenten Reihen, Compendium der höheren Analysis, II (1874), 207-238.
SCHMIDT C.G.,
[1] The p-adic L-functions attached to Rankin convolutions of modular forms,
J. Reine Angew. Math., 368 (1986), 201-220.
Z585.10020; M88e:11038; R1986,12A586
SCHMIDT H.,
[1] Asymptotische Entwicklung von verallgemeinerten Bernoullischen
Funktionen und von Teilsummen Dirichletscher Reihen mit periodischer
Koeffizientenfolge, Collection of articles dedicated to Helmut Hasse on
his seventy-fifth birthday, III,
J. Reine Angew. Math., 274/275 (1975), 94-103.
Z312.10027; M52#303; R1975,12A143
[2] Zur Theorie und Anwendung Bernoulli-Nörlundscher Polynome
und gewisser Verallgemeinerungen der Bernoullischen und der
Stirlingschen Zahlen, Arch. Math. (Basel), 33 (1979), no. 4,
364-374.
Z438.10011; M81i:10017; R1980,11V460
SCHMIDT M.: see BUTZER P.L. et al.
SCHMIDT P.,
[1] The Stickelberger element of an imaginary quadratic field,
Acta Math. 91 (1999), no. 2, 165-169.
SCHMIT C.: see BALAZS N.L., SCHMIT C., VOROS A.
SCHMITZ E.,
[1] Asymptotic expansions for the coefficients of $e^{P(z)}$,
Bull. London Math. Soc., 21 (1989), 482-486.
SCHNEIDER P.,
[1] Über die Werte der Riemannschen Zeta-funktion an den
ganzzahligen Stellen, J. Reine Angew. Math., 313 (1980), 189-194.
Z422.10030; M82g:10057; R1980,8A120
SCHOENBERG I.J.,
[1] Norm inequalities for a certain class of $C\sp{\infty }$ functions,
Israel J. Math. 10 (1971), 364-372.
Z229.26019; M45 #3661
[2] The elementary cases of Landau's problem of inequalities between
derivatives, Amer. Math. Monthly, 80 (1973), no. 2, 121-158.
Z261.26014; M47#3619; R1973,8B56
[3] Cardinal spline interpolation.
Conference Board of the Mathematical Sciences Regional Conference Series in
Applied Mathematics, No. 12. Society for Industrial and Applied Mathematics,
Philadelphia, Pa., 1973. vi+125 pp.
Z264.41003; M54 #8095
[4] On the remainders and the convergence of cardinal spline interpolation for
almostperiodic functions.
Studies in spline functions and approximation theory, pp. 277-303.
Academic Press, New York, 1976.
Z338.41007; M58 #1838
SCHOENEBERG B.,
[1] Elliptic modular functions. Springer-Verlag, New York-Heidelberg,
1974. viii + 233 pp.
Z285.10016*; M54#236; R1975,5A640K
SCHOENFELD L.: see BERNDT B.C., SCHOENFELD L.
SCHOFF R.,
[1] The structure of the minus class groups of abelian number fields.
University of Utrecht, Preprint No. 588, Oct. 1989.
SCHOISSENGEIER J.,
[1] Der numerische Wert gewisser Reihen, Manuscr. Math.,
38 (1982), no. 2, 257-263.
Z499.10013; M83i:10039; R1983,1A82
[2] Der numerische Wert gewisser Reihen,
Lecture Notes in Mathematics, No. 1114, 143-147, Springer-Verlag,
Berlin-Heidelberg-New York, 1985.
Z557.10013; R1985,11A129
[3] Abschätzung für $\sum_{n\leq N}B_1(n\alpha)$,
Monatsh. Math., 102 (1986), no. 1, 59-77.
Z613.10011; M87j:11020; R1987,3A168
[4] Eine explizite Formel für $\sum_{n \leq X}B_2(\{n\alpha\)$.
In: Zahlentheoretische Analysis II. Seminar, 1984-86, pp. 134-138.
Lecture Notes in Mathematics No. 1262, Springer-Verlag,
Berlin - Heidelberg - New York, 1987.
Z622.10007; M90j:11021; R1988,3A199
SCHOISSENGEIER J.: see also HLAWKA E., SCHOISSENGEIER J., TASCHNER R.
SCHOLL A.J.: see SCHAPPACHER N., SCHOLL A.J.
SCHONBACH D.I.: see NEUMAN C.P., SCHONBACH D.I.
SCHÖNHAGE A.: see ODLYZKO A.M., SCHÖNHAGE A.
SCHRÖDER E.,
[1] Verallgemeinerung von Maclaurins Summenformel und
Bernoullische Funktionen, Zürich, 1867.
[2] Neueres über Bernoullische Functionen von natürlicher
Ordnungszahl, Verhandl. Gesellschaft deutscher Naturforscher und Ärzte,
Bremen, 15. - 20. September 1890, 5-6.
J22.270
SCHOOF R.,
[1] Minus class groups of the fields of the $l$th roots of unity,
Math. Comp., 67 (1998), no. 223, 1225-1245.
View or retrieve article
Z980.24860; M98j:11085
SCHROTH P.,
[1] Characterization of the Bernoulli-polynomials, $\exp$ and
$\psi$ by Nörlund's multiplication formula, Period. Math. Hung.,
12 (1981), no. 3, 191-204.
Z445.39002; M83j:39001; R1982,3B12
SCHULTZ H.J.,
[1] The sum of the $k$-th power of the first $n$ integers.
Amer. Math. Monthly, 87 (1980), no. 6, 478-481.
Z445.05006; M82c:05014; R1981,7B565
SCHÜTZENBERGER M.-P.: see FOATA D., SCHÜTZENBERGER M.-P.
SCHWARTZ L.: see BAKER A.J. et al.
SCHWARZ S.,
[1] Algebraic Numbers, (Slovak), Prague, 1950.
Z41,011*; M14-22f
SCHWATT I.J.,
[1] An Introduction to the Operations with Series,
Philadelphia, 1924, (s. W. Sierpinski, Rachunek rózniczkowy, Warszawa, 1947).
J50.151
[2] The sum of like powers of a series of numbers forming an
arithmetical progression and the Bernoulli numbers, Mat. sbornik,
39 (1932), no. 4, 134-140.
Z7,070; J58.I.93
[3] Finite expressions for the Bernoulli numbers obtained by the
actual expansion of trigonometric functions by Maclaurin's theorem,
J. Math. Pures Appl. (9), 11 (1932), 143-151.
Z5,014; J58.I.93
[4] Independent expressions for the Bernoulli numbers. (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 261-262.
J(48.255)
[5] Independent expressions for the Euler numbers. (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 262.
J(48.255)
[6] Independent expressions for the Euler numbers of Higher Order. (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 262.
J(48.255)
[7] Relations involving the numbers of Bernoulli and Euler (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 262.
J(48.255)
[8] Expressions for the Bernoulli function of order $p$. (Abstract).
Bull. Amer. Math. Soc., 27 (1921), 348.
J(48.255)
[9] The values of $\sum_{k=1}^n\sum_{a=1}^{2k} \tan^p a\pi /(2k+1),\;
\sum_{k=1}^\infty \prod_{a=1}^{2k} {\rm ctn}^p a\pi(2k+1)$, and similar
forms in terms of Bernoulli and Eulerian numbers. (Abstract).
Bull. Amer. Math. Soc., 29 (1923), 151.
J(49.161)
[10] Expressions for the Euler numbers obtained by
expanding $\sec x$ by means of Maclaurin's Theorem.
Math. Z., 31 (1930), 151-158.
J55.I.135
[11] Certain expansions involving the Bernoulli numbers.
Giornale di Mat., 67 (1929), 162-167.
J55.I.216
SCHWERING K.,
[1] Zur Theorie der Bernoulli'schen Zahlen, Math. Ann., 52
(1899), no. 1, 171-173.
J30.253
SCOVILLE R.: see CARLITZ L., SCOVILLE R.
SCZECH R.,
[1] Zur Summation von L-Reihen, Bonner Math. Schriften, 1982, No. 141.
Z492.10035; M84m:12015; R1983,4B134
[2] Eisenstein cocylces for $GL_2 Q$ and values
of $L$-functions in real quadratic fields.
Comment. Math. Helv., 67 (1992), no. 3, 363-382.
Z776.11021; M93h:11047
[3] Eisenstein group cocyles for $GL_n$ and values of $L$-functions.
Invent. Math., 113 (1993), no. 3, 581-616.
Z809.11029; M94j:11049
SEGAL R.S.,
[1] Application of Bernoulli polynomials to the theory of cyclotomic
fields, Ph.D. Thesis, MIT, 1965.
[2] Generalized Bernoulli numbers and the theory of cyclotomic
fields, Acta. Math., 121 (1968), 48-75.
Z164,58; M38#133; R1969,3A126
SEIDEL P.L. von,
[1] Über eine einfache Entstehungsweise der Bernoullischen
Zahlen und einiger verwandten Reihen, Sitzungs. Akad. Wiss. München,
Mat.-Phys. Kl., 7 (1877), 157-187.
SELBERG A.: see BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.
SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.,
[1] Proof of Fermat's Last Theorem for all prime exponents less than 4002,
Proc. Nat. Acad. Sci. U.S.A., 41 (1955), no. 11, 970-973.
Z65,273; M17-348a; R1956,7085
SELIWANOFF D.,
[1] Lehrbuch der Differenzenrechnung. Leipzig, 1904.
J35.346
SELUCKÝ K., SKULA L.,
[1] Irregular imaginary fields, Arch. Math. (Brno), 17
(1981), 95-112.
Z476.12005; M84a:12015; R1982,2A163
SEREBRENIKOV S.Z.,
[1] Tablitsy pervykh devyanosta chisel Bernulli [Tables of the first ninety
Bernoulli numbers].
Zap. Akad. Nauk, Sankt Peterburg, 16 (1905), no. 10, 1-8.
J36.342
[2] Novyi sposob vychisleniya chisel Bernulli [A new method of computation of
Bernoulli numbers].
Zap. Akad. Nauk, Sankt Peterburg, 19 (1906), 1-6.
J38.324
SERRE J.P.,
[1] Cours d'arithmétique, Paris, 1970, Ch.7.
Z225.12002*; M41#138; R1971,7A102K
[2] Formes modulaires et fonctions zêta p-adiques. In:
Modular functions of one variable, III, Proc. Internat. Summer
School, Univ. Antwerp, Antwerp, 1972, 191-268, Lecture Notes in Math.,
Vol. 350, Springer, Berlin, 1973.
Z292.00007*; M53#7949a; R1974,6A446
[3] Sur le residu de la fonction zêta p-adique d'un corps de
nombres, C.R. Acad. Sci., Paris, 287A (1978), 183-188.
Z393.12026; M58#22024; R1979,2A259
SERRET J.-A.,
[1] Sur l'évaluation approchée du produit $1. 2. ... .x$
lorsque $x$ est un très-grand nombre, et sur la formule de Stirling, C.R.
Acad. Sci., Paris, 50 (1860), 662-666.
SHAFAREVICH I.R.,
[1] Zeta-function. Lecture Notes 1966/67. (Russian)
Moscow State Univ., 1969.
R1969,12A249
[2] Selected chapters of algebra (Russian), Matem. obrazovanie, 1997, no. 2, 3-33.
SHAFAREVICH I.R.: see also BOREVICH Z.I., SHAFAREVICH I.R.
SHAH K.N.,
[1] Explicit formulas for $\sum_{i=1}^ri^r (\equiv S_r)$ and Bernoulli's
numbers $B_r$, Vidya, B 15 (1972), no. 2, 106-117.
M52#5552
SHANK H.S.: see DICKEY L.J., KAIRIES H.H., SHANK H.S.
SHANK H.S.: see GRANVILLE A., SHANK H.S.
SHANKS D.,
[1] Solved and unsolved problems in number theory, Vol. 1.
Spartan Books, Washington, 1962. xi + 229 pp.
Z116,30; M28#3952
[2] Generalized Euler and class numbers,
Math. Comp., 21 (1967), 689-694.
Z164,51; M36#6343; R1968,8A118
SHANKS E.B.,
[1] Iterated sums of powers of the binomial coefficients,
Amer. Math. Monthly, 58 (1951), 404-407.
Z43,12; M13-899f
[2] A finite formula for the Bernoulli numbers, Amer. Math. Monthly, 59 (1952), 496.
SHANNON A.G.,
[1] Fibonacci analogs of the classical polynomials,
Math. Mag., 48 (1975), 123-130.
Z306.33005; M51#6000; R1976,3V518
[2] Jackson's calculus of sequences and Bernoulli polynomials.
Bull. Number Theory Related Top., 13 (1989), no.
1-3, 7-16.
Z745.11017; M93f:11019
SHANNON A.G.: see also HORADAM A.F., SHANNON A.G.
SHANNON A.G.: see also MELHAM R.S., SHANNON A.G.
SHARMA A.,
[1] q-Bernoulli and Euler numbers of higher order, Duke Math.
J., 25 (1958), 343-353.
Z102,31; M20#2479; R1969,6619
SHEPPARD W.F.,
[1] On the relation between Bernoulli and Euler numbers, Quart.
J. Math., 30 (1899), 18-46.
J29.376
[2] The power-sum formula and Bernoullian function, Math.
Gaz. 6 (1912), 332-336.
J43.337
[3] The power-sum formula and the Bernoullian functions.
III. The Euler-Maclaurin formula.
Math. Gaz., 7 (1913), 100-104.
J44.514
SHERWOOD H.,
[1] Sums of powers of integers and Bernoulli numbers, Math.
Gaz., 54 (1970), no. 389, 272-274.
Z206,56; M58#10708; R1971,5B341
SHEVELEV V.S.,
[1] On an arithmetic property of permutation numbers with a given signature
associated with the Morse sequence (Russian),
Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki 1996, no. 2, 20-24,
98-99.
M99e:11023
SHIMADA T.,
[1] Fermat quotient of cyclotomic units.
Acta Arith. 76 (1996), no. 4, 335--358.
Z867.11076; M97k:11147
SHINTANI T.,
[1] On evaluation of zeta functions of totally real algebraic
number fields at non-positive integers,
J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), no.2, 393-417.
Z349.12007; M55#266; R1977,4A117
[2] On Kronecker limit formula for real quadratic fields,
Proc. Japan Acad., 52 (1976), no. 7, 355-358.
Z359.12004; M58#596; R1977,5A95
[3] On a Kronecker limit formula for real quadratic fields,
J. Fac. Sci. Univ. Tokyo, Ser. IA, Math., 24 (1977), no. 1, 167-199.
Z364.12012; M57#12012; R1977,12A136
SHIRATANI K.,
[1] On some relations between Bernoulli numbers and class
numbers of cyclotomic fields, Mém. Fac. Sci. Kyushu Univ., Ser. A,
18 (1964), 127-135.
Z148,28; M30#3086; R1966,1A137
[2] Ein Satz zu den Relativklassenzahlen der Kreiskörper,
Mém. Fac. Sci. Kyushu Univ., 21 (1967), 132-137.
Z189,53; M35#6648; R1968,5A188
[3] A generalization of Vandiver's congruence,
Mém. Fac. Sci. Kyushu Univ., 25 (1971), 144-151.
Z252.12008; M46#5289; R1972,1A595
[4] Kummer's congruence for generalized Bernoulli numbers and its
application. Seminar on Modern Methods in Number Theory, Paper No. 31,
7 pp., Inst. Statist. Math., Tokyo, 1971.
Z307.12014; M51#10215
[5] Kummer's congruence for generalized Bernoulli numbers and its
application, Mém. Fac. Sci. Kyushu Univ., 26 (1972), 119-138.
Z243.12009; M50#12976
[6] On Euler numbers,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 27 (1973), 1-5.
Z267.10009; M47#3307; R1973,11V429
[7] On certain values of p-adic L-functions, Mém. Fac. Sci. Kyushu
Univ., 28 (1974), 59-82.
Z313.12005; M53#8022; R1975,2A400
[8] On a formula for p-adic L-functions, J. Fac. Sci. Univ.
Tokyo, Ser. 1A, Math., 24 (1977), 45-53.
Z362.12014; M56#320; R1977,12A367
[9] On $p$-adic zeta-functions of the Lubin-Tate groups.
Kyushu J. Math., 48 (1994), no. 1, 55-62.
Z818.11045; M95g:11117; R1996,7A224
SHIRATANI K., IMADA T.,
[1] The exponential series of the Lubin-Tate groups and $p$-adic
interpolation.
Mem. Fac. Sci. Kyushu Univ. Ser. A, 46 (1992), no. 2, 351-365.
Z777.11050; M94f:11123
SHIRATANI K., YAMAMOTO S.,
[1] On a p-adic interpolation function for the Euler numbers and
its derivative,
Mem. Fac. Sci. Kyushu Univ. Ser. A, 39 (1985), no. 1, 113-125.
Z574.12017; M87f:11099; R1985,12A321
SHIRATANI K., YOKOYAMA S.,
[1] An application of p-adic convolutions, Mém. Fac. Sci. Kyushu
Univ., Ser. A, 36 (1982), no. 1, 73-83.
Z574.12017; M83m:10011; R1983,1A343
SHIRATANI K.: see also ISHIBASHI M., SHIRATANI K.
SHIRATANI K.: see also KANEMITSU S., SHIRATANI K.
SHOJI T.: see AGOH T., SHOJI T.,
SHOKROLLAHI M.A.,
[1] Stickelberger codes,
Des. Codes Cryptogr. 9 (1996), no. 2, 203-213.
Z866.94022; M98d:94039
[2] Relative class number of imaginary abelian fields of prime conductor below
10000, Math. Comp. 68 (1999), no. 228, 1717-1728.
M99m:11147
SHOVELTON S.T.,
[1] An elementary proof of Staudt's theorem on Bernoulli's numbers,
Messeng. Math., 44 (1914), 24-25.
J45.1244
SHTOKALO I.Z.: see POGREBISSKII I.B., SHTOKALO I.Z.
SHUKLA R.N., MISHRA S.S.,
[1] Some important theorems on multivariate Bernoulli polynomials of second kind.
(Hindi) Vijnana Parishad Anusandhan Patrika 38 (1995), no. 3, 211-217.
M97g:05006
SHUKLA R.N.: see also MISRA S.S., SHUKLA R.N.
SHU LINGHSUEH,
[1] Kummer's criterion over global function fields,
J. Number Theory, 49 (1994), no. 3, 319-359.
Z816.11036; M96c:11134
SIDLER G.,
[1] Über eine algebraische Reihe, Mittheil. Naturf. Gesell., Bern,
1899 (1900), 13-32.
J30.252
SIEBERT H.: see KIMURA N., SIEBERT H.
SIEGEL C.L.,
[1] Zu zwei Bemerkungen Kummers, Nachr. Akad. Wiss.
Göttingen, Math. -Phys. Kl. II, (1964), no. 6, 51-57.
Z119,277; M29#1198; R1967,8A102
[2] Über die Fourierschen Koeffizienten der Eisensteinschen
Reihen, Det. Kgl. Danske Videns. Selskab., Math-fys. Meddel., 34
(1964), 1-20.
Z132,64; M30#1984; R1966,6A84
[3] Beweis einer Formel für die Riemannsche Zetafunktion,
Math. Scand. 14 (1964), 193-196.
Z137.25801; M31#2219
[4] Bernoullische Polynome und quadratische Zahlkörper, Nachr.
Akad. Wiss. Göttingen (2), Math.-Phys. Kl., (1968), no. 2, 7-38.
Z273.12002; M38#2123
[5] Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss.
Göttingen (2), Math.-Phys. Kl. II, (1969), no. 10, 87-102.
Z186,88; M40#5570; R1972,11A85
SIEGEL C.L.: see also BRUN V., JACOBSTHAL E., SELBERG A., SIEGEL C.
SILVERMAN J.H.,
[1] The arithmetic of elliptic curves, Springer-Verlag, New York etc.,
1986, vii + 400 pp. (Graduate Texts in Math., No. 106).
M87g:11070; R1986,8A420K
SILVERMAN L.L.,
[1] Functional generalization of Bernoulli numbers, Riveon
Lematematika, 7 (1954), 33-37. (Hebrew. English summary.)
M15-400j; R1955,5612
SIMALARIDES A.,
[1] Congruences mod $p^n$ for the Bernoulli numbers,
Fibonacci Quart. 36 (1998), no. 3, 276-281.
M99e:11024
SIMMONS G.F.,
[1] Calculus gems. Brief lives and memorable mathematics.
McGraw-Hill, Inc., New York, 1992, xvi+355 pp.
Z846.01012; M94m:01036
SIMONDS E.F.,
[1] The coefficients of the series for $\tan x$.
Math. Gaz., 19 (1935), 37-39.
J61.I.66; Z11.108
SINGH A.: see GANDHI J.M., SINGH A.
SINGH D.,
[1] The numbers $L(m,n)$ and their relations with
prepared Brenoullian and Eulerian numbers, Math. Student, 20
(1952), 66-70.
Z49,309; M14-727f
[2] On the divisibility of Eulerian and prepared Bernoullian
numbers by prime numbers, Math. Student, 20 (1952), 71-73.
Z49,309; M14-728a
SINGH R., PRASAD S.,
[1] An extension of the Bernoulli and Euler polynomials,
Jñanabha, 20 (1990), 7-12.
Z727.33011; M92b:11011
SINGH S.N.,
[1] On unification and extension of Bernoulli, Euler and
Eulerian polynomials. Proc. National Symposium on Special Functions and
Their Applications (Gorakhpur,1986), 163-171, Univ. Gorakhpur.
M91e:11023
SINGH S.N., MISHRA S.S.,
[1] On the extension of Bernoulli, Euler and Eulerian polynomials.
Tamkang J. Math. 27 (1996), no. 3, 189-199.
Z873.11017; M98e:11022
SINGH S.N., RAI B.K.,
[1] Characterization of the Appell set $D_n(x;a,k)$,
Indian J. Pure Appl. Math., 13 (1982), no.5, 601-605.
Z502.33008; M83g:33010; R1982,11B57
[2] Properties of some extended Bernoulli and Euler polynomials,
Fibonacci Quart., 21 (1983), no. 3, 162-173.
Z529.10016; M85f:05005
[3] An Appell cross-sequence suggested by Bernoulli and Euler polynomials,
Rev. Roumaine Math. Pures Appl., 33 (1988), no. 7, 613-621.
Z649.33004; M89i:05030; R1989,2B27
SINGH S.N., RAI B.K., RAI V.S.,
[1] An extension of Bernoulli and Euler polynomials,
Ganita, 2 (1982), no. 2, 108-112.
Z585.33011; M85k:33012
SINGH S.N., SINGH V.P., RAI B.K.,
[1] A characterization of some extended Bernoulli and Euler polynomials,
Vijnana Parishad, Anusandhan Patrika, 26 (1983), no. 2, 61-64.
M85b:11016
SINGH S.N.: see also HUSSAIN M.A., SINGH S.N.
SINGH S.N.: see also RAI B.K. et al.
SINGH S.N.: see also RAI V.S., SINGH S.N.
SINGH V.P.: see SINGH S.N., SINGH V.P., RAI B.K.
SINGHOF W.,
[1] Einige Beziehungen zwischen stabiler Homotopietheorie und Zahlentheorie,
Jahresber. Deutsch. Math.-Verein., 91 (1989), no. 2, 55-66.
Z702.55012; M90d:55023; R1989,9A444
SINIGALLIA L.,
[1] Sui nuovi numeri pseudo-Euleriani del Prof. Pascal.
Rend. Palermo, 24 (1907), 223-228.
J38.467
[2] Una extensione dei numeri Bernoulliani.
Rend. Palermo, 25 (1908), 20-35.
J39.502
SINNOTT W.,
[1] On the $\mu$-invariant of the $\Gamma$-transform of a rational function,
Invent. Math., 75 (1984), no. 2, 273-282.
Z531.12004; M85g:11112; R1984,8A294
SINNOTT W.: see also COATES J., SINNOTT W.
SINTSOV D.M.,
[1] O funktsiyakh Bernulli drobnykh poryadkov [On Bernoulli functions of
fractional orders].
Izvestiya Kazansk. fiz.-mat. obshchestva (1), 8 (1890), 291-336.
J22.443
[2] Bernullievy funktsii s proizvol'nymi ukazatelyami [Bernoulli functions with
arbitrary indices].
Izvestiya Kazansk. fiz.-mat. obshchestva (2), 1 (1891), no. 2, 234-256.
J24.404
[3] Razlozhenie proizvol'nykh stepenej trigonometricheskikh funktsij v
stepennye stroki [Expansion of arbitrary powers of trigonometrical
functions in power series].
Izvestiya Kazansk. fiz.-mat. obshchestva (2), 4 (1894), no. 4, 199-204.
J26.471
[4] Zametka o chislakh Bernulli [A note on Bernouli numbers].
Izvestiya Kazansk. fiz.-mat. obshchestva (2), 8 (1898), no. 2, 104-106.
J29.221
SITARAMACHANDRA RAO R., DAVIS B.,
[1] Some identities involving the Riemann zeta-function. II.
Indian J. Pure Appl. Math., 17 (1986), no. 10, 1175-1186.
Z614.10013; M88d:11080; R1987,6B39
[2] Behaviour of $log {\eta}(\tau)$ at a rational point,
Indian J. Pure Appl. Math., 18 (1987), no. 2, 111-121.
Z611.10015; M88j:11026; R1987,9A91
SITARAMACHANDRA RAO R.: see KANEMITSU S., SITARAMACHANDRA RAO R.
SITARAMAN S.,
[1] Vandiver revisited.
J. Number Theory 57 (1996), no. 1, 122-129.
Z855.11057; M97a:11170
SKORUPPA N.-P.,
[1] Developments in the theory of Jacobi forms.
Max-Planck-Institut für Math., Bonn, MPI/89-40, 17 pp.
Z745.11029; M92e:11043
[2] Binary quadratic forms and the Fourier coefficients of elliptic
and Jacobi modular forms.
Max-Planck-Institut für Math., Bonn, MPI/89-57, 32 pp.
Z709.11028; M91j:11030
[3] Computations of Siegel modular forms of genus two.
Math. Comp., 58 (1992), no. 197, 391-398.
Z749.11030; M92e:11041
SKULA L.,
[1] Non-possibility to prove infinity of regular primes from some
theorems, J. Reine Angew. Math., 291 (1977), 162-181.
Z338.10013; M56#5413; R1977,12A141
[2] On certain ideals of the group ring $ Z[G]$, Arch. Math. (Brno),
15 (1979), no.1, 53-56.
Z435.12006; M81f:12007; R1980,3A278
[3] Index of irregularity of a prime, J. Reine Angew. Math.,
315 (1980), 92-106.
Z419.10016; M81c:12014; R1980,12A137
[4] A remark on Mirimanoff polynomials, Comment. Math. Univ.
St. Paul. (Tokyo), 31 (1982), no.1, 89-97.
Z496.10006; M84b:10022
[5] System of equations depending on certain ideals, Arch. Math.
(Brno), 21 (1985), 23-38.
Z589.12005; M87g:11033; R1986,4A421
[6] Systems of Kummer's and Mirimanoff's congruences,
Summer School on Number Theory, held at Chlébské, Sept. 1983,
Brno, 1985, 44-51.
Z648.10012
[7] A note on the index of irregularity, J. Number Theory,
22 (1986), 125-138.
Z589.12006; M87d:11080; R1986,8A324
[8] On the Kummer's system of congruences,
Comment. Math. Univ. St. Paul., 36 (1986), no. 2, 137-163.
Z604.10006; M87m:11016; R1987,12A83
[9] Fermat's last theorem and the Fermat quotients.
Conference report of the 9th Czechoslovak Colloquium on Number Theory
held at Rackova Dolina, Sept. 1989. pp. 78-86. Masaryk University,
Brno, 1990.
Z697.10003*
[10] Some consequences of the Kummer system of congruences,
Comm. Math. Univ. St. Paul., 39 (1990), no. 1, 19-40.
Z701.11010; M91i:11030; R1991,8A123
[11] Fermat's last theorem and the Fermat quotients. Comm. Math. Univ.
St. Paul., 41 (1992), no. 1, 35-54.
Z753.11016; M93f:11028; R1993,7A135
[12] The Kummer system of congruences and index of irregularity.
Österr.-Ung.-Slow. Koll. über Zahlentheorie
Graz- Mariatrost, 1992. Grazer Math. Ber., 318 (1992), 169-172.
Z796.11004; M94h:11024; R1993,11A133
[13] Some bases of the Stickelberger ideal.
Math. Slovaca, 43 (1993), no. 5, 541-571.
Z798.11044; M95e:11117; R1996,2A163
[14] The orders of solutions of the Kummer system of congruences.
Trans. Amer. Math. Soc., 343 (1994), no. 2, 587-607.
Z810.11015; M94h:11025; R1995,3A101
[15] Nekteré historické aspekty Fermatova problému
(Some historical aspects of Fermat's problem).
Pokroky Mat. Fyz. Astronom., 39 (1994), no. 6, 318-330.
Z831.11025; M95k:11002
[16] Agoh's bases of the Stickelberger ideal,
Math. Slovaca, 44 (1994), no. 5, 663-670.
Z826.11049; M96c:11123
[17] On a special ideal contained in the Stickelberger ideal,
J. Number Theory, 58 (1996), no. 1, 173-195.
Z861.11063; M97d:11157
[18] Fermat and Wilson quotients for $p$-adic integers, Acta Math. Inform. Univ. Ostraviensis, 6 (1998), 167-181.
SKULA L., SLAVUTSKII I.SH.,
[1] Bernoulli Numbers. Bibliography (1713-1983).
J.E. Purkyne Univ., Brno, 1988.
Z637.10001; M89i:11002
SKULA L.: see also AGOH T., SKULA L.
SKULA L.: see also AGOH T., DILCHER K., SKULA L.
SKULA L.: see also DILCHER K., SKULA L.
SKULA L.: see also SELUCKÝ K., SKULA L.
SLAVUTSKII I.SH.,
[1] Ratsionalizatsiya formul Dirikhle dlya chisla klassov idealov
veshchestvennogo kvadratichnogo polya [Rationalization of the Dirichlet
formulae for the number of classes of ideals of a real quadratic field].
Trudy 7 nauchn. konf. Khabarovsk. Gos. Pedagogichesk. instituta, (1959), 50-52.
[2] On the class-number of the ideals of a real quadratic
field. (Russian). Izv. Vyssh. Uchebn. Zaved. Matematika,
1960 (1960), no. 4(17), 173-177.
Z99,26; M24,A1905; R1962,3A219
[3] Ob arifmeticheskoj strukture L-funktsij Dirikhle [On the arithmetical structure of Dirichlet L-functions]. Trudy 8 nauchn. konf. Khabarovsk. Gos. Pedagogichesk. instituta, (1961), 125-127.
[4] Nekotorye sravneniya dlya chisla klassov veshchestvennogo kvadratichnogo
polya s prostym diskriminantom [Some congruences for the class number of a real
quadratic field with prime discriminant].
Uch. zap. Leningradsk. Gos. Pedagogichesk. instituta, 218 (1961), 179-189.
Z138,32; R1962,4A113
[5] Generalized Voronoi-Grün congruence and the
class number of an imaginary quadratic field. (Russian).
Trudy Nauchn. Ob'ed. Prepodav, Fiz.-Mat. Fak. Ped. Inst. Dal'n. Vostok., Mat.
1 (1962), 82-84.
M35#4191; R1964,7A172
[6] Chislo klassov idealov absolyutno abeleva polya i obobshchennye chisla
Bernulli [The number of classes of ideals of an absolute abelian
field and generalized Bernoulli numbers].
Trudy Nauchn. Ob'ed. Prepodav, Fiz.-Mat. Fak. Ped. Inst. Dal'n. Vostok., Mat.
3 (1963), 75-80.
R1965,9A236
[7] On irregular primes, (Russian) Acta Arith., 8 (1962/1963),
123-125.
Z113,262; M27#2475; R1964,2A173
[8] An estimate from above and the arithmetical calculation
of the class-number of real quadratic fields, (Russian) Izv. Vyssh. Uchebn.
Zaved. Matematika, (1965), no. 2(45), 161-165.
Z126,275; M32#2400; R1965,9A103
[9] On Mordell's theorem, Acta Arith., 11 (1965), 57-66.
Z132,283; M31#159; R1966,91A130
[10] Generalized Voronoi congruence and the number of
classes of ideals of an imaginary quadratic field, II, (Russian).
Izv. Vyssh. Uchebn. Zaved. Matematika, (1966), no. 4(53), 118-126.
Z146,278; M35#4192; R1966,12A279
[11] L-functions of a local field, and a real quadratic field, (Russian)
Izv. Vyssh. Uchebn. Zaved. Matematika, (1969), no. 2(81), 99-105.
Z188,348; 507.12009; M40#4240; R1969,7A293
[12] The simplest proof of Vandiver's theorem,
Acta. Arith., 15 (1969), 117-118.
Z198,74; M38#5745; R1969,10A78
[13] On the number of classes of ideals and the fundamental unit of
a real quadratic field, (Russian)
Akad. Nauk Kazakh. SSR, Alma-Ata, (1969), 73-70.
M52#10558
[14] Chislo klassov idealov absolyutno abeleva polya i lokal'nye dzeta-funktsii [The number of classes of ideals of an absolute abelian field and local zeta functions]. X Vsesoyuzn. algebraichesk. kollokvium, Rezyume soobshch. i dokl., Novosibirsk, 2 (1969), 160-162.
[15] O chisle klassov absolyutno abeleva polya [On the class number of an absolute abelian field]. XI Vsesoyuzn. algebraichesk. kollokvium, Rezyume soobshch. i dokl., Kishinev, (1971), 331-332.
[16] Generalized Bernoulli numbers that belong to unequal characters, and an
extension of Vandiver's theorem, (Russian)
Leningrad. Gos. Ped. Inst. Uchen. Zap., 496 (1972), no. 1, 61-68.
M46#7194; R1972,7A137
[17] Local properties of Bernoulli numbers and a generalization of the
Kummer-Vandiver theorem, (Russian).
Izv. Vys. Uchebn. Zaved. Matematika., 1972, no. 3(118), 61-69.
Z244.12006; M46#151; R1972,7A287
[18] On the Nagell-Estermann theorem, (Russian)
Vil. Gos. Univ., Vilnius, (1974), 235-236.
M51#5462
[19] Square-free numbers and a quadratic field, (Russian).
Colloq. Math., 32 (1975), no. 2, 291-300.
Z227.12004; M52#3113; R1976,3A137
[20] On representations of numbers by sums of squares and quadratic field,
Arch. Math. (Brno), 13 (1977), no. 1, 29-40.
Z275.10031; M57#5932; R1978,4A115
[21] On the class number of divisors of a real quadratic field, II,
Modern Algebra, pp. 124-128, Leningrad. Gos. Ped. Inst., Leningrad, 1980.
Z482,12006;
583.12006; M82b:12003; R1980,10A284
[22] A remark on the paper of T. Uehara "On p-adic continuous functions
determined by the Euler numbers", these reports, No. 8 (1980), 1-8,
Reports of the Faculty of Science and Engineering, Saga Univ., 15 (1987),
no. 1, 1-2.
Z613.10013; M88c:11071; R1987,10A65
[23] Ob ekvivalentnosti sravnenij Voronogo i Vandivera [On the equivalence of
Voronoi's and Vandiver's congruences].
Voprosy teoreticheskoj i prikladnoj matematiki. Leningrad, 1986, 80-86.
R1986,11A65
[24] p-adic continuous Uehara functions and Voronoi's congruence. Engl.
Transl. in: Soviet Math. (Izv. VUZ), 31 (1987), no. 4, 79-85.
Z632.10007; M88k:11019; R1987,9A131
[25] A remark on the note of Gh. Stoica: "A recurrence formula in the
theory of the Riemann zeta function",
Stud. Cerc. Mat., 41 (1989), no. 4, 333.
Z681.10007; M91b:11089
[26] Shtaudt i chisla Bernulli [Staudt and Bernoulli numbers].
Conference Report of the 9th Czechoslovak Colloquium on Number Theory held at
Rackova Dolina, Sept. 1989. pp. 92--96. Masaryk Univ., Brno, 1990.
Z697.10038
[27] Outline of the history of research on the arithmetic
properties of Bernoulli numbers. Staudt, Kummer, Voronoi. (Russian)
Istor.-Mat. Issled., no. 32-33 (1990), 158-181.
Z734.01008; M92m:11001
[28] A note on Bernoulli numbers.
J. Number Theory, 53 (1995), no. 2, 309-310.
Z830.11009; M96f:11031
[29] Staudt and arithmetical properties of Bernoulli numbers,
Historia Sci. (2), 5 (1995), no. 1, 69-74.
Z864.11003; M96j:11005
[30] About von Staudt congruences for Bernoulli numbers, Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 137-144.
[31] Leudesdorf's theorem and Bernoulli numbers, Arch. Math. (Brno) 35 (1999), 299-303.
SLAVUTSKII I.SH.: see also CLARKE F., SLAVUTSKII I.SH.
SLAVUTSKII I.SH.: see also KISELEV A.A., SLAVUTSKII I.SH.
SLAVUTSKII I.SH.: see also SKULA L., SLAVUTSKII I.SH.
SLAVUTSKII I.SH.: see also DILCHER K., SKULA L., SLAVUTSKII I.SH.
SLOANE N.J.A.,
[1] A handbook of integer sequences,
Academic Press, New York-London, 1973. xiii + 206 pp.
Z286.10001; M50#9760; R1975,1V488K
SLOANE N.J.A., PLOUFFE S.,
[1] The encyclopedia of integer sequences.
Academic Press, Inc., San Diego, CA, 1995. xiv+587pp.
Z845.11001; M96a:11001
SLOANE N.J.A.: see also BERNSTEIN M., SLOANE N.J.A.
SLOANE N.J.A.: see also CONWAY J.H., SLOANE N.J.A.
SLOANE N.J.A.: see also MILLAR J., SLOANE N.J.A., YOUNG N.E.
SMALL D.: see IRELAND K., SMALL D.
SMITH D.E.,
[1] A Source Book in Mathematics,
Dover Publications, Inc., New York, 1959.
J55,583; Z86,2; M21#4873
SMITH H.J.S.,
[1] Report on the theory of numbers, Report of the British
Association for 1860, The collected math. papers, 93-162, Oxford:
Clarendon Press, vol.1, 1894, xcv + 603pp.
J25.29
SMORYNSKI C.,
[1] Logical Number Theory I. An Introduction.
Springer Verlag, Berlin, etc., 1991, x+405 pp.
Z759.03002; M92g:03001
SNOW D.R.,
[1] Formulas for the sums of powers of integers by functional equations.
Aequationes Math., 18 (1978), no. 3, 269-285.
Z398.05010; M80a:10005; R1979,9A102
SNYDER C.,
[1] Partial fraction decompositions and Kummer congruences for the
normalized coefficients of the Laurent expansion of elliptic functions
parametrizing a nonsingular cubic curve in Hessian normal form,
J. Reine Angew. Math., 306 (1979), 60-87.
Z398.12005; M80d:10036; R1979,10A314
[2] A concept of Bernoulli numbers in algebraic function
fields, J. Reine Angew. Math., 307/308 (1979), 295-308.
Z398.12006; M81a:12016; R1980,1A377
[3] A concept of Bernoulli numbers in algebraic function fields, II,
Manuscripta Math., 35 (1981), no. 1/2, 69-89.
Z478.12013; M83e:12009; R1982,4A373
[4] Kummer congruences in formal groups and algebraic groups of dimension one,
Rocky Mountain J. Math., 15 (1985), no. 1, 1-11.
Z578.14041; M86j:14044
[5] p-adic interpolation of Dedekind sums,
Bull. Austral. Math. Soc., 39 (1988), no. 2, 293-301.
Z632.10023; M89b:11039; R1988,10A123
SNYDER C.: see also ÖZLÜK A.E., SNYDER C.
SNYDER C.: see also KALLIES J., SNYDER C.
SNYDER W.M.: see ROSEN K.H., SNYDER W.M.
SOLOMON D.,
[1] On the classgroups of imaginary abelian fields,
Ann. Inst. Fourier, 40 (1990), no. 3, 467-492.
Z659.00011;694.12004; M92a:11133; R1991,10A209
SOLOVJEV A.A.: see PETROVA S.S., SOLOVJEV A.A.
SOMASUNDARAM D.,
[1] A formula of Srinivasa Ramanujan in Notebook 3,
Math. Student, 59 (1991), no. 1-4, 161-64.
Z781.33001; M93c:11011
SOMPOLSKI R.W.: see BUHLER J.P., CRANDALL R.E., SOMPOLSKI R.W.
SONDOW J.,
[1] Analytic continuation of Riemann's zeta function and values at
negative integers via Euler's transformation of series.
Proc. Amer. Math. Soc., 120 (1994), no. 2, 421-424.
Z796.11033; M94d:11066; R1994,8A144
SONIN N.YA.,
[1] O bernullievykh polinomakh i ikh prilozheniyakh [On Bernoullian polynomials
and their applications].
Izv. Varshavsk. Universiteta, (1888), no. 3-4, 1-48.
J20.427
[2] O preryvnoj fynktsii $[x]$ i ee prilozheniyakh [On the discontinuous
function $[x]$ and its applications].
Izv. Varshavsk. Universiteta, (1889), no. 7-8, 1-78.
J21.444
[3] Sur les termes complémentaires de la formule sommatoire d'Euler et
de celle de Stirling,
Ann. Sci. École Norm. Supér. (3), 6 (1889), 257-262.
J21.235
[4] Sur les termes complémentaires de la formule sommatoire d'Euler et de celle de Stirling, C.R. Acad. Sci. Paris, 108 (1889), 725-727.
[5] Ryad Ivana Bernulli. (Epizod iz istorii matematiki) [The series of Jean
Bernoulli. (An episode from the history of mathematics)].
Bull. St. Petersb. Acad. Sci., 7 (1895), 337-353.
J1895,275-276
SONIN N.YA., HERMITE CH.,
[1] Sur les polynômes de Bernoulli, J. Reine Angew. Math, 116
(1896), 133-156.
J21.209
SOULÉ CH.,
[1] K-théorie et corps cyclotomique. Séminaire de théorie des
nombres, Univ. Bordeaux I, année 1980-81, 1981, exp. no.15, 6 pp.
Z495.12009; M82m:10006
[2] Perfect forms and the Vandiver conjecture, J. Reine Angew. Math. 517 (1999), 209-221.
SPIEGEL M.G.,
[1] Theory and problems of calculus of finite differences and difference
equations, Schaum Outlines, New York, 1971.
Z243.39001
SPIESS J.,
[1] Some identities involving harmonic numbers,
Math. Comp., 55 (1990), no. 192, 839-863.
Z724.05005; M91c:05021
SPIRA R.,
[1] The nonvanishing of the Bernoulli polynomials in the critical
strip, Proc. Amer. Math. Soc., 17 (1966), 1476-1477.
Z154,319; M34#2967; R1967,10V247
SPITZER S.,
[1] Note über die Summenformel $\sum x^m$, Arch. für Math.
und Phys., 23 (1854), 457-460.
SQUIRE W.: see GOULD H.W., SQUIRE W.
SRINIVASAN S.,
[1] A footnote to a conjecture in number theory,
Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 10 (1986), no. 1, 39-42.
Z632.10042; M88m:11077; R1987,7A103
SRIVASTAVA H.M.,
[1] Some explicit formulas for the Bernoulli and Euler numbers and polynomials,
Internat. J. Math. Ed. Sci. Tech., 19 (1988), no. 1, 79-82.
Z(608.10016)628.10010; M89c:11035
SRIVASTAVA H.M., JOSHI J.M.C., BISHT C.S.,
[1] Functional Calculus and the sums of powers of natural numbers.
Stud. Appl. Math., 85 (1991), no. 2, 183-193.
Z727.11008; M92g:11022
SRIVASTAVA H.M., TODOROV P.G.,
[1] A short proof of the Srivastava-Todorov formula for the
generalized Bernoulli polynomials,
Plovdiv. Univ. Nauchn Trud., 26 (1988), no. 3, 25-30.
Z732.11012
[2] An explicit formula for the generalized Bernoulli polynomials,
J. Math. Anal. Appl., 130 (1988), 509-513.
Z621.33008; M89d:33021; R1988,8B13
SRIVASTAVA H.M.: see also CHEN MING-PO, SRIVASTAVA H.M.
STACHEFF J.: see MILNOR J.W., STACHEFF J.
STAFFORD E.T., VANDIVER H.S.,
[1] Determination of some properly irregular cyclotomic fields,
Proc. Nat. Acad. Sci. USA, 16 (1930), 136-150.
J56.887
STARK E.L.,
[1] A new method of evaluating the sums of
$\sum_{k=1}^\infty (-1)^{k+1} k^{-2p}$, $p=1,2,3,\ldots$ and related series.
Elem. Math., 27 (1972), 32-34.
Z225.40002; M45#3996; R1972,8B26
[2] The series $\sum_{k=1}^\infty k^{-s}$, $s=2,3,4,\ldots$, once more,
Math. Mag., 47 (1974), no. 4, 197-202.
Z291.40004; M50#5261; R1975,5B17
STARK H.M.,
[1] Values of zeta and L-functions, Abhandl. Braunsch. Wiss.
Gesellsch., 33 (1982), 71-83.
Z509.12012; M85c:11110; R1983,5A102
[2] Modular forms and related objects. Number theory (Montreal, 1985),
pp. 421-455, CMS Conf. Proc., 7,
Amer. Math. Soc., Providence, R.I., 1987.
Z624.10013; M88j:11029
[3] Dirichlet's class-number formula revisited.
A tribute to Emil Grosswald: number theory and related analysis, 571--577,
Contemp. Math., 143, Amer. Math. Soc., Providence, RI, 1993.
Z804.11060; M94a:11133; R1994,2A341
STATE E.Y.,
[1] A one-sided summatory function.
Proc. Amer. Math. Soc., 60 (1976), 134-138.
Z348.40001; M54#10615; R1976/77,9B101
STAUDT K.G.C. von,
[1] Beweis eines Lehrsatzes die Bernoulli'schen Zahlen betreffend,
J. Reine Angew. Math., 21 (1840), 372-374.
[2] De Numeris Bernoullianis, Erlangen, 1, 2, Adolf Ernst June, Erlangen, 1845.
STEFANI W.,
[1] Über eine Klasse von Polynomen und ihre Beziehungen zu den
Bernoullischen Zahlen, Math. Nachr., 29 (1965), 131-149.
Z131,41; M32#2371; R1966,10A94
[2] Über eine Klasse von Polynomen und ihre Beziehungen zu den
Bernoullischen Zahlen, II, Math. Nachr., 36 (1968), 15-37.
Z162,58; M37#3997; R1969,12V378
STEFFENSEN J.F.,
[1] Interpolation, 2nd ed., Chelsea Publ. Co., New York, 1950, ix + 248 pp.
Z41,026; M12-164d
[2] On a generalization of Nörlund's polynomials.
Kgl. Danske Vidensk. Selsk. Mat.-fys. Meddelser, 7 (1926), no. 5, 18p.
J52.467
STEGUN I.A.: see ABRAMOWITZ M., STEGUN I.A.
STEIN P.R.: see RIORDAN J., STEIN P.R.
STEKLOV W.,
[1] Remarques relatives aux formules sommatoires d'Euler et de Boole,
Soobshch. Kharkovsk. mat. obshchestva, 2, 8 (1902), 136-195.
J35.263
STEPHENS A.J., WILLIAMS H.C.,
[1] Some computational results on a problem concerning powerful numbers,
Math. Comp., 50 (1988), no. 182, 619-632.
Z642.12001; M89d:11091; R1989,1A292
STERN M.A.,
[1] Über die Coefficienten der Secantenreihe, J. Reine Angew. Math.,
26 (1843), 88-91.
[2] Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math.,
79 (1875), 67-98.
J6.103
[3] Über eine Eigenschaft der Bernoulli'schen Zahlen, J.
Reine Angew. Math., 81 (1876), 290-294.
J8.146
[4] Zur Theorie der Bernoullischen Zahlen. Auszug aus einem Schreiben an Herrn
Borchardt. J. Reine Angew. Math., 84 (1878), 267-269.
J9.185
[5] Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandl. Gesellsch. Wiss. Göttingen, Math., 23 (1878), 1-44.
[6] Zur Theorie der Bernoullischen Zahlen, J.
Reine Angew. Math., 88 (1880), 85-95.
J11.186
[7] Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandl. Gesellsch. Wiss. Göttingen, Math., 26 (1880), 1-45.
[8] Zur Theorie der Bernoullischen Zahlen, J. Reine Angew. Math.,
92 (1882), 349-350.
J14.191
[9] Sur une propertiété des nombres de Bernoulli, Bull. Soc.
Math. France, 10 (1886), 280-282.
J18.225
STEVENS G.,
[1] Arithmetic on modular curves, Progress in Math., 20.
Birkhäuser Boston, Inc., Boston, Mass., 1982, xvii + 214pp.
Z529.10028; M87b:11050
[2] The cuspidal group and special values of L-functions,
Trans. Amer. Math. Soc., 291 (1985), no. 2, 519-550.
Z579.10011; M87a:11056; R1986,6A673
[3] Stickelberger elements and modular parametrizations of elliptic curves,
Invent. Math., 98 (1989), no. 1, 75-106.
Z697.14023; M90m:11089; R1990,3A393
STEVENS G.: see also KAMIENNY S., STEVENS G.
STEVENS H.,
[1] Generalized Kummer congruences for products of sequences,
Duke Math. J., 28 (1961), 25-38.
Z122,46; M23#A849; R1962,2A142
[2] Generalized Kummer congruences for the products of sequences.
Applications. Duke Math. J., 28 (1961), 261-275.
Z122,47; M23#A850; R1962,2A135
[3] Kummer's congruences of a second kind, Math. Z.,
79 (1962), 180-182.
Z106,32; M29#5809; R1963,2A135
[4] Kummer congruences for products of numbers,
Math. Nachr., 24 (1962), no. 4, 219-227.
Z106,32; M27#1407; R1963,6A133
[5] Bernoulli numbers and Kummer's criterion,
Fibonacci Quart., 24 (1986), no. 2, 154-158.
Z588.10012; M87f:11017; R1986,12A161
STEVENS H.: see also CARLITZ L., STEVENS H.
STEWART D.: see ISMAIL M.E.H., STEWART D.
STEWART I.N., TALL D.O.,
[1] Algebraic number theory, Chapman and Hall, London, 1979,
xviii + 257 pp.
Z413.12001; M81g:12001; R1980,11A121K
STHAPIT R.K.,
[1] The Bernoulli Numbers and Polynomials, M.Sc. thesis, Southern
Illinois University, Carbondale, 1982.
STIEIRMAN I.JA., AKHIEZER N.I.,
[1] Über den Zusammenhang zwischen der Störmerschen
Integrationsmethode und den Bernoullischen Polynomen, Zap. fiz.
otdeleniya Akad. Nauk Ukr. SSR, 2 (1927), N 2, 16-24.
J53.342,414
STÖCKLER J.,
[1] Multivariate Bernoulli splines and the periodic interpolation problem,
Constr. Approx., 7 (1991), no. 1, 105-122.
Z721.41015; M91j:41013; R1991,10B118
[2] Interpolation mit mehrdimensionalen Bernoulli-
Splines und periodischen Box-Splines.
Dissertation, Univ. (Gesamthochschule) Duisburg,
Fachbereich Mathematik, 141 pp., 1988.
Z718.41010
[3] On minimum norm interpolation by multivariate Bernoulli splines.
Approximation Theory VI, Proc. 6th Int. Symp.,
College Station, TX. 1989, Vol. II, 635-638 (1989).
Z727.41011; M91j:41002
STOICA G.,
[1] A recurrence formula in the study of the Riemann zeta function
(Romanian. English summary).
Stud. Cerc. Mat., 39 (1987), no. 3, 261-264.
Z633.10036; M88i:11060; R1988,2A113
[2] On Riemann's zeta function,
An. Univ. Bucuresti Mat., 37 (1988), no. 1, 60-64.
Z651.10025; M90a:11103
[3] Some remarks concerning Riemann's zeta function,
Stud. Cerc. Mat., 40 (1988), no. 5, 447-454.
Z659.10046; M89m:30061; R1989.5A68
STRAUCH O.,
[1] Some applications of Franel's integral. I.
Acta Math. Univ. Comenian., 50/51 (1987), 237-246 (1988).
Z667.10023; M90d:11028; R1989,10A136
[2] Some applications of Franel-Kluyver's integral. II.
Math. Slovaca, 39 (1989), no. 2, 127-140.
Z671.10002; M90j:11079; R1989,9A103
STRAUSS H.,
[1] Optimal quadrature formulas, Approximation in Theorie und Praxis
(Proc. Symp., Siegen, 1979), 239-250, Bibliographisches Inst., Mannheim,
1979.
Z436.41015; M81b:41024
[2] Optimale Quadraturformeln und Perfektsplines,
J. Approx. Theory, 27 (1979), no. 3, 203-226.
Z427.41017; M80m:41007; R1980,7B32
STREHL V.,
[1] Alternating permutations and modified Gandhi polynomials,
Discrete Math., 28 (1979), 89-100.
Z426.05005; M81d:05008; R1980,3V605
STREHL V.: see FOATA D., STREHL V.
STRICHARTZ R.S.,
[1] Estimates for sums of eigenvalues for domains in homogeneous spaces,
J. Funct. Anal. 137 (1996), no. 1, 152-190.
Z848.58050; M97g:58172
STUDNICKA F.J.,
[1] O novem neodvislem vyjadreni cisel Bernujskich a o vlastnotech
prislusneho determinantu
[On a new independent representation of the Bernoulli numbers and on
properties of related determinants],
(Czech), Casopis Pest. Mat. a Fyz., 15 (1886), 97-102.
J18.224
[2] Ueber ein Analogon der Euler'schen Zahlen.
Sitzungsber der Kgl. Böhmischen Ges. der Wiss., Prag, 1900, no. 9, 8p.
J31.438
[3] Ueber neue Fermat'sche Lehrsätze.
Casopis Pest. Mat. a Fyz., 29 (1900), 257-261.
J31.438
STÜNZI M.: see GUT M., STÜNZI M.
SUBRAMANIAN P.R.,
[1] A short note on the Bernoulli polynomial of the first kind, Math.
Student, 42 (1974), 57-59, (1975).
Z358.10005; M53#817; R1977,2V431
[2] Evaluation of ${\rm Tr}(J\sp {2p}\sb \lambda)$ using the Brillouin function,
J. Phys. A, 19 (1986), no. 7, 1179-1187.
Z614.33021; M87i:82082
[3] Generating functions for angular momentum traces,
J. Phys. A, 19 (1986), no. 13, 2667-2670.
Z614.33022; M87k:81037
SUBRAMANIAN P.R., DEVANATHAN V.,
[1] Generation of angular momentum traces and Euler polynomials
by recurrence relations,
J. Phys. A, 18 (1985), no. 15, 2909-2915.
M87b:81060; R1985,7V581
[2] Recurrence relations for angular momentum traces, J. Phys. A, 13 (1980), 2689-2693.
SUN ZHI-HONG,
[1] A supplement to a binomial inversion formula. (Chinese)
Nanjing Daxue Xuebao Shuxue Bannian Kan 12 (1995), no. 2, 264-271.
Z871.11012; M97d:05009; R1997,12V234
[2] Congruences for Bernoulli numbers and Bernoulli polynomials. Discrete Math. 163 (1997), no. 1-3, 153--163.
Z872.11012; M98b:05001
SUN ZHI-WEI: see GRANVILLE A., SUN ZHI-WEI
SUNCERI R.F.,
[1] Zeros of p-adic L-functions and densities relating to Bernoulli
numbers, Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, 1979.
SUNDARAM S.,
[1] Plethysm, partitions with an even number of blocks and Euler numbers.
Formal power series and algebraic combinatorics (New Brunswick, NJ, 1994),
171--198, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 24,
Amer. Math. Soc., Providence, RI, 1996.
Z845.05100; M97c:05162
SURY B.,
[1] The value of Bernoulli polynomials at rational numbers.
Bull. London Math. Soc., 25 (1993), no. 4, 327-329.
Z807.11014; M94g:11018; R1995,3A64
SUTTON J.R.,
[1] A series related to Bernoulli's numbers, Nature, 66
(1902), 492.
J33.291
SWINNERTON-DYER H.P.F.,
[1] On $l$-adic representations and congruences for coefficients of
modular forms. In: Modular functions of one variable, III (Proc. Int.
Summer School, Univ. Antwerp, 1972), pp. 1-55. Lecture Notes in Math.,
Vol. 350, Springer-Verlag, Berlin, 1973.
Z267.10032; M53#10717a; R1974,6A443
SYLVESTER J.J.,
[1] Note on the numbers of Bernoulli and Euler, and a new theorem
concerning prime numbers, Phil. Magaz., 21 (1861), 127-136.
[2] Sur une properiété de nombres premiers qui se rattache au dernier théorème de Fermat, C.R. Acad. Sci., Paris, 52 (1861), 161-163.
[3] Addition à la précédente note, C.R. Acad. Sci., Paris, 52 (1861), 212-214.
[4] Note relative aux communications faites dans les séances des 28 Janvier et 4 Fèvrier 1861, C.R. Acad. Sci., Paris, 52 (1861), 307-308.
SZÁSZ O.,
[1] Über die Approximation stetiger Funktionen durch Bernoullische Polynome,
J. Reine Angew. Math., 148 (1918), 183-188.
SZEGÖ G.: see POLYA G., SZEGÖ G.
SZENES, A.,
[1] Iterated residues and multiple Bernoulli polynomials,
Internat. Math. Res. Notices 1998, no. 18, 937-956.
Z990.19296
SZMIDT J., URBANOWICZ J.,
[1] Some new congruences for generalized Bernoulli numbers of higher orders,
preprint, 30pp.
SZMIDT J., URBANOWICZ J., ZAGIER D.,
[1] Congruences among generalized Bernoulli numbers.
Acta Arith., 71 (1995), no. 3, 273-278.
Z829.11011; M96f:11032; R1996,4A75
TAKAGI T.,
[1] On the law of recipricity in the cyclotomic corpus, Proc.
Phys.-Math. Soc. Japan (3), 4 (1922), 173-182.
J48.169
[2] Cuspidal class number formula for the modular curves $X_1(p)$.
J. Algebra, 151 (1992), no. 2, 348-374.
Z773.11040; M93g:11063
[3] The cuspidal class number formula for the modular curves $X_1(p^m)$.
J. Algebra, 158 (1993), no. 2, 515-549.
M94d:11040
TALBOT R.F.: see BURROWS B.L., TALBOT R.F.
TALL D.O.: see STEWART I.N., TALL D.O.
TAMARKINE J.: see FRIEDMANN A.A., TAMARKINE J.
TAMBS LYCHE R.,
[1] Sur les coefficients du développement de $1/\cos x$ en
série entière.
Bull. Sci. Math. (2), 50 (1926), 230-236.
J52.356
[2] Bemerkung zu den Formeln von I. J. Schwatt für die Eulerschen Zahlen.
Math. Z., 32 (1930), 586.
J56.II.872
[3] Tillegg til foranstående artikkel (supplement to the previous
paper), Nordisk Mat. Tidsskrift, 6 (1958), 159-161, 182.
Z088.02003
TAMME G.,
[1] Über die p-Klassengruppe des p-ten Kreisteilungskörpers,
Ber. Math.-Stat. Sekt. Forschungsgesellsch. Joanneum, 1988, no. 299, 1-48.
Z653.12002; M91b:11117; R1988,12A313
TANEJA V.S.: see GANDHI J.M., TANEJA V.S.
TANNER J.W.,
[1] Proving Fermat's last theorem for many exponents by computer.
B.A. Thesis, Harvard Univ., 1985.
TANNER J.W., WAGSTAFF S.S., JR.,
[1] New bound for the first case of Fermat's last theorem,
Math. Comp., 53 (1989), no. 188, 743-750.
Z694.10018; M90h:11028
TANNER J.W.: see also WAGSTAFF S.S., JR., TANNER J.W.
TANNERY P.,
[1] Introduction à la théorie des fonctions d'une variable, Paris,
1886, Ch. 7.
J18.328
TANTURRI A.,
[1] Dalla formola di Pascal a quella di Bernoulli sulle
somme delle potenze simili dei primi $n$ numeri.
Periodico di Mat. (3), 5 (1907), 80-83.
J38.314
[2] Un expressione nuova dei numeri Bernoulliani.
Rom. Acc. L. Rend. (5), 30 (1921), 44-46.
J48.1194
TAO QING SHENG,
[1] Generalizations of Bernoulli polynomials and Euler-Maclaurin
formulas (Chinese. English summary).
Gaoxiao Yingyong Shuxue Xuebao, 7 (1992), no. 2, 177-183.
Z778.11013
TASCHNER R.: see HLAWKA E., SCHOISSENGEIER J., TASCHNER R.
TAUBER S.,
[1] Combinatorial numbers in ${\bf C}^n$,
Fibonacci Quart. 14 (1976), no. 2, 101-110.
Z352.05005; M53#7795; R1977,3V374
TAUSSKI O., TODD J.,
[1] Some discrete variable computations,
Proc. Symp. Appl. Math., 10 (1960), 201-209.
Z96,5; M22#6063; R1961,9A136
TAYLOR B.D.: see ROTA G.-C., TAYLOR B.D.
TAYLOR M.J.: see CASSOU-NOGUÈS PH., TAYLOR M.J.
TCHISTIAKOV I.I.: see CHISTYAKOV I.I.
TEIXEIRA F.G.,
[1] Note sur les nombres de Bernoulli, Amer. J. Math.,
7 (1885), 288-292.
J17.231
[2] Sur les démonstrations de deux formules pour le calcul des
nombres de Bernoulli, Enseign. Math., 7 (1905),
442-446.
J36.412
TEIXEIRA J.P.,
[1] Sur les nombres Bernoulliens, J. Sci. Math., Lisboa,
3 (1893) (1895), 73-75.
J26.412
TEMME N.M.,
[1] Bernoulli polynomials old and new: Problems in complex analysis and
asymptotics. Apt, Krzysztof (ed.) et al., From universal morphisms to
megabytes: a Baayen space Odyssey. On the occasion of the retirement of
Prof. Dr. P. C. Baayen. Amsterdam: CWI, 559-576 (1994).
Z879.11008; M99a:11020
[2] Bernoulli polynomials old and new: generalizations and asymptotics,
CWI Quarterly, 8 (1995), no. 1, 47-67.
Z879.11008; M96j:11020
[3] Special Functions. An Introduction to the Classical Functions of
Mathematical Physics, John Wiley & Sons, New York, etc., 1996.
Z856.33001; M97e:33002
TEMME N.M.: see also LÓPEZ J.L.; TEMME N.M.
TEPPER M.,
[1] Combinations and sums of powers,
Fibonacci Quart. 12 (1974), 196-198.
Z281.10005; M50#4472
TERRILL H.M.,
[1] Methods for computing generalized Euler numbers,
Amer. Math. Monthly, 44 (1937), 526-527.
Z17,204
TERRILL H.M., TERRILL E.M.,
[1] Tables of numbers related to the tangent coefficients,
J. Franklin Institute, 239 (1945), 66-67.
TERRY T.R.,
[1] Question 9141, Math. questions and solutions from the "Educat.
Times", London, 10 (1906), 70.
J37.297
THACKER A.,
[1] Ein Beitrag zur Zahlentheorie, J. Reine Angew. Math., 40
(1850), 89-92.
[2] Propositions in the theory of numbers, Camb. and Dubl. Math. J., 5 (1850), 243-248.
THAINE F.,
[1] Polinômios que generalizam os coeficientes binomiais e sua
aplicaçáo no estudo do último theorema de Fermat,
Ph.D. thesis, Rio de Janeiro, 1979, 86 pp.
[2] Polynomials generalizing binomial coefficients and their application to the study of Fermat's last theorem, Fundação Universidade de Brasília, Trabalho de Matemática, No. 156, Nov. 1979, 1-70.
[3] Polynomials that generalize binomial coefficients and their
applications to Fermat's last theorem. (Portuguese). Proc. Twelfth Brazilian
Math. Coll., Vol. I, II (Poços de Caldas, 1979), pp.50-64, Rio de Janeiro,
1981.
Z504.10009; M84j:10013
[4] Polynomials generalizing binomial coefficients and their
application to the study of Fermat's last theorem, J. Number Theory,
15 (1982), no. 3, 304-317.
Z504.10009; M84d:10023; R1983,8A137
[5] On the first case of Fermat's last theorem, J. Number
Theory, 20 (1985), no. 2, 128-142.
Z571.10016; M87d:11021; R1986,2A131
[6] On the ideal class groups of real abelian number fields, Universidade Estadual de Campinas, Sao Paolo, Brasil, Relatorio Interno, No. 355, Jun. 1986, 1-37.
[7] On Fermat's last theorem and the arithmetic of $ Z[\xi_p + \xi_p^{-1}]$, Relatório Técnico, Instituto de Matemática, Universidade Estadual de Campinas, Campinas - Sao Paolo, Brasil, No. 22/87, Jun. 1987, 1-6.
[8] On the ideal class groups of real abelian number fields,
Ann. of Math. (2), 128 (1988), no. 1, 1-18.
Z665.12003; M89m:11099; R1989,4A259
[9] On Fermat's last theorem and arithmetic of
$ Z[{\zeta}_p + {{\zeta}_p}^{-1}]$,
J. Number Theory, 29 (1988), no. 3, 297-299.
Z654.10018; M89m:11029; R1989,1A106
[10] On the relation between units and Jacobi sums
in the prime cyclotomic fields.
Manuscripta Math., 73 (1991), no. 2, 127-151.
Z760.11030; M92m:11122; R1992,4A298
[11] On the $p$-part of the ideal class group of
${\openQ}(\zeta_p + \zeta^{-1}_p)$ and Vandiver's conjecture.
Michigan Math. J., 42 (1995), no. 2, 311-344.
Z844.11069; M96e:11140
THAKARE N.K.,
[1] Generalization of Bernoulli, Euler numbers and related
polynomials, Boll. Un. Mat. Ital. B (5), 18 (1981), no. 3, 847-857.
Z475.33010; M83m:05009; R1982,5B55
THAKARE N.K.: see also KARANDE B.K., THAKARE N.K.
THAKUR D.S.,
[1] Zeta measure associated to $F_q[T]$,
J. Number Theory, 35 (1990), no. 1, 1-17.
Z703.11065; M91e:11139
THANG LE THU QUAC, MURAKAMI JUN,
[1] On Kontsevich's integral for the Homfly polynomial and relations
of fixed Euler numbers.
Max-Planck-Institut für Math., Bonn, MPI/93-26, 17 pp.
THIRUVENKATACHARYA V.,
[1] Some properties of Euler's numbers and associated polynomials.
J. Indian Math. Soc., 16 (1927), Suppl., 19.
J(52.361)
THOMAN F.,
[1] Logarithmes des 40 premiers nombres de Bernoulli, C.R. Acad.
Sci., Paris, 50 (1860), 905-906.
[2] Développement des séries à termes alternativement positifs et negatifs à l'aide des nombres de Bernoulli, C.R. Acad. Sci., Paris, 64 (1867), 655-659.
THOMAS C.B.,
[1] Cohomology of metacyclic groups and class numbers of subfields of
cyclotomic extensions,
J. Algebra, 164 (1994), no. 1, 53-84.
Z816.11056; 95k:11153
TIJDEMAN R.: see GYÖRY K., TIJDEMAN R., VOORHOEVE M.
TITCHMARSH E.C.,
[1] The theory of the Riemann zeta-function, Oxford,
Clarendon Press, 1951, vi+346pp. (2nd Ed., 1986, M88c:1049.)
Z42.79; M13-741c
TITS L.,
[1] Identités nouvelles pour le calcul des nombres de Bernoulli.
Nouv. Ann. Math. (5), 1 (1923), 191-196.
J49.167
TODD J.: see TAUSSKI O., TODD J.
TODOROV P.G.,
[1] Une nouvelle représentation explicite des nombres d'Euler, C.R.
Acad. Sci., Paris, 286A (1978), no. 19, 807-809.
Z378.10007; M58#27737; R1978,11A89
[2] On a new explicit representation of Euler numbers,
Plovdiv Univ. Nauchn.Trud., 16 (1978), no. 1, 259-301 (1980).
M82m:05006
[3] The nth derivative of $tg z$,
Plovdiv Univ. Nauchn. Trud., 21 (1983), no. 1, 93-98.
Z599.30042
[4] On the theory of the Bernoulli polynomials and numbers, J.
Math. Anal. Appl., 104 (1984), no. 2, 309-350.
Z552.10007; M86h:05020; R1986,1B22
[5] Une formule simple explicite des nombres de Bernoulli
généralisés,
C.R. Acad. Sci. Paris, Sér. A, 301 (1985), no.13, 665-666.
Z606.10008; M87e:11025
[6] Taylor expansions of certain composite functions,
C.R. Acad. Bulgare Sci., 39 (1986), no. 11, 15-18.
Z624.05003; M88b:05009; R1987,6B3
[7] The nth derivative of $tg z$. Functiones et Approximatio,
Adam Mickiewicz University Press, Poznán, XV (1986), 171-173.
Z621.33003
[8] On certain formulas for the Stirling numbers of the first
and the second kind,
Plovdiv. Univ. Nauchn. Trud., 26 (1988), no. 3, 17-23.
Z735.11013
[9] Taylor expansions of analytic functions related to $(1 + z)^x - 1$,
J. Math. Anal. Appl., 132 (1988), no. 1, 264-280.
Z646.30002; M89e:30001; R1988,10B148
[10] Recurrence relations for certain polynomials,
Facta Univ. Ser. Math. Inform., 4 (1989), 19-26.
Z702.11008; M91g:11019
[11] On certain formulas for the Stirling numbers of the first and
the second kind,
Punjab Univ. J. Math., 22 (1989-90), 31-35.
Z723.11013; M91f:11011
[12] A disproof of a conjecture of Robertson,
Mitt. Math. Ges. Hamburg, 12 (1991), no.2, 495-497.
Z780.30003; M93a:30029
[13] Explicit formulas for the Bernoulli and Euler polynomials and numbers.
Abh. Math. Sem. Univ. Hamburg, 61 (1991), 175-180.
Z748.11016; M93b:11019
[14] A disproof of a conjecture of Robertson and generalizations.
Punjab Univ. J. Math. (Lahore), 23 (1990), 83-91.
Z734.30019; M92k:30003
[15] A disproof of a conjecture of Robertson and generalizations.
Publ. Inst. Mathématique (Beograd) (N.S.) 50, 64
(1991),105-110.
Z780.30002; M94k:30003
[16] Explicit and recurrence formulas for generalized Euler numbers.
Funct. Approx. Comment. Math., 22 (1993), 13-17 (1994).
Z827.11011; M95h:11016
[17] Partial fraction decomposition and a new form of the Taylor
expansion of the function $(z/(e^z-1))^m$.
Funct. Approx. Comment. Math., 23 (1994), 59-67 (1995).
Z873.41030; M96e:11028; R1996,8B252
TODOROV P.G.: see also SRIVASTAVA H.M., TODOROV P.G.
TOLSTIKOV A.V.,
[1] Application of fields generated by Gauss periods to the study of
cyclic Diophantine equations. Studies in number theory. 4. Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
67 (1977), 201-222, 227.
Z368.10015; M56#2913; R1977,7A159
[2] Application of fields generated by Gauss periods to the study of
cyclic Diophantine equations. II. Studies in number theory. 5. Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
82 (1979), 149-157.
Z433.10008; M80h:10024; R1979,10A97
TOOLE B.A.: see KIM E.E., TOOLE B.A.
TORNHEIM L.,
[1] Harmonic double series.
Amer. J. Math., 72 (1950), 303-314.
Z36.172; M11-654a
TOSCANO L.,
[1] Successioni ricorrenti e polinomi di Bernoulli e di Eulero,
Accad. Sci. Fis. e Mat. Napoli, Rend., IV.S., 6 (1936), 55-61.
J62.II.11223; Z15.250
[2] Sui coefficienti della tangente e sui numeri di Bernoulli,
Boll. Un. Mat. Ital., 15 (1936), 8-12.
J62.I.50; Z13,198
[3] Polinomi e numeri di Bernoulli e di Eulero parametrizzati,
Matematiche (Catania), 22 (1967), no. 1, 68-91.
Z154,65; M36#441; R1967,12V284
[4] L'operatore xD e i numeri di Bernoulli e di Eulero,
Matematiche (Catania), 31 (1976), no. 1, 63-89 (1977).
(English summary).
Z381.05001; M58#10709; R1978,11B50
[5] Some results for generalized Bernoulli, Euler, Stirling numbers,
Fibonacci Quart., 16 (1978), no. 2, 103-112.
Z377.10009; M58#5257; R1978,11V633
[6] Recurring sequences and Bernoulli-Euler polynomials, J. Comb.
Inform. System Sci., 4 (1979), no. 4, 303-308.
Z434.10011; M81e:10010; R1981,6V560
TOSCANO L.: see also ROSSI F.S., TOSCANO L.
TOUCHARD J.,
[1] Nombres exponentiels et nombres de Bernoulli, Canad. J.
Math., 8 (1956), 305-320.
Z71,61; M18-16f; R1957,6835
[2] Sur les nombres et les polynômes de Bernoulli,
Rend. del Circ. Mat. di Palermo, 50, 375-384.
J52.355;
TOYOIZUMI M.,
[1] Ramanujan's formulae for certain Dirichlet series, Comment.
Math. Univ. St. Paul., 30 (1981), 149-173.
Z475.10033; M83c:10058
TRAKHTMAN YU. A.,
[1] The divisibility of certain differences that consist of binomial
coefficients, (Russian).
Akad. Nauk. Armjan. SSR Dokl., 59 (1974), no. 1, 10-16.
Z306.05003; M52#13613; R1975,5A109
[2] Divisibility of differences that consist of binomial coefficients,
(Russian). Investigations in number theory, 131-137, Saratov. Gos. Univ.,
Saratov, 1987.
Z656.10008; M90m:11032; R1987,11A90
TRICOMI F.: see also ERDÉLYI A., MAGNUS W., OBERHETTINGER F., TRICOMI F.
TRUDI N.,
[1] Memoria sullo sviluppo di alcune funzioni trancendenti e sui numeri
ultra-bernoulliani, Atti Inst. Incor. Sci. Natur. Napoli, 4 (1867),
105-131.
TSCHANTZ S.T.:see RATCLIFFE J.G., TSCHANTZ S.T.
TSUMURA H.,
[1] On a p-adic interpolation of the generalized Euler numbers
and its applications,
Tokyo J. Math., 10 (1987), no. 2, 281-293.
Z641.12007; M89k:11121; R1988,8A328
[2] On the values of a $q$-analogue of the $p$-adic $L$-function.
Mem. Fac. Sci. Kyushu Univ. Ser. A, 44 (1990), no. 1, 49-60.
Z716.11060; M91b:11137
[3] A note on $q$-analogues of the Dirichlet series and $q$-Bernoulli numbers.
J. Number Theory, 39 (1991), no. 3, 251-256.
Z735.11009; M92j:11020
[4] On a $q$-analogue of the log-$\Gamma$-function.
Nagoya Math. J., 134 (1994), 57-64.
Z804.11018; M95g:33016
[5] On Demjanenko's matrix and Maillet's determinant for imaginary abelian
number fields.
J. Number Theory 60 (1996), no. 1, 70-79.
(See also METSÄNKYLÄ [17]: Letter to the editor.)
Z866.11063
TSVETKOV V.M.,
[1] $\Gamma$-extension and the co-restriction homomorphism. (Russian).
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 198
(1991), Voprosy Teor. Predstav. Algebr. Grupp. 2, 103-108, 113.
Z785.11053; M93e:11129; R1992,7A373
TUAN VU KIM; NGUYEN THI TINH,
[1] Expressions of Legendre polynomials through Bernoulli polynomials.
Rev. Técn. Fac. Ingr. Univ. Zulia 18 (1995), no. 3, 285-290.
Z840.33003; M97f:33019
[2] Legendre, Euler and Bernoulli polynomials.
C. R. Acad. Bulgare Sci. 49 (1996), no. 5, 19-21.
Z877.33004; M98d:33004
[3] Expressions of Legendre polynomials through Euler polynomials,
Math. Balkanica (N.S.) 11 (1997), no. 3-4, 295-302.
M99i:33014
TYLER D.B.,
[1] Infinite integrals that are polynomials in $\pi^2$
(Problem E 3168; solution by C. Georghiou),
Amer. Math. Monthly, 96 (1989), 58-59.
[2] Bernoulli numbers in real quadratic fields (A remark on
a work of H. Lang), Rep. Fac. Sci. Eng. Saga Univ., Math. 4
(1976), 1-5.
Z333.12006; M53#8017; R1976,11A195
[3] Fermat's conjecture and Bernoulli numbers, Rep. Fac. Sci.
Eng. Saga Univ., Math., No. 6, (1978), 9-14.
Z379.10014; M80a:12008; R1978,12A179
[4] On p-adic continuous functions determined by the Euler
numbers, Rep. Fac. Sci. Eng. Saga Univ., Math., No. 8, (1980), 1-8.
Z426.10015; M81e:12020; R1980,10A270; 1982,7A362
[5] On the Bernoulli numbers and the circular units of cyclotomic fields, Number Theory, Proc. Sympos., Koyoto, (1980), 47-60.
[6] On some congruences for generalized Bernoulli
numbers, Rep. Fac. Sci. Eng. Saga Univ., Math., (1982), No. 10, 1-8.
Z493.12008; M83m:12014; R1982,10A306; 1983,2A57
[7] On cyclotomic units connected with p-adic characters,
J. Math. Soc. Japan, 37 (1985), no. 1, 65-77.
Z547.12002; M87a:11110; R1985,8A399
[8] A certain congruence relation between Jacobi sums and cyclotomic
units. Class numbers and fundamental units of algebraic number fields,
Proc. Int. Conf. (Katata, 1986), pp. 33-52, Nagoya Univ., Nagoya, 1986.
Z615.o12006; M88m:11088
[9] On a congruence relation between Jacobi sums and cyclotomic units,
J. Reine Angew. Math., 382 (1987), 199-214.
Z646.12002; M89a:11113; R1988,6A304
[10] On the first generalized Bernoulli number,
Rep. Fac. Sci. Engrg. Saga Univ. Math., 24 (1995), no. 1, 11-21.
Z838.11017; M96j:11021; R1996,4A271
UENO K., NISHIZAWA M.,
[1] Multiple gamma functions and multiple $q$-gamma functions,
Publ. Res. Inst. Math. Sci., 33 (1997), no. 5, 813-838.
UGRIN-SPARAC D.,
[1] Some number theoretic applications of certain polynomials
related to Bernoulli polynomials (Romanian summary), An. Sti. Univ. "Al.
I. Cuza" Iasi Sec. I a Mat. (N.S.), 14 (1968), 259-276.
Z199,364; M41#1664; R1970,2A86
[2] Lower bounds for sums of powers of different natural numbers
expressed as functions of the sum of these numbers,
J. Reine Angew. Math., 245 (1970), 74-80.
Z206,55; M43#3228; R1971,5A105
[3] One particular class of Eulerian numbers of higher order and
some allied sequences of numbers,
Publ. Math. Debrecen, 18 (1971), 23-35.
Z267.10010; M54#10135; R1973,6V304
[4] Some properties of numbers M, N and L,
Glasnik Mat., 14 (34) (1979), no. 2, 201-211.
Z429.10006; M83c:10019; R1980,8A85
UHLER H.S.,
[1] The coefficients of Stirling's series for $\log \Gamma(x)$.
Proc. Nat. Acad. Sci., 28 (1942), 59-62.
M3-275g
ULLOM S.V.,
[1] Upper bounds for p-divisibility of sets of Bernoulli numbers,
J. Number Theory, 12 (1980), 197-200.
Z449.10009; M81h:10019; R1981,2A127
UNDERWOOD R.S.,
[1] An expression for the summation $\sum_{m=1}^n m^p$,
Amer. Math. Monthly, 35 (1928), 424-428.
J54.104
URBANOWICZ J.,
[1] On the divisibility of generalized Bernoulli numbers. Applications
of algebraic K-theory to algebraic geometry and number theory, Part I, II
(Boulder, Colo., 1983), pp. 711-728, Contemp. Math., 55, Amer. Math. Soc.,
Providence, R.I., 1986.
Z596.12002; M88b:11012; R1987,3A136
[2] On the divisibility of $w_{m+1}(F^+){\zeta}_{F^+}(-m)$
for cyclotomic fields F,
Comm. Algebra, 16 (1988), no.7, 1315-1323.
Z661.12001; M89k:11100; R1988,11A366
[3] On the equation $f(1)1^k+f(2)2^k+ \cdots +f(x)x^k+R(x)=By^2$,
Acta Arith., 51 (1988), no. 4, 349-368.
Z661.10026; M90b:11025; R1989,8A106
[4] Remarks on the equation $1^k+2^k+ \cdots +(x-1)^k=x^k$,
Nederl. Akad. Wetensch. Indag. Math., 50 (1988), no. 3, 343-348.
Z661.10025; M90b:11026; R1989,2A89
[5] Connections between $B_{2,\chi}$ for even quadratic Dirichlet
characters $\chi$ and class numbers of appropriate imaginary quadratic
fields. I, II.
Compositio Math., 75 (1990), no.3, 247-270, 271-285.
Corrig.: Compositio Math., 77 (1991), no. 1, 119-125.
Z706.11058/9; M92a:11134a,b; R1991,3A215/216;
1991,8A433
[6] On the $2$-primary part of a conjecture of Birch-Tate.
Acta Arith., 43 (1983),no. 1, 69-81.
Z529.12008; M85f:11080; R1984,8A297
[7] A generalization of the Lerch-Mordell formulas for
positive discriminants.
Colloq. Math., 59 (1990), no. 2, 197-202.
Z729.11050; M91m:11103
[8] On some new congruences between generalized Bernoulli numbers, I.
Publ. Math. Fac. Sci. Besançon, Théorie des Nombres,
Années 1989/90-1990/91, No.4, 23pp., (1991).
Z748.11017; M93m:11111
[9] On some new congruences between generalized Bernoulli numbers, II.
Publ. Math. Fac. Sci. Besançon, Théorie des Nombres,
1989/90-1990/91, No.5, 24pp., (1991).
Corrigendum ibid., 1992/93-1993/94, 3 pp.
Z748.11018; M93m:11111
[10] Remarks on the Stickelberger ideals of order 2. Algebraic $K$-theory,
commutative algebra, and algebraic geometry. Proc. Joint US-Italy Seminar,
Santa Margherita Ligure/Italy 1989, Contemp. Math.,
126 (1992), 179-192.
Z756.11040; M93e:11139; R1993,7A290
[11] On Diophantine equations involving sums of powers with
quadratic characters as coefficients, I.
Compositio Math. 92 (1994), no. 3, 249-271.
Z810.11017; M96f:11054
[12] On Diophantine equations involving sums of powers with quadratic
characters as coefficients. II.
Compositio Math. 102 (1996), no. 2, 125-140.
Z960.35749; M97m:11047; R1997,10A186
URBANOWICZ J.: see also MOREE P., TE RIELE H.J.J., URBANOWICZ J.
URBANOWICZ J.: see also SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.
URBANOWICZ J.: see also SZMIDT J., URBANOWICZ J.
URBANOWICZ J.: see also SZMIDT J., URBANOWICZ J., ZAGIER D.
USPENSKY J.V. (OUSPENSKY),
[1] Sur une série asymtotique d'Euler, Arch. der Math. und Phys.
(3), 19 (1912), 370-371.
J43.343
USPENSKY J.V., HEASLET M.A.,
[1] Elementary number theory, New York, 1939, Ch. 9.
J65.1141; Z24,247; M1-38d
UZBANSKIJ V.M.,
[1] Dmitrij Grave i ego vremya [Dmitrij Grave and his time],
Naukova Dumka, Kiev, 1998, 268 pp.
VALETTE A.,
[1] Le point sur la conjecture de Fermat,
Bull. Soc. Math. Belgique, Ser. A, 39 (1987), 23-47.
Z636.10013; M89c:11049; R1988,12A448
VAN DEN BERG F.J.: see van den BERG F.J.
VAN DER POORTEN A.: see van der POORTEN A.
VAN DER WAALL R.W.: see van der WAAL R.W.
VANDIVER H.S.,
[1] On Bernoulli's numbers, Fermat's quotient and last theorem,
Bull. Amer. Math. Soc. (2), 21 (1914), 68.
J45.290
[2] Symmetric functions of systems of elements in finite
algebra and their connection with Fermat's quotient and Bernoulli's
numbers (second paper), Bull. Amer. Math. Soc., 22 (1916), 380-381.
J46.191
[3] Symmetric functions formed by systems of elements of a finite
algebra and their connection with Fermat's quotient and Bernoulli numbers,
Ann. of Math., 18 (1917), no. 3, 105-114.
J46.1444
[4] A property of cyclotomic integers and its relation to Fermat's
last theorem (third paper), Bull. Amer. Math. Soc., 24, (1918),
472-473.
J46.225
[5] On the first factor of the class number of a cyclotomic field,
Bull. Amer. Math. Soc., 25 (1919), 458-461.
J47.151
[6] On Kummer's memoir of 1857 concerning Fermat's last theorem,
Proc. Nat. Acad. Sci. U.S.A., 6 (1920), no. 5, 266-269.
J47.151
[7] On the class-number of the field $\Omega (e {{2 \pi i}\over{p^n}})$
and the second case of Fermat's last theorem, Proc. Nat.
Acad. Sci. USA, 6 (1920), 416-421.
J47.151
[8] Note on some results concerning Fermat's last theorem, Bull.
Amer. Math. Soc., 28 (1922), 258-260.
J48.1172
[9] On Kummer's memoir of 1857, concerning Fermat's last
theorem, Bull. Amer. Math. Soc., 28 (1922), 400-407.
J48.1172
[10] A property of cyclotomic integers and its relations to Fermat's
last theorem, 2, Ann. of Math. (2), 26 (1925), 217-232.
J51.136
[11] Note on trinomial congruences and the first case of Fermat's
last theorem, Ann. of Math. (2), 27 (1925), 54-56.
J51.136
[12] Transformation of the Kummer criteria in connection with
Fermat's last theorem, Ann. of Math., 27 (1926), 171-176.
J52.160
[13] Application of the theory of relative cyclic fields to both cases
of Fermat's last theorem, Trans. Amer. Math. Soc., 28 (1926), 554-560.
J52.159
[14] Summary of results and proofs concerning Fermat's last
theorem, Proc. Nat. Acad. Sci. USA, 12 (1926), 106-109; 767-773.
J52.159
[15] Application of the theory of relative cyclic fields to both cases
of Fermat's last theorem,
Trans. Amer. Math. Soc., 29 (1927), 154-162.
J53.147
[16] Transformation of the Kummer criteria in connection with
Fermat's last theorem, Ann. of Math. (2), 28 (1927),
451-458 (second paper).
J53.148
[17] On Fermat's last theorem,
Trans. Amer. Math. Soc., 31 (1929), no. 4, 613-642.
J55.701
[18] The extension of the Bernoulli summation formula,
Amer. Math. Monthly, 36 (1929), 36-37.
J55.I.60
[19] Summary of results and proofs concerning Fermat's last
theorem, 3, Proc. Nat. Acad. Sci. USA, 15 (1929), 43-48.
J55.130
[20] Summary of results and proofs concerning Fermat's last
theorem, 4, Proc. Nat. Acad. Sci. USA, 15 (1929), 108-109.
J55.130
[21] Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. USA, 16 (1930), 139-150.
[22] Summary of results and proofs on Fermat's last
theorem, Proc. Nat. Acad. Sci. USA, 16 (1930), 298-304.
J56.170
[23] On the second factor of the class number of a cyclotomic field,
Proc. Nat. Acad. Sci. USA, 16 (1930), 743-749.
J56.887
[24] Note on the divisors of the numerators of Bernoulli's numbers,
Proc. Nat. Acad. Sci. USA, 18 (1932), 954-957.
J58.I.180; Z5,344
[25] Fermat's last theorem and the second factor in the cyclotomic
class number, Bull. Amer. Math. Soc., 40 (1934), 118-126.
J60.128; Z9,007
[26] A note on units in super-cyclic fields, Bull. Amer. Math. Soc.,
40 (1934), 855-858.
J60.932; Z10,291
[27] On Bernoulli numbers and Fermat's last theorem, Miscellanea Amer. Philos. Soc. (1936).
[28] Note on a certain ring-congruence, Bull. Amer. Math. Soc., 43
(1937), 418-423.
J63.106; Z17,100
[29] On generalizations of the numbers of Bernoulli and Euler,
Proc. Nat. Acad. Sci. USA, 23 (1937), 555-559.
J63.I.107; Z17,341
[30] On Bernoulli's numbers and Fermat's last theorem, Duke
Math. J., 3 (1937), 569-584.
J63.II.895; Z18,005
[31] On analogues of the Bernoulli and allied numbers,
Proc. Nat. Acad. Sci. USA, 25 (1939), 197-201.
J65.126; Z21,105
[32] On basis systems for groups of ideal classes in a properly
irregular cyclotomic field,
Proc. Nat. Acad. Sci. U.S.A., 25 (1939), no. 11, 586-591.
J65.109; Z22,110; M1-68d
[33] On Bernoulli's numbers and Fermat's last theorem (second
paper), Duke Math. J., 5 (1939), 418-427.
J65.143; Z21,105
[34] On the composition of the group of ideal classes in a properly
irregular cyclotomic field, Monatsh. Math., 48 (1939), 369-380.
J65.107; Z22,109; M1-68e
[35] Certain congruences involving the Bernoulli numbers,
Duke Math J., 5 (1939), 548-551.
J65.126; Z21,390; M1-4d
[36] On general methods for obtaining congruences involving
Bernoulli numbers, Bull. Amer. Math. Soc., 46 (1940), 121-123.
J66.139; Z23,007; M1-200a
[37] Simple explicit expressions for generalized Bernoulli numbers
of the first order, Duke Math J., 8 (1941), 575-584.
M3-67a
[38] On improperly irregular cyclotomic fields,
Proc. Nat. Acad. Sci. U.S.A., 27 (1941), no. 1, 77-83.
M2-146h
[39] Certain congruence criteria connected with Fermat's theorem,
Proc. Nat. Acad. Sci. USA, 28 (1942), 144-150.
M3-269f
[40] General congruences involving the Bernoulli numbers,
Proc. Nat. Acad. Sci. USA, 28 (1942), 324-328.
M4-34f
[41] An arithmetical theory of the Bernoulli numbers,
Trans. Amer. Math. Soc., 51 (1942), 502-531.
M4-34e
[42] Bernoulli's numbers and certain arithmetic quotient functions,
Proc. Nat. Acad. Sci. USA, 31 (1945), 310-314.
Z63,975; M7-145f
[43] Fermat's quotient and related arithmetical functions,
Proc. Nat. Acad. Sci. USA, 31 (1945), 55-60.
M6-170g
[44] Fermat's last theorem. Its history and the nature of the known
results concerning it, Amer. Math. Monthly, 53 (1946), 555-578.
M8-313e
[45] New types of congruences involving Bernoulli numbers and
Fermat's quotient, Proc. Nat. Acad. Sci. USA, 34 (1948), 103-110.
Z30,111; M9-412d
[46] On congruences which relate the Fermat and Wilson quotients
to Bernouli numbers, Proc. Nat. Acad. Sci. USA, 35 (1949), 332-337.
Z33,351; M11-11d
[47] A supplementary note to a 1946 article on Fermat's
last theorem, Amer. Math. Monthly, 60 (1953), 164-167.
Z51,280; M14-725a; R1953,54
[48] Les travaux mathématiques de Dimitry Mirimanoff,
Enseign. Math., 39 (1953), 169-179.
Z50,2; M14-833f; R1955,2064
[49] The relation of some data obtained from rapid computing machines
to the theory of cyclotomic fields,
Proc. Nat. Acad. Sci. U.S.A., 40 (1954), no. 6, 474-480.
Z56.41; M15-937c; R1955,1619
[50] Examination of methods of attack on the second case of Fermat's Last
Theorem, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), no.8, 732-735.
Z56,41; M16-13f; R1955,1639
[51] On the divisors of the second factor of the class number of a
cyclotomic field, Proc. Nat. Acad. Sci. USA, 41 (1955), 780-783.
M17-464a; R1956,4300
[52] Is there an infinity of regular primes?,
Scripta Math., 21 (1955) (1956), 306-309.
Z71,44; R1957,2879
[53] On distribution problems involving the numbers of solutions
of certain trinomial congruences, Proc. Nat. Acad. Sci. USA, 45
(1959), 1635-1641.
Z90,259; M22#4669; R1960,8579
[54] On developments in an arithmetic theory of the Bernoulli and
allied numbers, Scripta Math., 25 (1961), 273-303.
Z100,269; M26#66; R1962,6A107
[55] Note on Euler number criteria for the first case of
Fermat's Last Theorem. Amer. J. Math., 62 (1940), 79-82.
J66.152; Z22.307; M1-200d
VANDIVER H.S., WAHLIN G.E.,
[1] Algebraic numbers, 2, Report of the Comm. Alg. Numbers, Bull.
Nat. Research Council, 1928, No. 62, 1-111.
J54.188
VANDIVER H.S.: see also LEHMER D.H., LEHMER E., VANDIVER H.S.
VANDIVER H.S.: see also SELFRIDGE J.L., NICOL C.A., VANDIVER H.S.
VANDIVER H.S.: see also STAFFORD E.T., VANDIVER H.S.
VAN VEEN S.C.: see van VEEN S.C.
VAN WAMELEN P.: see SCHINZEL A., URBANOWICZ J., VAN WA MELEN P.
VASAK J.T.,
[1] Periodic Bernoulli numbers and polynomials, Ph. D.
Thesis, University of Illinois at Urbana-Champaign, 1979.
VASILEV M.V.,
[1] Relations between Bernoulli numbers and Euler numbers,
Bull. Number Theory Related Topics, 11 (1987), no. 1-3, 93-95.
Z669.10021; M90g:11027
van VEEN S.C.,
[1] Asymptotic expansion of the generalized Bernoulli numbers
$B\sb n\sp {(n-1)}$ for large values of $n(n$ integer),
Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13
(1951), 335-341.
Z043.28503; M13,549a
VENKOV A.B.,
[1] Spectral theory for automorphic functions and
its applications.
Kluwer Acad. Publ., 1990, xvi+176pp.
Z719.11030; M93a:11046
VENKOV B.A.,
[1] Elementarnaya teoriya chisel [Elementary Number Theory].
Moskva-Leningrad, 1937, Ch. 2.7.
J43.343
[2] K rabote "O chislakh Bernulli" [On the paper "On Bernoulli numbers"].
In: Voronoi, G.F., Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. I, Kiev, 1952, 392-393.
Z49,28; M16-2d; R1954,3228K
VERHEUL E.R.,
[1] A simple relation between Bernoulli sums.
Nieuw Arch. Wisk. (4), 9 (1991), no. 3, 301-302.
Z769.11012; M93e:11031
VERLINDEN P.,
[1] $p$-adic Euler-Maclaurin expansions.
Indag. Math. (N.S.) 7 (1996), no. 2, 257-270.
Z867.65024; M99d:41052; R1996,12A327
VIENNOT G.,
[1] Interprétations combinatoires des nombres d'Euler et de
Genocchi. Séminaire de Théorie des nombres, Univ. Bordeaux I,
année 1981-82, 1982, exp. no. 11, 94 pp.
Z505.05006; M84i:10013
VIENNOT G.: see also FRANÇON J., VIENNOT G.
VIENNOT G.: see also DUMONT D., VIENNOT G.
DE VILLIERS J.M.: see DE BRUYN G.F.C., DE VILLIERS J.M.
VLADIMIROV V.S., VOLOVICH I.V., ZELENOV E.I.,
[1] Spectral theory in p-adic quantum mechanics and the theory of
representations, (Russian) Izv. Akad. Nauk. SSSR Ser. Mat.
54 (1990), no. 2, 275-302.
Z(715.22029)709.22010; M91f:81051
VOINOV V., NIKULIN M.,
[1] Generating functions, problems of additive number theory, and some
statistical applications.
Rev. Roumaine Math. Pures Appl., 40 (1995), no. 2, 107-147.
Z881.05011; R1997,3V214
VOLKENBORN A.,
[1] Ein p-adisches Integral und seine Anwendungen, Köln,
Dissert., 1971.
Z245.10044*
[2] Ein p-adisches Integral und seine Anwendungen, I, Manuscr.
Math., 7 (1972), 341-473.
Z245.10045; M49#2670; R1973,3B205
[3] Ein p-adisches Integral und seine Anwendungen, II, Manuscr. Math.
12 (1974), 17-46.
Z276.12018; M48#11064
VOLOVICH I.V.: see VLADIMIROV V.S., VOLOVICH I.V., ZELENOV E.I.
VON RANDOW R.: see MEYER W., VON RANDOW R.
VOORHOEVE M.: see GYÖRY K., TIJDEMAN R., VOORHOEVE M.
VORONOI G.F.,
[1] O chislakh Bernulli [On Bernoulli numbers].
Soobshcheniya Khar'kovsk. Mat. obshch. (2), 2 (1889), 129-148.
Also in: Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. I, Kiev, 1952, 7-23.
J12.268; Z49,28; M16-2d; R1954,3228K
[2] Ob opredelenii summy kvadratichnykh vychetov prostogo $p$ vida $4m+3$ pri
pomoshchi chisel Bernulli [On the determination of the sum of quadratic
residues of a prime $p$ of the form $4m+3$ by means of Bernoulli numbers].
Protokoly Sankt Petersb. mat. obshch, 5 (1899). Also in:
Sobranie sochinenii v trekh tomakh. (Russian) [Collected
works in three volumes.] Vol. III, Kiev, 1953, 203-204.
Z49,28; M16-2d; R1954,3228K
VORONOI G.F.: see also KISELEV A.A. [4]
VOROS A.,
[1] Spectral functions, special functions and the Selberg zeta function.
Commun. Math. Phys., 110 (1987), no. 3, 439-465.
Z631.10025; M89b:58173; R1987,11A535
[2] Spectral zeta functions. In: Zeta functions in geometry
(Tokyo, 1990), 327-358, Adv. Studies in Pure Math., 21,
Kinokuniya, Tokyo, 1992.
Z819.11033; M94h:58176; R1994,9A386
VOROS A.: see also BALAZS N.L., SCHMIT C., VOROS A.
VOSE M.D.,
[1] The distribution of divisors of $N!$,
Acta Arith., 50 (1988), no. 2, 203-209.
Z647.10038; M89j:11082; R1988,11A97
VOSKRESENSKII V.E.,
[1] Calculation of local volumes in the Siegel-Tamagawa formula.
Engl. Transl. in: Math. USSR-Sb., 66 (1990), no. 2, 447-460.
Z691.10014; M90h:11055
VOSTOKOV S.V.,
[1] A remark on the space of cyclotomic units. Engl. Transl. in:
Vestnik Leningrad Univ. Math., 21 (1988), no. 1, 16-20.
Z649.12013; M89f:11150; R1988,7A356
[2] Artin-Hasse exponentials and Bernoulli numbers. (Russian)
Trudy S.-Peterburg. Mat. Obshch. 3 (1995), 185--193, 324.
English translation:
Amer. Math. Soc. Transl. (2), 166 (1995), 149-156.
Z855.11059; M97c:11110; R1987,8A241
VU THEINNU H.: see APOSTOL T.M., VU THEINNU H.
WADA H.,
[1] Some computations on the criteria of Kummer, Tokyo J.
Math., 3 (1980), no. 1, 173-176.
Z448.10016; M81m:10028; R1981,2A128
WAGON S.,
[1] Fermat's last theorem,
Math. Intelligencer, 8 (1986), no. 1, 59-61.
M87e:11045; R1986,8A102
WAGSTAFF S.S. JR.,
[1] Zeros of p-adic L-functions, Math. Comp., 29 (1975), no. 132,
1138-1143.
Z315.12009; M52#8096; R1976,9A369
[2] The irregular primes to 125000, Math. Comp., 32
(1978), no. 142, 583-591.
Z377.12002; M58#10711; R1979,1A164
[3] Proof of a formula of Ramanujan concerning Bernoulli numbers, Notices Amer. Math. Soc., 26 (1979), A-330.
[4] p-divisibility of certain sets of Bernoulli numbers, Math.
Comp., 34 (1980), no. 150, 647-649.
Z424.10013; M81i:10018; R1980,11A67
[5] Zeros of p-adic L-functions, 2, Number Theory Related to Fermat's
Last Theorem (N. Koblitz, ed.), Progress in Math., No. 26, Birkhäuser,
Boston, Mass., 1982, 297-308.
Z498.12015; M84h:12027; R1985,4A335
[6] Ramanujan's paper on Bernoulli numbers,
J. Indian Math. Soc. N.S.(9), 45 (1981), no. 1-4, 49-65 (1984).
Z636.10010; M87h:11019; R1956,8V689
WAGSTAFF S.S., JR., TANNER J.W.,
[1] New congruences for the Bernoulli numbers,
Math. Comp., 48 (1987), no. 177, 341-350.
Z613.10012; M87m:11017
WAGSTAFF S.S. JR.: see also ERDÖS P., WAGSTAFF S.S.
WAGSTAFF S.S. JR.: see also TANNER J.W., WAGSTAFF S.S.
WAHLIN G.E.: see VANDIVER H.S., WAHLIN G.E.
WALDSCHMIDT M., MOUSSA P., LUCK J.-M., ITZYKSON C. (Eds.),
[1] From Number Theory to Physics.
Springer-Verlag, Berlin etc., 1992, xiv+690 pp.
Z790.11061; M93m:11001
WALTON W.,
[1] On certain transformations in the calculus of operations,
Quart. J. Pure Appl. Math., 8 (1867), 222-227.
WALUM H.,
[1] Multiplication formulae for periodic functions,
Pacific J. Math., 149 (1991), no. 2, 383-396.
Z736.11012; M92c:11019
van WAMELEN P.: see SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.
WANG CHUNG LIE, WANG XING HUA,
[1] Refinements of the Mathieu inequality. (Chinese. English summary).
J. Math. Res. Exposition, 1 (1981), no. 1, 107-112.
Z476.26008; M83j:26017; R1982,4B3
WANG GUAN MIN,
[1] An identity for proper Dirichlet series and Euler numbers
(Chinese. English and Chinese summaries).
Zhangzhou Shiyuan Xuebao (Ziran Kexue Ban), 8 (1994), no. 4, 85-8
8.
[2] Rao-Davis identities related to the Riemann zeta-function.
(Chinese. English, Chinese summary).
Zhangzhou Shiyuan Xuebao (Ziran Kexue Ban) 10 (1996), no. 2, 28-41, 47.
M97g:11091
WANG KAI,
[1] A proof of an identity of the Dirichlet L-functions, Bull. Inst.
Math., Acad. Sin., 10 (1982), no. 3, 317-321.
Z497.10031; M84c:10040
[2] Exponential sums of Lerch's zeta functions,
Proc. Amer. Math. Soc., 9 (1985), no. 1, 11-15.
Z573.10011; M86j:11084; R1986,6A189
[3] A proof of an identity of the Dirichlet L-function at negative integers,
Bull. Inst. Math., Acad. Sin., 13 (1985), no. 2, 143-147.
Z591.10032; M87a:11078
WANG SHUN HWA: see DE TEMPLE D.W., WANG SHUN HWA
WANG TIAN MING, ZHANG XIANG DE,
[1] Some identities related to Genocchi numbers and the
Riemann zeta-function,
J. Math. Res. Exposition, 17 (1997), no. 4, 597-600.
Z902.11011; R1996,11V258
WANG TIANMING, ZHANG ZHIZHENG,
[1] Recurrence sequences and Nörlund-Euler polynomials,
Fibonacci Quart., 34 (1996), no. 4, 314-319.
Z861.11011; M97c:11024
WANG XING HUA: see WANG CHUNG LIE, WANG XING HUA
WANG Z.X., GUO D.R.,
[1] Special functions.
World Scientific, Singapore, etc., 1989, xviii+695pp.
Z724.33001; M91a:33001
WASHINGTON L.C.,
[1] A note on p-adic L-functions, J. Number Theory,
8 (1976), no. 2, 245-250.
Z329.12017; M53#10766; R1977,2A410
[2] The calculation of $L_p(1,chi)$, J. Number Theory,
9 (1977), no. 2, 175-178.
Z363.12019; M55#12704; R1977,11A145
[3] The non-p-part of the class number in a cyclotomic $ Z_p$-extension,
Invent. Math., 49 (1978), no. 1, 87-97.
Z403.12007; M80c:12005; R1979,4A397
[4] Euler factors for p-adic L-functions,
Mathematika, 25 (1978), no. 1, 68-75.
M58#22025
[5] Kummer's calculation of $L_p(1,{\chi})$, J. Reine Angew. Math.,
305(1979), 1-8.
Z398.12019; M80e:12017; R1979,8A80
[6] Units of irregular cyclotomic fields, Illinois J. Math.,
23 (1979), no. 4, 635-647.
Z423.12005;
427.12004; M81a:12006; R1980,7A312
[7] Zeros of p-adic L-functions, Sém. théor. nombres, 1980-81,
Univ. Bordeaux I, Talence, 1981, Exp. No. 25, 4 pp.
Z479.12005; M82m:10006; R1985,4A334
[8] p-adic L-functions at $s=0$ and $s=1$, Analytic number
theory, Lect. Notes in Math., 899 (1981), 166-170.
Z479.12004; M83m:12019
[9] The derivative of p-adic L-functions, Acta. Arith., 40
(1981), no. 1, 109-115.
Z483.12001; M83m:12020; R1982,10A298
[10] Introduction to cyclotomic fields, New York,
Springer-Verlag, 1982.
Z484.12001*; M85g:11001; R1982,12A356K;
1983,4A368K
[11] Recent results on cyclotomic fields, Algebraic Topology, 1981,
Sem. notes, Inst. of Math., Univ. of Aarhus, 1982, No. 1, 120-129.
Z502.12003; M83k:12003; R1983,7A154
[12] Zeroes of p-adic L-functions, Progress in Math., Boston,
No. 22, (1982), 337-357 (Théor. des Nombres. Paris,
1980-81, Sémin. Delange-Pisot-Poitou).
Z495.12015; M84f:12008; R1985,4A334
[13] On some cyclotomic congruences of F. Thaine, Proc. Amer. Math.
Soc., 93 (1985), no. 1, 10-14.
Z564.10010; M86c:11019; R1986,2A331
[14] On Sinnott's proof of the vanishing of the Iwasawa invariant $\mu_p$.
Algebraic number theory, 457-462, Adv. Stud. Pure Math.,
17, Academic Press, Boston, MA, 1989.
Z732.11059; M92e:11123
[15] Introduction to cyclotomic fields. Second edition. Graduate Texts in
Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp.
Z970.07078; M97h:11130
[16] $p$-adic $L$-functions and sums of powers,
J. Number Theory, 69 (1998), no. 1, 50-61.
Z910.11047; M99a:11134
WASHINGTON L.C.: see also ADLER A., WASHINGTON L.C.
WASHINGTON L.C.: see also FERRERO B., WASHINGTON L.C.
WASHINGTON L.C.: see also FRIEDMAN E., SANDS J. W.
WATSON G.N.,
[1] Theorems stated by Ramanujan (II): Theorems on summation of series,
J. London Math. Soc., 3 (1928), 216-225.
J54.229
WATSON G.N.: see also ADIGA C., BERNDT B.C. et al.
WATSON G.N.: see also WHITTAKER E.T., WATSON G.N.
WEIHRAUCH K.,
[1] Untersuchungen über eine Gleichung des ersten Grades
mit mehreren Unbekannten, Diss. Dorpat, 1869.
J2.51
[2] Die Anzahl der Lösungen diophantischer Gleichungen bei theilfremden
Coefficienten, Zeitsch. für Math., 20 (1875), 97-111.
J7.93
[3] Über die Ausdrücke $\sum f_n(m)$ und die Umgestaltungen
der Formel für die Lösungsanzahlen Anwendung der Formel in der
Combinationslehre, Zeitsch. für Math., 20 (1875), 112-117.
J7.93
[4] Anzahl der Auflösungen einer unbestimmten Gleichung für
einen speciellen Fall von nicht theilfremden Coefficienten, Zeitsch. für
Math., 20 (1875), 314-316.
J7.93
[5] Anzahl der Lösungen für die allgemeinste Gleichung ersten
Grades mit vier Unbekannten, Zeitsch. für Math., 22 (1877),
234-244.
J9.134
[6] Theorie der Restreihen zweiter Ordnung,
Zeitsch. für Math., 32 (1887), 1-21.
J19.179
WEIL A.,
[1] L'oeuvre arithmétique d'Euler. "Leonhard Euler. 1707-1783:
Beiträge zu Leben und Werk", Birkhäuser, Basel, 1983, 111-134.
Z516.01012; M84m:01021; R1984,7A13
[2] Number Theory. An Approach Through History From Hammurapi to Legendre.
Birkhäuser, Boston etc., 1984, xxi + 375pp.
Z531.10001; M85c:01004
WEINMANN A.,
[1] Asymptotic expansions of generalized Bernoulli polynomials,
Proc. Camb. Phil. Soc., 59 (1963), no. 1, 73-80.
Z114,34; M29#5009; R1963,10B66
WEISS A.: see RITTER J., WEISS A.
WESTLUND J.,
[1] On the class number of the cyclotomic number field
$k(e{{2 \pi i}\over{p^n})$, Trans. Amer. Math. Soc., 4 (1903),
201-212.
J34.237
WHITTAKER E.T., WATSON G.N.,
[1] A Course of Modern Analysis, 4th Edition. Cambridge University
Press, Cambridge, 1927.
J53,180
WICKE F.,
[1] Über ultra-Bernoullische und ultra-Eulersche Zahlen und
Funktionen und deren Anwendung auf die Summation von Reihen, Diss. Jena,
1905, 68 p.
J36.498
WIEFERICH A.,
[1] Zum letzten Fermatschen Theorem,
J. Reine Angew. Math., 136 (1909), no. 4, 293-302.
J40.256
WILES A.,
[1] Modular curves and the class group of $Q(\zeta_p)$, Invent.
Math., 58 (1980), no. 1, 1-35.
Z436.12004; M82j:12009; R1980,10A274
WILES A.: see also MAZUR B., WILES A.
WILES A.: see also RUBIN K., WILES A.
WILKINSON K.M.: see RUDOLFER S.M., WILKINSON K.M.
WILLIAMS G.T.,
[1] A new method of evaluating ${\zeta}(2n)$,
Amer. Math. Monthly, 60 (1953), no. 1, 19-25.
Z50,68; M14,536j; R1953,31
WILLIAMS H.: see BEACH B., WILLIAMS H., ZARNKE C.
WILLIAMS H.C.: see FUNG G., GRANVILLE A., WILLIAMS H.C.
WILLIAMS H.C.: see STEPHENS A.J., WILLIAMS H.C.
WILLIAMS K.P.,
[1] Relating to some determinants connected with the Bernoulli numbers,
Amer. Math. Monthly, 23 (1916), 263-266.
WILLIAMS K.S.,
[1] On $\sum_{n=1}^\infty (1/n^{2k})$,
Math. Mag., 44 (1971), no. 5, 273-276.
Z224.40008; M45#3997; R1972,6B17
[2] Bernoulli's identity without calculus.
Math. Mag. 70 (1997), no. 1, 47-50.
Z880.11023; M98c:05015
WILLIAMS K.S., ZHANG NAN-YUE,
[1] Special values of the Lerch zeta-function and the evaluation of
certain integrals.
Proc. Amer. Math. Soc., 119 (1993), no. 1, 35-49.
Z785.11046; M93k:11081
[2] Evaluation of two trigonometric sums,
Math. Slovaca, 44 (1994), no. 5, 575-583.
Z820.11010; M96d:11088
[3] Values of the Riemann zeta function and integrals involving
$\log(2\,{\rm sinh}(\theta/2))$ and $\log(2\sin(\theta/2))$,
Pacific J. Math. 168 (1995), no. 2, 271-289.
Z828.11041; M96f:11170
WILLIOT V.,
[1] Note sur le procédé le plus simple de calcul des nombres de
Bernoulli, Bull. Soc. Math. France, 16 (1888), 144-149.
J20.265
WILSON B.M.: see BERNDT B.C. et al.
WILSON J.C.,
[1] On Franel-Kluyver integrals of order three,
Acta Arith., 66 (1994), no. 1, 71-87.
Z807.11013; M94m:11116; R1997,12A60
WILSON J.C.: see also HALL R.R. et al.
WILTON J.R.,
[1] A proof of Burnside's formula for $log {\Gamma}(x+1)$ and
certain allied properties of Riemann's $\zeta$-function,
Messeng. Math. (2), 52 (1923), 90-93.
J48.409
WOLFF H.,
[1] Über die Anzahl der Zerlegungen einer ganzen Zahl in
Summen, Diss. Halle, 1899.
J30.201
WONG E.: see also BORWEIN J.M., WONG E.
WONG R., ZHANG J.-M.,
[1] Asymptotic monotonicity of the relative extrema of Jacobi polynomials,
Canad. J. Math., 46 (1994), no. 6, 1318-1337.
Z819.33004; M95j:33029
WOODCOCK C.F.,
[1] An invariant p-adic integral on $ Z_p$, J. London Math.
Soc., (2), 8 (1974), 731-734.
Z292.12021; M50#4545; R1975,6A461
[2] A note on some congruences for the Bernoulli numbers $B_m$,
J. London Math. Soc. (2), 11 (1975), no. 2, 256.
Z335.10017; M56#5415; R1976,3A162
[3] A two variable Riemann zeta function,
J. Number Theory, 27 (1987), no. 2, 212-221.
Z623.10028; M88k:11057; R1988,3B32
WOOLRIDGE K.,
[1] Some results in Arithmetical Functions Similar to Euler's
Phi-Function, Ph.D. thesis, Univ. of Illinois, 1975. Ch. III: Numerical
Data on Irregular Primes, 32-41.
WOON S.C.,
[1] A tree for generating Bernoulli numbers,
Math. Mag. 70 (1997), no. 1, 51-56.
Z882.11014; M98a:11026
WORONTZOF M.M. (WORONTZOFF M.),
[1] On the generalization of certain formulae investigated by
Mr. Blissard, Quart. J. Math., 8 (1867), 185-208,
310-319.
[2] Sur les nombres de Bernoulli, Nouv. Ann. Math. (2), 15
(1876), 12-19.
J8.146
WORPITZKY J.,
[1] Studien über die Bernoullischen und Eulerschen Zahlen,
J. Reine Angew. Math., 94 (1883), 203-232.
J15.201
[2] Über die Partialbruchzerlegung der Functionen, mit
besonderer Anwendung auf die Bernoulli'schen, Zeit. für Math. und Phys.,
29 (1884), 45-54.
J16.394
WRIGGE S.,
[1] Calculation of the Taylor series expansion coefficients of the Jacobian
elliptic unction sn(x,k),
Math. Comp. 37 (1981), no. 156, 495-497.
Z479.33003; M82d:65023
[2] An analytic disproof of Robertson's conjecture,
J. Math. Anal. Appl., 154 (1991), no. 1, 80-82.
Z739.30002; M92a:05012
WRIGHT E.M.: see HARDY G.H., WRIGHT E.M.
WU YUN FEI,
[1] A computational formula for a class of identities involving
Bernoulli polynomials,
Math. Practice Theory, 1995, no. 2, 32-36.
M96j:11022; R1996,2A102
YAGER R.I.,
[1] A Kummer criterion for imaginary quadratic fields, Compos.
Math., 47 (1982), no. 1, 31-42.
Z506.12008; M83k:12008; R1983,2A276
YAGISHITA K.,
[1] On the Diophantine equation $\alpha^l + \beta^l = c
\gamma^l$, TRU Math., 7 (1971), 5-10.
Z256.10014; M46#7161; R1973,5A149
YALAVIGI C.C.,
[1] Bernoulli and Lucas numbers,
Math. Education, 5 (1971), A99-A102.
M46#131
YAMADA M.,
[1] An experimental theory of numbers (The prime factors of the
numerators of Bernoulli numbers),
J. Fac. Eng. Ibaraki Univ., 35 (1987), 159-170.
R1988.10A111
[2] An approach to Wieferich's condition,
C. R. Math. Rep. Acad. Sci. Canada, 13 (1991), no. 2-3, 87-92.
Z731.11019; M92f:11052
YAMAGUCHI I.,
[1] On Fermat's last theorem, TRU Math., 3
(1967), 13-18.
Z167,316; M36#6350; R1968,10A91
[2] On generalized Fermat's last theorem,
TRU Math., 6 (1970), 29-32.
Z242.10009; M46#8974; R1973,11A168
[3] On a property of the irregular class group in a properly $l$-th
cyclotomic field, TRU Math., 7 (1971), 21-24.
Z252.12004; M47#3352; R1973,5A357
[4] On a Bernoulli numbers conjecture, J. Reine Angew. Math.,
288 (1976), 168-175.
Z333.10005; M54#12628; R1977,6A100
[5] On the units in a $l^\nu$-th cyclotomic field,
TRU Math., 13 (1977), no. 2, 1-12.
Z379.12003; M58#584; R1978,10A250
[6] Sympathetic Number Theory - The beautiful cyclotomic fields theory and Bernoulli numbers (Japanese), Sangyotosho Co. Ltd., 1994.
YAMAMOTO S.: see SHIRATANI K., YAMAMOTO S.
YANG BI CHENG,
[1] Formulas for sums of homogeneous powers of natural numbers related
to the Bernoulli numbers (Chinese).
Math. Practice Theory, 1994, no. 4, 52-56, 74.
M96c:11026
YANG BI CHENG, ZHU YUN HUA,
[1] Inequalities for the Hurwitz zeta-function on the real axis (Chinese),
Acta Sci. Natur. Univ. Sunyatseni 36 (1997), no. 3, 30-35.
M99h:11101
YANG BI CHENG: see also ZHU YUN HUA, YANG BI CHENG,
YANG HUI,
[1] The operator l and its applications. I. A generalization of the
Bernoulli polynomials,
J. Math. (Wuhan), 1 (1981), no. 2, 195-206.
(Chinese. English summary.)
Z519.33010; M83k:39004
YOKOI H.,
[1] On the distribution of irregular primes, J. Number
Theory, 7 (1975), 71-76.
Z297.10034; M51#385; R1976,7A180
YOKOYAMA S.: see SHIRATANI K., YOKOYAMA S.
YOSHIDA H.,
[1] On absolute CM-periods. II,
Amer. J. Math. 120 (1998), no. 6, 1199-1236.
YOSHIDA M.,
[1] A representation of the Bernoulli numbers
$B_n$ and the tangent numbers $T_n$.
SUT J. Math., 26 (1990), no. 2, 207-219.
Z746.11013; M92k:11021; R1991,11V421
YOUNG N.E.: see MILLAR J., SLOANE N.J.A., YOUNG N.E.
YOUNG P.T.,
[1] Congruences for Bernoulli, Euler, and Stirling numbers.
J. Number Theory, 78 (1999), no. 2, 204-227.
YOUNG R.M.: see NUNEMACHER J., YOUNG R.M.
YU JING,
[1] A cuspidal class number formula for the modular curves
$X_1(N)$, Math. Ann., 252 (1980), no. 3, 197-216.
Z426.12003;
436.12002; M82b:10030; R1981,6A377
[2] Transcendence and special zeta values in characteristic $p$.
Ann. Math. (2), 134 (1991), no. 1, 1-23.
Z734.11040; M92g:11075
YU JING, YU JIU-KANG,
[1] A note on a geometric analogue of Ankeny-Artin-Chowla's conjecture,
Number theory (Tiruchirapalli, 1996), 101-105, Contemp. Math., 210, Amer. Math.
Soc., Providence, RI, 1998.
Z896.11047; M98g:11131
YÜ WÊN CH'ING: see EIE MINKING
ZAGIER D.B.,
[1] Valeurs des fonctions zêta des corps quadratiques réels aux
entiers négatifs. Journées Arithmétiques de Caen (Univ. Caen, 1976),
pp. 135-151. Astérisque No. 41-42, Soc. Math. France, Paris, 1977.
Z359.12012; M56#316; R1977,12A140
[2] Zetafunktionen und quadratische Körper. Eine Einführung in
die höhere Zahlentheorie. Springer-Verlag, Berlin, 1981. viii + 144 pp.
Z459.10001; M82m:10002; R1982,3A107
[3] Hyperbolic manifolds and special values of Dedekind zeta-functions, Sonderforschungsbereich 40 Theor. Math., Univ. Bonn, 1984.
[4] Hyperbolic manifolds and special values of Dedekind zeta-functions,
Invent. Math., 83 (1986), no. 2, 285-301.
Z591.12014; M87e:11069; R1986,6A500
[5] Periods of modular forms and Jacobi theta functions. Max-Planck-Institut für Math. Bonn, MPI/89-56, 15 pp.
[6] Periods of modular forms and Jacobi theta functions,
Invent. Math., 104 (1991), no. 3, 449-465.
Z742.11029; M92e:11052
[7] On the values at negative integers of the zeta-function
of a real quadratic field.
Enseignement Math. (2), 22 (1976), 55-95.
Z334.12021; M53#10742; R1976/77,12A163
[8] Polylogarithms, Dedekind zeta functions, and
the algebraic $K$-theory of fields.
Arithmetic algebraic geometry, Proc. Conf., Texel/Neth.
1989, Prog. Math., 89 (1991), 391-430.
Z728.11062; M92f:11161
[9] Elementary aspects of the Verlinde formula and of the Harder- Narasimhan-Atiyah-Bott formula. Max-Planck-Institut für Math., Bonn, 1994, no.5, 16 pp.
[10] A modified Bernoulli number,
Nieuw Arch. Wisk. (4), 16 (1998), no. 1-2, 63-72.
M99i:11013
ZAGIER D.: see also KOHNEN W., ZAGIER D.
ZAGIER D.: see also HALL R.R., WILSON J.C., ZAGIER D.
ZARNKE C.: see BEACH B., WILLIAMS H., ZARNKE C.
ZECH TH.,
[1] Potenzsummen und Bernoullische Zahlen, Z. Angew. Math.
Mech., 34 (1954), 119-120.
Z56.13; M15-855e; R1955,838
ZEITLIN D.,
[1] Remarks on a formula for preferential arrangements,
Amer. Math. Monthly, 70 (1963), 183-187.
Z116,11; M26#4928; R1964,12A143
[2] On the sums $\sum_{k=0}^nk^p$ and $\sum_{k=0}^n(-1)^kk^p$,
Proc. Amer. Math. Soc., 15 (1964), 642-647.
Z123,1; M29#5010; R1967,1V164
ZELENOV E.I.: see VLADIMIROV V.S. et al.
ZELLER CHR.,
[1] De numeris Bernoulli eorumque compositione ex numeris
integritis et reciprocis primis, Bull. sci. math. et astr., 5 (1881),
195-215.
J13.190
ZENG JIANG,
[1] Sur quelques propriétés de symétrie des nombres de Genocchi.
(French) [On some symmetry properties of Genocchi numbers] Proceedings of the
5th Conference on Formal Power Series and Algebraic Combinatorics
(Florence, 1993). Discrete Math. 153 (1996), no. 1-3, 319-333.
Z870.05002; M97k:05015
ZENG J.: see also DUMONT D., ZENG J.
ZENG J.: see also HAN GUO-NIU, ZENG JIANG
ZENG J.: see also HAN G.-N.; RANDRIANARIVONY A.; ZENG J.
ZHANG JIAN KANG: see XIN XIAO LONG, ZHANG JIAN KANG
ZHANG J.-M.: see WONG R., ZHANG J.-M.
ZHANG N.Y.,
[1] A representation of Riemann's zeta-function (Chinese), J. Math. Res.
Exposition (1982), no. 4, 119-120.
Z506.10033; M84c:10037
[2] The Euler constant and some sums associated with the zeta
function. (Chinese).
Math. Practice Theory, (1990), no. 4, 62-70.
M92a:11098
ZHANG N.Y.: see also WILLIAMS K.S., ZHANG N.Y.
ZHANG PING: see SAGAN B.E., ZHANG PING
ZHANG R.: see GOSPER R.W., ISMAIL M.E.H., ZHANG R.
ZHANG WENPENG,
[1] On the several identities of Riemann zeta-function,
Chinese Sci. Bull., 36 (1991), no. 22, 1852-1856.
Z755.11026; M92m:11086
[2] Some identities for Euler numbers (Chinese),
J. Northwest Univ., 22 (1992), no. 1, 17-20.
Z886.11011 M93h:11024
[3] Some identities involving the Euler and the central factorial numbers, Fibonacci Quart. 36 (1998), no. 2, 154-157.
ZHANG XIANG DE: see WANG TIAN MING, ZHANG XIANG DE
ZHANG XIAN KE,
[1] A congruence formula for the class number of a general fourth degree
cyclic field,
Kexue Tongbao (Chinese), 32 (1987), no. 23, 1761-1763.
M89g:11101
[2] Congruences of class numbers of general cubic cyclic number
fields (Chinese. English summary).
J. China Univ. Sci. Tech., 17 (1987), no. 2, 141-145.
Z631.12003; M88i:11076; R1987,12A291
[3] Congruences for class numbers of general cyclic quartic fields, Kexue Tongbao (Science Bulletin), 33 (1988), no. 22, 1845-1848.
[4] Congruences modulo 8 for class numbers of general quadratic fields
$ Q(\sqrt{m})$ and $ Q(\sqrt{-m})$,
J. Number Theory, 32 (1989), no. 3, 332-338.
Z693.12005; M90k:11137
[5] Ten formulae of type Ankeny-Artin-Chowla for class numbers of
general cyclic quartic fields,
Sci. China Ser. A, 32 (1989), no. 4, 417-428.
Z669.12005; M91b:11112
ZHANG ZHIZHENG,
[1] Relation between two kinds of numbers and its applications,
Gongcheng Shuxue Xuebao 13 (1996), no. 1, 114-116.
M97g:11017; R1997,3V221
ZHANG ZHIZHENG, GUO LIZHOU,
[1] Recurrence sequences and Bernoulli polynomials of higher order,
Fibonacci Quart., 33 (1995), no. 4, 359-362.
Z831.11023; M96c:11027; R1996,5A119
ZHANG ZHIZHENG, JIN JINGYU,
[1] Some identities involving generalized Genocchi polynomials and generalized
Fibonacci-Lucas sequences,
Fibonacci Quart., 36 (1998), no. 4, 329-334.
ZHANG ZHIZHENG: see also WANG TIANMING, ZHANG ZHIZHENG
ZHENG ZHIYONG,
[1] The Petersson-Knopp identity fo the homogeneous Dedekind sums,
J. Number Theory, 57 (1996), no. 2, 223-230.
Z847.11021; M97c:11050
ZHBIKOVSKII A.K.,
[1] Teorema Silvestra otnositel'no bernullievykh chisel [Sylvester's theorem
concerning Bernoulli numbers].
Vestnik matem. nauk, 1 (1862), no. 13, 109-110.
[2] K teorii chisel Bernulli [On the theory of Bernoulli numbers]. Mat. Sbornik, 10 (1882), no. 2, 127-166.
ZHU YUN HUA, YANG BI CHENG,
[1] An improvement of Euler's summation formula and some
inequalities for sums of powers (Chinese),
Acta Sci. Natur. Univ. Sunyatseni 36 (1997), no. 4, 21-26.
Z902.40002; M99i:40003
ZHU YUN HUA: see also YANG BI CHENG, ZHU YUN HUA
ZIA-UD-DIN M.,
[1] Recurrence formulae for Bernoulli's numbers, Math. Student,
3 (1935), 141-151.
J61.II.985; Z14.102
ZIMMER H.G.,
[1] Computational problems, methods and results in algebraic
number theory, New York, Lecture Notes in Math., No. 262, 1972.
Z231.12001*; M48#2107; R1972,10A225
ZUBER M.,
[1] Propriétés de congruence de certaines familles classiques de
polynômes,
C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 8, 869-872.
Z762.11005; M94b:11025
[2] Propriétés $p$-adiques de polynômes classiques, Thèse, Université de Neuchatel, 1992.
[3] Suites de Honda,
Ann. Math. Blaise Pascal 2 (1995), no. 1, 307-314.
Z833.46062; M96k:11143